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Abstract
Federated Learning (FL) is an emerging learning
scheme that allows different distributed clients to
train deep neural networks together without data
sharing. Neural networks have become popular
due to their unprecedented success. To the best of
our knowledge, the theoretical guarantees of FL
concerning neural networks with explicit forms
and multi-step updates are unexplored. Neverthe-
less, training analysis of neural networks in FL
is non-trivial for two reasons: first, the objective
loss function we are optimizing is non-smooth and
non-convex, and second, we are even not updating
in the gradient direction. Existing convergence
results for gradient descent-based methods heav-
ily rely on the fact that the gradient direction is
used for updating. This paper presents a new class
of convergence analysis for FL, Federated Learn-
ing Neural Tangent Kernel (FL-NTK), which cor-
responds to overparamterized ReLU neural net-
works trained by gradient descent in FL and is
inspired by the analysis in Neural Tangent Ker-
nel (NTK). Theoretically, FL-NTK converges to a
global-optimal solution at a linear rate with prop-
erly tuned learning parameters. Furthermore, with
proper distributional assumptions, FL-NTK can
also achieve good generalization.

1. Introduction
In traditional centralized training, deep learning models
learn from the data, and data are collected in a database on
the centralized server. In many fields, such as healthcare and
natural language processing, models are typically learned
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from personal data. These personal data are subject to reg-
ulations such as California Consumer Privacy Act (CCPA)
(Legislature, 2018), Health Insurance Portability and Ac-
countability Act (HIPAA) (Act, 1996), and General Data
Protection Regulation (GDPR) of European Union. Due
to the data regulations, standard centralized learning tech-
niques are not appropriate, and users are much less likely
to share data. Thus, the data are only available on the local
data owners (i.e. edge devices). Federated learning (FL) is
a new type of learning scheme that avoids centralizing data
in model training. FL allows local data owners (also known
as clients) to locally train the private model and then send
the model weights or gradients to the central server. Then
central server aggregates the shared model parameters to
update new global model, and broadcasts the the parameters
of global model to each local client.

Quite different from the centralized training, FL has the
following unique properties. First, the training data are
distributed on an astonishing number of devices, and the
connection between the central server and the device is
slow. Thus, the computational cost is a key factor in FL.
In communication-efficient FL, local clients are required to
update model parameters for a few steps locally then send
their parameters to the server (McMahan et al., 2017). Sec-
ond, due to the fact that the data are collected from different
clients, the local data points can be sampled from differ-
ent local distributions. When this happens during training,
convergence may not be guaranteed.

The above two unique properties not only bring challenges
to algorithm design but also make theoretical analysis much
harder. There have been many efforts developing conver-
gence guarantees for FL algorithms based on the assump-
tions of convexity and smoothness for the objective func-
tions (Yu et al., 2019; Li et al., 2020c; Khaled et al., 2020).
Although a recent study (Li et al., 2021) shows theoretical
studies of FL on neural networks, its framework fails to gen-
erate multiple-local updates analysis, which is a key feature
in FL. One of the most conspicuous questions to ask is:

Can we build a unified and generalizable convergence
analysis framework for ReLU neural networks in FL?

In this paper, we give an affirmative answer to this question.
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It was recently proved in a series of papers that gradient
descent converges to global optimum if the neural networks
are overparameterized (significantly larger than the size of
the datasets). Our work is motivated by Neural Tangent
Kernel (NTK) that is originally proposed by (Jacot et al.,
2018) and has been extensively studied over the last few
years.

NTK is defined as the inner product space of pairwise data
point gradient (aka Gram matrix). It describes the evolution
of deep artificial neural networks during their training by
gradient descent. Thus, we propose a novel NTK-based
framework for federated learning convergence and general-
ization analysis on ReLU neural networks, so-called Feder-
ated Learning Neural Tangent Kernel (FL-NTK). Unlike the
good property of the symmetric Gram matrix in classical
NTK, we show the Gram matrix of FL-NTK is asymmetric
in Section 3.2. Our techniques address the core question:

How shall we handle the asymmetric Gram matrix in
FL-NTK?

Contributions. Our contributions are summarized into
the following two folds:

• We proposed a framework to analyze federated learn-
ing in neural networks. By appealing to recent ad-
vances of over-parameterized neural networks, we
prove convergence and generalization results of feder-
ated learning without the assumptions on the convexity
of objective functions or distribution of data in the
convergence analysis. Thus, we make the first step
toward bridging the gap between the empirical success
of federated learning and its theoretical understanding
in the settings of ReLU neural networks. The results
theoretically show that given fixed training instances,
the number of communication rounds increases as the
number of clients increases, which is also supported by
empirical evidence. We show that when the neural net-
works are sufficiently wide, the training loss across all
clients converges to zero at a linear rate. Furthermore,
we also prove a data-dependent generalization bound.

