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Abstract

Deep AUC (area under the ROC curve) Maximization (DAM) has attracted much atten-
tion recently due to its great potential for imbalanced data classification. However, the
research on Federated Deep AUC Maximization (FDAM) is still limited. Compared with
standard federated learning (FL) approaches that focus on decomposable minimization ob-
jectives, FDAM is more complicated due to its minimization objective is non-decomposable
over individual examples. In this paper, we propose improved FDAM algorithms for het-
erogeneous data by solving the popular non-convex strongly-concave min-max formula-
tion of DAM in a distributed fashion, which can also be applied to a class of non-convex
strongly-concave min-max problems. A striking result of this paper is that the commu-
nication complexity of the proposed algorithm is a constant independent of the number
of machines and also independent of the accuracy level, which improves an existing re-
sult by orders of magnitude. The experiments have demonstrated the effectiveness of our
FDAM algorithm on benchmark datasets, and on medical chest X-ray images from dif-
ferent organizations. Our experiment shows that the performance of FDAM using data
from multiple hospitals can improve the AUC score on testing data from a single hospital
for detecting life-threatening diseases based on chest radiographs. The proposed method is
implemented in our open-sourced library LibAUC (www.libauc.org) whose github address
is https://github.com/Optimization-AI/ICML2021_FedDeepAUC_CODASCA.

1. Introduction

Federated learning (FL) is an emerging paradigm for large-scale learning to deal with data
that are (geographically) distributed over multiple clients, e.g., mobile phones, organiza-
tions. An important feature of FL is that the data remains at its own clients, allowing
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Table 1: The summary of sample and communication complexities of different algorithms
for FDAM under a p-PL condition in both heterogeneous and homogeneous set-
tings, where K is the number of machines and p < 1. NPA denotes the naive
parallel (large mini-batch) version of PPD-SG [22] for DAM, where M denotes
the batch size in the NPA. The % indicate the results that are derived by us. O(-)
suppresses a logarithmic factor.
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the preservation of data privacy. This feature makes FL attractive not only to internet
companies such as Google and Apple but also to conventional industries such as those that
provide services to hospitals and banks in the big data era [36, 23]. Data in these industries
is usually collected from people who are concerned about data leakage. But in order to
provide better services, large-scale machine learning from diverse data sources is important
for addressing model bias. For example, most patients in hospitals located in urban areas
could have dramatic differences in demographic data, lifestyles, and diseases from patients
who are from rural areas. Machine learning models (in particular, deep neural networks)
trained based on patients’ data from one hospital could dramatically bias towards its major
population, which could bring serious ethical concerns [33].

One of the fundamental issues that could cause model bias is data imbalance, where
the number of samples from different classes are skewed. Although FL provides an effective
framework for leveraging multiple data sources, most existing FL methods still lack the
capability to tackle the model bias caused by data imbalance. The reason is that most
existing FL methods are developed for minimizing the conventional objective function, e.g.,
the average of a standard loss function on all data, which are not amenable to optimizing
more suitable measures such as area under the ROC curve (AUC) for imbalanced data.
It has been recently shown that directly maximizing AUC for deep learning can lead to
great improvements on real-world difficult classification tasks [49]. For example, Yuan et al.
[49] reported the best performance by DAM on the Stanford CheXpert Competition for
interpreting chest X-ray images like radiologists [11].

However, the research on FDAM is still limited. To the best of our knowledge, Guo et al.
[8] is the only work that was dedicated to FDAM by solving the non-convex strongly-
concave min-max problem in a distributed manner. Their algorithm (CODA) is similar
to the standard FedAvg method [26] except that the periodic averaging is applied both to
the primal and the dual variables. Nevertheless, their results on FDAM are not comprehen-
sive. By a deep investigation of their algorithms and analysis, we found that (i) although
their FL algorithm CODA was shown to be better than the naive parallel algorithm (NPA)
with a small mini-batch for DAM, the NPA using a larger mini-batch at local machines can



enjoy a smaller communication complexity than CODA; (ii) the communication complexity
of CODA for homogeneous data becomes better than that was established for the hetero-
geneous data, but is still worse than that of NPA with a large mini-batch at local clients.
These shortcomings of CODA for FDAM motivate us to develop better federated averaging
algorithms and analysis with a better communication complexity without sacrificing the
sample complexity.

This paper aims to provide more comprehensive results for FDAM, with a focus on
improving the communication complexity of CODA for heterogeneous data. In particular,
our contributions are summarized below:

e First, we provide a stronger baseline with a simpler algorithm than CODA named CODA+,
and establish its complexity in both homogeneous and heterogeneous data settings. Al-
though CODA+ has a slight change from CODA, its analysis is much more involved than
that of CODA, which is based on the duality gap analysis instead of the primal objective
gap analysis.

e Second, we propose a new variant of CODA+ named CODASCA with a much improved
communication complexity than CODA+. The key thrust is to incorporate the idea of
stochastic controlled averaging of SCAFFOLD [14] into the framework of CODA+ to
correct the client-drift for both local primal updates and local dual updates. A striking
result of CODASCA under a PL condition for deep learning is that its communication
complexity is independent of the number of machines and the targeted accuracy level,
which is even better than CODA+ in the homogeneous data setting. The analysis of
CODASCA is also non-trivial that combines the duality gap analysis of CODA+ for
a non-convex strongly-concave min-max problem and the variance reduction analysis of
SCAFFOLD. The comparison between CODASCA and CODA+ and the NPA for FDAM
is shown in Table 1.

e Third, we conduct experiments on benchmark datasets to verify our theory by showing
CODASCA can enjoy a larger communication window size than CODA+ without sacri-
ficing the performance. Moreover, we conduct empirical studies on medical chest X-ray
images from different hospitals by showing that the performance of CODASCA using
data from multiple organizations can improve the performance on testing data from a
single hospital.

2. Related Work

Federated Learning (FL). Many empirical studies [34, 38, 27, 5, 18, 13, 48] have shown
that FL exhibits good empirical performance for distributed deep learning. For a more
thorough survey of FL, we refer the readers to [28]. This paper is closely related to recent
studies on the design of distributed stochastic algorithms for FL. with provable convergence
guarantee.

The most popular FL algorithm is Federated Averaging (FedAvg) [26], also referred to
as local SGD [37]. Stich [37] is the first that establishes the convergence of local SGD for
strongly convex functions. Yu et al. [47, 46] establishes the convergence of local SGD and
their momentum variants for non-convex functions. The analysis in [47] has exhibited the
difference of communication complexities of local SGD in homogeneous and heterogeneous
data settings, which is also discovered in recent works [15, 42, 41]. These latter studies



provide a tight analysis of local SGD in homogeneous and/or heterogeneous data settings,
improving its upper bounds for convex functions and strongly convex functions than some
earlier works, which sometimes improve over large mini-batch SGD, e.g., when the level of
heterogeneity is sufficiently small.

Haddadpour et al. [10] improve the complexities of local SGD for non-convex opti-
mization by leveraging the Polyak-Lojasiewicz (PL) condition. [14] propose a new FedAvg
algorithm SCAFFOLD by introducing control variates (variance reduction) to correct for
the ‘client-drift’ in the local updates for heterogeneous data. The communication com-
plexities of SCAFFOLD are no worse than that of large mini-batch SGD for both strongly
convex and non-convex functions. The proposed algorithm CODASCA is inspired by the
idea of stochastic controlled averaging of SCAFFOLD. However, the analysis of CODASCA
for non-convex min-max optimization under a PL condition of the primal objective function
is non-trivial compared to that of SCAFFOLD.

AUC Maximization. This work builds on the foundations of stochastic AUC maxi-
mization developed in many previous works. Ying et al. [45] address the scalability issue
of optimizing AUC by introducing a min-max reformulation of the AUC square surrogate
loss and solving it by a convex-concave stochastic gradient method [30]. Natole et al.
[29] improve the convergence rate by adding a strongly convex regularizer into the original
formulation. Based on the same min-max formulation as in [45], Liu et al. [21] achieve
an improved convergence rate by developing a multi-stage algorithm by leveraging the
quadratic growth condition of the problem. However, all of these studies focus on learning
a linear model, whose corresponding problem is convex and strongly concave. Yuan et al.
[49] propose a more robust margin-based surrogate loss for the AUC score, which can be
formulated as a similar min-max problem to the AUC square surrogate loss.

Deep AUC Maximization (DAM). [35] is the first work that develops algorithms
and convergence theories for weakly convex and strongly concave min-max problems, which
is applicable to DAM. However, their convergence rate is slow for a practical purpose. Liu
et al. [22] consider improving the convergence rate for DAM under a practical PL condition
of the primal objective function. Guo et al. [9] further develop more generic algorithms for
non-convex strongly-concave min-max problems, which can also be applied to DAM. There
are also several studies [43, 19, 24, 44] focusing on non-convex strongly concave min-max
problems without considering the application to DAM. Based on Liu et al. [22)’s algorithm,
Guo et al. [8] propose a communication-efficient FL algorithm (CODA) for DAM. However,
its communication cost is still high for heterogeneous data.

DL for Medical Image Analysis. In past decades, machine learning, especially
deep learning methods have revolutionized many domains such as machine vision, natural
language processing. For medical image analysis, deep learning methods are also showing
great potential such as in classification of skin lesions [7, 17], interpretation of chest radio-
graphs [1, 11], and breast cancer screening [3, 25, 39]. Some works have already achieved
expert-level performance in different tasks [1, 25, 20]. Recently, Yuan et al. [49] employ
DAM for medical image classification and achieve great success on two challenging tasks,
namely CheXpert competition for chest X-ray image classification and Kaggle competition
for melanoma classification based on skin lesion images. However, to the best of our knowl-
edge, the application of FDAM methods on medical datasets from different hospitals have
not be thoroughly investigated.



3. Preliminaries and Notations

We consider federated learning of deep neural networks by maximizing the AUC score. The
setting is the same to that was considered as in [8]. Below, we present some preliminaries
and notations, which are mostly the same as in [8]. In this paper, we consider the following
min-max formulation for distributed problem:

K
1
- boa) = — b 1
min max f(w,a,b,a) = 22 > fi(w,a,b,), (1)
(a,b)ER2 k=1

where K is the total number of machines. This formulation covers a class of non-convex
strongly concave min-max problems and specifically for the AUC maximization, fi(w,a,b, a)
is defined below.

fe(w,a,b,a) = Ex[F(w,a,b, a; zk)]
=B, | (1 —p)(h(w;x*) = a)’Tjye_y) + p(h(w; x*) = b)*T iy (2)

+2(1 + o) (ph(w; ")y — (1 = p)h(w, x")Te_y)) — p(1 — p)aQ] :

where z¥ = (x¥, y¥) ~ Py, P}, is the data distribution on machine k, p is the ratio of positive
data. When ¢, = ¢, Vk # [, this is referred to as the homogeneous data setting; otherwise
heterogeneous data setting.

Notations. We define the following notations:

v=(wl b, o(v)=maxf(v.a),

6u(v) = B(v) + ;||v vl

o) RN
F(v.0) = F(v.0) + o lv = vl

1
Fi(v,a;z) = Fi(v, o5 21) + g”" - v5,1||2
vj = agming(v), vj, = argmingu(v)
v v

Assumptions. Similar to [8], we make the following assumptions throughout this
paper.

Assumption 1

(i) There exist vo,Ag > 0 such that ¢(vo) — ¢(v}) < Ao.

(ii) PL condition: ¢(v) satisfies the p-PL condition, i.e., p(dp(v) — ¢p(vy)) < %\|V¢(V)H2;
(i1i) Smoothness: For any z, f(v,a;z) is £-smooth in v and o. ¢(v) is L-smooth, i.e.,
IVo(vi) = Ve(va)|| < Lljvi — v

(iv) Bounded variance:

E[[|Vy fr(v,a) = Vi Fi(v, a;2) [ < 02,
E[|Vafe(V,a) = VoFi(v,a;2)|?] < o?



