é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

A Case for Task Sampling based Learning
for Cluster Job Scheduling

Akshay Jajoo, Nokia Bell Labs; Y. Charlie Hu and Xiaojun Lin, Purdue University;
Nan Deng, Google

https://www.usenix.org/conference/nsdi22/presentation/jajoo

This paper is included in the Proceedings of the
19th USENIX Symposium on Networked Systems

Design and Implementation.
April 4-6, 2022 » Renton, WA, USA
978-1-939133-27-4

Open access to the Proceedings of the
19th USENIX Symposium on Networked
Systems Design and Implementation
is sponsored by

alllasc Ellall deala

.% King Abdullah University of

Science and Technology

+ B S————
b »

A Case for Task Sampling based Learning for Cluster Job Scheduling

Akshay Jajoo”
akshay.jajoo@nokia-bell-labs.com

Abstract

The ability to accurately estimate job runtime properties
allows a scheduler to effectively schedule jobs. State-of-the-
art online cluster job schedulers use history-based learning,
which uses past job execution information to estimate the
runtime properties of newly arrived jobs. However, with
fast-paced development in cluster technology (in both hard-
ware and software) and changing user inputs, job runtime
properties can change over time, which lead to inaccurate
predictions.

In this paper, we explore the potential and limitation of
real-time learning of job runtime properties, by proactively
sampling and scheduling a small fraction of the tasks of each
job. Such a task-sampling-based approach exploits the simi-
larity among runtime properties of the tasks of the same job
and is inherently immune to changing job behavior. Our ana-
lytical and experimental analysis of 3 production traces with
different skew and job distribution shows that learning in
space can be substantially more accurate. Our simulation and
testbed evaluation on Azure of the two learning approaches
anchored in a generic job scheduler using 3 production clus-
ter job traces shows that despite its online overhead, learning
in space reduces the average Job Completion Time (JCT) by
1.28%, 1.56x, and 1.32x compared to the prior-art history-
based predictor. Finally, we show how sampling-based learn-
ing can be extended to schedule DAG jobs and achieve similar
speedups over the prior-art history-based predictor.

1 Introduction

In big-data compute clusters, jobs arrive online and compete
to share the cluster resources. In order to best utilize the
cluster and to ensure that jobs also meet their service level
objectives, efficient scheduling is essential. However, as jobs
arrive online, their runtime characteristics are not known a
priori. Due to this lack of information, it is challenging for
the cluster scheduler to determine the right job execution
order that optimizes scheduling metrics such as maximal
resource utilization or application service level objectives.
An effective way to tackle the challenges of cluster schedul-
ing is to learn the runtime characteristics of pending jobs,
which allows the scheduler to exploit offline scheduling algo-
rithms that are known to be optimal, e.g., Shortest Job First
(SJF) for minimizing the average completion time. Indeed,
there has been a large amount of work [27,36,43,44,47,49,

*The work was done while the author was pursuing his Ph.D. at Purdue
University.

Y. Charlie Hu
ychu@purdue.edu

Xiaojun Lin
linx@purdue.edu

Nan Deng
dengnan@google.com

52,55] on learning job runtime characteristics to facilitate
cluster job scheduling.

In essence, all of the previous learning algorithms learn job
runtime characteristics from observing historical executions
of the same jobs, which execute the same code but process
different sets of data, or of similar jobs, which have matching
features such as the same application name, the same job
name, or the same user who submitted the job.

The effectiveness of the above history-based learning
schemes critically rely on two conditions to hold true: (1)
The jobs are recurring; (2) The performance of the same or
similar jobs will remain consistent over time.

In practice, however, the two conditions often do not hold
true. First, many previous work have acknowledged that not
all jobs are recurrent. For example, in the traces used in Corral
[43] and Jockey [30], only 40% of the jobs are recurrent, and
Morpheus [44] shows that only 60% of the jobs are recurrent.
Second, even the authors of history-based prediction schemes
such as 3Sigma [47] and Morpheus [44] strongly argued why
runtime properties of jobs, even with the same input, will
not remain consistent and will keep evolving. The primary
reason is due to updates in cluster hardware, application
software, and user scripts to execute the cluster jobs. Third,
our own analysis of three production cluster traces (§4) have
also shown that historical job runtime characteristics have
considerable variations.

In this paper, we explore an alternative approach to learn-
ing runtime properties of distributed jobs online to facilitate
cluster job scheduling. The approach is motivated by the
following key observations about distributed jobs running
on shared clusters: (1) a job typically has a spatial dimension,
i.e., it typically consists of many tasks; and (2) the tasks (in
the same phase) of a job typically execute the same code and
process different chunks of similarly sized data [9,16]. These
observations suggest that if the scheduler first schedules a
few sampled tasks of a job, known as pilot tasks, to run till fin-
ish, it can use the observed runtime properties of those tasks
to accurately estimate those of the whole job. Effectively,
such a task-sampling-based approach learns job properties in
the spatial dimension. We denote the new learning scheme
as SLEARN, for “learning in space”.

Intuitively, by using the execution of pilot tasks to predict
the properties of other tasks, SLEARN avoids the primary
drawback of history-based learning techniques, i.e., relying
on jobs to be recurring and job properties to remain station-
ary over time. However, learning in space introduces two
new challenges: (1) its estimation accuracy can be affected

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 19

by the variations of task runtime properties, i.e., task skew;
(2) delaying scheduling the remaining tasks of a job till the
completion of sampled tasks may potentially hurt the job’s
completion time.

In this paper, we perform a comprehensive compara-
tive study of history-based learning (learning in time) and
sampling-based learning (learning in space), to systemati-
cally answer the following questions: (1) Can learning in
space be more accurate than learning in time? (2) If so, can
delaying scheduling the remaining tasks of a job till the com-
pletion of sampled tasks be more than compensated by the
improved accuracy and result in improved job performance,
e.g., completion time?

We answer the first question via quantitative analysis, and
trace and experimental analysis based on three production
job traces, including two public cluster traces from Google
released in 2011 and 2019 [8,11] and a private trace from
2Sigma [1]. We answer the second question by designing
a generic scheduler that schedules jobs based on job run-
time estimates to optimize a given performance metric, e.g.,
average job completion time (JCT), and then plug into the
scheduler different prediction schemes, in particular, learning
in time and learning in space, to compare their effectiveness.

We summarize the major findings and contributions of
this paper as follows:

« Based on literature survey and analysis using three pro-
duction cluster traces, we show that history is not a
stable and accurate predictor for runtime characteris-
tics of distributed jobs.

« We propose SLEARN, a novel learning approach that
uses sampling in the spatial dimension of jobs to learn
job runtime properties online. We also provide solutions
to practical issues such as dealing with thin jobs (jobs
with a few tasks only) and work conservation.

« Via quantitative, trace and experimental analysis, we
demonstrate that SLEARN can predict job runtime prop-
erties with much higher accuracy than history-based
schemes. For the 2Sigma, Google 2011, and Google 2019
cluster traces, the median prediction error are 18.98%,
13.68%, and 51.84% for SLEARN but 36.57%, 21.39%, and
71.56% for the state-of-the-art history-based 3Sigma,
respectively.

« We show that learning job runtime properties by sam-
pling job tasks, although delays scheduling the remain-
ing tasks of a job, can be more than compensated by the
improved accuracy, and as a result reduces the average
JCT. In particular, our extensive simulations and testbed
experiments using a prototype on a 150-node cluster in
Microsoft Azure show that compared to the prior-art
history-based predictor, SLEARN reduces the average
JCT by 1.28x,1.56 x,and 1.32 x for the extracted 2Sigma,
Google 2011 and Google 2019 traces, respectively.

« We show how the sampling-based learning can be ex-
tended to schedule DAG jobs. Using a DAG trace gen-
erated from the Google 2019 trace, we show a hybrid
sampling-based and history-based scheme reduces the
average JCT by 1.25x over a pure history-based scheme.

2 Background and Related Work

In this section, we provide a brief background on the cluster
scheduling problem, review existing learning-based sched-
ulers, and discuss their weaknesses.

2.1 Cluster Scheduling Problem

In both public and private clouds, clusters are typically shared
among multiple users to execute diverse jobs. Such jobs typi-
cally arrive online and compete for shared resources. In order
to best utilize the cluster and to ensure that jobs also meet
their service level objectives (SLOs), efficient job scheduling
is essential. Since jobs arrive online, their runtime character-
istics are not known a priori. This lack of information makes
it challenging for the scheduler to determine the right or-
der for running the jobs that maximizes resource utilization
and/or meets application SLOs. Additionally, jobs have differ-
ent SLOs. For some meeting deadlines is important while for
others faster completion or minimizing the use of networks is
more important. Such a diverse set of objectives pose further
challenges to effective job scheduling [19,30,31,43,44,55,56].

2.2 Job Model

We consider big-data compute clusters running data-parallel
frameworks such as Hadoop [4], Hive [6], Dryad [37],
Scope [22], and Spark [7] that run simple MapReduce
jobs [28] or more complex DAG-structured jobs, where each
job processes a large amount of data. Each job consists of
one or multiple stages, such as map or reduce, and each stage
partitions the data into manageable chunks and runs many
parallel tasks, each for processing one data chunk.

2.3 Existing Learning-based Schedulers

An effective way to tackle the challenges of cluster schedul-
ing is to learn runtime characteristics of pending jobs. As
such cluster schedulers using various learning methods have
been proposed [19,21, 25,36,43-45,47,49,50,52]. In essence,
all previous learning schemes are history-based, i.e., they
learn job characteristics by observations made from the past
job executions.! In particular, existing learning approaches
can be broadly categorized into the following groups, as
summarized in Table 1.