• In federated learning, the update in the global model is
no longer determined by the gradient directions directly.
Indeed, gradients’ heterogeneity in multiple local steps
hinders the usage of standard neural tangent kernel
analysis, which is based on the kernel gradient de-
scent in the function space for a positive semi-definite
kernel. We identify the dynamics of training loss by
considering all intermediate states of local steps and
establishing the tangent kernel space associated with
a general non-symmetric Gram matrix to address this
issue. We prove that this Gram matrix is close to sym-
metric at initialization using concentration properties

at initialization. Therefore, we guarantee linear conver-
gence results. This technique may further improve our
understanding of many different FL optimization and
aggregation methods on neural networks.

Organization. In Section 2 we discuss related work. In
Section 3 we formulate FL convergence problem. In Sec-
tion 4 we state our result. In Section 5 we summarize
our technique overviews. In Section 6 we give a proof
sketch of our result. In Section 7, we conduct exper-
iments that affirmatively support our theoretical results.
In Section 8 we conclude this paper and discuss future
works. In Appendix A, we list several probability results.
In Appendix B we prove our convergence result of FL-
NTK. In Appendix C, we prove our generalization result
of FL-NTK. The full version of this paper is available at
https://arxiv.org/abs/2105.05001.

2. Related Work
Federated Learning Federated learning has emerged as
an important paradigm in distributed deep learning. Gener-
ally, federated learning can be achieved by two approaches:
1) each party training the model using private data and where
only model parameters being transferred and 2) using en-
cryption techniques to allow safe communications between
different parties (Yang et al., 2019a). In this way, the details
of the data are not disclosed in between each party. In this pa-
per, we focus on the first approach, which has been studied
in (Dean et al., 2012; Shokri & Shmatikov, 2015; McMahan
et al., 2016; 2017). Federated average (FedAvg) (McMahan
et al., 2017) firstly addressed the communication efficiency
problem by introducing a global model to aggregate local
stochastic gradient descent updates. Later, different vari-
ations and adaptations have arisen. This encompasses a
myriad of possible approaches, including developing better
optimization algorithms (Li et al., 2020a; Wang et al., 2020)
and generalizing model to heterogeneous clients under spe-
cial assumptions (Zhao et al., 2018; Kairouz et al., 2021; Li
et al., 2021).

Federated learning has been widely used in different fields.
Healthcare applications have started to utilize FL for multi-
center data learning to solve small data, and privacy in data
sharing issues (Li et al., 2020b; Rieke et al., 2020; Li et al.,
2019; Andreux et al., 2020). We have also seen new FL
algorithms popping up (Wang et al., 2019; Lim et al., 2020;
Chen et al., 2020a) in mobile edge computing. FL also has
promising applications in autonomous driving (Liang et al.,
2019), financial filed (Yang et al., 2019b), and so on.

Convergence of Federated Learning Despite its promis-
ing benefits, FL comes with new challenges to tackle, es-
pecially for its convergence analysis under communication-
efficiency algorithms and data heterogeneity. The conver-
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gence of the general FL framework on neural networks is
underexplored. A recent work (Li et al., 2021) studies FL
convergence on one-layer neural networks. Nevertheless,
it is limited by the assumption that each client performs
a single local update epoch. Another line of approaches
does not directly work on neural network setting (Li et al.,
2020c; Khaled et al., 2020; Yu et al., 2019). Instead, they
make assumptions on the convexity and smoothness of the
objective functions, which are not realistic for non-linear
neural networks.

Convergence of deep neural network The convergence
of deep neural network (in non-FL setting) has been exten-
sively studied over the last couple of years, Gaussian inputs
(Zhong et al., 2017b; Li & Yuan, 2017; Zhong et al., 2017a;
Ge et al., 2018; Zhong et al., 2019; Bakshi et al., 2019;
Chen et al., 2020b), sufficiently wide neural network (Li &
Liang, 2018; Du et al., 2019b; Allen-Zhu et al., 2019a;b;
Du et al., 2019a; Zhang et al., 2020; Brand et al., 2021;
Song & Zhang, 2021; Song et al., 2021), NTK (Jacot et al.,
2018) and beyond NTK (Bai & Lee, 2019; Li et al., 2020d).
For more literature, we refer the readers to textbook (Arora
et al., 2020).