Algorithm 1 CODA+
1: Initialization: (v, ag, ).
2: fors=1,...,5 do
30 v, a5 = DSGH(Vs_1, Q51,05 Is,7);
4
5

: end for
: Return vg, ag.

To quantify the drifts between different clients, we introduce the following assumption.

Assumption 2 Bounded client drift:
1 XK
= 2 IVvfi(v.a) = Vo f(v.0)|* < D,
k=1

K
3 IVafilv,a) = Vo (v.0)|? < D
k=1

Remark. D quantifies the drift between the local objectives and the global objective.
D = 0 denotes the homogeneous data setting that all the local objectives are identical.
D > 0 corresponds to the heterogeneous data setting.

4. CODA+: A stronger baseline

In this section, we present a stronger baseline than CODA [8]. The motivation is that (i)
the CODA algorithm uses a step to compute the dual variable from the primal variable by
using sampled data from all clients; but we find this step is unnecessary by an improved
analysis; (ii) the complexity of CODA for homogeneous data is not given in its original
paper. Hence, CODA+ is a simplified version of CODA but with much refined analysis.
We present the steps of CODA+ in Algorithm 1. It is similar to CODA that uses stage-
wise updates. In s-th stage, a strongly convex strongly concave subproblem is constructed:

. Y 2
ngnmgxf(V, a) + §||V—V8|| ) ()

where v§j is the output of the previous stage.

CODA+ improves upon CODA in two folds. First, CODA+ algorithm is more concise
since the output primal and dual variables of each stage can be directly used as input for the
next stage, while CODA needs an extra large batch of data after each stage to compute the
dual variable. This modification not only reduces the sample complexity, but also makes the
algorithm applicable to a boarder family of nonconvex min-max problems. Second, CODA+
has a smaller communication complexity for homogeneous data than that for heterogeneous
data while the previous analysis of CODA yields the same communication complexity for
homogeneous data and heterogeneous data.

We have the following lemma to bound the convergence for the subproblem in each s-th
stage.



Algorithm 2 DSG+(vo,ag,n,T,1,7)

Each machine does initialization: v§ = vo, af = g,

fort=0,1,...,T—1do
Each machine k£ updates its local solution in parallel:
VE = vE (Vo F(vE, ol 2) + 7 (vE = vo),
afyy = af + Vo Fip(vE, af;2f),
if t+1mod I =0 then

Vf+1 = % > V§+1> ¢ communicate
LK
afﬂ =% afﬂ, ¢ communicate
k=1
end if
end for
L &, & k L & k
Return | v = sz 7 Zlvt,a: ?kz x Zlat
=1 ti= =1 t=

Lemma 1 (One call of Algorithm 2) Let (v, &) be the output of Algorithm 2. Suppose As-
sumption 1 and 2 hold. By running Algorithm 2 with given input vo,aq for T iterations,

v =2, and n < min(m, ﬁ), we have for any v and «

E[ff(v,a) — f°(v,a)] < —||lvo — v||2 + 777 (oo — a)2
302 3¢ 27 9 219 92 3no?

— + — | (12n*1 36n°1-D)I —_—
+<2u2+2><"0+ g )I>1+K’

Ay
where pg = 2p(1 — p) is the strong concavity coefficient of f(v,a) in a.

Remark. Note that the term A; on the RHS is the drift of clients caused by skipping
communication. When D = 0, i.e., the machines have homogeneous data distribution, we
need nI = O (%), then A; can be merged with the last term. When D > 0, we need
nI? =0 (%), which means that I has to be smaller in heterogeneous data setting and thus
the communication complexity is higher.

Remark. The key difference between the analysis of CODA+ and that of CODA lies
at how to handle the term (agp — «)? in Lemma 1. In CODA, the initial dual variable g
is computed from the initial primal variable vo, which reduces the error term (ag — «)? to
one similar to ||[vg — v||?, which is then bounded by the primal objective gap due to the
PL condition. However, since we do not conduct the extra computation of o from vg, our
analysis directly deals with such error term by using the duality gap of f*. This technique

is originally developed by [43].

Theorem 1 Define L=L+2(,c = 5if5i' Set v =20, ns = noexp(—(s — 1)c), Ts =

ﬁém)exp((s — 1)¢). To return vg such that E[p(vs) — ¢(vi)] < e, it suffices to

7



choose S > O <5L+” max { log( ) log S + log [2770 125(;{2)} }) The iteration complex-

€

ity s 9] < max (ﬁ, ﬁ) ) and the communication complexity is 9] (%) by setting I; =

. o~ AY? [1/2
@(ﬁ) if D=0, and is O(max <l: + u(noOE)l/z’ % + u3f7261/2> > by setting Is = @(\/11(—773)

if D > 0, where 9] suppresses logarithmic factors.

Remark. Due to the PL condition, the step size n decreases geometrically. Accordingly,
I increases geometrically due to Lemma 1, and I increases with a faster rate when the data
are homogeneous than that when data are heterogeneous. In result, the total number of
communications in homogeneous setting is much less than that in heterogeneous setting.

5. CODASCA

Although CODA+ has a highly reduced communication complexity for homogeneous data,
it is still suffering from a high communication complexity for heterogeneous data. Even for
the homogeneous data, CODA+ has a worse communication complexity with a dependence
on the number of clients K than the NPA algorithm with a large batch size.

[Can we further reduce the commumnication complexity for FDAM for both homogeneous

and heterogeneous data without using a large batch size?

The main reason for the degeneration in the heterogeneous data setting is the data dif-
ference. Even at global optimum (v, a.), the gradient of local functions in different clients
could be different and non-zero. In the homogeneous data setting, different clients still
produce different solutions due to stochastic error (cf. the n?cI term of A; in Lemma 1).
These together contribute to the client drift.

To correct the client drift, we propose to leverage the idea of stochastic controlled aver-
aging due to [14]. The key idea is to maintain and update a control variate to accommodate
the client drift, which is taken into account when updating the local solutions. In the pro-
posed algorithm CODASCA, we apply control variates to both primal and dual variables.
CODASCA shares the same stagewise framework as CODA+, where a strongly convex
strongly concave subproblem is constructed and optimized in a distributed fashion approxi-
mately in each stage. The steps of CODASCA are presented in Algorithm 3 and Algorithm
4. Below, we describe the algorithm in each stage.

Each stage has R communication rounds. Between two rounds, there are I local updates,
and each machine k£ does the local updates as

k k k. k

Tt+1_v (v Fk( Vit & rtvzf‘,t)_cv—i_cv)v

k k k k

Qrip1 = =af rt T m(v Fk( Tt’ar,t;zr,t) —Cot CO!)?
where c£, ¢, are local and global control variates for the primal variable, and c*, ¢, are
local and global control variates for the dual variable. Note that VF} (v rt,aft; z;{t) and
VoI k( e ft, zft) are unbiased stochastic gradient on local data. However, they are biased
estimate of global gradient when data on different clients are heterogeneous. Intuitively,

the term —c¥ + ¢y and —ck + ¢, work to correct the local gradients to get closer to the



global gradient. They also play a role of reducing variance of stochastic gradients, which is
helpful as well to reduce the communication complexity in the homogeneous data setting.

At each communication round, the primal and dual variables on all clients get aggre-
gated, averaged and broadcast to all clients. The control variates ¢ at r-th round get
updated as

1

cf, = cf, —cy + 71771 (Vi1 — v,’f’I),
6
k k Lok ©)
Ca = Cq — Ca T+ Tm(ar,f —ar_1),

which is equivalent to

I
1
k k k k
Cy = f Z val?(Vr,tv Qo t5 Zr,t)?
t;l (7)
1
k k k .k
Ca = j Z vafli (vr,t7 A t5 Zr,t)'
t=1

Notice that they are simply the average of stochastic gradients used in this round. An
alternative way to compute the control variates is by computing the stochastic gradient
with a large batch of extra samples at each client, but this would bring extra cost and is
unnecessary. cy and c, are averages of c® and c® over all clients. After the local primal
and dual variables are averaged, an extrapolation step with 7y > 1 is performed, which will
boost the convergence.

In order to establish the convergence of CODASCA, we first present a key lemma below.

Lemma 2 (One call of Algorithm 4) Under the same setting as in Theorem 2, with 1 =
mngl < fozz, for v/ = argmin f*(v, az),a’ = argmax f*(vs,a) we have
v [e%

2 10m0?  10mm,0?
E[f*(vr, o) = fA(v/,a7)] < lvo —v'[I* + (g —a')? + +
' ' mngT mngT Ng K
N——

Az
where T'= 1 - R is the number of iterations for each stage.

Remark. Compared the above bound with that in Lemma 1, in particular the term A,
vs the term A, we can see that CODASCA will not be affected by the data heterogeneity
D > 0, and the stochastic variance is also much reduced. As will seen in the next theorem,
the value of 7 and R will keep the same in all stages. Therefore, by decreasing local step size
71 geometrically, the communication window size I, will increase geometrically to ensure
i< O0(1).

The convergence result of CODASCA is presented below.

Theorem 2 Define L =1L +2¢, c:4€+%ﬁ. Set ng = VK, I, = Iyexp <£’;Ll (s — 1)),
_ 1000 _ i _ 7 2 ~ . 1 _
R = Tin n = ngnls = \/%Io exp <fc_~_’§u(57 1)), n < mln{3£+3€2/u2,4’6%}. After S =

9



Algorithm 3 CODASCA
Initialization: (vg, ag,?y).
for s=1,...,5 do
Vs, 0y = DSGSCA+(Vs_1, as—1,M, Mg, Ls, Rs,7);
end for
Return vg, ag.

TR W

Algorithm 4 DSGSCA+(vo, ag, 1,14, 1, R,7)
Each machine does initialization: VIS’O = Vo, 04]5,0 = ap, c’f, =0, c’é =0
forr=1,..., R do
fort=0,1,...,1—1do
Each machine k updates its local solution in parallel:
vE L =vE (VY FE(vE, a2k ) -k 4ey)
rt+1 rt TNV v Vi Q5 2y v v)s
aqlf,t+1 = aﬁ,t +m(VaFj; (Vf,tv avlf,t; Zvlf,t) - cfi +ca);

end for
k _ k
vy =0 —Cvt g (Ve — Vi)
k _ k k
Co = Ca — Cat 7 (af ; — ar_1)
| K LK
o= D cf:,? Ca =T D, CZ & communicate
k=1 k=1
1 1 &
Vi =12 VfJ’ =z > af,t ¢ communicate
=1 k=1

Oy = Q1 + ng(ar — Qr—1

Broadcast v, ay., ¢y, co © communicate
end for
Return vi, a where 7 is randomly sampled from 1,..., R

2 2 LS 7o .
O(max {C—gu“ log 4 C;ﬂ“ log (iioii }7&)}) stages, the output vg satisfies E[¢p(vs)—p(v)] <

€. The communication complexity is 0] (%) The iteration complexity is 9] (max{i, ﬁ})

Remark. (i) The number of communications is 0] (i), independent of number of clients

K and the accuracy level e. This is a significant improvement over CODA+, which has a
communication complexity of O (K S+ 1/ (32l 2)) in heterogeneous setting. Moreover,
O (1/(p)) is a nearly optimal rate up to a logarithmic factor, since O(1/u) is the lower
bound communication complexity of distributed strongly convex optimization [14, 2] and
strongly convexity is a stronger condition than the PL condition.

