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Abstract. Mining processes of Bitcoin and similar cryptocurrencies are
currently incentivized with voluntary transaction fees and fixed block
rewards which will halve gradually to zero. In the setting where op-
tional and arbitrary transaction fee becomes the prominent/remaining
incentive, Carlsten et al. [CCS 2016] find that an undercutting attack
can become the equilibrium strategy for miners. In undercutting, the
attacker deliberately forks an existing chain by leaving wealthy transac-
tions unclaimed to attract petty complaint miners to its fork. We observe
that two simplifying assumptions in [CCS 2016] of fees arriving at fixed
rates and miners collecting all accumulated fees regardless of block size
limit are often infeasible in practice and find that they are inaccurately
inflating the profitability of undercutting. Studying Bitcoin and Monero
blockchain data, we find that the fees deliberately left out by an under-
cutter may not be attractive to other miners (hence to the attacker itself):
the deliberately left out transactions may not fit into a new block with-
out “squeezing out” some other to-be transactions, and thus claimable
fees in the next round cannot be raised arbitrarily.
This work views undercutting and shifting among chains rationally as
mining strategies of rational miners. We model profitability of undercut-
ting strategy with block size limit present, which bounds the claimable
fees in a round and gives rise to a pending (cushion) transaction set.
In the proposed model, we first identify the conditions necessary to
make undercutting profitable. We then present an easy-to-deploy defense
against undercutting by selectively assembling transactions into the new
block to invalidate the identified conditions. Indeed, under a typical set-
ting with undercutters present, applying this avoidance technique is a
Nash Equilibrium. Finally, we complement the above analytical results
with an experimental analysis using both artificial data of normally dis-
tributed fee rates and actual transactions in Bitcoin and Monero.
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1 Introduction

Bitcoin network [19] and several cryptocurrencies rely on nodes participating in
transaction verification, ordering and execution, and mining new blocks for their
? Part of this work was done while the author was at Purdue University.
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security and performance. Specifically, with honest majority, Byzantine-fault
tolerant consensus is possible with Proof of Work (PoW) assuming network syn-
chrony. With honest majority, attacks like double spending [23] are also harder
to implement in practice. Additionally, with more honest computing peers, live-
ness is provided with a higher probability. A proper incentive design helps attract
more honest parties to join. Bitcoin currently incentivizes nodes (or miners) with
fixed block rewards and voluntary transaction fees. Historically, the block reward
has been the dominating source of miners’ revenues. However, for Bitcoin, it is
a system parameter that halves approximately every four years.3 Its domination
is expected to vanish due to the deteriorating nature and transaction fees will
then become the major mining revenue generator.

With a stable reward, a miner’s expected revenues rely mostly on its prob-
ability of finding a block, which itself is contingent on the miner’s hash power.
However, in the fee-based incentive system, the revenues additionally depend on
the fee amount inside a block, which further relies on users’ offerings and min-
ers’ transaction selections. The total fees inside blocks are market-dependent
and time-variant because (i) transaction arrival can be arbitrary; (ii) transac-
tion fees are voluntary under the current mechanism, so they can be arbitrary
(even 0) and the threshold fee rates for faster confirmation change with supply
and demand in the block space market; (iii) miners have the freedom of sampling
transactions to form new blocks. As a result, the fair sharing of revenue based
on hashing power may not be maintained. For example, consider two miners A
and B in the system with the same mining power. If A mines blocks each with
total fees of 1 BTC and B always encounters wealthy transactions and mines
blocks each with 2 BTC total fees, B’s revenue is twice A’s revenue.

In particular, the fee-based incentivization framework nurtures a possible new
deviating mining strategy called undercutting [4]. In undercutting, the attacker
intentionally forks an existing chain by leaving wealthier transactions out in its
new block to attract other (petty compliant) miners to join the fork. Unlike
honest miners, who follow the longest chain that appears first, petty compliant
(PC) miners break ties by selecting the chain that leaves out the most fees. In
[4], fees accumulate at a fixed rate and miners claim all accumulated fees when
creating a new block. Thus, a miner undercuts another miner’s block because it
receives 0 of the fees in the target block but expects nonzero returns via forking.
Similarly, PC miners join the fork because the undercutter leaves out more fees
unclaimed (and they can claim all fees in the next block). Carlsten et al. find
that undercutting can become the equilibrium strategy for miners, thus making
the system unstable as miners undercut each other.

However, this result is based on a setting disregarding the block size limit.
If the fees claimable in the next block are bounded and a pending transaction
set exists due to the block size cap, PC miners may not join the fork and under-
cutting may not be more profitable than extending the current chain head. The
intuition is that the extra claimable fees are bounded, and the fork does not win
with absolute probability, while the main chain may provide slightly fewer fees

3 The next halving event to 3.125 BTC is scheduled for May 2024. [10]
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but extends with probability 1 when there’s no attack. We give an illustrative
example below where undercutting is not rational when we consider the limit.
Let there be 33% honest, 17% undercutter, and 50% PC mining power, 100 total
token fees with 20 claimable in each block. As we elaborate in the full version
of this report [9], the undercutter expects 3.4 token returns by extending the
chain head. Suppose it instead undercuts and claims half of the tokens in the
target block, 10 tokens, in its first forking block (as in [4]). If PC miners do not
shift, they expect 10 tokens from the next main-chain block; if they follow the
fork, they expect to gain 10 tokens. But, shifting is not rational for the owner of
the undercutting target block and may not be rational for others as they have
started mining the main chain for some time. Even if they shift, we find the
undercutter’s expected return to be 1.717 < 3.4.