3. Problem Formulation as Neural Tangent
Kernel

This section is organized as follows:

• We first introduce the notations used in our analysis.

• In Section 3.1, we present the basic setup of NTK and
our federated learning algorithm.

• In Section 3.2, we give the analysis on the dynamics
of NTK.

To capture the training dynamic of FL on ReLU neural net-
works, we formulate the problem in Neural Tangent Kernel
regime.

Notations We use N to denote the number of clients and
use c to denote its index. We use T to denote the number
of communication rounds, and use t to denote its index.
We use K to denote the number of local update steps, and
we use k to denote its index. We use u(t) to denote the
aggregated server model after round t. We use wk,c(t) to
denote c-th client’s model in round t and step k.

Let S1∪S2∪· · ·∪SN = [n] and Si∩Sj = ∅. Given n input
data points and labels {(x1, y1), (x2, y2), · · · , (xn, yn)} in
Rd×R, the data of each client c is {(xi, yi) : i ∈ Sc}. Let
φ(z) = max{z, 0} denote the ReLU activation.

For each client c ∈ [N ], we use yc ∈ R|Sc| to denote the
ground truth with regard to its data, and denote y(k)

c (t) ∈

R|Sc| to be the (local) model’s output of its data in the t-th
global round and k-th local step. For simplicity, we also
use y(k)(t) ∈ Rn to denote aggregating all (local) model’s
outputs in the t-th global round and k-th local step.

3.1. Preliminaries

In this subsection we introduce Algorithm 1, the brief algo-
rithm of our federated learning (under NTK setting):

• In the t-th global round, server broadcasts u(t) ∈
Rd×m to every client.

• Each client c then starts from w0,c(t) = u(t) and takes
K (local) steps gradient descent to find wK,c(t).

• Each client sends ∆uc(t) = wK,c(t) − w0,c(t) to
server.

• Server computes a new u(t+ 1) based on the average
of all ∆uc(t). Specifically, the server updates u(t) by
the average of all local updates ∆uc(t) and arrives at

u(t+ 1) = u(t) + ηglobal ·
∑

c∈[N ]

∆uc(t)/N.

• We repeat the above four steps by T times.

Setup We define one-hidden layer neural network func-
tion f : Rd → R similar as (Du et al., 2019b; Song & Yang,
2019; Brand et al., 2021; Song & Zhang, 2021)

f(u, x) :=
1√
m

m∑

r=1

arφ(u>r x),

where u ∈ Rd×m and ur ∈ Rd is the r-th column of matrix
u.
Definition 3.1 (Initialization). We initialize u ∈ Rd×m and
a ∈ Rm as follows:

• For each r ∈ [m], ur is sampled from N (0, σ2I).

• For each r ∈ [m], ar is sampled from {−1,+1} uni-
formly at random (we don’t need to train).

We define the loss function for j ∈ [N ],

Lj(u, x) :=
1

2

∑

i∈Sj

(f(u, xi)− yi)2,

L(u, x) :=
1

N

N∑

j=1

Lj(u, x).

We can compute the gradient ∂f(u,x)
∂ur

∈ Rd (of function f ),

∂f(u, x)

∂ur
=

1√
m
arx1u>r x≥0.
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Algorithm 1 Training Neural Network with FedAvg under NTK setting.

1: ur(0) ∼ N (0, Id) for r ∈ [m]. . u ∈ Rd×m
2: for t = 1, . . . , T do
3: for c = 1, . . . , N do
4: /*Client receives weights from server*/
5: w0,c(t)← u(t) . w0,c(t), u(t) ∈ Rd×m
6: /*Client runs K local steps gradient descent*/
7: for k = 1, . . . ,K do
8: for i ∈ Sc do
9: y

(k)
c (t)i ← 1√

m

∑m
r=1 arφ(wk,c,r(t)

>xi) . y
(k)
c (t) ∈ R|Sc|

10: end for
11: for r = 1→ m do
12: for i ∈ Sc do
13: Ji,: ← 1√

m
arφ
′(wk,c,r(t)>xi)x>i . Ji,: =

∂f(wk,c(t),xi,a)
∂wk,c,r(t) ∈ R1×d

14: end for
15: gradr ← −J>(yc − y(k)

c (t)) . J ∈ R|Sc|×d

16: wk,c,r(t)← wk−1,c,r(t)− ηlocal · gradr
17: end for
18: end for
19: /*Client sends weights to server*/
20: ∆uc ← wk,c(t)− u(t)
21: end for
22: /*Server aggregates the weights*/
23: ∆u← 1

N

∑
c∈[N ] ∆uc . ∆u ∈ Rd×m

24: u(t+ 1)← u(t) + ηglobal∆u . u(t+ 1) ∈ Rd×m
25: end for

We can compute the gradient ∂Lc(u)
∂ur

∈ Rd (of function L),

∂Lc(u)

∂ur
=

1√
m

n∑

i=1

(f(u, xi)− yi)arxi1u>r,cxi≥0.