Learning offline models. Corral’s prediction model is de-
signed with the primary assumptions that most jobs are

1Some recent work use the characteristics of completed mini-batches
as a proxy for the remaining mini-batches, to improve the scheduling of
ML jobs [54]. However, such jobs are different in that the mini-batches in
general experience significantly less (task-level) variations than what we
studied in this paper.

20 19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Table 1: Summary of selected previous work that use history-
based learning techniques.

Name Property Estimation Learning
estimated technique frequency
Corral Job runtime Offline model | On arrival
[43] (not updated)
DCOSR | Memory elasti- | Offline model | Scheduler
[36] city profile (not updated) | dependent
Jockey Job runtime Offline Periodic
[30] simulator
3Sigma Job runtime Offline On arrival
[47] history dist. model

recurring in nature, and the latency of each stage of a multi-
stage job is proportional to the amount of data processed by
it, which do not always hold true [43].

DCOSR [36] predicts the memory usage for data parallel
compute jobs using an offline model built from a fixed num-
ber of profile runs that are specific to the framework and
depend on the framework’s properties. Any software update
in the existing frameworks, addition of new framework or
hardware update will require an update in profile.

For analytics jobs that perform the same computation
periodically on different sets of data, Tetris [32] takes mea-
surements from past executions of a job to estimate the re-
quirements for the current execution.

Learning offline models with periodic updates. Jockey
[30] periodically characterizes job progress at runtime, which
along with a job’s current resource allocation is used by an
offline simulator to estimate the job’s completion time and
update the job’s resource allocation. Jockey relies on job
recurrences and cannot work with new jobs.

Learning from similar jobs. Instead of using execution
history from the exact same jobs, JVuPredict [51] matches
jobs on the basis of some common features such as appli-
cation name, job name, the user who owns the job, and the
resource requested by the job. 3Sigma [47] extends JVuPre-
dict [51] by introducing a new idea on prediction: instead
of using point metrics to predict runtimes, it uses full dis-
tributions of relevant runtime histories. However, since it
is impractical to maintain precise distributions for each fea-
ture value, it resorts to approximating distributions, which
compromises the benefits of having full distributions.

2.4 Learningfrom History: Assumptions and Reality

Predicting job runtime characteristics from history informa-
tion relies on the following two conditions to hold, which
we argue may not be applicable to modern day clusters.

Condition 1: The jobs are recurring. Many previous
works have acknowledged that not all jobs are recurrent. For
example, the traces used in Corral [43] and Jockey [30] show
that only 40% of the jobs are recurrent and Morpheus [44]
shows that 60% of the jobs are recurrent.

Condition 2: The performance of the same or sim-
ilar jobs will remain consistent over time. Previous
works [30,43,44,47] that exploited history-based prediction
have considered jobs in one of the following two categories.
(1) Recurring jobs: A job is re-scheduled to run on newly
arriving data; (2) Similar jobs: A job has not been seen before
but has some attributes in common with some jobs executed
in the past [47,51]. Many of the history-based approaches
only predict for recurring jobs [30, 43, 44], while some oth-
ers [25,45,47,51] work for both categories of jobs.

However, even the authors of history-based prediction
schemes such as 3Sigma [47] and Morpheus [44] strongly
argued why runtime properties of jobs, even with the same
input, will keep evolving. The primary reason is that updates
in cluster hardware, application software, and user scripts
to execute the cluster jobs affect the job runtime charac-
teristics. They found that in a large Microsoft production
cluster, within a one-month period, applications correspond-
ing to more than 50% of the recurring jobs were updated.
The source code changed by at least 10% for applications
corresponding to 15-20% of the jobs. Additionally, over a
one-year period, the proportion of two different types of ma-
chines in the cluster changed from 80/20 to 55/45. For a same
production Spark job, there is a 40% difference between the
running time observed on the two types of machines [44].

For these reasons, although the state-of-the-art history-
based system 3Sigma [47] uses sophisticated prediction tech-
niques, the predicted running time for more than 23% of the
jobs have at least 100% error, and for many the prediction is
off by an order of magnitude.

3 SLEARN - Learning in Space

In this paper, we explore an alternative approach to learning
job runtime properties online in order to facilitate cluster
job scheduling. The approach is motivated by the following
key observations about distributed jobs running in shared
clusters: (1) a distributed job has a spatial dimension, i.e., it
typically consists of many tasks; (2) all the tasks in the same
phase of a job typically execute the same code with the same
settings [9, 12, 16], and differ in that they process different
chunks of similarly sized data. Hence, it is likely that their
runtime behavior will be statistically similar.

The above observations suggest that if the scheduler first
schedules a few sampled tasks of a job to run till finish, it
can use the observed runtime properties of those tasks to
accurately estimate those of the whole job. In a modular
design, such an online learning scheme can be decoupled
from the cluster scheduler. In particular, upon a job arrival,
the predictor first schedules sampled tasks of the job, called
pilot tasks, till their completion, to learn the job runtime
properties. The learned job properties are then fed into the
cluster job scheduler, which can employ different scheduling
polices to meet respective SLOs. Effectively, the new scheme
learns job properties in the spatial dimension, i.e.,learning in

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 21

Table 2: Comparison of learning in time and learning in space
of job runtime properties.

Applicability Adapti- | Accuracy | Runtime

veness overhead
Time Recurring jobs No/Yes | Depends No
Space | New/Recurring jobs Yes Depends Yes

space. We denote the new learning scheme as SLEARN.

Table 2 summarizes the pros and cons of the two learning
approaches along four dimensions: (1) Applicability: As
discussed in §2.3, most history-based predictors cannot be
used for the jobs of a new category or for categories for which
the jobs are rarely executed. In contrast, learning in space
has no such limitation; it can be applied to any new job. (2)
Adaptiveness to change: Further, history-based predictors
assume job runtime properties persist over time, which often
does not hold, as discussed in §2.4. (3) Accuracy: The accu-
racy of the two approaches are directly affected by how they
learn, i.e., in space versus in time. The accuracy of history-
based approaches is affected by how stable the job runtime
properties persist over time, while that of sampling-based
approach is affected by the variation of the task runtime prop-
erties, i.e., the extent of task skew. (4) Runtime overhead:
The history-based approach has an inherent advantage of
having very low to zero runtime overhead. It performs offline
analysis of historical data to generate a prediction model. In
contrast, sampling-based predictors do not have offline cost,
but need to first run a few pilot tasks till completion before
scheduling the remaining tasks. This may potentially delay
the execution of non-sampled tasks.

The above qualitative comparison of the two learning ap-
proaches raises the following two questions: (1) Can learning
in space be more accurate than learning in time? (2) If so, can
delaying scheduling the remaining tasks of a job till the com-
pletion of sampled tasks be more than compensated by the
improved accuracy, so that the overall job performance, e.g.,
completion time, is improved? We answer the first question
via analytical, trace and experimental analysis in §4 and the
second question via a case study of cluster job scheduling
using the two types of predictors in §5.

4 Accuracy Analysis

In this section, we perform an in-depth study of the predic-
tion accuracy of the two learning approaches: learning in time
(history-based learning) and learning in space (task-sampling-
based learning). Both approaches can potentially be used
to learn different job properties for different optimization
objectives. In this paper, we focus on job completion time
because it is an important metric that has been intensively
studied in recent work [23, 24, 29,33, 35,36, 43,47].

4.1 Analytical Comparison

We first present a theoretical analysis of the prediction accu-
racies of the two approaches. We caution that here we use a
highly-stylized model (e.g., two jobs and normal task-length

distributions), which does not capture the possible complex-
ity in real clusters, such as heavy parallelism across servers
and highly-skewed task-length distributions. Nonetheless, it
reveals important insights that help us understand in which
regimes history-based schemes or sampling-based schemes
will perform better. Consider a simple case of two jobs j;
and j,, where each job has n tasks. The size of each task of
Jj1 is known. Without loss of generality, let us assume that
the task size of j; is 1. Thus, the total size of j; is n. The size
of a task of j, is however unknown. Let x denote the average
task size of j,, and this its total size is nx. Clearly, if we knew
x precisely, then we should have scheduled jj first if x > 1
and j, first if x < 1. However, suppose that we only know
the following: (1) (Prior distribution:) x follows a normal
distribution with mean y and variance 6(2,; (2) Given x, the
size of a random task of the job follows a normal distribution
with mean x and variance G%. Intuitively, 62 captures the
variation of mean task-lengths across many i.i.d. copies of
job ja, i.e., job-wise variation, while G% captures the variation
of task-lengths within a single run of job jy, i.e., task-wise
variation. We note that the parameters 62 and 67 are not
used by the predictors below.

Now, consider two options for estimating the mean task-
length x:1) A history-based approach (§4.1.1) and (2) a
sampling-based approach where we sample m tasks from
J2 (§4.1.2).

4.1.1 History-based Schemes

Since no samples of job j, are used, the best predictor for
its mean task length is u. In other words, the scheduling
decision will be based on i only. The difference between the
true mean task length, x, and u is simply captured by the
job-wise variance G2.