Towards modeling undercutting attacks more realistically and generally, we
construct a new model to capture rational behaviors related to and performance
of the undercutting strategy. Miners in our model are either honest or rational.
A rational miner may undercut or arbitrarily shift among chains as long
as the action maximizes its returns. Fees in our model arrive with transactions.
By sorting transactions in the unconfirmed transaction set and packing at most
a block size limit of transactions, we obtain the maximum claimable fees at a
certain timestamp. Miners can choose to claim no more than this maximum fee.

Essentially, when undercutting, the rational miner’s goal is to earn more than
what it can potentially gain not undercutting. The attacker needs to first (i) at-
tract other rational miners to join its fork if necessary, and second (ii) avoid
being undercut by others. If it leaves out too many fees, it may end up being
worse off undercutting. If it claims more than necessary, other rational miners
may undercut its fork, annihilating its efforts. Then how many fees should an
undercutter take to achieve both goals simultaneously? And can others make it
not possible to do so? We seek to first locate such a feasible area for an undercut-
ter to secure its premiums and next, uncover defenses against this attack. Note
that undercutting is not desired because it hurts the expected profits for honest
miners. Successful undercutting also harms users who attach high fee rates to
have their transactions processed faster.

1.1 Contributions

We define an analytical model that captures behaviors that are “rational” but not
necessarily “honest” like undercutting and shifting rationally. This can be used to
analyze other rational deviating strategies in a fee-based incentive system. The
key is to pinpoint reward distributions and probabilities of earning the rewards.

Specifically for undercutting and as a key contribution, we offer closed-form
conditions on the unconfirmed transaction set to make undercutting
profitable. The key quantity is the ratio (γ) between the maximum claimable
fees in the next block (w.r.t. block size limit) and the fees in the current block.
For clarity, let the mining power fraction of the undercutter be βu and that of the
honest miner be βh, remaining rational miner be βr. (i) In the best case for the
undercutter in our model, the undercutter forgoes the fork after being one block
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behind instead of hanging on longer. (ii) When γ < aβr+βu
1−βu , the attacker can

expect to earn a premium by proper undercutting. It should carefully craft the
first block on its fork (deciding parameter a) in such a way that rational miners
can be attracted to join the fork when needed but not tempted to undercut it
again. We provide more details in Section 4. The conditions for the case where
the undercutter holds on for one more block (Appendix A) are stricter, as noted
in (i) and the overall expected returns are fewer.

As a side-product and naturally, we provide an alternative transaction se-
lection rule to counter undercutting, other than fitting all available transactions
into a block. Once we have identified effective conditions for profitable under-
cutting, we work backward to proactively check the conditions before creating a
new block. By making the conditions no longer satisfied, potential undercutters
are no longer motivated to undercut. Applying the defense technique is Nash
equilibrium in a typical setting. In the equilibrium, we additionally calculate the
price of anarchy (PoA) to capture the inefficiency a strong undercutter brings or
the advantage it has in a system. To make the system more stable, we can either
strengthen the second potential undercutter or weaken the strongest undercutter
through decentralization.

We experiment with real-world data from Bitcoin and Monero blockchains
to evaluate the profitability of undercutting and the effectiveness of avoidance
techniques. We decide on the two systems because Bitcoin is representative of
swamped blockchains and Monero typically has a small unconfirmed transaction
set. (i) In Bitcoin, for a 17.6% undercutter, the average return is 17.9%. For a
hypothetical 49.9% attacker, the average revenue is 60.8%. In Monero, we ob-
serve a profit increase of around 8 percentage points from fair shares for a 35%
attacker. (ii) After enabling defense, undercutting generates around a fair share
for Monero 35% undercutter where the two strongest rational miners possess
the same mining powers. We test a strong undercutter’s advantage in Bitcoin
(49.9%, 20%), which gives the 49.9% attacker around 63.5% of the total returns.

1.2 Related Work

Carlsten et al. [4] introduce the undercutting mining strategy to show the insta-
bility of the future Bitcoin fee-based incentivization system because undercut-
ting can become the equilibrium strategy. There, transaction fees accumulate at
a constant rate and miners can include all fees when creating a new block. But
fees essentially are not independent of transactions. If we dive into the transac-
tion level and account for the block size limit, the fees one can claim are restricted
and there can potentially be a large pending transaction set, which can cushion
or even annihilate the effects of undercutting. Based on this intuition, we con-
struct the new model focusing on transaction selection rules, which determine
fees claimed and left out. Further, both undercutting and hopping among chains
are modeled more generally as actions of rational miners instead of separately
as two types of miners as in [4]. This helps quantify the profit margin and brings
about opportunities for mitigation.
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Together with other non-compliant mining strategies. There have al-
ready been rigorous discussions on attacks related to mining strategies. Most
notable attacks are selfish mining [7,26,20], block withholding [22,17,5,16,6], and
fork after withholding [13]. Defenses against these game-theoretic attacks have
also been studied [11,28,21,14,15]. It is possible to combine undercutting with
other mining strategies like selfish mining and block withholding. For the latter,
because undercutters prefer larger mining power, the two attacks have opposite
goals, so one needs to balance the computation resource allocation. Selfish min-
ing purposely hides discovered blocks, while undercutting intends to publish a
block and attract other miners. They do not share the same rationale, but we can
schedule the two strategies and apply the one with higher expected returns at a
certain time. In this work, we put our focus on the profitability and mitigation
of undercutting, which affects the undercutting part of the strategy scheduler.
Lemon Market. Another angle to look at the problem on a higher level is
through the market for “lemons” [2], the brand-new car that becomes defective
the minute one bought it. In the Bitcoin block space market, users are bidders,
and miners are sellers. Users decide prices to pay based on their observation of
the relationship between confirmation time and fee rates. They attach fee rates
corresponding to the desired waiting time. If undercutting is prevailing, users
who attach high fee rates but are ghosted are provided with “lemons” instead
of “peaches” – fast confirmation. This can result in a decrease in the overall fee
rates, diminishing the profitability of undercutting.