We formalize the problem as minimizing the sum of loss
functions over all clients:

min
u∈Rd×M

L(u).

Local update In each local step, we update wk,c by gra-
dient descent.

wk+1,c ← wk,c − ηlocal ·
∂Lc(wk,c)

∂wk,c
.

Note that

∂Lc(wk,c)

∂wk,c,r
=

1√
m

∑

i∈Sc

(f(wk,c, xi)− yi)arxi1w>k,c,rxi≥0.

Global aggregation In each global communication round
we aggregate all local updates of clients by taking a simple

average

∆u(t) =
∑

c∈[N ]

∆uc(t)/N,

where ∆uc(t) = wK,c − w0,c for all c ∈ [N ].

Global steps in total Then global model simply add
∆u(t) to its parameters.

u(t+ 1)← u(t) + ηglobal ·∆u(t).

3.2. NTK Analysis

The neural tangent kernel H∞ ∈ Rn×n, introduced in (Ja-
cot et al., 2018), is given by

H∞i,j := E
w∼N (0,I)

[
x>i xj1w>xi≥0,w>xj≥0

]

At round t, let y(t) = (y1(t), y2(t), · · · , yn(t)) ∈ Rn be
the prediction vector where yi(t) ∈ R is defined as

yi(t) = f(u(t), xi).

Recall that we denote labels y = (y1, · · · , yn) ∈ Rn,
yc = {yi}i∈Sc , predictions y(t) = (y(t)1, · · · , y(t)n) and
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yc(t) = {y(t)i}i∈Sc
, we can then rewrite ‖y − y(t)‖22 as

follows:

‖y − y(t+ 1)‖22
= ‖y − y(t)− (y(t+ 1)− y(t))‖22
= ‖y − y(t)‖22 − 2(y − y(t))>(y(t+ 1)− y(t))

+ ‖y(t+ 1)− y(t)‖22. (1)

Now we focus on y(t+ 1)− y(t), notice for each i ∈ [n]

yi(t+ 1)− yi(t)

=
1√
m

m∑

r=1

ar(φ(ur(t+ 1)>xi)− φ(u>r (t)x))

=
1√
m

m∑

r=1

ar

(
φ
(
(ur(t) + ηglobal∆ur(t))

>xi
)
−

φ(u>r (t)x)

)
(2)

where

∆ur(t) :=
ar
N

∑

c∈[N ]

∑

k∈[K]

ηlocal√
m

∑

j∈Sc

(yj − y(k)
c (t)j)xj1wk,c,r(t)>xj≥0.

In order to further analyze Eq (2), we separate neurons
into two sets. One set contains neurons with the activation
pattern changing over time and another set contains neurons
with activation pattern holding the same. Specifically for
each i ∈ [n], we define the set Qi ⊂ [m] of neurons whose
activation pattern is certified to hold the same throughout
the algorithm

Qi := {r ∈ [m] : ∀w ∈ Rd s.t. ‖w − wr(0)‖2 ≤ R,
1wr(0)>xi≥0 = 1w>xi≥0},

and use Qi to denote its complement. Then yi(t + 1) −
yi(t) = v1,i + v2,i where

v1,i =
1√
m

∑

r∈Qi

ar

(
φ
(
(ur(t) + ηglobal∆ur(t))

>xi
)

− φ(ur(t)
>xi)

)
,

v2,i =
1√
m

∑

r∈Qi

ar

(
φ
(
(ur(t) + ηglobal∆ur(t))

>xi
)

− φ(ur(t)
>xi)

)
.

(3)

The benefit of this procedure is that v1 can be written in
closed form

v1,i =
ηglobalηlocal

Nm

∑

k∈[K],c∈[N ]

∑

j∈Sc

∑

r∈Qi

qk,c,j,r,

where

qk,c,j,r := −(y(k)
c (t)j − yj)x>i xj1wk,c,r(t)>xj ,ur(t)>xi≥0,

and v2 is sufficiently small which we will show later.