4.1.2 Sampling-based Schemes

Suppose that we sample m tasks from j,. Collect the sampled
task lengths into a vector:

—

y= ()’17)’2,-~-7Ym)-

Then, based on our probabilistic model, we have

(i)’ (i)

P(5lx) =)

m 1 26%
i=1
We are interested in an estimator of x given ¥. We have

[S)

P (yilx) = L, 2"%,

210

V2710 €

- P(y|x)-P(x P(y|x)-P(x
PO - S < R
o (Iy Gl%yz*;%ﬂ)
1 *(Q*Q) T T
:L{ﬂ+L}2,e ! ¢ o o3
2n |67 ' o3 >

where the last step follows from standard results on the poste-
rior distribution with Gaussian priors (see, e.g., [18]). In other
words, conditioned on ¥, x also follows a normal distribution
XLy éyﬁ G%u

_ and variance = —"

-
+7
%

with mean =

m 1
7+7
23

Q=

22 19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Table 3: Summary of trace properties.

Trace Arrival | Resource | Resource | Indiv. task
time requested usage duration
2Sigma Yes Yes No Yes
Google 2011 Yes Yes Yes Yes
Google 2019 Yes Yes Yes Yes

Note that this represents the estimator quality using the
information of both job-wise variations and task-wise varia-
tions. If the estimator is not informed of the job-wise varia-
tions, we can take G(Z, — o0, and the conditional distribution
of x given y becomes normal with mean % Y™, yi and vari-
ance %%.

From here we can draw the following conclusions. First,
whether history-based schemes or sampling-based schemes
have better prediction accuracy for an unknown job depends
on the relationship between job-wise variations 62 and the
task-wise variation 67. If the job-wise variation is large but

2
the task-wise variation is small, i.e., Gg >> % ,then sampling-
based schemes will have better prediction accuracy. Con-
versely, if the job-wise variation is small but the task-wise

variation is large, i.e., Gg << %%, then history-based schemes
will have better prediction accuracy. Second, while the ac-
curacy of history-based schemes is fixed at 62, the accu-
racy of sampling-based schemes improves as m increases.
Thus, when we can afford the overhead of more samples,
the sampling-based schemes become favorable. Our results
from experimental data below will further confirm these
intuitions.

4.2 Trace-based Variability Analysis

Our theoretical analysis in §4.1 provides insights on how the
prediction accuracies of the two approaches depend on the
variation of job run times across time and space. To under-
stand how such variations fare against each other in practice,
we next measure the actual variations in three production
cluster traces. Table 3 summarizes the information available
in the traces that are used in our analysis.

Traces. Our first trace is provided by 2Sigma [1]. The cluster
uses an internal proprietary job scheduler running on top of
a Mesos cluster manager [2]. This trace was collected over a
period of 7 months, from January to July 2016, and from 441
machines and contains approximately 0.4 million jobs [17].

We also include two publicly available traces from Google
released in May 2011 and May 2019 [8,11], collected from 1
and 8 Borg [53] cells over periods of 29 and 31 days, respec-
tively. The machines in the clusters are highly heterogeneous,
belonging to at least three different platforms that use differ-
ent micro-architectures and/or memory technologies [20].
Further, according to [9], the machines in the same platform
can have substantially different clock rates, memory speed,
and core counts. Since the original Google 2019 trace has
data from 8 different cells located in 8 different locations,

and given that we already have two other traces from the
US, we chose the batch tier of Cluster G in the Google 2019
trace, which is located in Singapore [12], as our third trace
to diversify our trace collection.

We calculate the variations in task runtimes for each job
across time and across space as follows.

Variation across time. To measure the variation in mean
task runtime for a job across the history, we follow the fol-
lowing prediction mechanism defined in 3Sigma [47] to find
similar jobs.

As discussed in §2.3, 3Sigma [47] uses multiple features to
identify a job and predicts its runtime using the feature that
gives the least prediction error in the past. We include all six
features used in 3Sigma: application name, job name, user
name (the owner of the job), job submission time (day and
hour), and resources requested (cpu and memory) by the job.

For each feature, we define the set of similar jobs as all
the jobs executed in the history window (defined below) that
had the same feature value. Next, we calculate the average
task runtime of each job in the set. Then, we calculate the
Coefficient of Variation (CoV) of the average task runtimes
across all the jobs in the set. We repeat the above process
for all the features. We then compare the CoV values thus
calculated and pick the minimum CoV. Effectively, the above
procedure selects the least possible variation across history.

Varying the history length in prediction across time.
3Sigma used the entire history for prediction. Intuitively, the
length of the history affects the trade-off between the number
of similar jobs and the staleness of the history information.
For this reason, we optimized 3Sigma by finding and using
the history length that gives the least variation. Specifically,
we define the length of history based on a window size w, i.e.,
the number of past consecutive days. In our analysis below,
we vary w among 3, 7, and 14 for the three traces.

Variation across space. To measure the extent of variation
across space, we look at the CoV (CoV = %) in the task run-
times within a job. As shown in §4.1, the variance in the

2
. . . . O .
task runtime predicted from sampling is -1, where of is

the variance in the runtimes across all the tasks within the
job and m is the number of tasks sampled. Thus, we first
estimate 67 from all tasks within the job. We then report
the CoV of our task runtime prediction after sampling m
tasks as 22" Our complete scheduler design in §5.1 uses
an adaptive sampling algorithm which mostly uses 3% for
the three traces. Thus, for measuring the extent of variation
across space here, we assume a 3% sampling ratio and plot

(1/0.03 xnunlberg]fTaskslnjob)xu”

Variability comparison. For consistency, all analysis re-
sults here are for the same, shortest trace period that can
be used for sliding-window-history based analysis, e.g., the
last 15 days under the 14-day window for the 29-day Google
2011 trace. (The analysis then varies the length of the sliding
window in history-based learning.)

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 23

1.0 — 1.0 1.0 1.0
.'V.V|
0.8 e 038 f;})_l. 0.8 : 08
5 06 w061} X £ 0 / w06
Coa4 —— Space Ooa i —— Space Co4 —— Space Ooa ! —— Space Ooa
------ History-3 days i -+ History-3 days if -+« History-3 days ---=« History-3 days -+ History-3 days
0.2 —-— History-7 days 0.2 Ii —-— History-7 days 0.2 ,J —-— History-7 days 0.2 /1 —-— History-7 days 0.2 —-— History-7 days
-=-=- History-14 days -== History-14 days -=- History-14 days -=-- History-14 days -=- History-14 days
0.0 i 4 0.0 4 4 0.0 4 4 0.0 i 4 0.0~ 4 4
0 1 2 3 4 5 tail 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 tail

CoVs in task duration CoVs in task duration

(a) Task runtime - 2Sigma (b) Task runtime — Google 11 (c) Task runtime — Google 19 (d) CPU usage — Google 11

CoVs in task duration

CoVs in CPU usage CoVs in disklO time

(e) Disk IO time — Google 11

Figure 1: CDF of CoV of runtime properties across space and across time with varying history windows, using the 2Sigma,
Google 2011 and Google 2019 traces. Single-task jobs are excluded from the analysis across space.

Table 4: CoV in task runtime across time and across space
for the the 2Sigma, Google 2011, and Google 2019 traces.

CoV over Time | CoV over Space
P50 P90 P50 P90
2Sigma 1.00 3.10 0.18 0.55
Google 2011 | 0.20 0.73 0.04 0.58
Google 2019 | 1.35 1.67 0.70 1.33

Trace

Fig. 1(a)-Fig. 1(c) show the CDFs of CoVs in task dura-
tion measured across space and across history for multiple
history window sizes for the three traces. We see that in gen-
eral using a shorter sliding window reduces the prediction
error of 3Sigma, and the CoVs across tasks are moderately
lower than the CoVs across history for the Google 2011 trace
but significantly lower for 2Sigma and Google 2019 traces.
For example, for the 2Sigma trace, the CoV across history is
higher than the CoV across tasks for 85.40% of the jobs (not
seen in Fig. 1(a) as jobs are ordered differently in different
CDFs) and for more than 30% of the jobs, the CoV across
history is at least 12.10x higher than the CoV across tasks.

Table 4 summarizes the results, where the CoVs across
time correspond to the best history window size, i.e., 3 days
for both Google traces and 14 days for the 2Sigma trace. As
shown in the table, the P50 (P90) CoV across history are 1.00
(3.10) for the 2Sigma trace, 0.20 (0.73) for the Google 2011
trace, and 1.35 (1.67) for the Google 2019 trace. In contrast,
the P50 (P90) CoV value across the task duration of the same
set of jobs is much lower, 0.18 (0.55) for the 2Sigma trace,
0.04 (0.58) for the Google 2011 trace, and 0.70 (1.33) for the
Google 2019 trace.

Fig. 1(d) and Fig. 1(e) further show the CDF of CoVs for
CPU usage and Disk IO time for the Google 2011 trace (such
resource usage is not available in the 2Sigma trace). The
figures show that the variation in the values of these proper-
ties when sampled across space is also considerably lower
compared to the variation observed over time.

4.3 Experimental Prediction Error Analysis

Recall from our analysis in §4.1 that lower task-wise varia-
tion than job-wise variation (§4.2) will translate into better
prediction accuracy of sampling-based schemes over history-
based schemes. While our analysis in §4.1 assumes normal
distribution, we believe that a similar conclusion will hold

in more general settings. To validate this, we next imple-
ment a sampling-based predictor SLEARN, and experimentally
compare it against a state-of-the-art history-based predic-
tor 3Sigma [47] in estimating the job runtimes directly on
production job traces.

Workload characteristics. Since the three production
traces described in §4.2 are too large, as in 3Sigma [47], we
extracted smaller traces for experiments using the procedure
described below.