2 Preliminaries

Mempool. Mempool [3] is an unconfirmed transaction set maintained by min-
ers locally. When a transaction is announced to the network, it enters into miners’
mempools. Miners select transactions from their mempools to form new blocks.
Usually, a miner chooses the bandwidth set (Definition 1) with respect to the
local mempool and global block size limit. An undercutting miner intentionally
leaves out wealthy transactions when forming blocks to attract other rational
miners. Wealthy transactions are those with high fee rates. When a new block
is published, miners verify the block and then update their local mempools to
exclude transactions included in the newly published block.

Definition 1 (Bandwidth Set). Given block size limit B and an unconfirmed
transaction set T comprising N transactions, S∗ ∈ P (T) is a bandwidth set of
T with respect to B if S∗.size ≤ B and ∀Si ∈ P (T) with Si.size ≤ B,S∗.fee ≥
Si.fee, where P (T) is the power set of T.

Remark 1. A bandwidth set is a set of transactions in a miner’s mempool provid-
ing the most fees a miner claimable in one block. If the unconfirmed transaction
set is of size ≤ B, then the bandwidth set is the memory pool itself. Note that
the bandwidth set is not necessarily unique.

Definition 2 (Safe margin). When a chain C∗ is D block(s) ahead of com-
peting chains, a miner with safe margin parameter D always extends C∗.
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Remark 2. Honest miners apply the longest chain rule and always have D = 1.4
For rational miners, D ≥ 1. When the length discrepancy between competing
chains is within D, they select the chain with the most expected returns.

3 Mining Game featuring Undercutting Strategy

In this section, we model the mining game involving the undercutting strategy.
We consider honest miners, who follow the default protocol specifications, and
rational miners. The latter are addressed as undercutters when they undercut.
Game definition. We define the mining game G = 〈M,A,R〉 as follows:

– n Players M = {M0,M1, ...,Mn−1}: without loss of generality, we label a
subset of the miners that have a total of βh mining power as honest; we label
a miner with βu mining power as the current undercutter under discussion;
we label the remaining miners as (currently) non-undercutting rational miners
and their total mining power is denoted as βr = 1 − βh − βu. Honest miners
are treated as one because they follow the same mining rules, and we assume
they are informed the same way.

– Actions A = {undercut(·), stay(·), shift(·)}: we index chains during a game
according to their timestamps after the branching point, e.g. the original
(main) chain with index Chain0, abbreviated as C0. Honest miners always
honest mine and may choose to stay or shift depending on circumstances.
Rational miners may choose to undercut an existing chain and start a new
chain, stay on a working chain, or shift among existing chains.

– Utility functions U = {ui}Mi∈M : we let ui = Ri − ci, where Ri is the total
transaction fees it receives and ci is the cost. We treat the cost ci as fixed and
reduce the problem of maximizing utility to maximization of obtained fees.

Threat model. We allow no miner to own more than 50% mining power
(i.e., βu ≤ 0.5). We let miners publish their discovered blocks immediately to
attract other miners to join. We assume the best case for the undercutter and let
the mempool be the same for miners on the same chain. Because undercutting
is not practical or meaningful if miners have distinct mempools, since wealthy
transactions an attacker left unclaimed may not exist in others’ mempools in
the first place. This assumption makes the attacker stronger, and we intend to
uncover what the attacker can obtain in advantageous environment settings.

We let miners know of other miners’ types (e.g. honest or rational) after
sufficient observations. We assume miners can approximate the amount of mining
power concentrated on a chain based on the block generation time on that chain.
Solution concept. We solve for Nash Equilibrium (NE) in the mining game
with undercutting mining strategy. In a Nash Equilibrium, players do not earn
extra utility by unilaterally deviating from the equilibrium strategy.

4 When there is a tie, they choose the chain with the oldest timestamp. If timestamps
should be the same, they select a chain at random.
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3.1 Miner’s Winning Probability

A miner’s expected returns from mining equal the product of its winning proba-
bility of a block and the fees residing in that block. Firstly, miner Mi’s winning
probability of a block is simply its mining power when there is only one chain. In
the case of competing chains, we need to additionally quantify a chain’s winning
probability when working in systems where only one chain survives.
A chain’s winning probability. In undercutting, the attacker forks an ex-
isting chain by leaving out wealthy transactions. In the following discussions,
we refer to the undercutting chain as C1 and the current main chain as C0. C0

might not be on the main chain eventually if C1 wins the race. The effective
height of a chain is the number of blocks it has accumulated after the forking
point. These competing blocks are called effective blocks in the game analysis.

Overall, the process proceeds as follows. The undercutter sees a new block
is appended to C0 by another miner. It starts to work on a forking block that
excludes wealthy transactions appearing in the current chain head. With some
probability, it can create the fork faster than the next block appearing on C0.
When the undercutter publishes its block, some rational miners consider shifting
to C1 because there are more high fee rate transactions that they can benefit
from. To model this procedure, we screenshot the state of the system as a tu-
ple that we denote as ~S = (m0,m1, ~F 0, ~F 1, O, δ, λ0, λ1), where m0 and m1 are
respectively the effective height of C0 and C1; ~F 0 and ~F 1 are the list of transac-
tion fee total in effective blocks on C0 and C1; O is the mining power currently
working on C1, which updates upon new block appending events; δ ∈ (−1, 1) is
the mining power shifting from the source chain to the destination chain, which
is defined to be positive if miners are shifting to C1 and negative if they are
shifting to C0; λ0 and λ1 are block generation rates for C0 and C1.