(ii) Each stage has the same number of communication rounds. However, I increases
geometrically. Therefore, the number of iterations and samples in a stage increase geomet-
rically. Theoretically, we can also set 7 to the same value as the one in the last stage,
correspondingly I, can be set as a fixed large value. But this increases the number of re-
quired samples without further speeding up the convergence. Our setting of I is a balance
between skipping communications and reducing sample complexity. For simplicity, we use
the fixed setting of I; to compare CODASCA and the baseline CODA+ in our experiment
to corroborate the theory.

10
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Figure 1: Top row: the testing AUC score of CODASCA vs # of iterations for different
values of I on ImageNet-IH and CIFAR100-IH with imratio = 10% and K=16,
8 on Densenet121. Bottom row: the achieved testing AUC vs different values of
I for CODASCA and CODA+. The AUC score in the legend in top row figures
represent the AUC score at the last iteration.

(iii) The local step size n; of CODASCA decreases similarly as the step size n in CODA+.
But Iy = O(1/(VKn})) in CODASCA increases faster than that Iy = O(1/(v/Kns)) in
CODA+ on heterogeneous data. It is noticeable that different from CODA+, we do not
need Assumption 2 which bounds the client drift, meaning that CODASCA can be applied
to optimize the global objective even if local objectives arbitrarily deviate from the global
function.

6. Experiments

In this section, we first verify the effectiveness of CODASCA compared to CODA+ on
various datasets, including two benchmark datasets, i.e., ImageNet, CIFAR100 [6, 16] and
a constructed large-scale chest X-ray dataset. Then, we demonstrate the effectiveness of
FDAM on improving the performance on a single domain (CheXpert) by using data from
multiple sources. For notations, K denotes the number of “clients” (# of machines, # of
data sources) and I denotes the communication window size. The code used for the exper-
iments are available at https://github.com/Optimization-AI/ICML2021_FedDeepAUC_
CODASCA/.

Chest X-ray datasets. Five medical chest X-ray datasets, i.e., CheXpert, ChestXray14,
MIMIC-CXR, PadChest, ChestXray-AD [11, 40, 12, 4, 32] are collected from different or-
ganizations. The statistics of these medical datasets are summarized in Table 2. We con-
struct five binary classification tasks for predicting five popular diseases, Cardiomegaly
(C0), Edema (C1), Consolidation (C2), Atelectasis (C3), P. Effusion (C4), as in CheXpert
competition [11]. These datasets are naturally imbalanced and heterogeneous due to differ-
ent patients’ populations, different data collection protocols and etc. We refer to the whole
medical dataset as ChestXray-IH.

Imbalanced and Heterogeneous (IH) Benchmark Datasets. For benchmark
datasets, we manually construct the imbalanced heterogeneous dataset. For ImageNet, we
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Table 2: Statistics of Medical Chest X-ray Datasets.
Dataset Source Samples

CheXpert Stanford Hospital (US) 224,316
ChestXray8 NIH Clinical Center (US) 112,120
PadChest Hospital San Juan (Spain) 110,641
MIMIC-CXR BIDMC (US) 377,110

ChestXrayAD H108 and HMUH (Vietnam) 15,000

first randomly select 500 classes as positive class and 500 classes as negative class. To
increase data heterogeneity, we further split all positive/negative classes into K groups
so that each split only owns samples from unique classes without overlapping with that
of other groups. To increase data imbalance level, we randomly remove some samples
from positive classes for each machine. Please note that due to this operation, the whole
sample set for different K is different. We refer to the proportion of positive samples in all
samples as imbalance ratio (¢mratio). For CIFAR100, we follow similar steps to construct
imbalanced heterogeneous data. We keep the testing/validation set untouched and keep
them balanced. For imbalance ratio (imratio), we explore two ratios: 10% and 30%. We
refer to the constructed datasets as ImageNet-IH (10%), ImageNet-IH (30%), CIFAR100-1H
(10%), CIFAR100-IH (30%). Due to the limited space, we only report imratio=10% with
DenseNet121 and defer the other results to supplement.

Parameters and Settings. We train Desenet121 on all datasets. For the parameters
in CODASCA/CODA+, we tune 1/ in [500, 700, 1000] and 7 in [0.1, 0.01, 0.001]. For
learning rate schedule, we decay the step size by 3 times every Tj iterations, where Tj is
tuned in [2000, 3000, 4000]. We experiment with a fixed value of I selected from [1, 32, 64,
128, 512, 1024] and we include experiments with increasing I in the supplement. We tune
ng in [1.1, 1, 0.99, 0.999]. The local batch size is set to 32 for each machine. We run a total
of 20000 iterations for all experiments.

6.1 Comparison with CODA+

We plot the testing AUC on ImageNet (10%) vs # of iterations for CODASCA and CODA+
in Figure 1 (top row) by varying the value of I for different values of K. Results on
CIFAR100 are shown in the Supplement. In the bottom row of Figure 1, we plot the
achieved testing AUC score vs different values of I for CODASCA and CODA+. We have

the following observations:
¢ CODASCA enjoys a larger communication window size. Comparing CODASCA

and CODA+ in the bottom panel of Figure 1, we can see that CODASCA enjoys a larger
communication window size without hurting the performance than CODA+, which is con-
sistent with our theory.

e CODASCA is consistently better for different values of K. We compare the
largest value of I such that the performance does not degenerate too much compared with
I =1, which is denoted by I,,x. From the bottom figures of Figure 1, we can see that the
Ihax value of CODASCA on ImageNet is 128 (K=16) and 512 (K =8), respectively, and that
of CODA+ on ImageNet is 32 (K=16) and 128 (K=8). This demonstrates that CODASCA
enjoys consistent advantage over CODA4, i.e., when K = 16, [COPASCA /TCODA+ — 4 and
when K =8, ICODASCA/ICODA+ = 4. The same phenomena occur on CIFAR100 data.

max max
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Table 3: Performance on ChestXray-IH testing set when K=16.
Method 1 Co C1 C2 C3 C4
1 0.8472 0.8499 0.7406  0.7475  0.8688
CODA+ 512 0.8361 0.8464 0.7356 0.7449  0.8680
CODASCA 512 0.8427 0.8457 0.7401 0.7468 0.8680
CODA+ 1024 0.8280 0.8451 0.7322 0.7431  0.8660
CODASCA 1024 0.8363 0.8444 0.7346 0.7481 0.8674

Table 4: Performance of FDAM on Chexpert validation set for DenseNet121.

#of sources Co C1 C2 C3 C4 AVG
K=1 0.9007 0.9536  0.9542  0.9090 0.9571  0.9353
K=2 0.9027 0.9586  0.9542 0.9065 0.9583  0.9361
K=3 0.9021  0.9558 0.9550 0.9068 0.9583  0.9356
K=4 0.9055 0.9603 0.9542 0.9072 0.9588 0.9372
K=5 0.9066 0.9583 0.9544 0.9101 0.9584 0.9376

Next, we compare CODASCA with CODA+ on the ChestXray-IH medical dataset,
which is also highly heterogeneous. We split the ChestXray-IH data into K = 16 groups
according to the patient ID and each machine only owns samples from one organization
without overlapping patients. The testing set is the collection of 5% data sampled from
each organization. In addition, we use train/val split = 7:3 for the parameter tuning. We
run CODASCA and CODA+ with the same number of iterations. The performance on
testing set are reported in Table 3. From the results, we can observe that CODASCA
performs consistently better than CODA+ on CO0, C2, C3, C4.

6.2 FDAM for improving performance on CheXpert

Finally, we show that FDAM can be used to leverage data from multiple hospitals to improve
the performance at a single target hospital. For this experiment, we choose CheXpert data
from Stanford Hospital as the target data. Its validation data will be used for evaluating
the performance of our FDAM method. Note that improving the AUC score on CheXpert
is a very challenging task. The top 7 teams on CheXpert leaderboard differ by only 0.1% !.
Hence, we consider any improvement over 0.1% significant. Our procedure is following: we
gradually increase the number of data resources, e.g., K = 1 only includes the CheXpert
training data, K = 2 includes the CheXpert training data and ChestXray8, K = 3 includes
the CheXpert training data and ChestXray8 and PadChest, and so on.

Parameters and Settings. Due to the limited computing resources, we resize all
images to 320x320. We follow the two stage method proposed in [49] and compare with
the baseline on a single machine with a single data source (CheXpert training data) (K=1)
for learning DenseNet121, DenseNet161. More specifically, we first train a base model by
minimizing the Cross-Entropy loss on CheXpert training dataset using Adam with a initial
learning rate of le-5 and batch size of 32 for 2 epochs. Then, we discard the trained classifier,
use the same pretrained model for initializing the local models at all machines and continue
training using CODASCA. For the parameter tuning, we try /=[16, 32, 64, 128], learning
rate=[0.1, 0.01] and we fix y=1e-3, To=1000 and batch size=32.

Results. We report all results in term of AUC score on the CheXpert validation
data in Table 4 and Table 5. We can see that using more data sources from different

1. https://stanfordmlgroup.github.io/competitions/chexpert/
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Table 5: Performance of FDAM on Chexpert validation set for DenSenet161.

#of sources Co C1 C2 C3 C4 AVG
K=1 0.8946  0.9527  0.9544 0.9008 0.9556  0.9316
K=2 0.8938  0.9615 0.9568 0.9109 0.9517 0.9333
K=3 0.9008 0.9603 0.9568 0.9127  0.9505 0.9356
K=4 0.8986 0.9615 0.9561 0.9128 0.9564 0.9367
K=5 0.8986 0.9612 0.9568 0.9130 0.9552 0.9370

organizations can efficiently improve the performance on CheXpert. For DenseNet121, the
average improvement across all 5 classification tasks from K = 1 to K = 5 is over 0.2%
which is significant in light of the top CheXpert leaderboard results. Specifically, we can
see that CODASCA with K=5 achieves the highest validation AUC score on CO and C3,
and with K=4 achieves the highest on C1 and C4. For DenseNet161, the improvement of
average AUC is over 0.5%, which doubles the 0.2% improvement for DenseNet121.

7. Conclusion

In this work, we have conducted comprehensive studies of federated learning for deep AUC
maximization. We analyzed a stronger baseline for deep AUC maximization by establishing
its convergence for both homogeneous data and heterogeneous data. We also developed an
improved variant by adding control variates to the local stochastic gradients for both primal
and dual variables, which dramatically reduces the communication complexity. Besides a
strong theory guarantee, we exhibit the power of FDAM on real world medical imaging
problems. We have shown that our FDAM method can improve the performance on medical
imaging classification tasks by leveraging data from different organizations that are kept
locally.
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Appendix A. Auxiliary Lemmas

Noting all algorithms discussed in thpaper including the baselines implement a stagewise
framework, we define the duality gap of s-th stage at a point (v,«a) as

Gaps(v,a) = max f*(v,a’) — min (v, a). (8)
o v/
Before we show the proofs, we first present the lemmas from [43].

Lemma 3 (Lemma 1 of [43]) Suppose a function h(v,«) is Ai-strongly convex in v and
Ao-strongly concave in «. Consider the following problem

min max h(v, a),
veX agY

where X and Y are convexr compact sets. Denote vj,(y) = arg mi& h(v',a) and ap(v) =
v'e
arg max h(v,a’). Suppose we have two solutions (vo,ap) and (vi,a1). Then the following
s

relation between variable distance and duality gap holds

A Ao .
—leh(al) — v0||2 + —QHah(Vl) — onH2 <max h(vg, ') — min h(v', ap)
4 4 a'ey

vieX (9)
+ max h(vi, ') — min h(v', aq).
'€y vieX

O
Lemma 4 (Lemma 5 of [43]) We have the following lower bound for Gapy(vs, as)
3 s+1  s+1 4 s+1 s
Gapg(vs, os) = %Gaszrl(VO ;o) + 5(925(‘70 ) — o(v5)),
where viT! = v, and o™ = ay, i.e., the initialization of (s + 1)-th stage is the output of
the s-th stage.
U

Appendix B. Analysis of CODA+

The proof sketch is similar to the proof of CODA in [8]. However, there are two noticeable
difference from [8]. First, in Lemma 1, we bound the duality gap instead of the objective
gap in [8]. This is because the analysis later in this proof requires the bound of the duality
gap.

