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Microorganisms can efficiently navigate in anisotropic complex fluids, but the13

precise swimming mechanisms remain largely unexplored. Their dynamics are14

determined by the interplay between multiple effects, including the fluid’s15

orientation order, swimmer’s undulatory gait, and the finite length. Here we16

extend the numerical study of the two-dimensional undulatory motions of a17

flexible swimmer in lyotropic liquid-crystalline polymers (LCPs) by Lin et al.18

(2021) to the scenarios of arbitrary swimming directions with respect to the19

nematic director. The swimmer is modeled as a nearly inextensible yet flexible20

fiber with imposed traveling-wave like actuation. We investigate the21

orientation-dependent swimming behaviors in nematic LCPs for an infinite long22

sheet (i.e., Taylor’s swimming sheet model) and finite-length swimmers. We23

demonstrate that the swimmer must be sufficiently stiff to produce undulatory24

deformations to gain net motions. Moreover, a motile finite-length swimmer can25

reorient itself to swim parallel with the nematic director, due to a net body26

torque arising from the asymmetric distribution of the polymer force along the27

body.28

1. Introduction29

There have been extensive studies on understanding swimming and locomotion30

of biological swimmers (e.g., bacteria and microalgae) in microfluidics31

environments where inertia is negligible (Purcell (1977); Lauga & Powers32

(2009)). Especially, the recent advancements in nanotechnology and fabrication33

permit biomimetic medical micro-/nano-robots to navigate in non-Newtonian34

synthetic or biological fluids (Nelson et al. (2010); Li et al. (2017); Palagi &35
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Fischer (2018); Wu et al. (2020)). Understanding the microscale locomotion36

dynamics in complex anisotropic fluids is essential to design such microrobots37

that can efficiently operate inside the body for clinical applications. Of38

particular interest here is to uncover the propulsion mechanism of undulatory39

microswimmers in a class of anisotropic fluids, such as liquid-crystalline40

polymers, with orientation-dependent physical and material properties. For41

example, experimental observations have suggested that when placed in42

solutions of liquid crystal (LC) molecules (chromonic liquid-crystal disodium43

cromoglycate), swimming bacteria may exhibit intriguing behaviors, such as44

nematic director guided moving trajectories and activity-triggered topological45

defect dynamics, due to the coupling between the flow generation and the46

orientational order of the liquid medium (Zhou et al. (2014); Lavrentovich47

(2016); Zhou (2018)).48

Nevertheless, compared to the large body of literature on understanding the49

dynamics in the isotropic Newtonian or non-Newtonian fluids, so far there have50

been only a minimal number of theoretical and computational models developed51

to understand swimming and locomotion in anisotropic fluids (Zhou et al.52

(2017); Lintuvuori et al. (2017); Daddi-Moussa-Ider & Menzel (2018); Holloway53

et al. (2018); Cupples et al. (2018); Rajabi et al. (2021)). Most of these studies54

treat the fluid phase to be suspensions composed of small LC molecules, and55

the corresponding mathematical descriptions of the constitutive relations are56

often built upon the classical LC models of Ericksen-Leslie (EL) or Landau-de57

Gennes type that uses phenomenological energy functions to characterize the58

bend, twist, and splay deformations for the LC’s orientational topological59

structures (DeGennes (1974); Larson (1999)). Also, undulatory microswimmers60

are modeled as either a rigid rodlike particle (Zhou et al. (2017)) or infinitely61

long swimming sheets (Krieger et al. (2015, 2019)). Recently, Lin et al. (2021)62

developed a fluid-structure interaction model to study the anisotropic63

undulatory swimming motion of a finite-length flexible swimmer in LC fluid for64

the first time. Instead of using similar phenomenological, top-down LC models,65

we adopted a bottom-up Q−tensor model coarse-grained form Doi’s kinetic66

theory (Doi & Edwards (1988)) to describe the ambient fluid as suspensions of67

long, stiff liquid-crystalline polymers. Combining asymptotic analysis and direct68

