
  

 

Abstract— Physical activity recognition in patients with 
Parkinson’s Disease (PwPD) is challenging due to the lack of 
large-enough and good quality motion data for PwPD. A 
common approach to this obstacle involves the use of models 
trained on better quality data from healthy patients. Models can 
struggle to generalize across these domains due to motor 
complications affecting the movement patterns in PwPD and 
differences in sensor axes orientations between data. In this 
paper, we investigated the generalizability of a deep 
convolutional neural network (CNN) model trained on a young, 
healthy population to PD, and the role of data augmentation on 
alleviating sensor position variability. We used two publicly 
available healthy datasets - PAMAP2 and MHEALTH. Both 
datasets had sensor placements on the chest, wrist, and ankle 
with 9 and 10 subjects, respectively. A private PD dataset was 
utilized as well. The proposed CNN model was trained on 
PAMAP2 in k-fold cross-validation based on the number of 
subjects, with and without data augmentation, and tested 
directly on MHEALTH and PD data. Without data 
augmentation, the trained model resulted in 48.16% accuracy on 
MHEALTH and 0% on the PD data when directly applied with 
no model adaptation techniques. With data augmentation, the 
accuracies improved to 87.43% and 44.78%, respectively, 
indicating that the method compensated for the potential sensor 
placement variations between data.  
 

Clinical Relevance— Wearable sensors and machine learning 
can provide important information about the activity level of 
PwPD. This information can be used by the treating physician to 
make appropriate clinical interventions such as rehabilitation to 
improve quality of life.  

I. INTRODUCTION 

The field of human activity recognition research with 
wearable body sensors is notorious for data with high 
variability and small quantities. The challenges are 
exacerbated with data from elderly people and more 
specifically the Parkinson’s population, which are subject to 
larger intra-class variability and noisier labels [1]. Since it is 
difficult to collect generous amounts of data from the 
Parkinson’s population, or any population for that matter, 
leveraging knowledge from similar domains is a common 
approach. In doing so, models tend to struggle to generalize 
across domains, largely due to differences in the axis 
orientation between sensors (caused by different placements 
of sensors on the body). Augmenting data in such a way where 
models become indifferent to variations in sensor orientations 
can help the challenge of generalizing to different domains, 
notably from younger, healthier subjects, to patients with 
Parkinson’s disease (PwPD). However, the existing research 
has paid less attention to generalizability of deep models and 
data augmentation in disease population. To address this 
shortcoming, in this paper, we designed a convolutional neural 

network (CNN) model and investigated the generalizability of 
the model when training on a young, healthy population and 
testing on PwPD. Also, we implemented standard data 
augmentation methods after matching the sensors’ orientation 
between the different datasets. 

II. RELATED WORK 

Straczkiewicz et al. [2] evaluated the effect of sensor 
placement variations on physical activity classification from a 
study on 45 older adults in a 7-day collection of free-living 
data. Such environments, which are more common in 
applications of wearable body sensors, leave researchers with 
less ability to enforce a sensor-wearing protocol. They 
observed that patients tended to deviate from said protocol 
when affixing sensors upon themselves in their free-living 
setting, which led to a significant impact in activity recognition 
error. The authors in [3] used the rotation, permutation, and 
time-warping data augmentation methods, coupled with 
transfer learning to utilize knowledge gained from the younger 
populations to older adults. They found that rotation and 
permutation were among the most successful data 
augmentation methods. Um et al. [1] utilized the same 
augmentation techniques for detecting medication states in 
PwPD. The best performing methods from their experiments 
were rotation, permutation, and time-warping. These results 
indicated that the largest sources of variability were ‘different 
sensor placements between participants and event locations in 
an arbitrarily segmented window. These papers typically 
explore the techniques to improve model generalizability 
within the same dataset or with transfer learning. The 
experiments presented throughout the paper are novel as they 
explore the impact of signal augmentations on a proposed 
CNN model’s ability to generalize from healthy population to 
PwPD directly without transfer learning. 