Second, in Lemma 1, where the bound for homogeneous data is better than that of
heterogeneous data. The better analysis for homogeneous data is inspired by the analysis
in [46], which tackles a minimization problem. Note that f* denotes the subproblem for
stage s, we omit the index s in variables when the context is clear.
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B.1 Lemmas

We need following lemmas for the proof. The Lemma 5, Lemma 6 and Lemma 7 are similar
to Lemma 3, Lemma 4 and Lemma 5 of [8], respectively. For the sake of completeness, we
will include the proof of Lemma 5 and Lemma 6 since a change in the update of the primal
variable.

Lemma 5 Define v, = % Zgil Vi = % Zi\/ﬂ yF. Suppose Assumption 1 holds and by
running Algorithm 2, we have for any v, a,

T
F00) = P08) < 3| (T () )+ (Faf () v

~~

B1 BQ

L _ _ L 2,_
¥ = Verr P+ 26(@ — @-1)* =5 1ve = vIP = B (@1 — )|,

30 + 302
4 36438 iy :

2

-~

B3
where po = 2p(1 — p) is the strong concavity coefficient of f(v,a) in a.

Proof For any v and «, using Jensen’s inequality and the fact that f*(v,«) is convex in
v and concave in «,

T
Y Tna) = v, @) (10)

t=1

NI~

fS(V,Oz) - fs(vad) <

By ¢-strongly convexity of f*(v,«) in v, we have

14
FP(Vie1,00-1) + (O fP (Vi—1,04—1), V — V1) + 5”‘7}—1 - VH2 < f(v,@p-1). (11)

By 3/-smoothness of f*(v,«) in v, we have
S(o S(< S(o = = 3¢, _ _ 2
PV, a) < fP(Vie1,a) + (O f* (Vie1, @), Ve — V1) + EHVt — Vi1

_ _ _ _ _ 30, _ _
= P (Vi—1, @) + (Ov fP(Vi1, —1), Ve — V1) + ?Hvt — Vt—1H2

+ (Ov f*(Vi-1, ) = O f*(Vi1,00-1), Vi — V1)
@ S S = - - 3, _ e 2
< FP(Vim1,a) + (O P (Vem1, 1), Ve — Vi—1) + EHVt — Vi1 (12)
+ l)ay—1 — ||V — V1|
® .- . ~ L 3.
< fPVie1, ) + (Ov fP(Vie1, 1), Vi — V1) + §||Vt — Vi1l
2
i@ = a4 e = vl
where (a) holds because that we know Oy, f (v, @) is ¢-Lipschitz in « since f(v, ) is ¢-smooth,
(b) holds by Young’s inequality, and pe = 2p(1 — p) is the strong concavity coefficient of f*
in a.
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Adding (11) and (12), rearranging terms, we have

[E(Vir, ) + f2(Ve, @)

30+ 302/ o

< f(vyag—r) + f(Vie ) + (O f(Vi1, 04—1), Ve — V) + B |ve — thlHQ (13)
2

. _ _
—Slee =P+ B @ - )

We know f*(v,a) is pg-strong concavity in a (—f(v, «) is pg-strong convexity of in «).
Thus, we have

— [ (Vie1,0-1) = Oa [P (Vi1 , 0u—1) T (o — Gy + %(Ot —1)? < = (Vio1, ). (14)

Since f(v,a) is f-smooth in a, we get

F8) € )~ (O (V. B G~ )+ (8 )’
=—f'(v,a-1) — (Oaf (Vic1,—1), 04 — Q1) + g(dt — 511571)2
—(Oa(fP(vV,as1) = [P (Vie1,Q¢-1)), 0 — Q1)

(a) ¢
< =LV, 01) = (0af (Vi1 Gun) 80— Grn) + 5 (@ — a—1)> + v — vio1|| (@ — 1)

< =PV @1t) = (O (1ot B0 — @) + 56— G+ Ellves = VI + S (a — a)?
(15)
where (a) holds because that 0, f*(v, «) is ¢-Lipschitz in v.
Adding (14), (15) and arranging terms, we have
= Vi, @) = PV, a) S =P (Vien, @) = UV, @) = (Oaf (Vi1 @ur), G — @)
+2€(at—at_1)2+§\\vt_1 — V|2 - %(af&t_l)z. 16)
Adding (13) and (16), we get
Ve a) = f2 (v, ar) < (Ovf (Vi1 @r-1), Vi = V) = (O f(Vi1, Q1) G — @)
+ WHW — V| + 20(@ — ar-1)? - g”‘_’t—l — v - %(@t—l —a)’. o

Taking average over t = 1,...,T, we get
1
fS(V,a) - fs(v75‘) < T Z[fs(vtvo‘) - fs(vvat)]
t=1

T
< = Z |:<6vfs(vt—1, 1), Ve = V) + (0 f*(Vim1, 041), 0 — )

By By

30 + 302
+f/u2

19 = Voo ? + 200 = @1)? =5 llv = @l = B @ - a)?).

Bs
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In the following, we will bound the term B; by Lemma 6, By by Lemma 7 and B3 by
Lemma 8.

K
Lemma 6 Define vy = Vi1 — 75 > vas(Vf_p af_1) and
k=1

K
~ n ~
Vi = Vi1 EZ<V Fk(vt 17yt 17Zt 1) — vfli(Vf—laaf—ﬁ)? Jort>0; vo = vo.
=1

(18)
. We have

301

301 _
B1§5 (Oét—l—Oét 1) +**Z‘|Vt 1= vl

K

WMN

43
2

= =
?Mw

[V fi( Vt 17047]tg 1) — vVFk(folaaz]‘il;Zz{il)]

o

[vak(VfA, 0411) - Vka(fou 0421; 2&1)]7 Vi — ‘~’t—1>
=1

_|_
,_./\
==
N

o ([Vem = V12 = Vo1 = wel* = [ = %)

[\D
3

Wl

1
19 — v + %(HV = Vetl® = v = w?)

Proof We have

K
1
(Vo f?(Vie1,a11), Ve — V) = <K ; Vo fie(Vim1, @—1), Ve — V>

K
< V) - Vel le-v) O

/\
x| =
Mw

(Vo fi(@r1,0f 1) = Vo2 (vE 10k 1)), 9 —v> ® (19)

k=1

K
1 _ _
<KZ Vi fil Vt 17041]5 1) — VvFlf(Vt—laaf13251)]7Vt—v> ©)
k=1
1 K
<KZVV Vt laaf 17'21{~C 1) —V> @
k=1
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Then we will bound (1), 2), 3) and (4), respectively,

2
@ 31 & o . _
O =g ?Z[vvfk(vtflvatfl)_vvfk:(vtflvaf—l)] *’6||Vt—v||2
k=1
(b) S(o k 2 l 2 2
= %KZIIvak Vi1, Gt—1) = Vv fi (Vie1, o) +6H"t—"” (20)
(© 301 o, _ 0,
S3SK (@1 —aq)* + EHVt - v,
k=1

where (a) follows from Young’s inequality, (b) follows from Jensen’s inequality. and (c)
holds because V f7(v,a) is {-Lipschitz in «. Using similar techniques, we have

K
31 _ _
< WK Z vaflf(vt—haf_ﬂ ka(vt 170% 1)||2 *”Vt - V”2
k=1
301 & 0 2y
< S v = VLR + v = v
k=1
K T
Let v = argmin <11< > vas(vfl,af1)> T+ 5 Hv — v¢_1]|%, then we have
v k=1
Vi — Vy —77<V fs(Vt 17yt 1) KZVka Vt 1ayt 1azf 1)) (22)
Hence we get
1 X
® = <K Z[valf(vf—b Oéf—l) - VvFlf(Vf—h Oéf—ﬁ Zf—l)LVt - ‘7t>
k=1
| X
+ <K Z[valg(vf—b af—ﬁ - VvFlf(Vf—h af—lé Zf—1)L‘A’t - V>
k=1
. ) (23)
= Zvvfk Vt 170% 1) -V Fk(vt 1706]&6 1725 1)]
k
| XK
+ <K Z[VVfli(vf—la O‘f—ﬂ - VvFlf(Vf—la O‘f—l; Zf—1)L‘7t - V>
k=1
Define another auxiliary sequence as
. K
Vi = Vi1 — i Z (VVFlj(fohyffl; Zf—l) - va/f(VfA,afq)) , for t > 0; vo = vo.
k=1
(24)
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Denote

X T
1 s s 1 ~
Or-1(v) = <_K Z(Vka (Vi U1 21) — VS (Vi afl))) x+ %HV — Vi
k=1
(25)

Hence, for the auxiliary sequence ¢&;, we can verify that

vy = argmin ©;_1(v). (26)

Since ©;_1(v) is %—Strongly convex, we have

1 - -
v = Vil <011 (v) = ©1-1(Ve)

K T
S S 1 =~
_ ( (TP vl ~ TR af_m) o+ v = vl
k=

QH

N\H

K T
- 1, . -
—( SNV ER (W y by )~ T fp(vhad 1>>) %= gl vl
=1

1 & T 1
( ZVaF vE Lol ) - vafk<vf_1,af_1>>) (v = Vo) 5y = vl
=1

K T

1 S S ind nd 1 ind nd

- (— LS (VaEp(vE ok 2 ) - vamvfl,afl))) (51 = ema) = 590 = 9P
k=1

K T
s > 1 >
( Z VVE (Vi g5 2ty) — vak("flﬂfl))) (V_Vt—l)‘*‘%HV_W—lH2
K

2

5| e T v ok o)~ Vg al)
1)

Adding this with (23), we get

2

1 1
k ko k k k ~ ~
(Ve Fe(viii, iy zo1) = Ve i (Vimn o) |+ oIV = Vil = v = vl

Ui
<zHKkZl

K
1 A
+ <K Z[vvfk(vw]tilv 1) = Vv FR(viy, of g 2], Vi — Vt—1>
k=1
(28)

@ can be bounded as
(29)

1, _ _ _ _
@ =— V=V, v =v) = o (191 = VIZ = 191 =9 = 1192 = 9[%)
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Plug (20), (21), (28) and (29) into (19), we get
(Vo f(Vi—1,4-1), V¢ — )

K
3¢ 1 30 1
< S (@ el )+ S E V-1 = viiy |

- 2K
k=1
3|1 & :
n
+7 EZ[ ka(vftilaat 1) = Vv Er(viig, a5 27 )]
k=1
T
+ <K Z[vvfk(vffh awlttl) - vVFk(fola O‘wlttl; 21{21)]7{’75 - {’t—1>
k=1
1
+ %(HW—l — V[P = Vi1 = Vel)? = |9 = vI?)
+ gllw —v[*+ i(HV = Vel = v =¥l
3 2n

By can be bounded by the following lemma, whose proof is identical to that of Lemma
5 in [8].

K
Lemma 7 Define &y =a;—1 + 4 k:z Vafe(VF 1, af 1), and
-1

K
~ n
OétZOét—l'f‘? Z(VaFk(fohaitﬁ 21) = Vali(viipafy)).

We have,

K
1 N N
t ;Wafk(Vf—p af ) = VaF (Vi af 528 ), Gt — du)
1
+ %((at,l —a)? = (-1 — @) — (—a)?)
1 1
+ %(dt — a)2 + 277(04 T 1)2 — %(a — o?t)Z.