Now, we extend the NTK analysis to FL. We start with
defining the Gram matrix for f as follows.

Definition 3.2. For any t ∈ [0, T ], k ∈ [K], c ∈ [N ], we
define matrix H(t, k, c) ∈ Rn×n as follows

H(t, k, c)i,j =
1

m

m∑

r=1

x>i xj1u>r xi≥0,wk,c,r(t)>xj≥0,

H(t, k, c)⊥i,j =
1

m

∑

r∈Qi

x>i xj1u>r xi≥0,wk,c,r(t)>xj≥0.

This Gram matrix is crucial for the analysis of error dynam-
ics. When t = 0 and the width m approaches infinity, the
H matrix becomes the NTK, and with infinite width, neural
networks just behave like kernel methods with respect to the
NTK (Arora et al., 2019b; Lee et al., 2020). It turns out that
in the finite width case (Li & Liang, 2018; Allen-Zhu et al.,
2019a;b; Du et al., 2019b;a; Song & Yang, 2019; Oymak
& Soltanolkotabi, 2020; Huang & Yau, 2020; Chen & Xu,
2020; Zhang et al., 2020; Brand et al., 2021; Song & Zhang,
2021), the spectral property of the gram matrix also governs
convergence guarantees for neural networks.

We can then decompose −2(y − y(t))>(y(t + 1) − y(t))
into

− 2(y − y(t))>(y(t+ 1)− y(t))

= − 2(y − y(t))>(v1 + v2)

= − 2ηglobalηlocal

N

∑

i∈[n]

∑

k∈[K]

∑

c∈[N ]

∑

j∈Sc

pi,k,c,j

− 2
∑

i∈[n]

(yi − yi(t))v2,i (4)

where

pi,k,c,j := (yi − yi(t)) · (yj − y(k)
c (t)j)

· (H(t, k, c)i,j −H(t, k, c)⊥i,j).

Now it remains to analyze Eq (1) and Eq (4). Our analysis
leverages several key observations in the classical Neural
Tangent Kernel theory throughout the learning process:

• Weights change lazily, namely

‖u(t+ 1)− u(t)‖2 ≤ O(1/n).

• Activation patterns remain roughly the same, namely

‖H(t, k, c)⊥‖F ≤ O(1),
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and

‖v2‖2 ≤ O(‖y − y(t)‖2).

• Error controls model updates, namely

‖y(t+ 1)− y(t)‖2 ≤ O(‖y − y(t)‖2).

Based on the above observations, we show that the dynamics
of federated learning is dominated in the following way

‖y − y(t+ 1)‖22
≈ ‖y − y(t)‖22
− 2

∑

k∈[K]

(y − y(t))>H(t, k)(y − y(k)(t)),

where the Gram matrix H(t, k) ∈ Rn×n comes from
combining the Sc columns of H(t, k, c) for all c ∈ [N ].
Since S1 ∪ S2 ∪ · · · ∪ SN = [n] and Si ∩ Sj = ∅, ev-
ery j ∈ [n] belongs to one unique Sc for some c and
H(t, k)i,j = H(t, k, c)i,j , j ∈ Sc.
There are two difficulties lies in the analysis of these dynam-
ics. First, unlike the symmetric Gram matrix in the standard
NTK theory for centralized training, our FL framework’s
Gram matrix is asymmetric. Secondly, model update in each
global round is influenced by all intermediate model states
of all the clients.

To address these difficulties, we bring in two new techniques
to facilitate our understanding of the learning dynamics.

• First, we generalize Theorem 4.2 in (Du et al., 2019b)
to non-symmetric Gram matrices. We show in
Lemma B.11 that with good initialization H(t, k) is
close to the original Gram matrix H(0), so that model
could benefit from a linear learning rate determined by
the smallest eigenvalue of H(0).

• Secondly, we leverage concentration properties at ini-
tialization to bound the difference between the errors
in local steps and the errors in the global step. Specifi-
cally, we can show that y − y(k)(t) ≈ y − y(t) for all
k ∈ [K].

4. Our Results
We first present the main result on the convergence of feder-
ated learning in neural networks by the following theorem.