III. METHODOLOGY 

A.  Datasets 
The experiments utilized two publicly available datasets, 

MHEALTH [4, 5] and PAMAP2 [6, 7], and a private dataset, 
referred to as the PD (Parkinson’s Disease) dataset [9].  

• MHEALTH: Positioned sensors on the chest, right wrist, 
and left ankle of 10 subjects performing 12 activities, with 
a sampling frequency of 50 Hz and acceleration unit of 
m/s^2.  

• PAMAP2: Sensors were placed on the dominant-side 
wrist and ankle for 9 subjects performing 18 activities. 
Subject 8 was the only participant with the wrist and ankle 
sensors placed on the left side-body. The sampling 
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frequency was 100 Hz and the accelerometer units were 
the same as MHEALTH.  

• PD: Collected from 14 subjects with idiopathic 
Parkinson’s Disease under approval of the institutional 
review boards of University of Rochester and Great Lakes 
NeuroTechnologies. Sensors were mounted on the wrist 
and ankle of the patient’s most affected side as they 
performed four rounds of daily living activities. Subjects 
stopped their medication the night prior to data collection 
to allow the sensors to capture their dyskinesia. The 
sampling frequency was 128Hz and the acceleration units 
were standard gravity. 

Figure 1 shows sample signals in two healthy datasets for 
different activities before and after reorientation. Reoriented 
MHEALTH signals in the last row of Figure 1 show a similar 
pattern to PAMAP2 signals in the first row. Figure 2 provides 
the sensor placement information. 

B. Data Preprocessing 
Only accelerometer data from wrist and ankle sensors were 

used to match the PD dataset. Gyroscope data was removed, 
since MHEALTH had poor resolution quality for this data. 
Doing so improved the results for cross testing across datasets. 
Any data labeled as ‘null class’ - referring to motions that were 
not characterized by specified activities - were removed. 
PAMAP2 had some missing values, which were removed. The 
PAMAP2 and PD datasets were down sampled from 100Hz 
and 128Hz, respectively, to match the MHEALTH frequency 
of 50Hz. A generic normalization was applied to the data prior 
to segmentation by finding the mean and STD of each axis in 
the training signals and then subtracting the mean and dividing 
by the STD from the training and testing data. The data was 
segmented into windows of 150 timesteps with 50% overlap.  
     5 seconds of data were deleted from the beginning and end 
of each labeled activity from MHEALTH and PAMAP2 to 
remove transitions between activities, as suggested by [8]. The 
7 common activities between MHEALTH and PAMAP2 were 
kept for model training and testing (standing, sitting, lying, 
walking, climbing stairs, cycling, and running). Subject 9 from 
PAMAP2 did not perform any of the 7 activities and was 
consequently removed from the analysis. The PD dataset 
contained the following activities: ambulation, arms resting, 
cutting, dressing, drinking, unpacking groceries, hair brushing 
with left hand, and hair brushing with right hand. For cross 
testing purposes, the ambulation activity was mapped to 
walking, arms resting/cutting/drinking were primarily done 
while seated and were mapped to sitting, dressing/unpacking 

 

 
 
Figure 1.  Sample activity plots from PAMAP2, MHEALTH, and MHEALTH after reorienting the axes to match PAMAP2. 

 

 
Figure 2.  Sensors’ placement in all the datasets and the 
manual orientation required to align the sensor orientation of 
MHEALTH and PD to PAMAP2.  
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groceries were mapped to standing, and the hair brushing 
activities did not correspond well to either of those 3 and were 
excluded. 
    Data Augmentation: The data augmentation methods and 
code were applied to PAMAP2 as provided by [1]. Rotation, 
jitter, and scaling augmentations were combined and applied 
to each segment of the original PAMAP2 data to generate 8 
new samples per segment. Rotation arbitrarily rotates the axes 
of a segment to simulate different sensor placements. The jitter 
method introduces some Gaussian noise to the data to mimic 
sensor noise. Scaling multiplies data in a window by a random 
scalar to simulate multiplicative signal noise. The latter two 
methods are intended to make the model more robust to noisy 
signals commonly found in Parkinson’s patients. 