To obtain the winning probability measure for a chain from state ~S, we view
the block generation event as a Poisson process and use a random variable to
represent the waiting time between block occurrence events. We denote waiting
time for C0 asX and C1 as Y . They both follow exponential distribution but with
different rates. The rate parameters depend on the mining power distribution.
Given the state ~S, we obtain the block occurrence rate as: λ0 = 1−O

I ; and λ1 = O
I ,

where I is block generation interval (e.g. 10 minutes for Bitcoin). This is derived
from the thinning theorem of the Poisson point process. The main idea is that
independent sub-processes of a Poisson process are still Poisson processes with
individual rates. With this property, we can determine the time interval for the
next block to appear on a chain. Then, the key is the mining power concentrated
on a chain, and further is whether honest and rational miners shift.

For D = 1, there is only one state that the currently non-undercutting ratio-
nal miners βr need to make a decision, when the undercutter extends C1 before
the C0 extends by one. The two competing chains are in a tie with relative height
difference D̃ = 0. The probability that C1 wins is simply p = Pr[C1 Wins] =
Pr[Y < X] = O + δ.

For D = 2, there is an infinite number of states where flexible rational miners
need to make decisions about shifting. We let D̃ = m1 −m0 < D, denoting the
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number of blocks by which C1 leads C0. For example, when D̃ = −1, C1 is
one block behind C0. Then C1 wins if it creates 3 blocks before C0 extends
by 1, or discovers 4 blocks before C0 extends by 2, and so on. Thus, we have
p =

∑∞
i=0 Pr[(D − D̃ + i)Y < (i+ 1)X].

(i)When D̃ = −1, C1 is behind C0. For C1 to win, we need p =
∑∞
i=0 Pr[(3+

i)Y < (1 + i)X] =
∑∞
i=0(βu + δ)3+i(1− βu − δ)i.

(ii)When D̃ = 0, there is a tie between C1 and C0. In this case, p =∑∞
i=0 Pr[(2 + i)Y < (1 + i)X] =

∑∞
i=0(βu + δ)2+i(1− βu − δ)i.

(iii)When D̃ = 1, C1 is leading. We have p =
∑∞
i=0 Pr[(1+i)Y < (1+i)X] =∑∞

i=0(βu + δ)1+i(1− βu − δ)i.
A miner’s probability of winning a block. Suppose a miner Mi with βMi

mining power is mining on a chain Cj with βCj accumulated total mining power
which has winning probability pCj . Then Mi’s winning probability is βMi

βCj
pCj .

4 Game Analysis

T. Gong, M. Minaei, W. Sun, A. Kate Towards Overcoming the Undercutting Problem7/2/22
32

1 −
O. O.

O. + S1 − 1*
− 2

(1,0)

(1,1)
(2,0)

(2,1) (1,2)

Fig. 1: State transition for D = 1.
“X” Boxes are terminal states. For
non-terminal states, circles indi-
cate ties. Every left branch means
C0 extends by one and every right
branch refers to C1 creating a new
block. The quantity on the arrow is
the probability of state transition.

We analyze the profitability of the under-
cutting strategy with parameter D = 1 in
this section and continue the discussion with
D = 2 in the full report, for which a summary
resides in Appendix A. The latter generates
fewer profits. We differentiate between scenar-
ios with “abundant” and “limited” amounts
of fees. The extreme case where there are
only negligible fees claimable for a long period
(“drought”) is described in the full report.

4.1 Giving Up If One Block Behind

We use the abbreviated state S∗ = (m0,m1)
in discussion. We denote the transaction fees
inside the first two blocks of C0 as F 0

1 and F 0
2 ,

the transaction fees inside blocks of C1 as F 1
1

and F 1
2 , the expected returns for flexible ratio-

nal miners βr as Rr and the expected returns
for the undercutter as Ru. When there is no
undercutting, we denote their respective expected return as R′r and Ru.

For D = 1, rational miners only need to decide whether to shift at state S∗ =
(1, 1) when undercutting becomes visible as shown in Figure 1. Suppose they shift
x of their mining power βr to C1. They can decide x that gives maxE[Rr]:

arg max
x∈[0,1]

(
1owner · (1−p) ·F 0

1 +
(1− x)βr

βh + (1− x)βr
(1−p) ·F 0

2 +
xβr

xβr + βu
p ·F 1

2

)
(1)

where p is the probability of C1 winning and 1owner indicates whether a rational
miner is the owner of the first block on chain 0. The shift can then be calculated as
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δ = xβr. Observe that the optimization problem involves fees inside succeeding
blocks after the forking point. We represent fees in a relative way for general
interpretability: we let F 0

1 = 1 and have fee total in other blocks measured
relative to it. Now we discuss two different mempool conditions.

Mempools with limited bandwidth set By “limited” we mean the current
bandwidth set on C0 has a small enough transaction fee total (< βu

1−βuF
0
1 ). We

provide more details concerning this threshold as we proceed. WLOG, we assume
F 0

1 = 1, F 0
2 = γ ≥ 0 (s.t. F 0

2

F 0
1

= γ), F 1
1 = a and F 1

2 = b where a ∈ [0, 1]. We
can let b = 1 + γ − a, assuming the best case for the undercutter that it can
compose the first block on C1 in such a way that the second block can claim all
unclaimed fees within one block. If a rational miner decides to undercut, with
probability βu, the undercutter can create a new chain and the game is started.
In the remaining game, with probability p = βu+δ, C1 wins and with probability
(1− p), C0 wins. The expected profit of the undercutter is

E[Ru] = βu(βu + δ) · (1 · a+
βu

βu + δ
· (1 + γ − a))

The expected return for the rational miner if it does not undercut is E[Ru] =
βuγ. The miner will undercut only if E[Ru] < E[Ru]. Then

γ <
δa+ βu
1− βu

(2)

With γ < βu
1−βu , E[Ru] < E[Ru] even when δ = 0. That is, even no rational

miner shifts to C1, there are so few fees left in the mempool that the attacker is
always better off by forking C0 compared with extending it.