B3 can be bounded by the following lemma.

Lemma 8 If K machines communicate every I iterations, where I < 18\/ 7 then
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T

I
i

K

1

% S E[ve = vEIP + lla — of ] < (120°10°T + 360> 1°DT) 115,
k=1

~
Il
o

Proof In this proof, we introduce a couple of new notations to make the proof brief:
Fp, = F,‘j’t(vf,af; zF) and fir = fit(vf,af). Similar bounds for minimization problems
have been analyzed in [46, 37].

Denote ty as the nearest communication round before ¢, i.e., t — ty < I. By the update

rule of v, we have that on each machine k,

Vi =V =1 Y VyFi . (30)

Taking average over all K machines,

Vt—Vto—UZ ZV F o (31)

T= to
Therefore,
1 X n? K t—1 1 X 2
T2 Ve Vi =2 X D0 |V FE s = 2 VS
k=1 k=1 T=to Jj=1
2772 K t—1 1 K 2
< ZE | (VVER = Vi) = 2 DD Ve F — V] (32)
k=1 T=to j=1
2
2772 K t—1 1 K
FRLE| |2 | Ve T
= T=to =

In the following, we will address these two terms on the right hand side separately. First,
we have

o2 K t—1 T 2
? Z Z [VVFIS,T - valj,T] - ? Z [VVF;,’T - va]S,T]
k=1 | ||T=to =1
2
(a) 2772 K t—1 . .
< K Z Z [Vka,T - vak,f] (33)
k=1 T=tgo
®) 27]2 K t-—1 )
S S 2 2
2 IV = Vofi IP] < 210%,
k=1 1=to
X K 2 K 2 1 & 2 X 2
where (a) holds by & 3l — | & 2 05| 12 = & Il 1 3 oulP < & 3 ol
t—1
where ar, = > [VEF; =V, fi-]; (b) follows because Ey, »—1[VvF; . — Vi fi. ] =0.
T=to ’ ' ’
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Second, we have

1 K t—1 1 K 2
T B |Vl = e 2oV
k=1 r=to j=1
1 K t—1 K 2
< g2 t=to) D EIVfir = = > Vefis
k=1 T=to 7j=1
t—1 1 K 1 K 2
SIY 2D B||\Vofir =2 2 Vhi| |
=ty = k=1 j=1

where

| K

2"
K

- 1yg ‘
k=1

K
< Z BEIVASL, ~ Ve3P 4 BBV fE(r,0) = VS (o)
k

LS
Volir = K ZV"fJﬁT

N

+3E’

Vol (Ve ay) — Zv ij

K
1 S A S(o A Sl A
“ K2 [3Evvf,:,T — Vo fi (7,60 + 3BV fi(¥7, @) = Vo f (vna»nﬂ

lc:l1 . 2
+3E’ ?;[va]s({”'a@‘r) - VVf;,T] :|
1 K
<2 [3EV fir = Vo fi(Vr, @) |2 + 3E| Vo f5 (Vr, 6r) — Vo f (vﬁaT)”z]
k=1

(@) 5402 & o
< K Z [”Vk T VTH + |ak T Oé‘r‘ K Z HV flc V‘raa‘r) va (VTaa‘r)H
k=1
5402 & ) i
S5 > [Ivkr = ¥4I1* + lowr — a-|*] +3D?,
k=1

where (a) holds because f is -smooth, i.e., f* is 3/-smooth.
Combining (32), (33), (34) and (35),

K

1

e Z |v: — vF||? < 2nT0? + 22 (I Z
k=1

T=tg

[5452 K

k=1

28

Vv fk‘r Vo li(Vr,a7) + Vy [ (Vr,a7) = Vi f5(Vr,a7) + Vi f5(Vr,a7) —

Z —VT||2+||041“-—047-|| ]+3D2

(34)

Zv f;T

) (36)




Summing over t = {0,...,T — 1},

T-1 T-1

1 1
> = > Ve = ViR <20 To’T+1087° 1207 ) = (I[vF = vel® + laf — @-||?) + 69*I>D?T. (37)
t= k=1 t=0

Similarly for « side, we have

T-1 K T—1

1 1

4 Z @ —af||? < 20? 10T + 108> 12> Z T (||véc — |2+ ok — a||?) +6n*12D*T. (38)
t=0 " k=1 t=0

Summing up the above two inequalities,

T—

—_

K

1 _ _
7 219t = vE[? + Eflla; — af[?] <
k=1

an?Io? N 120212 D?
1— 2160212027 " 1 — 2167212¢2 (39)
<120 10%T + 360212 DT,

t=

where the second inequality is due to I < ie., 1 —216n21%0% > % |

1
18v/2ne’

With the above lemmas, we are ready to give the convergence of duality gap in one
stage of CODA+.

B.2 Proof of Lemma 1

K
Proof Note E(+ > [V fu(vE i, af 1) = VF (Vi af 528 )], % — V1) = 0 and
k=1
K

E <11< > Vafu(Viy, af 1) = Fu(vig, af 328 1)) Gt — @t> = 0. And then plugging
k=1

29



Lemma 6 and Lemma 7 into Lemma 5, and taking expectation, we get

E[fs(va a) - fs(vv 6‘)}
T
1 +30 /uy 1\, 12 1 s
ST;E (2—277 Vi1 —ve|* + 25—% s — Q|
Cy
1 1
(g - ) s =l = (5 - 2 @ - o)

+
Cs
1 N N 1 : )
+ (= @—1)? — (@ —@)*) + —(lv = Ve ||* = |v = ¥¢||?)
302 IEAR 3, 32\ 1 &
(D)% vatl—vt e (5 0 ) e Dot el
=1

Cs

K
3n 1 ok ko k
+ 5 ZV Fe(VE1s 1) = Vo R (Viog, af 15 21)]
K=

Cr

1

Since n < min(m, +), thus in the RHS of (40), Cy can be cancelled. Cy, C3, Cy
and C5 will be handled by telescoping sum. Cg can be bounded by Lemma 8.
Taking expectation over Cr,

K
377 1 s S
+ 5 ?Zvafk(vffhafq) — Vo (Vi af 120 )

Cy

2

K
ZV fi( Vt 1»% 1) — VVFIs(fohaffl;zéil)]

2

K
2K2 ZV RWE et y) = VeF(viog, af 1528 )]

2K2 ( IV fi( Vt 1a06]r€ 1) — VvFlf(fohaiﬂA;ZfA)HQ

k k k k i j j j j
< vfi( Vt 1,0 _q) — VVFIS(Vt—laat—l;zt—l)avaj(vi—l’ag—ﬁ_VVF;(Vg—lvo‘g—l;Zg—l)>

-

< 3o :
- 2K
(41)
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The last inequality holds because ||Vy fr(VF 1, af 1) — VyFL(vF |, aF ;28 )||? < 0% and

E(Vy fi (Vi1 1) = Ve Fr (Vi g, af g3 2f1), Vo fi(Vieg, o) =V Fi(vi_y 07 132/ 1)) =0
for any k # j as each machine draws data independently. Similarly, we take expectation
over Cyg and have

2
3no?

3n <
- 2K

2

K
1
e Z[Vafk(vf—p af—l) - v@Fk(Vf—lv af—ﬁzf—l)] (42)

k=1

E

Plugging (41) and (42) into (97), and taking expectation, it yields

1 1 /1 1
— ) Is0=vIP 4 oo = vIP 4 g (5 = %2 lao - al? + 5o - P

T
T K T K
1 302 30\ 1 o P 30 302\ 1 R
tT 2 (m i 2) 7o 2 Ve = vialP o 72 (2 i m) 7o 2 (@1 —ai)

t=1
1 5 1 5 (302 3¢ 97 9 9199 3no?
< — — — — — 4+ — ) (129°1 36m“I° D)1 —_—
< Vo= vIP+ oo —alP + (30 + 5) (12107 + 307 2D + 21
where we use Lemma 8, vg = vy, and ag = g in the last inequality. |

B.3 Main Proof of Theorem 1
Proof

Since f(v, ) is f-smooth (thus f-weakly convex) in v for any a, ¢(v) = max f(v,a) is
also f-weakly convex. Taking v = 2¢, we have
¢ 2
P(Vs—1) = ¢(Vs) + (00(Vs), V1 — Vi) — i”vs—l — vl

3¢
= ¢(vs) + (00(vs) +20(vs — Vs_1),Vs_1 — Vg) + EHVs—l — V8H2

—
S]
N

2 H(v) + (D64(va), Va1 Vi) + o [Vt~ il (43)

where (a) and (b) hold by the definition of ¢4(v).
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Rearranging the terms in (43) yields

Bv) = (Vs 1) < 108 (V)P + 15 (065(v),06(v,)) — < 106(vs)

8¢

(@) 1 1 3

= glP I+ G120+ 108~ glotvl
= 106, — L 100(v)

®) 1 )

< 106, = £ (6(v) = 6(v.)

where (a) holds by using (a,b) < 3(||la||®> + [|b||?), and (b) holds by the u-PL property of
P(v).

Thus, we have

(40 +20) (B(vs) — $(v)) = 4U(vs-1) — $(v)) < [100s(vs)[I*. (45)

Since v = 24, f*(v,«) is f-strongly convex in v and pe = 2p(1 — p) strong concave in «.
Apply Lemma 3 to f*, we know that

l . .
2195(as) = ViI? + 22 ay(v,) — a8” < Gap, (v, a8) + Gap,(vi,a).  (46)

By the setting of 75 = ngexp <—(s -1) +2M>, and Ty = ﬁ{im} exp ((s — l)ci’gu)

we note that m < %. Set I, such that <% + 37[) (12021, + 36n%12D?%) < nslg ,
where the specific choice of Iy will be made later. Applying Lemma 1 with V4(ag) =

arg min f5(v',as) and ag(vs) = argma/xfs(vs,a/), we have
v 8%

E[Gaps (vs, 048)] <

4 l . .
B+ o[l i + 22l v) — ol

(47)

dnso? 1
< T 4 B [Gap, (v$, 08) + Gap, (v, ).