simulations, we have studied and illustrated the enhanced (retarded) swimming69

motions in the nematic regime when the swimming direction is parallel with70

(perpendicular to) the nematic director.71

Using the same Q−tensor model of the Doi type, we extend the studies of72

simple parallel or perpendicular gaits to more general scenarios when the73

swimming direction is initially misaligned with the director. This work is also74

inspired by the analytical model by Shi & Powers (2017) who obtained the75

asymptotic solutions of a Taylor swimming sheet in solutions of small LC76

molecules with an arbitrary alignment angle. Moreover, they demonstrated that77

the misalignment between the swimming sheet and the director field could78

effectively produce a net body torque via the imposed anchoring condition of79

the director field on the wavy body. It is natural to ask (i) whether the80

misalignment condition will similarly lead to net polymer torque when using81

Doi’s Q−tensor that doesn’t require any anchoring condition to enforce82

alignment, and (ii) how a finite-length swimmer responds to such83

torque-imbalanced conditions arising from the LCP phase. Seeking the answers84

to these questions will provide quantitative understandings of both efficiency85
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and stability of undulatory gaits of microswimmers, either biological or86

man-made, when navigating in anisotropic fluids.87

The paper is organized as follows. Section 2 revisits the mathematical88

formulation of the fluid-structure interaction framework by Lin et al. (2021). In89

Section 3, we perform the asymptotic solutions of Taylor’s swimming sheet, and90

carry out numerical simulations for infinitely long sheets and finite-length91

swimmers using the Immersed Boundary (IB) method. Finally, we conclude and92

make some discussions in Section 4. A few benchmarks studies and the93

derivation of the asymptotic solutions are presented in the appendices.94

2. Mathematical Model95

We first set up the problem and review the dimensionless equations of the96

mathematical model developed by Lin et al. (2021) for completeness. Consider a97

one-dimensional flexible swimmer of length Ls, whose undulatory kinematics98

can be described by the parametric form X (s, t) in terms of the local arc length99

s ∈ [0, Ls] and time t > 0. The swimmer is initially positioned along the x−axis100

initially, with an imposed target body curvature of a traveling-wave form in the101

Lagrangian frame as102

κ0 (s, t) = −k2A sin (ks− ωt) . (2.1)103

Equation (2.1) describes the (rightward) propagating traveling waves with104

amplitude A, wavenumber k, and angular frequency ω. In the following, we fix105

the wavenumber k = 2π and angular frequency ω = 2π. Imposing actuation in106

equation (2.1) drives elastic deformations to yield a force distribution Fe (X)107

along the body, which effectively leads to periodic shape changes (or swimming108

gaits). Following Peskin (2002), the Lagrangian body force can be derived by109

performing the variational derivative upon the elastic energy E, i.e.,110

Fe (X, t) = −δE [X (s, t)]

δX
. (2.2)111

Here the total elastic energy E [X] includes the contributions from both stretching112

(denoted by subscript s) and bending (denoted by subscript b) deformation (Fauci113

& Peskin (1988))114

E [X (s, t)] =
σs
2

∫
ΩL

(∣∣∣∣∂X∂s
∣∣∣∣− 1

)2

ds+
σb
2

∫
ΩL

(
∂2X

∂s2
· n− κ0

)2

ds (2.3)115

where n denotes the local normal direction. After computing the elastic forces in116

the moving Lagrangian frame (denoted by ΩL), we then convert it to the Eulerian117

form fe (x, t) in the fixed coordinates as118

fe (x, t) =

∫
ΩL

Fe (s, t) δ (x−X (s, t)) ds, (2.4)119

where δ denotes the Dirac delta function that maps between the Eulerian and120

Lagrangian domain (Peskin (2002)), written as121

δ(x−X) =
1

h2
ρ

(
x−X
h

)
ρ

(
y − Y
h

)
. (2.5)122
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Here h denotes the Eulerian mesh width, and the function ρ(r) is constructed123