One extreme case is when there are no transactions left or the bandwidth set
has negligible fees and F 0

2 = 0. The rational miner will fork because originally
there is nothing left on C0 and E[Ru] = 0. One detail is that the attacker
needs to craft the first block (determine a) it generates to avoid being undercut
again. Suppose when γ < T (T = βu

1−βu in our current context), a potential
undercutter initiates the attack. Then by choosing a in such a way that 1+γ−a

a ≥
T2 (T2 =

βu2
1−βu2

in the current context), the undercutter can avoid being undercut
again. Note that here when an undercutter decides a, it is picturing a potential
undercutter βu2 other than itself. We will revisit the choice of a after complete
the discussion for γ > βu

1−βu case.
In conclusion, for D = 1, when the attacker is stronger (βu is larger), the

requirements on the mempool bandwidth set fee total for undercutting to be
profitable regardless of rational miners’ actions is looser. When βu approximates
0.5, the threshold ratio approaches 1, which occurs with high frequency. For
βu = 0.2, the upper bound is 0.25, where the current bandwidth set is 1/4 of
the fees inside the chain head of C0.

Mempools with sufficient bandwidth set By “sufficient” we mean the cur-
rent bandwidth set in the mempool has more than “limited” transaction fee total
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(≥ βu
1−βuF

0
1 ). In this case, the undercutter needs to attract some rational miners

at state (1,1) (make δ > 0). It’s straightforward to verify that the owner of the
undercutting target block is better off by staying on C0. We treat this miner as
honest in the following calculations and only make decisions for the remaining
rational players. To decide whether to shift to C1, rational miners solve for x in

arg max
x∈[0,1]

E[Rr] = arg max
x∈[0,1]

( (1− x)βr
βh + (1− x)βr

(1− p)γ +
xβr

xβr + βu
p(1 + γ − a)

)
Here p = O + δ = βu + xβr. One observation is that the rational miners either
move to C1 with all their mining power or none (function is linear in x after
simplification). When x = 1, we have E[Rr|x=1] = βr(1 + γ − a). Similarly, in
setting x = 0, we obtain E[Rr|x=0] = βrγ. To encourage shifting of rational
miners, we need E[Rr|x=1] > E[Rr|x=0], which means a < 1. To avoid being
undercut, the undercutter additionally needs to pick an a such that this condition
is not satisfied for the first block on its C1. This is to say the undercutter can
profitably undercut C0 in expectation, but others do not expect to attack its C1

successfully. As previously touched on, we need

a ≤ 1 + γ̄

1 + T
=

1 + γ̄

1 +
a2βr2+βu2

1−βu2

, a2 ≤
1 + γ̄′

1 + aβr+βu
1−βu

(3)

where βu2
is the mining power of the strongest potential undercutter for this

attacker, a2 is what this opponent would claim in the first block if he forks the
undercutter’s chain and βr2 , βh2

is the remaining flexible rational mining power
and honest mining power in that case. Here, γ̄, γ̄′ are the fee totals in the respec-
tive next bandwidth set measured relative to the respective current bandwidth
set, when the strongest and second strongest undercutters are making the attack
decisions. We can easily solve for a and a′ numerically given assignments for min-
ing power distributions and the mempool (for computing γ̄, γ̄′ from bandwidth
sets). A program for this task can be found here [18].

In conclusion, for D = 1, the undercutter sets a, the fees to claim in the first
block (measured relative to the fees in the target block), properly and undercut if
γ < aβr+βu

1−βu for a potentially profitable attack. We say “potentially” because new
transactions may arrive and change the bandwidth set, resulting in uncertainties
in implementing undercutting. We summarize below the algorithm for D = 1.

(Part 1) A potential undercutter decides whether to undercut:
Compute a numerically according to Inequalities 3 that maximizes E[Ru]
and check if γ < aβr+βu

1−βu . If Yes, start undercutting.
(Part 2) Flexible rational miners decide mining resource distribution:
Solve for x (proportion of resources to shift to the chain) in Equation 1.
(Part 3) Miners avoid being undercut:
Calculate the attack condition T (= aβr+βu

1−βu ) for the strongest undercutter
a miner is defending against. Check if the current γ̄ < T . If Yes, include
in the current block < 1+γ̄

1+T of the fees in the bandwidth set; otherwise,
use the bandwidth set.
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Treating rational miners as a whole. In the above analysis, rational miners
make decisions from a collective perspective by maximizing E[Rr] instead of the
expected returns for a specific rational miner. This can give rise to coordination
problems. Fortunately, rational miners either move all their mining power or
stay on their current chain. There is one scenario in practice when a rational
miner may not be flexible, which is when this miner owns the current chain head
of C0. When a rational miner owns the C0 head, as mentioned in the previous
analysis, we treat it like honest miners. Since miners are aware of other miners’
types across time, they will be able to adjust their reasoning process.
When to apply undercutting avoidance. Suppose the current bandwidth
set contains fees of 1 and the remaining next bandwidth set contains fees of γ.
The mempool is always sorted so γ ≤ 1 (except when no transaction exists and
γ is not well-defined). Suppose we have computed the corresponding threshold
attacking condition T for a rational attacker and γ < T . Then this attacker
undercuts if a miner simply assembles the current bandwidth set into a block or
claims ≥ 1+γ

1+T of the fees in the bandwidth set. We state the following theorem.