Since the history-based predictor 3Sigma needs a history
trace, we followed the same process as in [47] to extract
the training trace for 3Sigma and the execution trace for all
predictors, in three steps. (1) We divided each original trace in
chronological order in two halves. (2) We compressed 2Sigma
jobs to 150 tasks or fewer, by applying a compression ratio
of original cluster size/150. Since the Google traces do not
have many wide jobs yet the original clusters are very wide,
with 12.5K machines, we dropped jobs with more than 150
tasks . (3) We next selected the execution trace following the
process below from the second half; these became 2STrace,
GTracell and GTracel9, respectively. (4) We then selected
jobs from the first half of each original trace that are feature-
clustered with those jobs in the execution trace to form the
"history" trace for 3Sigma.

We extracted the execution trace from each of the above-
mentioned second halves by randomly selecting 1250 jobs
with equal probability. Then, for each extracted trace, we
adjust the arrival time of the jobs so that the average cluster
load matches that in the original trace [8, 11, 17]. Table 5
summarizes the workload per window of the extracted traces,
where a window is defined as a 1000-second interval sliding
by 100 seconds at a time, and the load per window is the total
runtime of all the jobs arrived in that window, normalized
by the total number of CPUs in the cluster times the window
length, i.e., 1000s. We see that for all three traces, the average
system load is close to 1, though the load fluctuates over time,
which is preserved by the random uniform job extraction.

Prediction mechanisms and experimental setups. We
implement the 3Sigma predictor following its description

%This is to avoid potential bias towards SLEARN. A job with more than
150 tasks will have to be scheduled in more than one phase, which will be
in favor of SLEARN by diminishing the sampling overhead.

24 19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Table 5: Statistics for system load per 1000s sliding window.

Trace Average | P50 | P90
2STrace 1.05 0.13 | 2.47
GTracell 1.01 0.29 | 1.49
GTracel9 1.04 0.09 | 0.91

in [47]. After learning the job runtime distribution (§4.2),
it uses a utility function of the estimated job runtime asso-
ciated with every job to derive its estimated runtime from
the distribution, by integrating the utility function over the
entire runtime distribution. Since our goal is to minimize
the average JCT, we used a utility function that is inversely
proportional to the square of runtime. We kept all the default
settings we learned from the authors of 3Sigma [47].

As in §4.2, SLEARN samples max(1,0.03 - S) tasks per job,
where § is the number of tasks in the job. We only show
the results for wide jobs (with 3 or more tasks) as in the
complete SLEARN design (§5.1.1), only wide jobs go through
the sampling phase.

Results. Fig. 2 shows the CDF of percentage error in the
predicted job runtimes for the three traces. We see that
SLEARN has much better prediction accuracy than 3Sigma.
For 2STrace, GTracel1, and GTrace19, the P50 prediction er-
ror are 18.30%, 9.15%, 21.39% for SLEARN but 36.57%, 21.39%,
71.56% for 3Sigma, respectively, and the P90 prediction error
are 58.66%, 49.95%, 92.25% for SLEARN but 475.78%, 294.52%,
1927.51% for 3Sigma, respectively.

5 Integrating Sampling-based Learning
with Job Scheduling: A Case Study

In this section, we answer the second key question about
the sampling-based learning: Can delaying scheduling the
remaining tasks till completing the sampled tasks be com-
pensated by the improved prediction accuracy? We answer
it through extensive simulation and testbed experiments.
Our approach is to design a generic scheduler, denoted as
GS, that schedules jobs based on job runtime estimates to
optimize a given performance metric, average job comple-
tion time (JCT). We then plug into GS different prediction
schemes to compare their end-to-end performance.

5.1 Scheduler and Predictor Design
5.1.1 Generic Scheduler GS

GS replaces the scheduling component of a cluster manager
like YARN [5]. The key scheduling objective of GS is to
minimize the average JCT. Additionally, GS aims to avoid
starvation.

The scheduling task in GS is divided into two phases, (1)
job runtime estimation, and (2) efficient and starvation-free
scheduling of jobs whose runtimes have been estimated. We
focus here on the scheduling mechanism and discuss the
different job runtime estimators in the following sections.

Inter-job scheduling. Shortest job first (SJF) is known to be
optimal in minimizing the average JCT when job execution
depends on a single resource. Previous work has shown that
scheduling distributed jobs even with prior knowledge is NP-
hard (e.g., [24]), and an effective online heuristic is to order
the distributed jobs based on each job’s total size [23,39-41].
In GS we use a similar heuristic; the jobs are ordered based
on their total estimated runtime, i.e., mean task runtime x
number of tasks.

Starvation avoidance. SJF is known to cause starvation to
long jobs. Hence, in GS we adopt a well-known multi-level
priority queue structure to avoid job starvation [23, 26,38, 46,
48]. Once GS receives the runtime estimates of a job, it assigns
the job to a priority queue based on its runtime. Within a
queue, we use FIFO to schedule jobs. Across the queues, we
use weighted sharing of resources, where a priority queue
receives a resource share according to its priority.

In particular, GS uses N queues, Qg to On_1, with each
queue having a lower queue threshold Qif and a higher

threshold Qgi for job runtimes. We set Q(l)" =0, Qﬁ,’;l = oo,

QZ‘ZH = Qgi . A queue with a lower index has a higher priority.
hi
‘ g+l =
E- QZ’. To avoid any bias, we use the multiple priority queue
structure with the same configuration when comparing dif-

ferent job runtime estimators.

GS uses exponentially growing queue thresholds, i.e., Q

Basic scheduling operation. GS keeps track of resources
being used by each priority queue. It offers the next avail-
able resource to a queue such that the weighted sharing
of resources among the queues for starvation avoidance is
maintained. Resources offered to a queue are always offered
to the job at the head of the queue.

5.1.2 SLEARN

To seamlessly integrate SLEARN with GS, we need to use
one of the priority queues for scheduling sampled tasks. We
denote it as the sampling queue.

Fast sampling. One design challenge is how to determine
the priority for the sampling queue w.r.t. the other priority
queues. On one hand, sampled tasks should be given high
priority so that the job runtime estimation can finish quickly.
On the other hand, the jobs whose runtimes have already
been estimated should not be further delayed by learning
new jobs. To balance the two factors, we use the second
highest priority in GS as the sampling queue.

Handling thin jobs. Recall that in SLEARN, when a new
job arrives, SLEARN only schedules its pilot tasks, and delays
other tasks until the pilot tasks finish and the job runtime
is estimated. Such a design choice can inadvertently lead to
higher JCTs for thin jobs, e.g., a two-task job would experi-
ence serialization of its two tasks. To avoid JCT degradations
for thin jobs, we place a job directly in the highest priority
queue if its width is under a threshold thinLimit.

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 25

1.0 —t— 1.01
—— SlLearn - —— Slearn

0.81 —.- 3Sigma Is 0.81 —.- 3Sigma
w 0.6 ! W 0.61
a a
©o4 ©0.41

0.2 0.2

2
0.0 - 0.0

-t 1.04

—— SlLearn
0.81 —.- 3sigma

w 0.61

a

© 0.4
0.2
0.01 =

1074 1073 1072 107! 10° 10' 107
Prediction error

(a) 2STrace

1074 1073 1072 107! 10° 10' 107
Prediction error

(b) GTracell

1074 1073 1072 107! 10° 10' 107
Prediction error

(c) GTracel9

Figure 2: Job runtime prediction accuracy.

Basic operations. Upon the arrival of a new job, the cluster
manager asynchronously communicates the job’s informa-
tion to GS, which relays the information to SLEARN. If the
number of tasks in the job is under thinLimit, SLEARN as-
signs it to the highest priority queue; otherwise, the job is
assigned to the sampling queue, where a subset of its tasks
(pilot tasks) will be scheduled to run. Once a job’s runtime is
estimated from sampling, it is placed in the priority queue
corresponding to its runtime estimate where the rest of its

tasks will be scheduled.

How many and which pilot tasks to schedule? When a
new job arrives, SLEARN first needs to determine the number
of pilot tasks. Sampling more tasks can give higher estimation
accuracy, but also consumes more resources early on, which
can potentially delay other jobs, if the job turns out to be a
long job and should have been scheduled to run later under
SJE. Further, we found the best sampling ratio appears to
vary across difference traces. To balance the trade-off, we
use an adaptive algorithm to dynamically determine the
sampling ratio, as shown in Figure 3. The basic idea of the
algorithm is to suggest a sampling ratio that has resulted in
the lowest job completion time normalized by the job runtime
based on the recent past. To achieve this, for every value in
a defined range of possible sampling ratios (between 1% and
5%), it maintains a running score (srScoreMap), which is the
average normalized JCT of T recently finished jobs that used
the corresponding sampling ratio. In practice we found a T
value of 100 works reasonably well. During system start-up,
it tries sampling ratios of 2%, 3%, and 4% for the first 3T jobs
(Line 2-7). It further tries sampling ratios of 1% and 5% if
going down from 3% to 2% or going up from 3% to 4% reduces
the normalized JCT. Afterwards, for each new job, it uses
the sampling ratio that has the lowest running score. Finally,
upon each job completion, the score map is updated (Line
16-24).

Once the sampling ratio is chosen, SLEARN selects pilot
tasks for a job randomly.

How to estimate from sampled tasks? Several methods
such as bootstrapping, statistical mean or median can be
used to predict job properties from sampled tasks. In GS, we
use empirical mean to predict the mean task runtime.

