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Abstract— Physical activity recognition in patients with
Parkinson’s Disease (PwPD) is challenging due to the lack of
large-enough and good quality motion data for PwPD. A
common approach to this obstacle involves the use of models
trained on better quality data from healthy patients. Models can
struggle to generalize across these domains due to motor
complications affecting the movement patterns in PwPD and
differences in sensor axes orientations between data. In this
paper, we investigated the generalizability of a deep
convolutional neural network (CNN) model trained on a young,
healthy population to PD, and the role of data augmentation on
alleviating sensor position variability. We used two publicly
available healthy datasets - PAMAP2 and MHEALTH. Both
datasets had sensor placements on the chest, wrist, and ankle
with 9 and 10 subjects, respectively. A private PD dataset was
utilized as well. The proposed CNN model was trained on
PAMAP2 in k-fold cross-validation based on the number of
subjects, with and without data augmentation, and tested
directly on MHEALTH and PD data. Without data
augmentation, the trained model resulted in 48.16% accuracy on
MHEALTH and 0% on the PD data when directly applied with
no model adaptation techniques. With data augmentation, the
accuracies improved to 87.43% and 44.78%, respectively,
indicating that the method compensated for the potential sensor
placement variations between data.

Clinical Relevance— Wearable sensors and machine learning
can provide important information about the activity level of
PwPD. This information can be used by the treating physician to
make appropriate clinical interventions such as rehabilitation to
improve quality of life.

I. INTRODUCTION

The field of human activity recognition research with
wearable body sensors is notorious for data with high
variability and small quantities. The challenges are
exacerbated with data from elderly people and more
specifically the Parkinson’s population, which are subject to
larger intra-class variability and noisier labels [1]. Since it is
difficult to collect generous amounts of data from the
Parkinson’s population, or any population for that matter,
leveraging knowledge from similar domains is a common
approach. In doing so, models tend to struggle to generalize
across domains, largely due to differences in the axis
orientation between sensors (caused by different placements
of sensors on the body). Augmenting data in such a way where
models become indifferent to variations in sensor orientations
can help the challenge of generalizing to different domains,
notably from younger, healthier subjects, to patients with
Parkinson’s disease (PwPD). However, the existing research
has paid less attention to generalizability of deep models and
data augmentation in disease population. To address this
shortcoming, in this paper, we designed a convolutional neural
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network (CNN) model and investigated the generalizability of
the model when training on a young, healthy population and
testing on PwPD. Also, we implemented standard data
augmentation methods after matching the sensors’ orientation
between the different datasets.

II. RELATED WORK

Straczkiewicz et al. [2] evaluated the effect of sensor
placement variations on physical activity classification from a
study on 45 older adults in a 7-day collection of free-living
data. Such environments, which are more common in
applications of wearable body sensors, leave researchers with
less ability to enforce a sensor-wearing protocol. They
observed that patients tended to deviate from said protocol
when affixing sensors upon themselves in their free-living
setting, which led to a significant impact in activity recognition
error. The authors in [3] used the rotation, permutation, and
time-warping data augmentation methods, coupled with
transfer learning to utilize knowledge gained from the younger
populations to older adults. They found that rotation and
permutation were among the most successful data
augmentation methods. Um et al. [1] utilized the same
augmentation techniques for detecting medication states in
PwPD. The best performing methods from their experiments
were rotation, permutation, and time-warping. These results
indicated that the largest sources of variability were ‘different
sensor placements between participants and event locations in
an arbitrarily segmented window. These papers typically
explore the techniques to improve model generalizability
within the same dataset or with transfer learning. The
experiments presented throughout the paper are novel as they
explore the impact of signal augmentations on a proposed
CNN model’s ability to generalize from healthy population to
PwPD directly without transfer learning.

1. METHODOLOGY

A. Datasets

The experiments utilized two publicly available datasets,
MHEALTH [4, 5] and PAMAP2 [6, 7], and a private dataset,
referred to as the PD (Parkinson’s Disease) dataset [9].

e MHEALTH: Positioned sensors on the chest, right wrist,
and left ankle of 10 subjects performing 12 activities, with
a sampling frequency of 50 Hz and acceleration unit of
m/s™2.

e PAMAP2: Sensors were placed on the dominant-side
wrist and ankle for 9 subjects performing 18 activities.
Subject 8 was the only participant with the wrist and ankle
sensors placed on the left side-body. The sampling
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frequency was 100 Hz and the accelerometer units were
the same as MHEALTH.

PD: Collected from 14

subjects

with

idiopathic

Parkinson’s Disease under approval of the institutional
review boards of University of Rochester and Great Lakes
NeuroTechnologies. Sensors were mounted on the wrist
and ankle of the patient’s most affected side as they
performed four rounds of daily living activities. Subjects
stopped their medication the night prior to data collection
to allow the sensors to capture their dyskinesia. The
sampling frequency was 128Hz and the acceleration units
were standard gravity.

PAMAP2

PD dataset

Axes reorientation of Axes reorientation of PD

MHEALTH dataset
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Figure 2. Sensors’ placement in all the datasets and the
manual orientation required to align the sensor orientation of
MHEALTH and PD to PAMAP2.