Theorem 4.1 (Informal version of Theorem B.3). Let

m = Ω(λ−4n4 log(n/δ)),

we iid initialize ur(0), ar as Definition 3.1 where σ = 1. Let
λ denote λmin(H(0)). Let κ denote the condition number

of H(0). For N clients, for any ε, let

T = O
( N

ληlocalηglobalK
· log(1/ε)

)
,

there is an algorithm (FL-NTK) runs in T global steps and
each client runs K local steps with choosing

ηlocal = O
( λ

κKn2

)
and ηglobal = O(1)

and outputs weight U with probability at least 1 − δ such
that the training loss L(u, x) satisfies

L(u, x) =
1

2N

N∑

i=1

(f(u, xi)− yi)2 ≤ ε.

We note that our theoretical framework is very powerful.
With additional assumptions on the training data distribution
and test data distribution, we can also show an upper bound
for the generalization error of federated learning in neural
networks. We first introduce a distributional assumption,
which is standard in the literature (e.g, see (Arora et al.,
2019a; Song & Yang, 2019)).

Definition 4.2 (Non-degenerate Data Distribution, Defini-
tion 5.1 in (Arora et al., 2019a)). A distribution D over
Rd × R is (λ, δ, n)-non-degenerate, if with probability at
least 1− δ, for n i.i.d. samples (xi, yi)

n
i=1 chosen from D,

λmin(H(0)) ≥ λ > 0.

Our result on generalization bound is stated in the following
theorem.

Theorem 4.3 (Informal, see Appendix C for details). Fix
failure probability δ ∈ (0, 1). Suppose the training data
S = {(xi, yi)}ni=1 are i.i.d samples from a (λ, δ/3, n)-non-
degenerate distribution D, and

• σ ≤ O(λ · poly(log n, log(1/δ))/n),

• m ≥ Ω(σ−2 · poly(n, logm, log(1/δ), λ−1)),

• T ≥ Ω((ηlocalηglobalKλ)−1N log(n/δ)) .

We initialize u ∈ Rd×m and a ∈ Rm as Definition 3.1.
Consider any loss function ` : R × R → [0, 1] that is 1-
Lipschitz in its first argument. Then with probability at least
1− δ the following event happens: after T global steps, the
generalization loss

LD(f) := E
(x,y)∼D

[`(f(u, x), y)]

is upper bounded as

LD(f) ≤ (2y>(H∞)−1y/n)1/2 +O(
√

log(n/(λδ))/n).
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5. Techniques Overview
In our algorithm, when K = 1, i.e., we only perform one
local step per global step, essentially we are performing
gradient descent on all the n data points with step size
ηglobalηlocal/N . As the norm of the gradient is proportional
to 1/

√
m, when the neural network is sufficiently wide, we

can control the norm of the gradient. Then by the update rule
of gradient descent, we hence upper bound the movement
of the first layer weight u. By anti-concentration of the
normal distribution, this implies that for each input x, the
activation status of most of the ReLU gates remains the
same as initialized, which enables us to apply the standard
convergence analysis of gradient descent on convex and
smooth functions. Finally, we can handle the effect of ReLU
gates whose activation status have changed by carefully
choosing the step size.

However, the analysis becomes much more complicated
when K ≥ 2, where the movement of u is no longer de-
termined by the gradient directly. Nevertheless, on each
client, we are still performing gradient descent for K local
steps. So we can handle the movement of the local weight
w. The major technical bulk of this work is then proving
that the training error shrinks when we set the global weight
movement as the average of the local weight. Our argument
is inspired by that of (Du et al., 2019b) but is much more
involved.

6. Proof Sketch
In this section we sketch our proof of Theorem 4.1 and
Theorem 4.3. The detailed proof is deferred to Appendix B.

In order to prove the linear convergence rate in Theorem
4.1, it is sufficient to show that the training loss shrinks in
each round, or formally for each τ = 0, 1, · · · ,

‖y(τ + 1)− y‖22
≤
(

1− ληglobalηlocalK

2N

)
· ‖y(τ)− y‖22.

We prove Eq. (5) by induction. Assume that we have proved
for τ ≤ t− 1 and we want to prove Eq. (5) for τ = t. We
first show that the movement of the weight u is bounded
under the induction hypothesis.
Lemma 6.1 (Movement of global weight, informal version
of Lemma B.12). For any r ∈ [m],

‖ur(t)− ur(0)‖2 = O
(√n‖y − y(0)‖2√

mλ

)
.

The detailed proof can be found in Appendix B.6.