Theorem 1. In setting D = 1, each miner applying avoidance procedure when
creating a new block is NE.

Proof. Let Mi ∈ M be a miner with mining power βMi
and Mi calculates T =

aβr+βu
1−βu . When γ ≥ T , Mi proceeds as normal. Therefore, we only need to show

that for Mi, when γ < T , Mi is better off by claiming a < 1+γ
1+T of the fees

in bandwidth set. The key element here is that the decision of how many fees
to claim in a block is decided before one successfully generates the proof of
work. Let the current bandwidth set BS0 have a fee total of 1, and we measure
the expected returns relative to it. We denote Mi’s expected return from not
applying avoidance as E[RMi ] and applying avoidance as E[RMi,avoid].

It’s straightforward to see that E[RMi,avoid] = 1 · βMi
= βMi

because the
strongest and other rational miners do not undercut. Mi can claim fees in the
current bandwidth set BS0 in different rounds. Each time, Mi generates a suc-
cessful proof of work with probability βMi .

IfMi does not apply avoidance and claim all fees inBS0, at least the strongest
rational miner is incentivized to undercut given that γ < T . From previous
analysis (see Figure 1 for a quick reference), we know that the undercutter wins
with probability βu(βu+ δ) where 0 ≤ δ ≤ βr−βu. Thus, Mi can expect to gain
profits E[RMi ] = 1 · βMi(1− βu(βu + δ)) < E[RMi,avoid].

By unilaterally deviating from avoidance when γ satisfies undercutting con-
ditions of a potential undercutter, Mi receives smaller expected returns.

There are two special cases worth noting: (1) all miners are honest (βh = 1)
so that T = 0. We know that γ ≥ 0. No effective avoidance is ever needed in
this case; (2) Mi is the only rational miner (βr = 0) so that T = 0 for itself. Mi

does not need to apply avoidance since γ ≥ 0.
Quantifying Strong Undercutter’s Advantage. Let the strongest under-
cutter have mining power βu and the second strongest undercutter have mining
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power βu2
. We know from the previous discussion that a miner should always

apply avoidance techniques to avoid being undercut in our current setting. For
miners other than the strongest undercutter βu, they need to defend against βu
while βu itself only needs to defend against βu2 . Let T, T ′ be the threshold ratio
computed for βu and βu2

respectively. We can capture its advantage with the
ratio 1+T

1+T ′ . For example, if βu = 0.5, βu2
= 0.2, βh = 0, 1+T

1+T ′ = 4, which means
that the strongest undercutter can claim 4 times than what the other miners
are collecting each time. When the discrepancy between βu, βu2

approaches 0,
1+T
1+T ′ approaches 1. More formally, we capture this inefficiency brought by selfish
behavior with the price of anarchy (PoA) [12].

Corollary 1 (Price of Anarchy). In setting D = 1, βh < 1, βr > 0, with
the strongest and the second-strongest undercutters respectively having mining
power βu, βu2

, the Price of Anarchy is PoA = 1+T
(T−T ′)βu+1+T ′ , where T, T ′ are

as defined above.

This follows from the above analysis. When all miners stay honest, the “un-
dercutter” is expected to earn a fair share βu. When miners apply avoidance,
the strongest undercutter claims 1+γ

1+T ′ each time while others claim 1+γ
1+T . We

can obtain its share
βu

1+γ
1+T ′

βu
1+γ
1+T ′ +(1−βu) 1+γ

1+T

. Then we can calculate the PoA as the

ratio between the strongest undercutter’s shares in its optimal situation (the
worst-case NE for the system) and in its worst case (the optimal all honest out-
come). We do not include other miners’ returns in the calculation because the
total shares always sum up to 1 regardless of the outcome and our focus is on
capturing the advantage of the undercutter. To give a demonstrative example,
let βu = 0.499, βu2 = 0.176 and βh ∈ {0, 0.05, 0.10, . . . , 0.30}, on average (over
βh) T = 1.30, T ′ = 0.29 and PoA = 1.29. This means that for βu, the mean
revenue proportion from undercutting is 0.499× 1.29 = 0.63.

One observation is that when βu and T − T ′ are large, PoA is large. To
move it towards 1 (a more stable system), we can either strengthen the second
potential undercutter or downsize βu through further decentralization.

5 System Evaluation

In this section, we evaluate the profitability of undercutting using data obtained
from Bitcoin and Monero, along with artificial transactions generated from nor-
mal distributions. Bitcoin is a typical example of congested blockchains, and
Monero is a more available one. The simulation codes and a sample data set
have been made open source [18]. In the previous analysis, we let the undercut-
ter be aware of future transaction flows in and out of the mempool. In reality,
there is more uncertainty involved. Another difference is that now mining powers
are discrete, and we model each miner individually.
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5.1 Data Collection and Experiment Setup