8 100 120 140 o 20 40 100 120 140

Timestamp (50 Hz)

Figure 1. Sample activity plots from PAMAP2, MHEALTH, and MHEALTH after reorienting the axes to match PAMAP2.

Figure 1 shows sample signals in two healthy datasets for
different activities before and after reorientation. Reoriented
MHEALTH signals in the last row of Figure 1 show a similar
pattern to PAMAP?2 signals in the first row. Figure 2 provides
the sensor placement information.

B. Data Preprocessing

Only accelerometer data from wrist and ankle sensors were
used to match the PD dataset. Gyroscope data was removed,
since MHEALTH had poor resolution quality for this data.
Doing so improved the results for cross testing across datasets.
Any data labeled as ‘null class’ - referring to motions that were
not characterized by specified activities - were removed.
PAMAP2 had some missing values, which were removed. The
PAMAP2 and PD datasets were down sampled from 100Hz
and 128Hz, respectively, to match the MHEALTH frequency
of 50Hz. A generic normalization was applied to the data prior
to segmentation by finding the mean and STD of each axis in
the training signals and then subtracting the mean and dividing
by the STD from the training and testing data. The data was
segmented into windows of 150 timesteps with 50% overlap.

5 seconds of data were deleted from the beginning and end
of each labeled activity from MHEALTH and PAMAP2 to
remove transitions between activities, as suggested by [8]. The
7 common activities between MHEALTH and PAMAP2 were
kept for model training and testing (standing, sitting, lying,
walking, climbing stairs, cycling, and running). Subject 9 from
PAMAP2 did not perform any of the 7 activities and was
consequently removed from the analysis. The PD dataset
contained the following activities: ambulation, arms resting,
cutting, dressing, drinking, unpacking groceries, hair brushing
with left hand, and hair brushing with right hand. For cross
testing purposes, the ambulation activity was mapped to
walking, arms resting/cutting/drinking were primarily done
while seated and were mapped to sitting, dressing/unpacking
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groceries were mapped to standing, and the hair brushing
activities did not correspond well to either of those 3 and were
excluded.

Data Augmentation: The data augmentation methods and
code were applied to PAMAP2 as provided by [1]. Rotation,
jitter, and scaling augmentations were combined and applied
to each segment of the original PAMAP2 data to generate 8
new samples per segment. Rotation arbitrarily rotates the axes
of a segment to simulate different sensor placements. The jitter
method introduces some Gaussian noise to the data to mimic
sensor noise. Scaling multiplies data in a window by a random
scalar to simulate multiplicative signal noise. The latter two
methods are intended to make the model more robust to noisy
signals commonly found in Parkinson’s patients.

C. CNN Model Architecture

The proposed model (Figure 3) consists of two 1D
convolutional and max pooling layers, followed by a global
average pooling and dropout layer before the output layer. The
model was trained for 60 epochs with a batch size of 64, ReLU
activation, learning rate of 0.001, and Adam optimizer with
categorical cross-entropy loss. The output layer utilized a
SoftMax activation function. Each pooling layer used filters
with width 2 and stride 1. The convolutional layers used 16
and 32 kernels, respectively, each with size 3 and stride 1. L1
and L2 bias and kernel regularization with a rate of 0.001 was
applied to each convolutional layer. The final model had 2,103
parameters.

ConviD —> M";‘g‘ml > ConviD > Ma";ml > GAP J Dropout Output

1

.

Figure 3. Proposed model architecture

D. Experimental Design

The first set of tests consisted of manually reorienting the
axes of one dataset by means of inspecting the graphs of
various activity segments visually and deriving a mapping of
one dataset's axis orientation to another. The standing, sitting,
and walking activities are useful references for generating
such a mapping for wrist and ankle sensors, as subjects can
generally be expected to have their legs and arms in
predictable positions for those activities [1]. Sample graphs of
the activities and mappings obtained between the datasets are
pictured in Figures 1 and 2. Applying this reorientation
mapping on the data requires multiplying columns by -1 if its
corresponding axis was negated in the mapping and
reordering the columns corresponding to the individual axes
accordingly.

The main challenge with this approach lies with the fact
that sensor orientations can vary in a multitude of ways across
activities and subjects of the same dataset. In these
circumstances, a single mapping from one dataset’s axes
orientation to another is insufficient to capture all the
variability. This is observed, for instance, with the wrist
sensor data of MHEALTH and subject 8 data from PAMAP2.
The wrist sensor graphs for MHEALTH showed more

variability in the axis orientations across the three observed
activities than the ankle sensors. Similar analysis for subject
8 (left-handed) compared to the other PAMAP2 subjects
(right-handed) indicated that the sensor placements on either
side-body were potentially the same (e.g., top of wrist and
front of ankle for both sides), but the axes orientations
presented differently by virtue of the sensors being on
opposite sides of the body. Subject 8 consistently showed
lower accuracy in the leave-one-subject-out cross validation
results that was only fixed with data augmentation. The
second set of tests involved augmenting the signal data from
PAMAP2, as described in the data preprocessing section.