using four adjacent points as124

ρ(r) =


0, |r| > 2,
1
8

(
5− 2|r| −

√
−7 + 12|r| − 4r2

)
, 2 > |r| > 1,

1
8

(
3− 2|r|+

√
1 + 4|r| − 4r2

)
, 1 > |r| > 0,

(2.6)125

which guarantees momentum conservation (Peskin (2002)).126

In the fluid phase (denoted by Ωf ), the constitutive evolution equation for127

LCPs hydrodynamically couples with the fluid velocity field u, and takes the128

following form129

∇
D+2E : S =

ζ

Pe
(D ·D−D : S)− 1

Pe

(
D− I

2

)
+

1

Pet
∆D, (2.7)130

where
∇
D = ∂D

∂t
+ u · ∇D − (D · ∇u +∇uT ·D) is the so-called upper-convected131

time derivative, E = 1
2

(∇u +∇uT ) is the symmetric strain-rate tensor. And, D132

and S are the second and fourth moment of a probability distribution function133

for rodlike particles (Doi & Edwards (1988)), where S can be reconstructed by134

the lower-order moments via various moment closure methods (e.g., Bingham135

closure (Bingham (1974); Gao et al. (2015))). The maximal nonnegative136

eigenvalue and the associated unit eigenvector for the two-dimensional137

order-parameter tensor Q = D − I/2 define the scalar-order parameter and the138

nematic director, respectively, which characterize the topological features of the139

orientational structures of LCPs. In all simulations, we set up the initial LC140

field such that its director has a certain alignment angle θ ∈ [0, π] with respect141

to the swimmer (see the schematic inserted in figure 1(a)). The coefficient ζ142

represents the strength of a mean-field alignment torque arising from the143

Maier-Saupe (MS) potential that effectively models the enhanced steric144

interactions between polymers at a finite or high volume fraction (Doi &145

Edwards (1988)). To resolve the fluid-structure interactions (FSIs), we solve the146

Stokes equations147

∇ · u = 0, (2.8)148

∇p−∆u = Er∇ · τp + fe. (2.9)149

Here the first forcing term on the right-hand-side of (2.9) represents the force150

exerted upon the ambient fluid from the undulatory swimmer. The second term151

is due to the extra stress of LCPs152

τp =

(
D− I

2

)
− ζ (D ·D− S : D) + βE : S, (2.10)153

In the above equations, we introduce two Péclet numbers, Pe and Pet, which154

characterize the ratio of the time scales for rod’s rotation and transport over that155

of undulation (i.e., ω−1), respectively. Here Pe characterizes the time evolution156

of the orientation field. In this study, we focus on the regime of Pe ∼ O(1)157

when the non-Newtonian swimming behaviors become prominent. Meanwhile,158

Pet is chosen to be at least one order of magnitude higher than Pe so that the159

translational diffusion effect is small or negligible. The Ericksen number is chosen160

to be Er ∼ O(1) that characterizes the relatively strong coupling between the161

Focus on Fluids articles must not exceed this page length
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LCPs and the viscous solvent (Krieger et al. (2015)). In addition, the stress term162

with a small empirical “crowdedness” factor β ∼ O(10−3)−O(10−2) (Feng et al.163

(2000)) takes into account the inextensibility of rodlike particles. We emphasize164

that our model doesn’t require imposing additional boundary conditions (e.g.,165

anchoring condition) to couple the D field and the swimmer motion. Hence, unlike166

the EL model that enforces the LC molecules’ orientations on the swimmer’s167

body by imposing anchoring conditions, here the orientation variation of LCPs168

are driven by the induced near-body fluid flows as a result of FSIs.169

In the following, we simulate the swimmer’s undulatory motions in lyotropic170

LCPs with an arbitrary alignment angle using the spectral IB method171

developed by Lin et al. (2021). We treat the swimmer to be nearly inextensible172