Work conservation. When the system load is low, some

1: procedure GETCURRENTSAMPLINGPERCENTAGE(Job j)

2 if j in First T jobs then

3 return 3

4 else if j in Second T jobs then

5: return 2

6 else if j in Third T jobs then

7 return 4

8 minScore = getMinValue(srScoreMap)

9 if minScore.SR == 2 then
10: if 1.1*minScore.value < srScoreMap[3].value then
11: return 1
12: if minScore.SR == 4 then
13: if srScoreMap[3].value > 1.1*minScore.value then
14: return 5
15: return minScore.SR

16: procedure UPDATESCOREONJOBCOMPLETION(Job j)

17: ST =j.sr > Get j’s sampling ratio.
18: normalizedJCT = j.jct > Get j’s normalized JCT.
19: UpdateScoresMap(sr, normalizedJCT)

20: procedure UPDATESCOREMAPS(sr, normalizedJCT)

21: if Len(jobWiseSrScoresMap[sr])>T then

22: Drop first element of jobWiseSrScoresMap(sr]

23: jobWiseSrScoresMap|sr].append(normalizedJCT)

24: srScoreMap[sr].value = mean(jobWiseSrScoresMap([sr])

Figure 3: Adaptive sampling algorithm in SLEARN.

machines may be idle while the non-sampling tasks are wait-
ing for the sampling tasks to finish. In such cases, SLEARN
schedules non-sampling tasks of jobs to run on otherwise
idle machines. In work conservation, the jobs are scheduled
in the FIFO order of their arrival.

5.1.3 Baseline Predictors and Policies

We compare SLEARN’s effectiveness against four different
baseline predictors and two policies: (1) 3Sigma: as dis-
cussed in §4.3. (2) 3SigmaTL: same as 3Sigma but handles
thin jobs in the same way as SLEARN; they are directly placed
in the highest priority queue. This is to isolate the effect of
thin job handling. (3) POINT-EsT: same as 3Sigma, with the
only difference being that, instead of integrating a utility
function over the entire runtime history, it predicts a point
estimate (median in our case) from the history. (4) LAS: The
Least Attained Service [48] policy approximates SJF online

26 19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

without explicitly learning job sizes, and is most recently
implemented in the Kairos [29] scheduler. LAS uses multiple
priority queues and the priority is inversely proportional
to the service attained so far, i.e., the total execution time
so far. We use the sum of all the task execution time to be
consistent with all the other schemes. (5) FIFO: The FIFO
policy in YARN simply prioritizes jobs in the order of their
arrival. Since FIFO is a starvation free policy, there is no need
for multiple priority queues. (6) ORACLE: ORACLE is an ideal
predictor that always predicts with 100% accuracy.

5.2 Experimental Results

We evaluated SLEARN’s performance against the six baseline
schemes discussed above by plugging them in GS and execute
the 3 traces (2STrace, GTracell, and GTracel9) using large
scale simulations and on a 150-node testbed cluster in Azure

(§5.2.6).
5.2.1 Experimental Setup

Cluster setup. We implemented GS, SLEARN and baseline
estimators with 11 KLOC of Java and python2. We used an
open source java patch for Gridmix [15] and open source
java implementation of NumericHistogram [13] for Hadoop.
We used some parts from DSS, an open source job scheduling
simulator [10], in simulation experiments.

We implemented a proxy scheduler wrapper that plugs
into the resource manager of YARN [5] and conducted real
cluster experiments on a 150-node cluster in MS Azure [14].

Following the methodology in recent work on cluster job
scheduling [25,47,51], we implemented a synthetic generator
based on the Gridmix implementation to replay jobs that
follow the arrival time and task runtime from the input trace.
The Yarn master runs on a standard DS15 v2 server with
20-core 2.4 GHz Intel Xeon E5-2673 v3 (Haswell) processor
and 140GB memory, and the slaves run on D2v2 with the
same processor with 2-core and 7GB memory.

Parameters. The default parameters for priority queues in
GS in the experiments are: starting queue threshold (Qgi) is
106 ms, exponential threshold growth factor (E) is 10, number
of queues (N) is set to 10, and the weights for time sharing
assigned to individual priority queues decrease exponentially
by a factor of 10. Previous work (e.g., [23]) and our own
evaluation have shown that the scheduling results are fairly
insensitive to these configuration parameters. We omit their
sensitivity study here due to page limit. SLEARN chooses
the number of pilot tasks for wide jobs using the adaptive
algorithm described in §5.1.2 and the threshold for thin jobs
is set to 3. We evaluate the effectiveness of adaptive sampling
in §5.2.2 and the sensitivity to thinLimit in §5.2.8.

Performance metrics. We measure three performance met-
rics in the evaluation: JCT speedup, defined as the ratio of
a JCT under a baseline scheme over under SLEARN, the job
runtime estimation accuracy, and job waiting time.

Table 6: Performance improvement of SLEARN over 3Sigma
under adaptive sampling and fixed-ratio sampling.

Fraction of tasks chosen as pilot tasks
1% 2% 3% 4% 5% 10% Adap.

2STrace

P50 pred. error (%) 194 190 19.0 18.7 184 169 19.0
Avg. JCT speedup (x) 1.24 123 1.27 126 1.27 1.28 128
P50 speedup (%) 093 0.92 093 092 093 091 0.92

GTracell

P50 pred. error (%) 144 140 13.6 13.1 127 9.09 137
Avg. JCT speedup (x) 1.52 155 1.54 156 1.58 1.51 1.56
P50 speedup (%) 1.00 1.00 1.00 1.00 1.00 1.00 1.00

GTracel9

P50 pred. error (%) 55.7 53.8 47.1 46.5 42.1 36.1 51.8
Avg. JCT speedup (x) 1.31 131 131 1.32 128 1.24 1.32
P50 speedup (%) 1.07 1.07 1.05 1.05 1.01 1.00 1.07

Workload. We used the same training data for history-
based estimators and the test traces (2STrace, GTracell and
GTrace19) as described in §4.3.

5.2.2 Effectiveness of Adaptive Sampling

In this experiment, we evaluate the effectiveness of our adap-
tive algorithm for task sampling. Fig. 4 shows how the sam-
pling ratio selected by the adaptive algorithm for each job
varies between 1% and 5% over the duration of the three
traces. We further compare average JCT speedup and P50
speedup under the adaptive algorithm with those under a
fixed sampling ratio, ranging between 1% and 10%. Table 6
shows that the adaptive sampling algorithm leads to the best
speedups for 2STrace and GTracel9 and is about only 1%
worse than the best for GTracell. Interestingly, we observe
that no single sampling ratio works the best for all traces.
Nonetheless, the adaptive algorithm always chooses one
that is the best or closest to the best in terms of JCT speedup.
More importantly, we see that the adaptive algorithm does
not always use the sampling ratio with the best prediction ac-
curacy, which shows that it effectively balances the tradeoff
between prediction accuracy and sampling overhead.

5.2.3 Prediction Accuracy

SLEARN achieves more accurate estimation of job runtime
over 3Sigma — the details were already discussed in §4.3.

5.2.4 Average JCT Improvement

We now compare the JCT speedups achieved using SLEARN
over using the five baseline schemes defined in §5.1.3.

Fig. 5(a) shows the results for 2STrace. We make the follow-
ing observations. (1) Compared to ORACLE, SLEARN achieves
an average and P50 speedups of 0.79x and 0.73x, respec-
tively. This is because SLEARN has some estimation error;
it places 10.91% of wide jobs in the wrong queues, 3.54%
in lower queues and 7.37% in higher queues. (2) SLEARN
improves the average JCT over 3Sigma by 1.28 x. This sig-
nificant improvement of SLEARN comes from much higher
prediction accuracy compared to 3Sigma (Fig. 2). (3) The

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 27

5%

i) 2
® 4% - © 4% ——
o o
£3%] — £3%
[=3 Q
€ 2% _ £ 2% —_
& &
1% —

Figure 4: Sampling ratios selected by the adaptive sampling algorithm. The duration of initial 3T jobs appear varying due to

0 100K 200K 300K 400K 500K 600K

Job arrival time (sec)

(a) 2STrace

uneven arrival times.

— P10-P90 — P10-P90

102 P50 102 P50
a o
3 ® Average 5 ® Average
o g

1 .

310 g 10! e
& 3..2 wn 2.17|
- 8 0 19 1.42) = 1,56 1.55 16
S 1..2 1..2 (3 o O 1|e [(] i 0.82

10 ﬁ 10 [*]

3Sigma 3SigmaTL LAS Point FIFO Oracle

Other predictors and policies

(a) 2STrace

5%

2
8

0 20K 40K 60K 80K 100K 120K 140K 160K

3

Job arrival time (sec)

(b) GTracell

Sigma 3SigmaTL LAS Point FIFO Oracle
Other predictors and policies

(b) GTracell

0

102

JCT Speedup
=
A

=
o
°

200K 400K 600K 800K 1000K 1200K 1400K
Job arrival time (sec)

(c) GTracel9

— P10-P90
P50
® Average

389
172 1,54
1.32 1.32 p
. . . (] 091

3Sigma 3SigmaTL LAS Point FIFO Oracle

Other predictors and policies

(c) GTracel9

Figure 5: JCT speedup using SLEARN as compared to other baseline schemes for the three traces.