Since ¢(v) is L-smooth and v = 2/, then ¢4(v) is L = (L + 2¢)-smooth. According to
Theorem 2.1.5 of [31], we have

E[[[06s(vs)[IP] < 2LE(¢5(vs) — min, ¢s(v)) < 2LE[Gap,(vs, as)]

= 2[A/I[‘S[46‘raps(vs7 as) — 3Gap,(vs, as)]
(48)

R 4 1
<218 [ (142 4 L (Gap, (v, ) + Gap, (v ) ) —3Gap, (v
16n02 N 4 155

K %Gaps(vgv Ctg) - ﬁGaps(v& CMS):|

:m[«:[
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Applying Lemma 4 to (48), we have

16ns0% 4
L7 4 2 Gap, (v, o)

E[[|0¢s(vs)|2] < zm[

155 [/ 3 4
- oy (i Gapa 6™ 05 + o) - o)) |

160502
K

A 4 93 124
— 28 PR 1 G, (v, ) s G (6 07— 12 016 ) — 043 .
(49)
Combining this with (107), rearranging the terms, and defining a constant ¢ = 4¢ +

%f) € O(L+1), we get

(c+ 2 E[p(vi) — 6(va)] + mi LE[Gap, 1 (v, D))

265
48 i 8L o eu . 32n,Lo?
(45 + 53L> E[p(vg) — ¢(vi)] + QE[GaPs(Voj ap)l + —— (50)
s 8L s s 32n,Lo?
<cE [gb(vo) — (Vi) + @Gaps(vo, ag) | + %
Using the fact that L> 73
8L 248 . 8L 8L 16ul _ 93 .
2 M+ L42p) —— < 4 < L. 51
e+ 25 = ( Tt “) 53(4@+%L)_53+248L—265 (51)
Then, we have
s+1 8L s+1 s+1
(c+2u)E |p(vg™) — ¢(vi) + Gaps+1( cay)
: - (52)
s 8L s s 32nsLo
< cE | ¢(v§) — o(vs) + @Gaps(vo, ao)] T
Defining A, = ¢(v§) — ¢(v.) + ELGap, (v§, ), then
& 32nsﬁ02
ElAgq] < ——E[A]+ ———— 53
Using this inequality recursively, it yields
S S+1—s
c 32Lo
E[A < E[A : 54
| S+1]_<c+2,u) S c+2,uKZ< <c+2u> ) (54)
By definition,
8L —~
536Gap1 (V(1]7 aO)

A= ¢(vg) = ¢(vF) + -
_|_
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Using inequality 1 — 2 < exp(—=x), we have

» S
—2uS 32n0Lo? 2uS
< - E _
E[As] < exp (c + 2u> Elda]+ (c+2u)K — P ( c+2u

—2uS 32n0ﬁ02 2uS
<2 Sexp (=212
= “OxP <c+2,u> + (c+2u)K P (c+2u)

To make this less than ¢, it suffices to make

-2
2¢p exp ) < E,
c+2u 2 (56)
32n9Lo? 2uS €
————=Sexp| ——+— ) < =
(c+2u)K c+2u 2

Let S be the smallest value such that exp (Cigi ) < min{;%, é‘;fzsf;;} We can set
0
_ c+2p 4 c+2u 64n LSo2
S = max{ log =¢, o log (c—i—OQ/,L)Ke }

Then, the total iteration complexity is

S
2p
ZT =0 (nomm{ﬂ po} ZexP( 8_1)C+2u>>

O( 1 exp(SCHM) 1)
nomin{l, u2} exp C+2u) -1

c e noLSo? (57)
————max{ —, ——————
nopmingl, pa} € (c+2u)Ke

~ (L+ )¢ (L +¢)%0?
<
=9 <max { nop min{4, pote’ p? min{l, po} Ke

0 (o e e )
< O | max
pipze’ pipusKe

where (a) uses the setting of S and exp(z) — 1 > z, and O suppresses logarithmic factors.
e = moexp(—(s — 1) 2), Ty = 22 exp (s — 1) 24 ).
Next, we will analyze the communication cost. We investigate both D = 0 and

D > 0 cases.
(i) Homogeneous Data (D = 0): To assure <% 36) (12021 + 36n*12D?%) < 7730

IN

INE
O}

2p
. . 1 exp((s—1) 25-) .
which we used in above proof, we take Is = 57 K. = i ch) £~ where M is a proper
constant.
exp((s—1) -35-) exp((s—1) 775-)
If MKU > 1, then Iy = max(1, veen L) = R =
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Otherwise, Wno <1, then K, = 1 for s < S1 = c+2“ log(MKn) + 1 and K, =
exp((s—1) 747

aen for s > 5.
S1 S1
212 2u
T = Ol —e s—1
; ; ( o P <( )c+2u)>
2 (58)
() oy
o exp (exp( +2”) 1) K
Thus, for both above cases, the total communication complexity can be bounded by
S1 S
s ~(K ~ (K
S Y _O<+KS>§O<>. (59)
s=1 =S1+1 Ls H H
s 1

(ii) Heterogeneous Data (D > 0):
To assure (ﬁ + 34) (12021, +360%12D?%) <

2p2
_ 1
I; = W’ where M is proper constant.

_ 2p
<1, then Iy =1 for s <S5y := C;ri“ log(M?Kng) + 1 and I = exp((s—D gva5)

If i NT? Nno

for s > S5.

3°1,- 550 (2o (101,22 )) =5 (%) w0

7

Thus, the communication complexity can be bounded by

o ~ s—1
ZT+ 3 TZO(KJF\/EeXp(()cm))
s 1% 2
s=5S2+1
. ep(s QM)_l p 1 (61)
<O(- + VE— )so<+w>.
W expc+2u 1 wo pdl2et/
[ |

Appendix C. Baseline: Naive Parallel Algorithm

Note that if we set Iy = 1 for all s, CODA+ will be reduced to a naive parallel version of
PPD-SG [22]. We analyze this naive parallel algorithm in the following theorem.

Theorem 3 Consider Algorithm 1 with Iy = 1. Set v = 2/, L="L+ 26, c= 5ﬁl/5ﬁ'
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(1) If M < gz, set ns = noexp(—(s — 1)e) < O(1) and Ty = 122 exp((s — 1)),

then the communication/iteration complexity is 9] < max (Miﬁ, ;ﬂiKe) to return vg such
that E[¢(vs) — o(vy)] < e.
1 : 1 1 212 ;
(2) If M = 5. set s = mm(m, 1) and Ty = Tty then the communica-

tion/iteration complezity is 0] <i> to return vg such that E[p(vg) — qﬁ(v:;)] <e.

Proof (1) If M < ﬁ, note that the setting of ns and T are identical to that in CODA+
(Theorem 1). However, as a batch of M is used on each machine at each iteration, the

variance at each iteration is reduced to Z;;. Therefore, by similar analysis of Theorem 1

(specifically (57)), we see that the iteration complexity of NPA is 9] (i + m) Thus,

the sample complexity of each machines is 9] (% + #QlKE>.

(2) If M > ﬁ, . Note ﬁ < %, we can follow the proof of Theorem 1 and

derive

c 32n5ﬁ02 <_C

a E[A,] + 32nsLo? e, 62
cr oA T S g A+ 32msLompe (62)

As—i—l S

where the first inequality is similar to (53) and the A is defined as that in Theorem 1. Thus,

S S s—1
C C
Agy1 < 0
St = <c+2,u> T pe (; <c+2u> >

() o <o (25 1 or
=\ 2 €) < exp et €).

(63)

Therefore, it suffices to take S = 0] (%) Hence, the total number of communication is

S-Ts = 9] (%) and the sample complexity on each machine is O (%)
|

Appendix D. Proof of Lemma 2

In this section, we will prove Lemma 2, which is the convergence analysis of one stage in
CODASCA.

First, the duality gap in stage s can be bounded as
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Lemma 9 For any v, «,

1 R
E Z[fs(vrv Oé) - fs(va 057«)]
r=1

R
< % 221 [<8vfs(vr—1, 1), vr = V) + (00 f* (Vr_1,00-1), 0 — o)
= B4 B5

30+ 302
+ 2/’u2||vr — VT,1||2 + 2£(Oér - 057'71>2 - g”vrfl - VH2 - %(O‘Tfl - a)Q

Proof By (-strongly convexity of f*(v,«) in v, we have

12
fs(vrfla arfl) + <avfs(v7“71a O‘rfl)av - Vr‘fl) + §”V7“71 - V||2 < fs(va arfl)- (64)

By 3/-smoothness of f*(v,«a) in v, we have

3/
fs(Vr,O[) < fs(vr—laa) + <8st(Vr_1,0é),Vr - Vr—1> + ?Hvr - Vr—1H2

3¢
= fs(vr—la a) + <avfs(vr—1u ar—l)avr - Vr—1> + EHVT‘ - Vr—1H2

+ <ava(VT,1, Oé) - avfs(vrfla arfl)a Vy — Vr‘fl)
(a) s s 3¢ 2
< f (Vr—la 04) + <avf (VT'—la ar—l)va - VT—1> + EHVT - VT_lH (65)
+Llar—1 = alllvy = vi_i|
®) s s 3 2
< f (VT—].v a) + <8Vf (Vr—l705r—l)7v7“ - Vr—1> + EHVT - Vr—l”

302
e =) vy v
where (a) holds because that we know 0, f*(v, «) is ¢-Lipschitz in « since f(v, a) is £-smooth
and (b) holds by Young’s inequality.
Adding (64) and (65), by rearranging terms, we have

fs(vrflv 0[7‘,1) + fs(vrv a)

S fS(V’ a'r‘—l) + fs(vr—l7a) + <avfs(vr—17 ar—l)vvr - V> (66)
30+ 3¢2 14
I S I+ a0

We know f9(v, ) is ug-strong concave in a (—f%(v, ) is pg-strong convexity of in «).
Thus, we have

[ (Ve p—1) = (Oaf* (Vic1, 1), 00 — pq) + %(a —ar_1)? < —f(vior,a).  (67)
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Since f*(v,a) is f-smooth in a, we get

- fS(V,OZT) S _fs(va 047”71) - <aafs(vvar71)7ar - 047’71> + g(ar - 057"71)2

. . /
= _fé(v7a'r71) - <8afé(vr717arfl)7ar - ar71> + i(ar - O‘rfl)Q

- <8a(fs(v7 arfl) - fs(vrfla Oé,«,1)),ar - 047‘71>

(a) /
S _fs(v’ ar—l) - <8afS(VT_1,OéT_1),OéT - ar—l) + 7(047‘ - ar—1)2 + €||V - Vr—1|||ar - ar—1|

2
s s ¢ 2 ¢ 2 3¢ 2
S _f (V7ar—l) - <aozf (Vr—l7ar—1)7ar - ar—l) + 5(047“ - ar—l) + EHVr—l - V” + E(QT - ar—l)
(68)
where (a) holds because that 0, f*(v, a) is ¢-Lipschitz in a.
Adding (67), (68) and arranging terms, we have
- fs(vr—la ar—l) - fs(v7057’) < 7f8(vr—1; Oé) - fs(va ar—l) - <aozfs(vr—1a ar—l)a Oy — Oé>
¢ 69)
+ 2 = 1) + Elve = v - %(a—arq)? (
Adding (66) and (69), we get
fs(vm Oé) - fs(v7 ar) < <avfs(vr—1u a’l’—l)u Vr — V> - <8afs(v7“—1a ar—1)7 Qp — a>
30+ 302 0 (70)
+ 2/M2||V7" - Vr—1H2 + 28(041" - ar—l)Q - g”vr—l - VH2 - %(ar—l - a)Q

Taking average over r = 1, ..., R, we get

R R
% Yo vea) = f(vian)] < % > [<avf5<vrh 1), Vy = V) + (0uf (Vo1 001), 0 — )
r=1 r=1 Ba By

Y4
v — Vr—1H2 +2(a — C“?“fl)2 - §||VT,1 - VH2 - &(O‘rfl - a)2

30+ 302
4 30+36 up :

2
|

B4 and Bs can be bounded by the following lemma. For simplicity of notation, we define

1
== a7 S ElIvh P+ ok ()

which is the drift of the variables between te sequence in r-th round and the ending point,
and

1 k 2 k 2
ST - ﬁ ;E[|’V7’7t - Vr—l” + (ar,t - ar—l) :I’ (72)

which is the drift of the variables between te sequence in r-th round and the starting point.
B, can be bounded as
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Lemma 10

E <vaS(Vr,1, 051”71)7 Vo — V>
2

3¢

37| 1
<*5 + ]EH r—VH2+7E WZ[ VIRV o) = Vi FE(VE arys 2),)]

2,

1 1 - .
5 Elllve = VI = Voot = vl = [lve = v[?) + 27 eU¥r—1 = vI? = [Ivr = vI?),

and

s 302 H2 o 2
E<vo¢f (VT‘—17 ar—1)7 Yy — 047"> < 57" + 7E(a7‘ - Oé)
209 3

3 1
—f—?E WZ[ afk( rt7 ) \Y% Fk( Tt? ft;zf,t)]