We then turn to the proof of Eq. (5) by decomposing the
loss in t+ 1-th global round

‖y − y(t+ 1)‖22

= ‖y − y(t)‖22 − 2(y − y(t))>(y(t+ 1)− y(t))

+ ‖y(t+ 1)− y(t)‖22 (5)

To this end, we need to investigate the change of prediction
in consecutive rounds, which is described in Eq. (2). For
the sake of simplicity, we introduce the notation

zi,r := φ
(
(ur(t) + ηglobal∆ur(t))

>xi
)
− φ(ur(t)

>xi),

then we have

y(t+ 1)i − y(t)i =
1√
m

m∑

r=1

arzi,r

=
1√
m

∑

r∈Qi

arzi,r + v2,i,

where v2,i is introduced in Eq. (3).

For client c ∈ [N ] let y(k)
c (t)j (j ∈ Sc) be defined

by y(k)
c (t)j = f(wk,c(t), xj). By the gradient-averaging

scheme described in Algorithm 1, ∆ur(t), the change in the
global weights is

ar
N

∑

c∈[N ]

∑

k∈[K]

ηlocal√
m

∑

j∈Sc

(yj − y(k)
c (t)j)xj1wk,c,r(t)>xj≥0.

Therefore, we can calculate 1√
m

∑
r∈Qi

arzi,r

1√
m

∑

r∈Qi

arzi,r

=
1√
m

∑

r∈Qi

ar

(
φ
(
(ur(t) + ηglobal∆ur(t))

>xi
)
−

φ(ur(t)
>xi)

)

=
ηglobalηlocal

mN

∑

k∈[K]

∑

c∈[N ]

∑

j∈Sc

(yj − y(k)
c (t)j)x

>
i xj ·

∑

r∈Qi

1u>r xi≥0,wk,c,r(t)>xj≥0

=
ηglobalηlocal

N

∑

k∈[K]

∑

c∈[N ]

∑

j∈Sc

(yj − y(k)
c (t)j)(H(t, k, c)i,j −H(t, k, c)⊥i,j).

Further, we write−2(y−y(t))>(y(t+1)−y(t)) as follows:

− 2(y − y(t))>(y(t+ 1)− y(t))

= − 2(y − y(t))>(v1 + v2)

= − 2ηglobalηlocal

N

∑

i∈[n]

∑

k∈[K]

∑

c∈[N ]

∑

j∈Sc

(yi − yi(t))(yj − y(k)
c (t)j)(H(t, k, c)i,j −H(t, k, c)⊥i,j)

− 2
∑

i∈[n]

(yi − yi(t))v2,i.
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To summarize, we can decompose the loss as

‖y − y(t+ 1)‖22 = ‖y − y(t)‖22 + C1 + C2 + C3 + C4.

where

C1 = − 2ηglobalηlocal

N

∑

i∈[n]

∑

k∈[K]

∑

c∈[N ]

∑

j∈Sc

(yi − yi(t))(yj − y(k)
c (t)j)H(t, k, c)i,j ,

C2 = +
2ηglobalηlocal

N

∑

i∈[n]

∑

k∈[K]

∑

c∈[N ]

∑

j∈Sc

(yi − yi(t))(yj − y(k)
c (t)j)H(t, k, c)⊥i,j ,

C3 = − 2
∑

i∈[n]

(yi − yi(t))v2,i,

C4 = + ‖y(t+ 1)− y(t)‖22.

Let R = maxr∈[m] ‖ur(t)−ur(0)‖2 be the maximal move-
ment of global weights. Note that by Lemma 6.1, R can be
made arbitrarily small as long as the width m is sufficiently
large. Next, we bound C1, C2, C3, C4, by arguing that they
are bounded from above ifR is small and the learning rate is
properly chosen. The detailed proof is deferred to Appendix
B.3.
Lemma 6.2 (Bounding of C1, C2, C3, C4, informal version
of Claim B.4, Claim B.5, Claim B.6 and Claim B.7). As-
sume that

• R = O(λ/n),

• ηlocal = O(1/(κKn2)),

• ηglobal = O(1).

Then with high probability we have

C1 ≤ − ηglobalηlocalλK‖y − y(t)‖22/N,
C2 ≤ + ηglobalηlocalλK‖y − y(t)‖22/(40N),

C3 ≤ + ηglobalηlocalλK‖y − y(t)‖22/(40N),

C4 ≤ + ηglobalηlocalλK‖y − y(t)‖22/(40N).

Combining the above lemma, we arrive to

‖y − y(t+ 1)‖22
≤
(

1− ηglobalηlocalλK

2N

)
· ‖y − y(t)‖22,

which completes the proof of Eq. (5). Finally Theorem 4.1
follows from

‖y − y(T )‖22 ≤
(

1− ηglobalηlocalλK

2N

)T

≤ ε.