C. CNN Model Architecture 
The proposed model (Figure 3) consists of two 1D 

convolutional and max pooling layers, followed by a global 
average pooling and dropout layer before the output layer. The 
model was trained for 60 epochs with a batch size of 64, ReLU 
activation, learning rate of 0.001, and Adam optimizer with 
categorical cross-entropy loss. The output layer utilized a 
SoftMax activation function. Each pooling layer used filters 
with width 2 and stride 1. The convolutional layers used 16 
and 32 kernels, respectively, each with size 3 and stride 1. L1 
and L2 bias and kernel regularization with a rate of 0.001 was 
applied to each convolutional layer. The final model had 2,103 
parameters.   

D. Experimental Design 
The first set of tests consisted of manually reorienting the 

axes of one dataset by means of inspecting the graphs of 
various activity segments visually and deriving a mapping of 
one dataset's axis orientation to another. The standing, sitting, 
and walking activities are useful references for generating 
such a mapping for wrist and ankle sensors, as subjects can 
generally be expected to have their legs and arms in 
predictable positions for those activities [1]. Sample graphs of 
the activities and mappings obtained between the datasets are 
pictured in Figures 1 and 2. Applying this reorientation 
mapping on the data requires multiplying columns by -1 if its 
corresponding axis was negated in the mapping and 
reordering the columns corresponding to the individual axes 
accordingly. 

The main challenge with this approach lies with the fact 
that sensor orientations can vary in a multitude of ways across 
activities and subjects of the same dataset. In these 
circumstances, a single mapping from one dataset’s axes 
orientation to another is insufficient to capture all the 
variability. This is observed, for instance, with the wrist 
sensor data of MHEALTH and subject 8 data from PAMAP2. 
The wrist sensor graphs for MHEALTH showed more 

variability in the axis orientations across the three observed 
activities than the ankle sensors. Similar analysis for subject 
8 (left-handed) compared to the other PAMAP2 subjects 
(right-handed) indicated that the sensor placements on either 
side-body were potentially the same (e.g., top of wrist and 
front of ankle for both sides), but the axes orientations 
presented differently by virtue of the sensors being on 
opposite sides of the body. Subject 8 consistently showed 
lower accuracy in the leave-one-subject-out cross validation 
results that was only fixed with data augmentation. The 
second set of tests involved augmenting the signal data from 
PAMAP2, as described in the data preprocessing section.  

 

IV. RESULTS 

Two sets of validation were performed. First, models were 
trained with a leave-one-subject-out cross-validation on 
PAMAP2 to allow the training, validation, and testing sets to 
have non-repeated data. Table I reports the average results 
across the 8 folds for the original and augmented PAMAP2 
data. The testing accuracy was 83.98% without data 
augmentation and 80.74% with data augmentation. The lower 
accuracy with data augmentation may show the need for a 
deeper model or reducing the augmentation parameters. 

Second, testing on held-out sets (i.e., MHEALTH and PD 
datasets). For cross-testing, the highest performing model 
from the source dataset’s cross validation was loaded (i.e., 
PAMAP2) and tested on the target dataset directly. The mean 
and standard deviation used to normalize the data that trained 
the source model were applied to the target data. In the cross-
testing results recorded in Table II, ‘P2O’ refers to the 
PAMAP2 data with its original axes orientation, ‘MHR’ refers 
to MHEALTH with its axes orientation matched to PAMAP2, 
‘PDR’ refers to the Parkinson’s data with its axes orientation 
matched to PAMAP2, and P2DA refers to the augmented data 
of PAMAP2. Without data augmentation, the models 
performed poorly on healthy and non-healthy populations with 
48.16% and 0%, respectively. On the PD dataset, the model 
was predicting only laying-down label which is not in the 
activities of PD data. Testing the model with data 
augmentation on MHEALTH and PD showed significantly 
higher results than the model trained without data 
augmentation. With data augmentation, the accuracy was 
87.43% on the MHEALTH dataset and 44.78% on the PD 
dataset. MHEALTH includes the data of healthy subjects, 
which explains the high accuracy. Also, the PD data did not 
have activities corresponding exactly to those in the publicly 
available PAMAP2 and MHEALTH datasets, which could 
have affected the accuracy performance. For instance, 
drinking was done seated in the PD data collection and was 
mapped to sitting in PAMAP2.  