Table 7: Percentage of the wide jobs that had correct queue

assignment.
Prediction | SLEARN | 3Sigma
Technique
2STrace 89.09% 73.84%
GTracell 86.45% 76.20%
GTracel9 73.96% 58.07%

improvement of SLEARN over 3SigmaTL, 1.26, is similar to
that over 3Sigma, confirming thin job handling only played a
small role in the performance difference of the two schemes.
To illustrate SLEARN’s high prediction accuracy, we show in
Table 7 the fraction of wide jobs that were placed in correct
queues by SLEARN and 3Sigma. We observe that SLEARN
consistently assigns more wide jobs to correct queues than
3Sigma for all three traces. (4) Compared to POINT-EsT,
SLEARN improves the average JCT by 1.42x. Again, this is
because SLEARN estimates runtimes with higher accuracy. (5)
Compared to LAS, SLEARN achieves an average JCT speedup
of 1.91x and P50 speedup of 1.29x. This is because LAS
pays a heavy penalty in identifying the correct queues of
jobs by moving them across the queues incrementally. (6)
Lastly, compared with FIFO, SLEARN achieves an average
JCT speedup of 3.29x and P50 speedup of 8.45x.

Fig. 5(b) shows the results for GTracel1. Scheduling under
SLEARN again outperforms all other schemes. In particular,
using SLEARN improves the average JCT by 1.56 X compared
to using 3Sigma, 1.55% compared to using 3SigmaTL, 2.17
compared to using Point-Est, and 1.65x compared to us-
ing the LAS policy. Fig. 5(c) shows that scheduling under
SLEARN outperforms all other schemes for GTracel9 too.
In particular, using SLEARN improves the average JCT by
1.32x, 1.32%, 1.54 %, and 1.72Xx compared to using 3Sigma,
3SigmaTL, PoINT-EsT and the LAS policy, respectively.

In summary, our results above show that SLEARN’s higher
estimation accuracy outweighs its runtime overhead from
sampling, and as a result achieves much lower average job
completion time than history-based predictors and the LAS
policy for the three production workloads.

5.2.5 Impact of Sampling on Job Waiting Time

To gain insight into why sampling pilot tasks first under
SLEARN does not hurt the overall average JCT, we next com-
pare the normalized waiting time of jobs, calculated as the
average waiting time of its tasks under the respective scheme,
divided by the mean task length of the job.

Fig. 6 shows the CDF of the normalized job waiting time
under SLEARN and 3Sigma. We see that the CDF curves
can be divided into three segments. (1) The first segment,
where both SLearn and 3Sigma have normalized waiting time
(NWT) less than 0.04, covers 36.58% of the jobs, and 35.57%
of the jobs are common. The jobs have almost identical NWT,
much lower than 1 under both schemes. This happens be-
cause during low system load periods, e.g., lower than 1,
the scheduler will schedule all the tasks to run under both
scheme; under SLEARN it schedules non-sampled tasks of
jobs to run before their sampled tasks complete due to work
conservation. (2) The second segment, where both schemes
have NWT between 0.04 and 1.90, covers 30.51% of the jobs,
and 20.38% of the jobs are common. Out of these 20.38%,
29.81% have lower NWT under SLEARN and 70.19% have
lower NWT under 3Sigma. This happens because when the
system load is moderate, the jobs experience longer waiting
time under SLEARN than under 3Sigma because of sampling
delay. (3) The third segment, where both schemes have NWT
above 1.90, cover 32.91% of the jobs, and 24.68% of jobs are
common. Out of these 24.68%, 83.08% have lower waiting
time under SLEARN and 16.92% under 3Sigma. This happens

28

19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

— A 1.0 ©
SLearn g ——— -
1 o8 3 P50 10? P50
’ m
g 10 1951 ® Average § ® Average
50.6 : 310t
o ° Z)
0.4 5
-—- GTracell | 3 o 138 e . b
0.2 72 2STrace ;’%100 1.86 0.80 3 =100} |, 215 1% .
0.0 il —— GTracel9 = . .
O 8]
104 1072 1072 10~* 10° 10! 102 107 100 10t 102 103 Bin-1 Bin-3 Bin-4 3Sigma LAS Point FIFO Oracle

Normalized job waiting time JCT speedup over 3Sigma

Figure 6: CDF of waiting times

for wide jobs in GTracell. speedup: SLEARN vs 3Sigma.

Table 8: Breakdown of jobs based on total duration and width
(number of tasks) for 2STrace. Shown in brackets are a bin’s
fraction of all the jobs in the trace in terms of job count and
total job runtime.

width < 3 (thin)

width > 3 (wide)

size < 10%s (sm)

bin-1 (4.55%, 0.01%)

bin-2 (28.73%, 0.06%)

size > 10%s (Ig)

bin-3 (14.29%, 5.41%)

bin-4 (52.43%, 94.52%)

because when the system load is relatively high, although
jobs incur the sampling delay under SLEARN, they also expe-
rience queuing delay under 3Sigma, and the more accurate
prediction of SLEARN allows them to be scheduled following
Shortest Job First more closely than under 3Sigma.

A detailed analysis of how the system load of the trace
affects the relative job performance under the two predictors
can be found in the Appendix in [42].

5.2.6 Testbed Experiments

We next perform end-to-end evaluation of SLEARN and
3Sigma on our 150-node Azure cluster. Fig. 7 shows the
CDF of JCT speedups using SLEARN over 3Sigma using
2STrace, GTracell and GTracel9. SLEARN’s performance on
the testbed is similar to that observed in the simulation. In
particular, SLEARN achieves average JCT speedups of 1.33x,
1.46 X, and 1.25 % over 3Sigma for the 2STrace, GTracel1, and
GTracel9 traces, respectively.

5.2.7 Binning Analysis

To gain insight into how different jobs are affected by SLEARN
over 3Sigma, we divide the jobs into four bins in Table 8 for
2STrace and show the JCT speedups for each bin in Fig. 8. The
results for the other two traces are similar and are omitted
due to page limit.

We make the following observations. (1) SLEARN improves
the JCT for 82.46% of the jobs in Bin-1 and the average JCT
speedup for the bin is 10.54 x. This happens because the jobs
in this bin are thin and hence SLEARN assigns them high
priorities, which is also the right thing to do since these jobs
are also small. (2) For bin-2, SLEARN achieves an average
JCT speedup of 1.86x from better prediction accuracy of
SLEARN. The speedups are lower than for Bin-1 as the jobs
have to undergo sampling. However, Bin-1 and Bin-2 make
up only 0.01% and 0.06% of the total job runtime and thus
have little impact on the overall JCT. (3) Bin-3, which has

Bin-2
Bi

ins Other predictors and policies for DAGs

Figure 7: [Testbed] CDF of Figure 8: Performance break- Figure 9: JCT speedup using
down into the bins in Table 8. SLEARN-DAG over baselines

for GTrace19-DAG.

Table 9: Sensitivity analysis for thinLimit. Table shows aver-
age JCT speedup over 3Sigma.

thinLimit 2 3 4 5 6
2STrace 1.23x | 1.28x | 1.14x | 0.97x | 0.84x

GTracell | 1.54x | 1.56x | 1.55x | 1.54x | 1.53x

GTracel19 | 1.33x | 1.32x | 1.32x | 1.30x | 1.29x

14.29% of the jobs and accounts for 5.41% of the total job size,
has a slowdown of 20.00%. The main reason is that SLEARN
treats thin jobs in the FIFO order, whereas 3Sigma schedules
them based on predicted sizes. (4) Bin-4, which accounts
for a majority of the job and total job size, has an average
speedup of 1.38 X, which contributes to the overall speedup
of 1.28x. The job speedups come from more accurate job
runtime estimation of SLEARN over 3Sigma. Finally, we note
that while for the 2Sigma trace, the majority of thin jobs are
large, for the Google 2011 (Google 2019) trace, only 1.90%
(1.60%) of the total number of jobs are thin and large and
they make up only 0.5% (0.5%) of the total job runtime..

5.2.8 Sensitivity to Thin Job Bypass

Finally, we evaluate SLEARN’s sensitivity to thinLimt. Table 9
shows that for GTracell and GTrace19, the average JCT
speedup barely varies with thinLimit, but for 2STrace, there
is a big dip when increasing thinLimit to 4 or 5. This is
because a significant number of jobs in 2STrace have width
4, which causes the number of thin jobs to increase from
18.84% to 58.50% when increasing thinLimit from 4 to 5.

6 Scheduling for DAG Jobs

In earlier sections, we have focused on the benefits of
sampling-based prediction. On the other hand, we envision
that there are situations where it would be beneficial to com-
bine sampling-based and history-based predictions. Below,
we present our preliminary work applying such a hybrid
strategy for scheduling DAG jobs. We will discuss several
other use cases of a hybrid strategy in §7. Note that for multi-
phase DAG jobs, simply applying sampling-based prediction
to each phase in turn cannot estimate the whole DAG run-
time ahead of time. Instead, our hybrid design below aims to
learn the runtime properties and optimize the performance
of a multi-phase DAG job as a whole (e.g., [30,33]).

Hybrid learning for DAGs (SLEARN-DAG). The key idea

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation

29

of SLEARN-DAG is to adjust history-based prediction of the
runtime of DAG jobs using sampling-based learning of its
first stage. Upon arrival of a new DAG job, we estimate the
runtime of its first stage using sampling-based prediction
as described in §5.1.2, denoted as d;. We also estimate the
duration of this stage using history-base 3Sigma, denoted
as dp, and compute the adjustment ratio of %. For each of
the remaining stages of the DAG, we predict their runtime
using 3Sigma and then multiply it with the adjustment ratio.
In a nutshell, this hybrid design reduces the error of history-
based prediction due to staleness of the learning data, while
avoiding the delay of sampling across all other stages.

History-based learning for DAGs (3S16MA-DAG). This is
a straight-forward extension of 3Sigma. Upon arrival of a
DAG job, it predicts independently the runtime for each stage
using the 3Sigma and sums up the estimated runtime of all
stages as the estimated runtime of the entire DAG.