1y

+ %E((ar—l - a)2 - (dr—l - dr)2 - (d ) ) + nE((a - 5‘1”—1)2 - (O‘ - df)z)‘

Proof
1
(Vo f?(Vic1,00-1), Vv, — V) = <KI ;va,‘j(vr_l,ar_l),vr — v>

< <I(17 Z[vvflg(vr—la 047"—1) - vvfli(vf—la aﬁ,t)}vvf - V> @

k,t

(g7 T inal) - Vfibudlw -v) @ @

it

+<[(1'IZ[ vfk( rt’ ) \Y% Fk;( rta ft;zﬁt)]’vr_v> @

kit

<KIZ 'r’t’ 'rt’ ft) VT—V> @
k,t

Then we will bound (1), (2) and (3), respectively,

2
231 ) ¢
7 K[ Z ka Vip—1, Qp— 1) ka(vrfla af’t)] + EHVT _ V||2
=2 ()P v V2 ()
= 2€KIZHVVJC]§ Vir—1, Qr— 1) ka(vrfl’ar,t)u +6||VT_V||

(© 30 1 3
=5 r 2l - ok 12+ Lllve = v,
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where (a) follows from Young’s inequality, (b) follows from Jensen’s inequality. and (c)
holds because Vy f; (v, a) is f-smooth in «. Using similar techniques, we have

¢
k: 2 2
@< %KIZ”vak Vi1, 00) = Vo fi (v ar)| + glve = vl

75)
301 (
< S g 2 v = vidP + éuvr — v
kit
T
Let v, = argngn (KI Zvvfk( rt’yrt)> v+ QLﬁHV - VT—1”27 then we have
. d
V== gy 5 (Ve ek - Tufiivhski ko ) (76)
kit
Hence we get
1 .
@ = <KI Z[ ka( Vit & ) v Fk( Vi & ft;zf7t)],vr—vT>
k.t
<KZ Vv fi(v 'rt’ ) \% Fk:( Vit & kt§Z7]~€,t)]a‘A’r_V>
k
2 (77)
1
=n KI [ vfk( Vet & ) \Y Fk( Vet & ﬁt;zﬁt)]
kit
<KIZ Vy fi(v rtv ) Vy Fk( Vit & ft;zf,t)]a{’r—v>-
Define another auxiliary sequence as
VT—V?“ 1_7Z(v Fk rt?yrtv rt) ka( rt? ))7 fOI‘T>0; {’OZVO' (78)
Denote
-
1 1 -
0,(v) = | 707 SV ER (vEw b o) = TtV ab ) | vt oellv =9l (79)
k.t N
Hence, for the auxiliary sequence &,, we can verify that
vV, = argmin 0, (v). (80)
v
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Since O,(v) is %—strongly convex, we have
v = < 0,() - 01(3)
27;7’ v VT — T v T T
1 T
- (73 S TR otk - Vufiohe wab)) v gty - v

-
1 i 1 )
_ (KI ;(V Fk( Vit & ftv 7t) vfk( Vo & 7-t))) vV, — 2—ﬁ||v7, _V'r—1||2

.
(;IZW Rk ok st - Vufivinal))) -ve0 s vl g
1 Ny T 1,
- (m§<v FE vk alish) = Vafi(vheak) ) (= %0) = g9 =9l
< (37 ZVeF vk abiiste) - Voo, ’:t>>)T<v—m>+1~||v—m|2
KI £ 217
1 2

n
—|—2Hm;(v Fk( rt7 ft? rt) v fk( Tt’ fjt))

Adding this with (77), we get

2
1 . 1
L L e N

3| 1
_QHM (V Fk( rt? ,’ft, rt) ka( rt? ))
kv

<KIZ ka rt? ) v Fk( Tt’ ft;zﬁt)}a‘%‘_{”l>'

(@ can be bounded as

(Ve = VI = Vo1 = ve | = v = v]%) (83)

@ =

<VT' —Vr_1,V— V7'> =

27

S| -

Plug (74), (75), (82) and (83) into (73), we get

E <vvfs(vr—17 a'r—l)7 Vy — V>

3¢

31
<*5 + EH T_VHQ 2E KIZ Vi fi(v rt7 ) % Fk( Vit & ft;zf,t)]

7

1 -
+ o= B(veor = VI = [veor = vl = v = vI*) + 27 PV

21
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Similarly for o, noting f; is f-smooth and pua-strongly concave in «

62
; M2E (5, — a)?

E<Vafs(Vr—1’04r—1)’3/ -« > = 2 8 +
142 3
2
31 1
S E HZ[ afk( Vit & ) Y% Fk( Vit & ft;zf,t)]
+ iIE((OW 1 04)2 (-1 — @) (Qr — )2) + iIE((C“ — Q1) (a — dr)Q)
217 21
|
We show the following lemmas where = and £ are coupled
Lemma 11
- -2 2 2 577202
B, <A4E + 877 [||Vy f (v, )| + (Vaf (v, 0r))7] KI (84)
Proof
2
[”VT—VT 1H Z ka rtﬂ rt7 rt) Cﬁ"’_cv)
2
—E |~ > [T fi(vEp ok 2h) = Vufi(vh aky) + Ty fi(vh ok
KI — k Tt’ rt? k rt? k rt’ t
2 2 2
n [ } no
< _
— E KI ka( ’I”t? ) + KI
kt
2
77] . ~ s ,'7202
=E _E kt[ vfk( Vit & ) vak(vrflvanl)]_anvf (Vrflaarfl)) + K
2
ﬁ20_2
<2E||——= Z Vyfilv rt? ) — Vyfi(vre, ar1)]|| + 27721[4: ”vvfs(vr—har—l)Hz + KI
262 -9 2
- s n°o
ZEH vE = Vool 4 (= ar1)?] + 2B [ Vo £ (vior ) [P 4+ 2
9 7720_2
< 272028, 4+ 202 ||V f5 (Vi1 cr1)||* + T
(85)
Similarly,
~2 2
no_ (86)

El(ar — ar1)] < 2708, + 27°E (Vaf*(Ve-1,001))" +
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Using the 3/-smoothness of f° and combining with above results,

HVVfS(VT—hO‘r—l)‘P + (Vaf*(vi-1, 047"—1))2
= Vo f (Vio1, arm1) = Vo f5 (Ve o) + Vo f5 (ve, o) |
+ (Vaf?(vic1,00-1) = Vo f(ve,a0) + Vo f5(vy, ar))2
<2V 2 (Vi ) |IP + (Vaf* (Ve ar))?) + 1863(||[viet = vi | + (ar—1 — a)?)
4072020

<2V (v, an) | + (Vafs (v, ar))?] + 6004 72E, + 7

2 2
2V f* (ves ) 2 + (Vaf (Ve 0n))?] + & + 17

Thus,
_ 1 k 2 k 2
= gy BV vl (ofy )

=K1 ZEHVM_W 1P Ve = Vel 4 (o = ar1)® + (a1 — )]
k.t

< 267“ + QE[Hvrfl - V’I‘H2 + (arfl - a?‘)Q]

< 28, + 8P L2E, + APE[(Vey 2 (Ve—1, r-1))? + (Va S (Vi—1, ar_1))?] +

< 36 1 47 (2T 0 f* (v )| (T (v an))?] + oy 4~ ) 1 2
S OCr n v ry Op e ry Oy 04" 144K T

9 s 2 s 2y | D0
< 4E. + 81 [vaf (Vmar)H +(Vaf (Vmar))] KI

Lemma 12

~ 2
no - 4877 2, s 2
& < =1 + Vy ry Op Va ry Op .

Proof

E”Vf,t_vr 1||2_E||Vl:t 1 —m(Vy fk( Vo t— 1ayrt 15 % ft 1) — 05+cv)—vr71||2
SEvE s = m(Vo (V1 uro1) — BlG] + Eley]) — v ||? + 20707

1
< (1 72 ) IV = Vet P4 BV A ) — BIGET+ BIeI + 2020

~l=
M~

I K
where E[cF] = % > fS(Vqlfta 1) and E[cy] = = X 2
t=1 k:l t

fs( I'rft’ a'rl?,t)'

1
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Then,
IN'E(Vy fi (Ve Vit 17“5,:&—1) —E[c}] + E[ev] |
< IszHvak( Vit—1) O‘ﬁ,t—l) = Vofi(vict,ar21) + (E[ey] —
+ vvfs(vrfl,arfl) - (E[Ciﬂ - vai:(vrfla arfl))”z
< 4ln; f2< v = vl + Elllaf -y — ar12]> +AITE][E[}] — Vo fi (v, a1 |I°]
|2

vas(vr—lyar—l))

+ 417712E[||E[CV] = Vo f*(vro1, O‘r71||2] + 417712E[||va3(vr71> ay_1)

< dln; 52( [IVE—1r = voer "] + El(af 1, — 047-—1)2]>

I
1
+4Inl2€2f7_z::l ||V7" 1,7 — Vr— 1” +( ’r 1,7 ar—l)Q]
1 K I ] )
AT ST IV = Vel (00— a1 ATV (1, ) P
j=1t=1
(91)

For a, we have similar results, adding them together
EvE, - viil? + E(af, — ar_1)’
1
< (14 gy + S ) (BIVE 1, = vt P 4+ Blof oy, - 0r-0))
1 (92)

_ 1
+2070” + AInF S,y + ADnf 7 Y B[V — Vi |

=1

+ (0/:—1,7' - Oé?“*l)Q}

+ AIPE[[ Vo f* (viet, a1 + (Vo f* (Vi1 00-1))7]

Taking average over all machines,

1
= D EIvE, = Voo + Elak, - a,-1)?

1
(1 + 8D ”) S EIVE -y — veotlP +E(ad, - ap-1)?) + 200°

k
+8177 £2:7‘ 1+4I7] E[”V fs(vr 1, Qpr—1 H +( afs(vr717ar71))2”

t—1

(27710 +81nl€2:r 1"‘4[77121['3[”v JP(Veo1, o 1)” +(V afS(Vrlvarl))2)<

T=

27202 877202 4n
(”” e E[||vvf5<vr_1,ar_1)||2+(vafS(v,n_l,ar_l»Q])31

< 5 —=r—1
T\ IPny o I In2
< L‘z LE: 477 E[HV fS(V o )||2+(v fS(V a ))2] 3]
- 244[2773 3[’{]527 I 2 v r—1, &r—1 a r—1,Qpr_1 .
(93)

Taking average over t = 1,..., I,

12
& < ""2+ HEr—1 + — B[V £ (vroty )| + (Vaf* (veet,ar-1))?] (94)
— 8lIn 779
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Using (87), we have

o2 - 127 02 o2
& < SZI 2 +nlEr—1 + 77: <4[HVVJCS<VT7OCT)H2 + (vafs<vr704r))2] + ﬁ&" + 144KI> :
(95)
Rearranging terms,
o? 487
£ <o i + 11+ = IV (v o)+ (Va (v 00)] (96)
— 20In 779
|
D.1 Main Proof of Lemma 2
Proof Plugging Lemma 10 into Lemma 9, we get
1B
EZl[fs(vha) - fS(V,CVT)]
R
1 30+302/uy 1 9 1 9
< DL A et _ R _
< p | (R g ) vl (2 55 ) (e e
C
1 o (L k2 o2
g5 @02 = (5 - %) o)
Ca
1! e (Lt |2
(g5 5) =¥ = (5 - 5) e =
Cs (97)
1 o (30 32
+?ﬁ((a_ar 1) _(a—@r))+(2 2M2> r
Cy Cs
2
37 1
+2‘ kaz[v fk( Vit rt) \Y Fk( Vots ﬁt?zftﬂ
Ce

2
"‘? KIZV fe(v rt? rt) \4 Fk( Vit & ];t;zf,t)) .