IV. RESULTS

Two sets of validation were performed. First, models were
trained with a leave-one-subject-out cross-validation on
PAMARP? to allow the training, validation, and testing sets to
have non-repeated data. Table I reports the average results
across the 8 folds for the original and augmented PAMAP2
data. The testing accuracy was 83.98% without data
augmentation and 80.74% with data augmentation. The lower
accuracy with data augmentation may show the need for a
deeper model or reducing the augmentation parameters.

Second, testing on held-out sets (i.e., MHEALTH and PD
datasets). For cross-testing, the highest performing model
from the source dataset’s cross validation was loaded (i.e.,
PAMAP2) and tested on the target dataset directly. The mean
and standard deviation used to normalize the data that trained
the source model were applied to the target data. In the cross-
testing results recorded in Table II, ‘P20’ refers to the
PAMAP?2 data with its original axes orientation, ‘MHR’ refers
to MHEALTH with its axes orientation matched to PAMAP?2,
‘PDR’ refers to the Parkinson’s data with its axes orientation
matched to PAMAP2, and P2DA refers to the augmented data
of PAMAP2. Without data augmentation, the models
performed poorly on healthy and non-healthy populations with
48.16% and 0%, respectively. On the PD dataset, the model
was predicting only laying-down label which is not in the
activities of PD data. Testing the model with data
augmentation on MHEALTH and PD showed significantly
higher results than the model trained without data
augmentation. With data augmentation, the accuracy was
87.43% on the MHEALTH dataset and 44.78% on the PD
dataset. MHEALTH includes the data of healthy subjects,
which explains the high accuracy. Also, the PD data did not
have activities corresponding exactly to those in the publicly
available PAMAP2 and MHEALTH datasets, which could
have affected the accuracy performance. For instance,
drinking was done seated in the PD data collection and was
mapped to sitting in PAMAP2.

TABLE 1. CROSS VALIDATION AVERAGE RESULTS
Accuracy Precision Recall F1
PA.MAPZ 83.98% 84.59% 83.98% 84.06%
Original
PAMAP2 80.74% 80.63% 80.74% 78.50%
Data Aug.
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TABLE II. CROSS TESTING RESULTS
o P20 -> MHR 48.16% | 61.96% 48.16% 43.95%

= 3

3 <

£ 8

'§ S P20 -> PDR 0% 0% 0% 0%

) P2DA -> MHR 87.43% | 89.74% 87.43% 87.33%

a

< &

'§ ::‘ P2DA -> PDR 44.78% | 29.22% 44.78% 31.98%
MH->P2 Transfer
Learning [10] 49.30% | X 2 2
Young-> Healthy
LSTM-CNN [11] =l 2 2 2

V. DISCUSSION

We referenced the work of Chen ef al. [10] as a baseline,
which applied transfer learning to the chest sensors of the
MHEALTH (source) and PAMAP2 (target) datasets with
49.30% accuracy. The results show an accuracy drop of 16%
and 27% when testing on PD dataset in comparison with
PAMAP2 and MHEALTH datasets, respectively. Sabahat
[11] reports a similar drop when testing the elderly
population, but with an accuracy of around 50%.

In the leave-one-subject-out cross validation on the original
data, subject 8 displayed lower accuracy compared to the right-
handed subjects. Many manual reorientation mappings were
attempted, none of which were able to alleviate the
discrepancy as well as the data augmentation. Although the
average of the data augmentation cross validation is slightly
lower, the standard deviation between fold results was
considerably higher in the original data cross validation,
showing that the data augmentation was able to compensate
for the intra-subject variability nicely. Subject 8’s accuracy
increased from 56.06% to 74.98% when it was held out for
testing with the data augmentation applied. The manual
reorientation approach is more time consuming and error
prone than arbitrarily rotating the axes several times to account
for a wider range of possible sensor orientations, but it did
increase the cross-testing accuracy from PAMAP2 to
MHEALTH when combined with data augmentation versus
when the augmented data was cross-tested on the original data.
Data augmentation was best able to fix the issue of sensor
orientation variability, which alleviates the concern of the
leave-one-subject-out cross validation method being prone to
intra-subject variability. It is, however, considerably more
computationally expensive to augment data samples and train
models on the resulting, larger dataset.

VI. CONCLUSION

This work investigated the need for transferring models
learned on healthy population data to disease population, PD
in this case. When it comes to signal data from wearable body
sensors, a great portion of what needs to be learned across a
new domain is different sensor orientations. Our
investigations demonstrated the impact of signal
augmentation on such model’s generalizability with respect to

sensor placement variations when applied to healthy and
PwPD datasets. Data augmentation improved a deep model’s
performance from 48.16% to 87.43% in case of cross testing
of healthy-to-healthy dataset and 0% to 44.78% in case of
healthy to PD. The lower improvement of the latter cross
testing suggests that human activity recognition models
trained on healthy population need to be further enhanced
when are applied on older population and especially people
with PD. Our future work will investigate the effect of transfer
leaning or domain adaptation in conjunction with the research
done in the paper to boost performance.
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