Transactions. We obtain the blocks from height 630, 457 (May 15th, 2020
after the Bitcoin’s block reward halving) to 634, 928 (June 15th, 2020) from the
Bitcoin blockchain using the API provided by blockchain.com [24], comprising
9, 167, 040 transactions. The Monero blockchain data are collected using a similar
API from xmrchain.net. In total, we acquire 1, 482, 296 transactions from block
height 2, 100, 000 (May 17th, 2020) to 2, 191, 000 (Sept 20th, 2020). For each
of these transactions, we extract the size, fee, and timestamp attributes. Note
that transactions that appeared during the sample period but not in any of the
collected blocks are not included. Thus, the memory pools reconstructed are not
the exact mempools miners were faced with. We also create artificial transaction
data sets with normally distributed fee rates.
Miners. To mimic the actual Bitcoin network, we follow the mining power
distribution of miners published by blockchain.com [25] on July 30th, 2020. We
make the strongest miner with 17.6% mining power the undercutting miner.
We additionally consider a hypothetical undercutter with 49.9% mining power.
This is to uncover the profitability of undercutting for a strong attacker and
its advantage over other miners when avoidance techniques are adopted by all.
For the Monero network, we follow the mining power distributions published by
exodus [27] and moneropool.com [1]. The strongest pool with 35% mining power
is made the undercutting miner.
Setup. We model the blockchain system as event-based, with new block cre-
ation being the event. Parameters and states of the system are updated upon a
new block creation event that we denote as Bi for the remaining of this section.
Miners have the same view of the network and the same latency in propagat-
ing the blocks and transactions. So miners working on the same chain see the
same mempool. We initialize the time of the system to the earliest transaction
timestamp. As shown in Algorithm 1, new block creation first happens (lines
2-4). Then chains, miners, and mempools are updated in lines 5-7. We include
more details for chain and miner updating routines in Algorithm 2. Detailed
descriptions for each routine can be found in the full report.
Simulation run. In a normal run, we repeat the above steps until we exhaust
all transactions. In an avoidance-enabled simulation run, we repeat the procedure
but with all miners actively defending against undercutting in line 4, according
to the two summarized algorithms in Section 4.1 and Appendix A.

5.2 Experiment Results

Normal runs. Overall in a normal run, a strong undercutter can expect to earn
more than fair shares by conditional undercutting as shown in figures 2b and
2d. (i) In Bitcoin runs, the 17.6% undercutter receives on average (for D = 1)
17.9% shares for 0-50% honest mining power (Figure 2a). The strong 49.9%
undercutter receives a greater profit of 60.8% of the shares (Figure 2b). (ii)
In runs with artificial transactions, the profits for D = 1, 2 bear a wider gap
than with actual Bitcoin transactions (Figure 2c). (iii) In Monero runs, the 35%

xmrchain.net
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Algorithm 1: Simulation Overview
input : txSet, minerSet, chainsTime

1: while txSet not empty do
2: extChain ← nextChainToExtend(chainsTime);
3: m ← selectNextBlockMiner(extChain);
4: nextBlock ← publishBlock(m);
5: updateChains(extChain, nextBlock);
6: updateMiners(extChain);
7: updateMempool(extChain);

Algorithm 2: Chain and Miner Updates
1: Function updateChains(extChain, nextBlock):
2: extChain.append(nextBlock);
3: foreach chain in chainsTime do
4: remove from chainsTime if it is non-wining
5: t ← NextBlockCreationTime(extChain);
6: update chainsTime with tuple (extChain, t);

7: Function updateMiners(extChain):
8: foreach miner in minerSet do
9: if miner = undercutter then

10: decide to fork or not and craft the new block as described in Part 1 of
the D = 1 algorithm in 4.1, the D = 2 algorithm in Appendix A;

11: if miner = honest then
12: if extChain longest chain then
13: switch to extChain;
14: if miner = rational then
15: decide to switch to extChain or stay on current chain as described in

Part 2 of the D = 1 algorithm in 4.1, the D = 2 algorithm in
Appendix A;

undercutter obtains 43.2% of the profit on average (for D = 1, 2) for different
honest miner portions (Figure 2d). Undercutting is especially efficient in Monero
because of its small mempools, which provide limited cushion effects.
With undercutting avoidance. As noted by PoA, the attacker has an ad-
vantage over others in equilibrium. The predicted average revenue proportion
(adjusted for rounds where the undercutter mines a block and attacking is un-
necessary) for the 49.9% attacker is around 63%. (i) In Bitcoin actual and artifi-
cial data runs, the return proportion is close to this predicted average. Avoidance
runs can result in better revenues for the undercutter if the attack cannot be car-
ried out to its ideal extent. That is because a large mempool along with continual
incoming transactions lowers the profitability of undercutting. The implication
is that if undercutting cannot be implemented ideally, avoidance can be relaxed
from the exact extent. (ii) For Monero, we observe profit reduction for attackers
in both margins after enabling avoidance, as shown in Figure 2d. (iii) Mon-
ero runs and Bitcoin runs for 17.6% undercutter provide more straightforward
results, compared to Bitcoin runs with 49.9% attacker. Because the second un-
dercutter in Monero has 35% mining power, which equals the strongest undercut-
ter’s mining power and in Bitcoin, the configuration is that the second-strongest
mining power is 15.3% for 17.6% attacker and 20% for 49.9% attacker.
Minor changes to Bitcoin core codebase. We provide discussions concern-
ing undercutting avoidance implementation and other possible defenses in the
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(a) Bitcoin: Returns for 17.6% Miner.
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(b) Bitcoin: Returns for 49.9% Miner.
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(c) Artificial transactions with normal dis-
tributed fee rates: returns for 49% Miner.
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(d) Monero: Returns for 35% attacker.

Fig. 2: Undercutting Returns: normal runs (dashed lines) and runs with avoidance
feature enabled (solid lines). The shadowed band is statistics’ 95% confidence interval.

full report. We note that only light code changes in the Bitcoin core codebase
are needed, which we demonstrate in this source [8].