Cr

Since 7 < min(m, i % ), thus in the RHS of (97), C; can be cancelled. Ca, Cs
and C4 will be handled by telescoping sum. C5 can be bounded by Lemma 12.
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Taking expectation over Cg,

2
377 1
B KIZ[V fk( Vot rt) \Y Fk( Vot ﬁtvzft)]
(98)
37 37702
= 2K2[2 vafk( Vit Tt) \ Fk( Vit & ﬁta rt)H2 = 9KI"
The equality is due to

rt< vfk( rta ) \Y F( rt7 rt’ rt)

vfs( Vit & ) \ FS( Vit & g«t?fzf]«,t)> = 0 for
any i # j as each machlne draws data independently, Where E,; denotes an expectation in

round r condltloned on events until k. The last inequality holds because ||V fr(vi_ 1, ;)
k
Vo Fr(viy, af_ys 2 )|

k- y_
< ¢* for any i. Similarly, we take expectation over C'; and have

L <m SV filvr k)~ VaFi(vh,, :ft,zm)Z <30 (99)
Plugging (98) and (99) into (97), and taking expectation, it yields
= S Rl (va) — (v, o)
< {; (2177 =) o= vIP+ g (5= 52 00— aP+ i zlvo - P + (o -
32 (e ) e )
< —lvo—vIP + = (a0 — a)? + i’fj;és Sl

where we use vy = Vg, and ag = g in the last inequality.
Using Lemma 12,

RZE (v, ) — (v, )]

302 1

1 9 1 3770
<—v—v + — E +
Ivo— vl mR}j

R(aofoz )2+

1
< 7”"0 —V||2 + *R(Oéo - )’
3021 no 4817 2 3ijo?
(=, —E[||V s —_—
PR Kwn;*" 1t BT e a0 (Taf (00 )|+ 5
1 5 1 o R 1A - 9 300077%4
< — — — — G
o VI 4 splon =)+ ML S Bt LS Gap,

/”L2T]g r=1
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where the last inequality holds because

1842
—Gapy (VTa 047“)7

12
(100)
where (st,a fs) denotes a saddle point of f* and the second inequality uses the strong
convexity and strong concavity of f*. In detail

Vv f5(vr, 047“)”2 + IVaf?(vr, O‘T)Hz < 962(”"?" - V}sHQ + (e — 04?3)2) <

Gaps(vr, o) = max fiVr ) = [ (Vis,afs) + [3(VEs, afs) — min f2(v,ar)
¢ ) . (101)
> Slve = Vil + Sa, — aj).

Using Lemma 11, we have

= <4E + 16772[vafs(vrv ar)H2

~2 2
+ (Vaf*(ve an))?] + 227

KI
2 ~
no o 487
<4 0=, _
< <2£K773+7] r—1+

Vs (v} 4+ (7 af5<vr,ar>>21)

.
(Yol (ve o)) + 2

+ 16ﬁ2[||vvfs(vra ar)Hz

7 (102)
. _ s s 5ijo K
< AE, 1 + 16072[|| Vo 2 (Ve ) |2 + (Vaf* (vir, r))?] + IT/{I (1"‘?)
g
- s < 5702 K
< Epo1 4 16072 ][|Vy 2 (Ve ) |2 + (Vaf 6%,aﬁ)ﬂ-%_KI U~+5§)
g
Thus,
~ R ~
2003 27103 32077343 2
Er < Erf + vv Vo, Qp + « s Vi, Qp
B 2= S g 25! gHm (0?4 (Val*(vr,0n)’
5702 K
1 103
TR (103)
20 = 5o K
B +4— Gapr + —(1+ —
<ot S5+ g G+ 0+
Taking Ag = 0,

RZE (vi,a) — f(v,an)]

1 5 1 1 5ijo> K
< splvo- = (g — =5 1425,

0

It follows that

25 2 Capr
T 2R T
1 9 5 bijo? K
< — vy — —(ag — 1+ =



Sample a 7 from 1,..., R, we have

E[Gap] <

2 2 5 10702 K
—||vo — —(ap — 1+ = .
|vo — v|? + (g — )" + T < +773> (104)

il

Appendix E. Proof of Theorem 1

Proof Since f(v,«) is f-weakly convex in v for any «a, ¢(v) = max f(v,a) is also f-weakly

convex. Taking v = 2¢, we have

B35 1) 2 D(v2) + (06(v3),ver = o) = glves vl
= 0(va) + (06(v2) + 26(¥s — Vo), Vet = V) + Vet
D 5(va) - (060(va), Va1 — Vi) + 5 Vet — Vil (105)
D h(va) — 55{005(v4), 005(v) ~ 9(v) + 964(vs) — D6(v)|
= 0(vs) — g 00s (Vo) — 15(064(v2), 06(v) + S 06(v.)I

where (a) and (b) hold by the definition of ¢4(v).
Rearranging the terms in (105) yields

B(vs) = 6(vs-1) < 1064V + 15(005(v), 00(v.)) — = 00(v)]?
(a)
< ool + 7<ua¢>s<vs>n2 1001 = Sl P o
1
= 106, = 100w,
@1 ) 2 ;
>~ 7“ ¢s(vs)|| zg(gb(vs) - ¢(V¢S))

where (a) holds by using (a,b) < 3(||la|®> + [|b||?), and (b) holds by the u-PL property of
P(v).

Thus, we have

(40+20) (6(vs) = $(v)) = 4l(vs1) — &(v,) < [[0¢5(vs)II*. (107)

Since v = 2¢, fs(v,«) is {-strongly convex in v and po strong concave in «. Apply
Lemma 3 to fs, we know that

ClVs(as) = vEII* + =2 (as(vs) — af)? < Gap,(v§, af) + Gap,(vs, as). (108)
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. _ in{e,
By the setting of 7y, I, = Iy * 2%, and Rs = ﬁrn+?£u2)’ we note that ﬁ?%s < %

Applying Lemma (2), we have

10702 1 _[C, . . ) S
E[Gap,(vs, as)] < ﬁ + g | g lVs(as) - voll? + %(as(vs) —ag)?
0 (109)
1Oﬁ02 1 S S
< KIy2s + %E [Gaps(vo,ao) + Gapg(vs, as)] .

Since ¢(v) is L-smooth and v = 2/, then ¢y (v) is L = (L + 2¢)-smooth. According to
Theorem 2.1.5 of [31], we have

E[[|06s(vs)IIP] < 2LE(¢5(vs) — min ¢s(v)) < 2LE[Gap, (vs, as)]

= 2LE[4Gap,(vs, o) — 3Gap, (vs, as)]

. 10702 1
< 9IE [4 ( ;ZJ‘; + o (Gap, (v, o) + Gap, (v, as))> — 3Gap, (s, as) (110)
~ 2
i qc? 4 BT
=2LE [4OKIO2S + %Gaps(V07 ag) — EGaps(VSa as)| -

Applying Lemma 4 to (110), we have

. [4070% 4
E[[|0¢s(vs)|?] < 2LE 2 s s
106, (v} < 2LE| 212 + 2 Gap, (v3.0)
155 /3 . . 4 . .
. [4070% 4 93 194
=2LE|—~-+— 5 8)— s+1 s+1y_ sty s
|:KIO2S+53Gaps(V07a0) 530Gaps+l(vo 7a0 ) 53 (¢(v0 ) ¢(VO))

(111)

Combining this with (107), rearranging the terms, and defining a constant ¢ = 4¢ +
28 € O(L +0), we get

(c+ 2u) E[6(vi™) — 6(va)] + i LE[Gapy (v, agHh)

265
248 . . 8L 80Lijo>
< (104 350 ) Blotvd) - 0wl + Sy EGan, (v ol + Term iy
8L 80Lijc>
< cE ¢<V8> - ¢(V*) + @Gaps(véaag) + KI02S :
Using the fact that L > p,
8L 248 . 8L 8L 16L _ 93 .
o) = (4l+ =L+ 2p) ———————— < = < "I 113
e+ 2530 < Tt “> 53(40+22L) ~ 53 "L = 265 (113)
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Then, we have

(c+2m)E [éf?("gH) — o(vs) + 83L Gap, 1 (vy™, O‘8+1)]

A - (114)
. 8L . .| 8ol
< cE [¢(V0) — (Vi) + @Gaps(vm )| + K2
Defining Ay = ¢(v§) — o(vi) + %Gaps(vé, af), then
c 80L o2
E[A, ] < E[A, 115
[ +1]_C—|—2u [ ]+c+2uKID2S (115)

Using this inequality recursively, it yields

g s . 9 8 S+1—s
c 80L 7o 2p N
EIA < EA —_— - -1
| S+1]_<c+2u> [ 1]+c+2uKIoszl<eXp< C+2/~‘<S )) (C+2/‘> )

—2u8 807 Lo> 2uS
<2 S -
= Soep (c+2u)+(c+2u>mo P\ o)

(116)
where the second inequality uses the fact 1 — 2 < exp(—z), and

8L
Ay = ¢(vg) — d(v¥) T30

+
= 9(vo) = 6(v*) + (F(vo,a1(v0)) + 7 [vo = vol2 = f (¥1(0), a0) — 2[¥1(a0) = Vo)
<€+ f(V(), dl(VO)) — f(\?(ao),ao) < 2¢p.

Gapl (Vév a(l))

(117)
To make this less than ¢, it suffices to make
—2uS
260 €xp F < Ea
c+2pu 2
(118)

8017L0’
(C + QM KIQ

_2uS €
c+2u

l\')

> 160LS 702

c+2u 450 c+2u 160LS 72 }

€ 2u

S to be the smallest value such that S > max log

Let S be the smallest value such that exp ( ) < min{ 45 (B2 K1y e can set
{ (c+2u)e Ko

Then, the total communication complexity is

S

~ 1 ~ (1
S R, <o<10005>§0< C><o<>.
p— un Tipa o [
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Total iteration complexity is
S S
ST =Y R
s=1 s=1

S
2u 2u
=S Ryexp(—r(s—1)) =0 (1Y A (s—1
s:lR 0exp( 5 (5= 1)) =0 Lo ) exp(T5, 5~ 1)

5 Oexp(cz’g#S) _ ¢ (e
exp(jf;“) pap \ €’ IgKe
~ 1 7 ~ 1 1
=0 max(—,c—ﬂ) =0 | max(—, —5-)
e’ Kp2e

(119)

= c (e Sijo?

)

which is also the sample complexity on each single machine.

Appendix F. More Results

In this section, we report more experiment results for imratio=30% with DenseNet121 on
ImageNet-IH, and CIFAR100-IH in Figure 2,3 and 4.
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Figure 2: Imbalanced Heterogeneous CIFAR100 with imratio = 10% and K=16,8 on
Densenet121.
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Figure 3: Imbalanced Heterogeneous ImageNet with imratio = 30% and K=16,8 on
Densenet121.
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Figure 4: Imbalanced Heterogeneous CIFAR100 with imratio = 30% and K=16,8 on

Densenet121.

Appendix G. Descriptions of Datasets

Table 6: Statistics of Medical Chest X-ray Datasets. The numbers for each disease denote

the imbalance ratio (imratio).

Dataset Source Samples Cardiomegaly Edema Consolidation Atelectasis Effusion
CheXpert Stanford Hospital (US) 224,316 0.211 0.342 0.120 0.310 0.414
ChestXray8 NIH Clinical Center (US) 112,120 0.025 0.021 0.042 0.103 0.119
PadChest Hospital San Juan (Spain) 110,641 0.089 0.012 0.015 0.056 0.064
MIMIC-CXR BIDMC (US) 377,110 0.196 0.179 0.047 0.246 0.237
ChestXrayAD H108 and HMUH (Vietnam) 15,000 0.153 0.000 0.024 0.012 0.069
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