We similarly extended other baselines described in §5.1.3
for DAG job.

Experimental setup. We evaluated SLEARN-DAG against
3S16MA-DAG by replaying cluster trace in simulation exper-
iments based on GS (§5.1.1). We kept the simulation setup
and parameters the same as used in the other experiments.
In particular, a DAG is placed in the corresponding priority
queue based on its estimated total runtime.

DAG Traces. The only publically available DAG trace we
could find is a trace from Alibaba [3], which could not be
used as it does not contain features required for history-based
prediction using 3Sigma. Instead, we followed the ideas in
previous work, e.g., Branch Scheduling [34], to generate a
synthetic DAG trace of about 900 jobs using the Google 2019
trace [11], denoted as GTrace19-DAG. The number of stages
in DAGs in the GTrace19-DAG was randomly choosen to
be between 2-5 and each stage is a complete job from the
Google 2019 trace. The jobs that are part of the same DAG
have the same jobname and the same username.

Results. The results in Fig. 9 show that SLEARN-DAG
achieves significant speedup over other designs. The speedup
is 1.26 X over 3S1GMA-DAG, 2.15x over LAS-DAG, and 1.74 x
over POINT-EsT-DAG. Looking deeper, we find that our
sampling-based prediction still yields higher prediction ac-
curacy: the P50 prediction error is 33.90% for SLEARN-DAG,
compared to 47.21% for 3S16MA-DAG. On the other hand, for
DAG jobs the relative overhead of sampling (e.g, the delay)
is lower since only the first stage is sampled. Together, they
produce speedup comparable to earlier sections.

7 Discussions and Future Work

Combining history and sampling. In addition to improv-
ing the scheduling of DAG jobs (§6), we discuss several ad-
ditional motivations for combining history- and sampling-
based learning. (1) For workloads with both recurring and

first-time jobs, sampling-based learning can be used to esti-
mate properties for first-time jobs, while history-based learn-
ing can be used for recurring jobs. (2) When the workload
has both thin and wide jobs, history-based learning can be
used for estimating the runtime for thin jobs, while sampling-
based learning is used for wide jobs. (3) History-based learn-
ing can be used to establish a prior distribution, and sampling-
based approach can be used to refine the posterior distribu-
tion. Such a combination is potentially more accurate than
using either approach alone. For example, knowing the prior
distribution of task lengths can help to develop better max
task-length predictors, which can be useful for jobs with
deadlines. (4) Though not seen in the production traces used
in our study, in cases when task-wise variation and job-wise
variation fluctuate, adaptively switching between the two
prediction schemes may also help. (5) When the cluster is
heterogeneous, an error adjustment using history, similar to
what we did in §6, can be applied.

Dynamic adjustment of ThinLimit. ThinLimit is a sub-
jective threshold. It helps in segregating jobs for which wait-
ing time due to sampling overshadows the improvement in
prediction accuracy. The optimal choice of this limit will
depend on the cluster load at the moment and hence can be
adaptively chosen like the sampling percentage (Fig. 3 on
page).

Heterogeneous clusters. Extending sampling-based learn-
ing to heterogeneous clusters requires adjusting the task
sampling process. One idea is to schedule pilot tasks on ho-
mogeneous servers and then scale their runtime to different
types of servers using the ratio of machine speeds.

8 Conclusions

In this paper, we performed a comparative study of task-
sampling-based prediction and history-based prediction com-
monly used in the current cluster job schedulers. Our study
answers two key questions: (1) Via quantitative, trace and
experimental analysis, we showed that the task-sampling-
based approach can predict job runtime properties with much
higher accuracy than history-based schemes. (2) Via exten-
sive simulations and testbed experiments of a generic clus-
ter job scheduler, we showed that although sampling-based
learning delays non-sampled tasks till completion of sam-
pled tasks, such delay can be more than compensated by the
improved accuracy over the prior-art history-based predic-
tor, and as a result reduces the average JCT by 1.28 X, 1.56 X,
and 1.32x for three production cluster traces. These results
suggest task-sampling-based prediction offers a promising
alternative to the history-based prediction in facilitating clus-
ter job scheduling.

Acknowledgement We thank our shepherd Sangeetha
Abdu Jyothi and the anonymous reviewers for their helpful
comments. This work was supported in part by NSF grant
2113893.

30 19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

References

[1] 2sigma hedge fund. www.twosigma.com.

[2] 2sigma’s proprietary job scheduler.
https://www.twosigma.com/insights/article/cook-
a-fair-preemptive-resource-scheduler-for-compute-
clusters/.

[3] Alibaba cluster trace.
https://github.com/alibaba/clusterdata.

[4] Apache hadoop. http://hadoop.apache.org.

[5] Apache hadoop yarn.
https://hadoop.apache.org/docs/current/hadoop-
yarn/hadoop-yarn-site/YARN.html.

[6] Apache hive. http://hive.apache.org.
[7] Apache spark. http://spark.apache.org.

[8] Cluster trace from google - 2011.
https://github.com/google/cluster-
data/blob/master/ClusterData2011_2.md.

[9] A document released by google containing
schema and details of the cluster trace released
by google. https://drive.google.com/open?id=0B5g07T
_gRDg9Z0IsSTEtTWtpOWS.

[10] Dss scheduler. https://github.com/epfl-labos/DSS.

[11] Google cluster-usage traces, retrieved 21st july 2020.
https://research.google/tools/datasets/google-cluster-
workload-traces-2019/.

[12] Google cluster-usage traces, retrieved 21st
july 2020. https://drive.google.com/file/d/
10r6¢cnJ5¢J89fPWCgj7j4LtLBqQYNIRII9/view.

[13] Hadoop patch for numeric histogram.
https://issues.apache.org/jira/browse/YARN-2672.

[14] Microsoft azure. http://azure.microsoft.com.

[15] A patch for gridmix.
https://issues.apache.org/jira/browse/YARN-2672.

[16] Personal communication with a 2sigma engineer re-
garding properties of the 2sigma trace used.

[17] A private trace collected by 2sigma engineers from their
clusters. www.twosigma.com.

[18] Resutls on the posteriro dis-
tribution with gaussian priors.
https://people.eecs.berkeley.edu/ jordan/courses/260-
spring10/lectures/lecture5.pdf.

[19] Faraz Ahmad, Srimat T. Chakradhar, Anand Raghu-
nathan, and T. N. Vijaykumar. Shufflewatcher: Shuffle-
aware scheduling in multi-tenant mapreduce clusters.
In 2014 USENIX Annual Technical Conference (USENIX
ATC 14), pages 1-13, Philadelphia, PA, 2014. USENIX
Association.

[20] George Amvrosiadis, Jun Woo Park, Gregory R. Ganger,
Garth A. Gibson, Elisabeth Baseman, and Nathan De-
Bardeleben. On the diversity of cluster workloads and
its impact on research results. In 2018 USENIX Annual
Technical Conference (USENIX ATC 18), pages 533-546,
Boston, MA, 2018. USENIX Association.

[21] EricBoutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren
Zhou, Zhengping Qian, Ming Wu, and Lidong Zhou.
Apollo: Scalable and coordinated scheduling for cloud-
scale computing. In 11th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI 14), pages
285-300, Broomfield, CO, 2014. USENIX Association.

[22] Ronnie Chaiken, Bob Jenkins, Per-AAke Larson,
Bill Ramsey, Darren Shakib, Simon Weaver, and
Jingren Zhou. Scope: Easy and efficient par-
allel processing of massive data sets. Proc.
VLDB Endow, 1(2):1265-1276, August 2008.
http://dx.doi.org/10.14778/1454159.1454166.

[23] Mosharaf Chowdhury and Ion Stoica. Efficient coflow
scheduling without prior knowledge. In Proceedings of
the 2015 ACM Conference on Special Interest Group on
Data Communication, SIGCOMM 15, pages 393-406,
New York, NY, USA, 2015. ACM.

[24] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. Ef-
ficient coflow scheduling with varys. In Proceedings of
the 2014 ACM Conference on SIGCOMM, SIGCOMM ’14,
pages 443-454, New York, NY, USA, 2014. ACM.

[25] Andrew Chung, Jun Woo Park, and Gregory R. Ganger.
Stratus: Cost-aware container scheduling in the public
cloud. In Proceedings of the ACM Symposium on Cloud
Computing, SoCC ’18, pages 121-134, New York, NY,
USA, 2018. ACM.

[26] Edward G Coffman and Leonard Kleinrock. Feedback
queueing models for time-shared systems. Journal of
the ACM (JACM), 15(4):549-576, 1968.

[27] Carlo Curino, Djellel E. Difallah, Chris Douglas,
Subru Krishnan, Raghu Ramakrishnan, and Sriram
Rao. Reservation-based scheduling: If you’re late don’t
blame us! In Proceedings of the ACM Symposium on
Cloud Computing, SOCC ’14, pages 2:1-2:14, New York,
NY, USA, 2014. ACM.

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 31

(28]

(29]

(30]

(31]

(34]

(35]

(36]

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Sim-
plified data processing on large clusters. In OSDI’04:
Sixth Symposium on Operating System Design and Im-
plementation, pages 137-150, San Francisco, CA, 2004.

Pamela Delgado, Diego Didona, Florin Dinu, and Willy
Zwaenepoel. Kairos: Preemptive data center scheduling
without runtime estimates. In Proceedings of the ACM
Symposium on Cloud Computing, SoCC ’18, pages 135—
148, New York, NY, USA, 2018. ACM.