7. Experiment
Models and datasets We examine our theoretical results
on a benchmark dataset - Cifar10 in FL study. We perform
10 class classification tasks using ResNet56 (He et al., 2016).
For fair convergence comparison, we fixed the total number
of samples n. Based on our main result Theorem 4.1, we
show the convergence with respect to the number of client
N . To clearly evaluate the effects onN , we set all the clients
to be activated (sampling all the clients) at each aggregation.
We examine the settings of both non-iid and iid clients:

iid Data distribution is homogeneous in all the clients.
Specifically, the label distribution over 10 classes is a
uniform distribution.

non-iid Data distribution is heterogeneous in all the clients. For
non-iid splits, we utilize the Dirichlet distribution as
in (Yurochkin et al., 2019; Wang et al., 2020; He et al.,
2020a). First, each of these datasets is heterogeneously
divided into J batches. The heterogeneous partition
allocates pz ∼ DirJ(α) proportion of the instances of
label z to batch j. Then one label is sampled based on
these vectors for each device, and an image is sampled
without replacement based on the label. For all the
classes, we repeat this process until all data points are
assigned to devices.

Setup The experiment is conducted on one Ti2080 Nvidia
GPU. We use SGD the the local optimizer with a learning
rate of 0.03 to train the neural network.1. We set batch size
as 128. We set the local update epoch K = 1, 2, 5 and 102.
We set Dirichlet distribution parameter for non-iid data as
α = 0.5. For all local update epoch settings, we set the
client and sever communication round as 200. There are
50,000 training instances in Cifar10. We vary the number
of clients N = 10, 50, 100 and record the training loss over
communication rounds. The implementation is based on
FedML (He et al., 2020b).

Impact ofN Our theory suggests that given fixed training
instances (fixed n) a smallerN requires less communication
rounds to converge to a given ε. In other words, a smaller N
may accelerate the convergence of the global model. Intu-
itively, a large N on a fixed amount of data means a heavier
communication burden. Figure 1 shows the training loss
curve of different choices of N . We empirically observe
consistent results over different K that a smaller N con-
verges faster given a fix number of total training samples,
which is affirmative to our theoretical results.

1It is difficult to run real NTK experiment or full-batch gradient
descent (GD) due to memory contrains.

2Local update step equals to epoch in GD. But the number of
steps of one epoch in SGD is equal to the number of mini-batches.
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(a) Local update epoch K =1
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(b) Local update epoch K =2
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(c) Local update epoch K =5
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Figure 1: Training loss vs. communication rounds when number of clients N = 10, 50, 100 with iid and non-iid setting
using mini-batch SGD optimizer.

8. Discussion
Overall, we provide the first comprehensive proof of con-
vergence of gradient descent and generalization bound for
over-parameterized ReLU neural network in federated learn-
ing. We consider the training dynamic with respect to local
update steps K and number of clients N .

Different from most of existing theoretical analysis work
on FL, FL-NTK prevails over the ability to exploit neural
network parameters. There is a great potential for FL-NTK
to understand the behavior of different neural network archi-
tectures, i.e., how Batch Normalization affects convergence
in FL, like FedBN (Li et al., 2021). Different from FedBN,
whose analysis is limited to K = 1, we provide the first
general framework for FL convergence analysis by consid-
ering K ≥ 2. The extension is non-trivial, as parameter
update does not follow the gradient direction due to the het-
erogeneity of local data. To tackle this issue, we establish
the training trajectory by considering all intermediate states
and establishing an asymmetric Gram matrix related to local
gradient aggregations. We show that with quartic network
width, federated learning can converge to a global-optimal
at a linear rate. We also provide a data-dependent generaliza-
tion bound of over-parameterized neural networks trained
with federated learning.

It will be interesting to extend the current FL-NTK frame-
work for multi-layer cases. Existing NTK results of two-
layer neural networks (NNs) have shown to be generalized
to multi-layer NNs with various structures such as RNN,
CNN, ResNet, etc. (Allen-Zhu et al., 2019a;b; Du et al.,
2019a). The key techniques for analyzing FL on wide neu-
ral networks are addressed in our work. Our result can be
generalized to multi-layer NNs by controlling the perturba-
tion propagation through layers using well-developed tools
(rank-one perturbation analysis, randomness decomposition,
and extended McDiarmid’s Inequality). We hope our results
and techniques will provide insights for further study of
distributed learning and other optimization algorithms.
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