TABLE I.  CROSS VALIDATION AVERAGE RESULTS 

 Accuracy Precision Recall F1 

PAMAP2 
Original 

83.98% 84.59% 83.98% 84.06% 

PAMAP2 
Data Aug. 80.74% 80.63% 80.74% 78.50% 

 

 
 
Figure 3.  Proposed model architecture 
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TABLE II.  CROSS TESTING RESULTS 

 Accura
cy Precision Recall F1 

W
ith

ou
t 

D
at

a 
A

ug
.  P2O -> MHR 48.16% 61.96% 48.16% 43.95% 

P2O -> PDR 0% 0% 0% 0% 

W
ith

 D
at

a 
A

ug
. 

P2DA -> MHR 87.43% 89.74% 87.43% 87.33% 

P2DA -> PDR 44.78% 29.22% 44.78% 31.98% 

 MH->P2 Transfer 
Learning [10] 49.30% X X X 

 Young-> Healthy 
LSTM-CNN [11] ~51% X X X 

V. DISCUSSION 
We referenced the work of Chen et al. [10] as a baseline, 

which applied transfer learning to the chest sensors of the 
MHEALTH (source) and PAMAP2 (target) datasets with 
49.30% accuracy. The results show an accuracy drop of 16% 
and 27% when testing on PD dataset in comparison with 
PAMAP2 and MHEALTH datasets, respectively. Sabahat 
[11] reports a similar drop when testing the elderly 
population, but with an accuracy of around 50%. 

In the leave-one-subject-out cross validation on the original 
data, subject 8 displayed lower accuracy compared to the right-
handed subjects. Many manual reorientation mappings were 
attempted, none of which were able to alleviate the 
discrepancy as well as the data augmentation. Although the 
average of the data augmentation cross validation is slightly 
lower, the standard deviation between fold results was 
considerably higher in the original data cross validation, 
showing that the data augmentation was able to compensate 
for the intra-subject variability nicely. Subject 8’s accuracy 
increased from 56.06% to 74.98% when it was held out for 
testing with the data augmentation applied. The manual 
reorientation approach is more time consuming and error 
prone than arbitrarily rotating the axes several times to account 
for a wider range of possible sensor orientations, but it did 
increase the cross-testing accuracy from PAMAP2 to 
MHEALTH when combined with data augmentation versus 
when the augmented data was cross-tested on the original data. 
Data augmentation was best able to fix the issue of sensor 
orientation variability, which alleviates the concern of the 
leave-one-subject-out cross validation method being prone to 
intra-subject variability. It is, however, considerably more 
computationally expensive to augment data samples and train 
models on the resulting, larger dataset. 

VI. CONCLUSION 
    This work investigated the need for transferring models 
learned on healthy population data to disease population, PD 
in this case. When it comes to signal data from wearable body 
sensors, a great portion of what needs to be learned across a 
new domain is different sensor orientations. Our 
investigations demonstrated the impact of signal 
augmentation on such model’s generalizability with respect to 

sensor placement variations when applied to healthy and 
PwPD datasets. Data augmentation improved a deep model’s 
performance from 48.16% to 87.43% in case of cross testing 
of healthy-to-healthy dataset and 0% to 44.78% in case of 
healthy to PD. The lower improvement of the latter cross 
testing suggests that human activity recognition models 
trained on healthy population need to be further enhanced 
when are applied on older population and especially people 
with PD. Our future work will investigate the effect of transfer 
leaning or domain adaptation in conjunction with the research 
done in the paper to boost performance.  
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