6 Conclusion

We study the profitability of the undercutting mining strategy with the block
size limit present. The intentional balancing of undercutting others and avoiding
one’s fork being undercut again demands specific conditions on the unconfirmed
transaction set at the time of decision-making. Once conditions are met, an
attacker can expect positive premiums. However, because such conditions are
not easy to satisfy, are time-dependent (can be invalidated if new transactions
arrive), and can be manipulated, it opens a door for mitigation. By applying
an avoidance technique to invalidate the aforementioned conditions, miners can
avoid being undercut. Avoidance encourages miners to claim fewer fees if the
current bandwidth set is sufficiently wealthier than the next bandwidth set.
As a result, the competition of undercutting can involuntarily promote the fair
sharing of fees even in a time-variant fee system. Nevertheless, in a one-sided
competition where the mining power discrepancy between the first and second
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strongest undercutters is large, the stronger undercutter has a natural advantage
over others because it only has to defend against the weaker.
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Fig. 3: State transition for D = 2. Nota-
tions are the same as Figure 1. Now we have
infinite state transitions. δ′ and δ′′ are the
amount of rational mining power shifting
from one chain to another.

We present major steps for analyz-
ing the D = 2 case and the com-
plete analysis can be found in the
full report. Rational miners now make
decisions at states S∗ = {(1, 1),
(1, 2), (2, 1), (2, 2), ...}. The winning
probabilities now comprise infinite se-
ries. Without loss of generality, we let
F 0

1 = 1, F 0
2 = F 0

3 = γ, F 1
1 = a, F 1

2 = b
and F 1

3 = 1 + 2γ − a − b (where
a ∈ [0, 1], γ ≥ 0). F 0

2 , F
0
3 can be of

different values in reality but here we
use the same value to highlight the
wealthiness of F 0

1 . Suppose eventually
we derive an attacking condition T for
setting D = 2 as well, then the under-
cutter would want to set a and b to
satisfy 1+γ−a

a > T and 1+2γ−a−b
b > T

to avoid being undercut.
We take the same route as in the

D = 1 case. We know that if there is
no attack, the undercutter expects to
receive E[Ru] = 2βuγ. If it starts the attack, its expected return from the right
branches (shown in Figure 3) when the undercutter succeeds and no rational
miners assist is

E[Ru] = βu(2γ + 1)

∞∑
i=0

βi+2
u (1− βu)i =

β3
u(2γ + 1)

1− βu(1− βu)

The limited bandwidth set condition, γ < β2
u

2(1−βu) , is more demanding than
the one for D = 1. For βu = 0.5, the upper bound is now 0.25 instead of 1. For
βu = 0.2, the bound is 0.025 instead of 0.25. Overall, for weak attackers, the
condition is way more demanding than before.

Next, we consider γ ≥ β2
u

2(1−βu) (with sufficient bandwidth set) and the under-
cutter needs rational miners to join C1. Same as before, rational miners allocate
their mining power among the two chains to maximize their expected returns:
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arg max
x∈[0,1]

E[Rr] = arg max
x∈[0,1]

(
1owner · p0 +

(1− x)βr
βh + (1− x)βr

p0 · 2γ

+
xβr

xβr + βu
p1 · b+

xβr
xβr + βu + βh

p1 · (1 + 2γ − a− b)
)

(4)

where p0 ≤ (1− βu− xβr)2 is the probability of C0 leading by 2 blocks first and
p1 ≥ (βu +xβr)(βu +xβr +βh) is the probability of C1 leading by 2 blocks first.
Here we only consider the leftmost and rightmost branch in Figure 3 because they
are the two most significant paths. We can observe that the objective function
is convex. By Jensen’s inequality, the expected returns reach maximum at either
of the two ends. Again we let E[Rr|x=0] < E[Rr|x=1] and obtain

2(1− βu)γ < b+ (βu + βr)(1 + 2γ − a− b) βh>βu⇒ γ < (βu+βr)(1−a)+βhb
2(βh−βu)

When βh ≤ βu, flexible rational miners move to the fork if a < 1. Same as before,
we denote the right-hand side condition as T and solve for a and b numerically
by considering the strongest potential undercutter the attacker is facing.

a ≤ 1 + γ̄

1 + T
=

1 + γ̄

1 +
(βu2+βr2 )(1−a2)+βh2b2

2(βh2−βu2 )

, a2 ≤
1 + γ̄′

1 + (βu+βr)(1−a)+βhb
2(βh−βu)

,

b ≤ 1 + 2γ̃ − a
1 + T

, b2 ≤
1 + 2γ̃′ − a

1 + (βu+βr)(1−a)+βhb
2(βh−βu)

(5)

Here, γ̃, γ̃′ are the fee totals in the respective third bandwidth set measured
relative to the respective next bandwidth set. With rational miners joining, the
expected return for undercutter on the rightmost branch is now E[Ru] =

(
a +

βu
βu+βr

b + βu(1 + 2γ − a − b)
)
· βu(βu + βr). We let E[Ru] > E[Ru] and obtain

the condition on γ for profitable undercutting:

γ < min { βu + βra

2(1− βu)
,

(βu + βr)(1− a) + βhb

2(βh − βu)
} (6)

We present the algorithm for D = 2 below.

(Part 1) A potential undercutter decides whether to undercut:
Compute a, b numerically according to Inequalities 5 that maximizes
E[Ru] and check if γ satisfies Inequality 6. If Yes, start undercutting.
(Part 2) Flexible rational miners decide mining resource distribution:
Solve for x in a generalized Equation 4.
(Part 3) Miners avoid being undercut:
Calculate the attack condition T (right-hand side of Inequality 6) for
the strongest undercutter a miner is defending against. Check if current
γ̄ < T . If Yes, include in the current block < 1+γ̄

1+T of the fees in the
bandwidth set; otherwise, use the bandwidth set.
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