Andrew D. Ferguson, Peter Bodik, Srikanth Kandula,
Eric Boutin, and Rodrigo Fonseca. Jockey: Guaranteed
job latency in data parallel clusters. In Proceedings of
the 7th ACM European Conference on Computer Systems,
EuroSys ’12, pages 99-112, New York, NY, USA, 2012.
ACM.

Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy
Konwinski, Scott Shenker, and Ion Stoica. Dominant
resource fairness: Fair allocation of multiple resource
types. In Proceedings of the 8th USENIX Conference on
Networked Systems Design and Implementation, NSDI'11,
pages 323-336, Berkeley, CA, USA, 2011. USENIX As-
sociation.

Robert Grandl, Ganesh Ananthanarayanan, Srikanth
Kandula, Sriram Rao, and Aditya Akella. Multi-resource
packing for cluster schedulers. In Proceedings of the 2014
ACM Conference on SIGCOMM, SIGCOMM ’14, pages
455-466, New York, NY, USA, 2014. ACM.

Robert Grandl, Mosharaf Chowdhury, Aditya Akella,
and Ganesh Ananthanarayanan. Altruistic scheduling
in multi-resource clusters. In 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI
16), pages 65-80, Savannah, GA, 2016. USENIX Associ-
ation.

Zhiyao Hu, Dongsheng Li, Yiming Zhang, Deke Guo,
and Ziyang Li. Branch scheduling: Dag-aware schedul-
ing for speeding up data-parallel jobs. In Proceedings
of the International Symposium on Quality of Service,
IWQoS 19, New York, NY, USA, 2019. Association for
Computing Machinery.

Zhe Huang, Bharath Balasubramanian, Michael Wang,
Tian Lan, Mung Chiang, and Danny HK Tsang. Need for
speed: Cora scheduler for optimizing completion-times
in the cloud. In 2015 IEEE Conference on Computer Com-
munications (INFOCOM), pages 891-899. IEEE, 2015.

Calin Iorgulescu, Florin Dinu, Aunn Raza, Wajih Ul
Hassan, and Willy Zwaenepoel. Don’t cry over spilled
records: Memory elasticity of data-parallel applica-
tions and its application to cluster scheduling. In 2017
USENIX Annual Technical Conference (USENIX ATC 17),

(37]

(38]

[41]

(42]

(44]

pages 97-109, Santa Clara, CA, 2017. USENIX Associa-
tion.

Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell,
and Dennis Fetterly. Dryad: Distributed data-parallel
programs from sequential building blocks. In Proceed-
ings of the 2Nd ACM SIGOPS/EuroSys European Con-
ference on Computer Systems 2007, EuroSys *07, pages
59-72, New York, NY, USA, 2007. ACM.

Akshay Jajoo, Rohan Gandhi, and Y. Charlie Hu. Gravi-
ton: Twisting space and time to speed-up coflows. In
8th USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 16), Denver, CO, 2016. USENIX Association.

Akshay Jajoo, Rohan Gandhi, Y. Charlie Hu, and Cheng-
Kok Koh. Saath: Speeding up coflows by exploiting
the spatial dimension. In Proceedings of the 13th Inter-
national Conference on Emerging Networking EXperi-
ments and Technologies, CONEXT ’17, pages 439-450,
New York, NY, USA, 2017. ACM.

Akshay Jajoo, Y. Charlie Hu, and Xiaojun Lin. Your
coflow has many flows: Sampling them for fun and
speed. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19), pages 833—-848, Renton, WA, 2019.
USENIX Association.

Akshay Jajoo, Y. Charlie Hu, and Xiaojun Lin. A
case for flow sampling based learning for coflow
scheduling, 2021. http://arxiv.org/abs/
2108.11255.

Akshay Jajoo, Y. Charlie Hu, Xiaojun Lin, and Nan Deng,.
A case for task sampling based learning for cluster
job scheduling, 2021. http://arxiv.org/abs/
2108.10464.

Virajith Jalaparti, Peter Bodik, Ishai Menache, Sriram
Rao, Konstantin Makarychev, and Matthew Caesar.
Network-aware scheduling for data-parallel jobs: Plan
when you can. In Proceedings of the 2015 ACM Confer-
ence on Special Interest Group on Data Communication,
SIGCOMM 15, pages 407-420, New York, NY, USA, 2015.
ACM.

Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache,
Shravan Matthur Narayanamurthy, Alexey Tumanov,
Jonathan Yaniv, Ruslan Mavlyutov, Inigo Goiri, Subru
Krishnan, Janardhan Kulkarni, and Sriram Rao. Mor-
pheus: Towards automated slos for enterprise clusters.
In 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16), pages 117-134, Savan-
nah, GA, 2016. USENIX Association.

32

19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

http://arxiv.org/abs/2108.11255
http://arxiv.org/abs/2108.11255
http://arxiv.org/abs/2108.10464
http://arxiv.org/abs/2108.10464

(45]

[46]

(47]

(48]

(49]

[50]

(53]

Shonali Krishnaswamy, Seng Wai Loke, and Arkady
Zaslavsky. Estimating computation times of data-
intensive applications. IEEE Distributed Systems Online,
5(4):1 - 12, 2004.

Misja Nuyens and Adam Wierman. The foreground-
background queue: a survey. Performance evaluation,
65(3-4):286-307, 2008.

Jun Woo Park, Alexey Tumanov, Angela Jiang,
Michael A. Kozuch, and Gregory R. Ganger. 3sigma:
Distribution-based cluster scheduling for runtime
uncertainty. In Proceedings of the Thirteenth EuroSys
Conference, EuroSys ’18, pages 2:1-2:17, New York, NY,
USA, 2018. ACM.

Idris A. Rai, Guillaume Urvoy-Keller, and Ernst W. Bier-
sack. Analysis of las scheduling for job size distributions
with high variance. In Proceedings of the 2003 ACM SIG-
METRICS International Conference on Measurement and
Modeling of Computer Systems, SIGMETRICS ’03, pages
218-228, New York, NY, USA, 2003. ACM.

Kaushik Rajan, Dharmesh Kakadia, Carlo Curino, and
Subru Krishnan. Perforator: Eloquent performance
models for resource optimization. In Proceedings of the
Seventh ACM Symposium on Cloud Computing, SoCC
’16, pages 415-427, New York, NY, USA, 2016. ACM.

Warren Smith, Ian Foster, and Valerie Taylor. Predict-
ing application run times using historical information.
In Dror G. Feitelson and Larry Rudolph, editors, Job
Scheduling Strategies for Parallel Processing, pages 122—
142, Berlin, Heidelberg, 1998. Springer Berlin Heidel-
berg.

Alexey Tumanov, Angela Jiang, Jun Woo Park,
Michael A. Kozuch, and Gregory R. Ganger. Jamaisvu:
Robust scheduling with auto-estimated job runtimes.
In Technical Report CMU-PDL-16-104. Carnegie Mellon
University, 2016.

Alexey Tumanov, Timothy Zhu, Jun Woo Park,
Michael A. Kozuch, Mor Harchol-Balter, and Gregory R.
Ganger. Tetrisched: Global rescheduling with adap-
tive plan-ahead in dynamic heterogeneous clusters. In
Proceedings of the Eleventh European Conference on Com-
puter Systems, EuroSys ’16, pages 35:1-35:16, New York,
NY, USA, 2016. ACM.

Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes. Large-
scale cluster management at Google with Borg. In
Proceedings of the European Conference on Computer
Systems (EuroSys), Bordeaux, France, 2015.

[54]

[56]

Wencong Xiao, Romil Bhardwaj, Ramachandran Ram-
jee, Muthian Sivathanu, Nipun Kwatra, Zhenhua Han,
Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu Zhang,
Fan Yang, and Lidong Zhou. Gandiva: Introspective
cluster scheduling for deep learning. In 13th USENIX
Symposium on Operating Systems Design and Implemen-
tation (OSDI 18), pages 595-610, Carlsbad, CA, October
2018. USENIX Association.

Yong Xu, Kaixin Sui, Randolph Yao, Hongyu Zhang,
Qingwei Lin, Yingnong Dang, Peng Li, Keceng Jiang,
Wenchi Zhang, Jian-Guang Lou, Murali Chintalapati,
and Dongmei Zhang. Improving service availability of
cloud systems by predicting disk error. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18), pages
481-494, Boston, MA, 2018. USENIX Association.

Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma,
Khaled Elmeleegy, Scott Shenker, and Ion Stoica. Delay
scheduling: A simple technique for achieving locality
and fairness in cluster scheduling. In Proceedings of the
5th European Conference on Computer Systems, EuroSys
’10, pages 265-278, New York, NY, USA, 2010. ACM.

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 33

	Introduction
	Background and Related Work
	Cluster Scheduling Problem
	Job Model
	Existing Learning-based Schedulers
	Learning from History: Assumptions and Reality

	SLearn – Learning in Space
	Accuracy Analysis
	Analytical Comparison
	History-based Schemes
	Sampling-based Schemes

	Trace-based Variability Analysis
	Experimental Prediction Error Analysis

	Integrating Sampling-based Learning with Job Scheduling: A Case Study
	Scheduler and Predictor Design
	Generic Scheduler GS
	SLearn
	Baseline Predictors and Policies

	Experimental Results
	Experimental Setup
	Effectiveness of Adaptive Sampling
	Prediction Accuracy
	Average JCT Improvement
	Impact of Sampling on Job Waiting Time
	Testbed Experiments
	Binning Analysis
	Sensitivity to Thin Job Bypass

	Scheduling for DAG Jobs
	Discussions and Future Work
	Conclusions