by selecting a large stretching stiffness σs = 500 but varying the bending173

stiffness over a wide range σb ∼ O(10−3) − O(10−1). We choose the Lagrangian174

line segment ∆s and the Eulerian grid width h as ∆s = 4h = 1/32 and the time175

step ∆t = 6.25 × 10−5. Note that the constitutive model in (2.7) admits both176

the isotropic and nematic equilibrium states, and hence naturally captures the177

isotropic-nematic (I-N) phase transition when ζ is beyond a certain critical178

value ζc (ζc = 4 in 2D). Here we focus on studying the swimming mechanisms in179

the nematic regime (i.e., ζ > ζc) where the nematically aligned LC structures180

lead to intriguing anisotropic swimming behaviors. It needs to be mentioned181

that when non-dimensionalizing the governing equations, to flexibly model182

swimmers of either a finite and an infinite length, we choose the actual wave183

speed and period of the imposed traveling-wave signal as the velocity (typically184

on the order of several µm/s) and time (on the order of a few seconds) scale,185

respectively, and 2νkBT as the LCP’s stress scale with ν being LCP’s effective186

volume fraction (Lin et al. (2021)). We refer the reader to our previous187

publication by Lin et al. (2021) for more details of the derivation of the188

Q−tensor model and the non-dimensionalization process. In addition, more189

benchmark studies of the IB algorithm for an infinite swimming sheet are190

presented in Appendix A.191

3. Results and Discussion192

3.1. Asymptotic analysis of Taylor’s swimming sheet193

To understand the swimming mechanisms at different (initial) alignment angle194

θ, we first perform an asymptotic analysis for Taylor’s swimming sheet of an195

infinite length (Taylor (1951); Lauga (2007); Shi & Powers (2017); Lin et al.196

(2021)) in strongly-aligned nematic LCPs (i.e., ζ → ∞). Instead of imposing a197

target curvature in (2.1), we describe the time-dependent undulatory motion by198

specifying the kinematics of the vertical displacement in the moving coordinate199

as200

y (x, t) = ε sin (x− t) , ε� 1, (3.1)201

which corresponds to the limit of σb →∞ when the swimmer precisely follows the202

imposed time-varying curvature. To facilitate analysis, we neglect the crowdness203

effect (i.e., β = 0) and the translational Brownian diffusion (i.e., Pe−1t → 0), and204

employ a stream function ϕ to replace the incompressible fluid velocity such that205

u = ∇× (ϕêz) (3.2)206
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where êz is the unit vector pointing to the out-of-place direction. Then we207

impose a no-slip condition on the wavy sheet, and perform asymptotic analyses208

by expanding all the variables in the form of f (ij) with respect to ε (denoted by209

index i) and ζ−1 (denoted by index j). After some algebraic manipulations, we210

can obtain the asymptotic solutions for the mean swimming speed at the order211

of ε2, i.e.,212

ULC =

(
U

(20)
LC +

1

ζ
U

(21)
LC

)
ε2 + o

(
ε2
)
, (3.3)213

which leads to the speed ratio by comparing with the swimming speed in the214

Newtonian fluid (with the subscript “N”) when neglecting the higher-order terms215

of o (ε2)216

ULC
UN

= 1 +
Er Pe

ζ
(cos 4θ + cos 2θ) . (3.4)217

218

Note that at θ = 0 and π/2, the above equation recovers the results by Lin et al.219

(2021) when expanding their asymptotic solutions with respect to ζ−1. The reader220

is referred to Appendix B for the derivation details.221

As shown in figure 1(a), the mean-speed ratio in (3.4) varies222

non-monotonically with θ, and is symmetric about the perpendicular direction223

at θ = π/2. An enhanced swimming speed, i.e., ULC/UN > 1, is observed near224

θ = 0 or π for near-parallel swimming motions, with the maximum value at225

θ = 0 (or π); while a retarded swimming motion (ULC/UN < 1) occurs when θ226

approaches the minimum value close to π/4, at θm = 1
2
arccos

(
− 1

4

)
. Such227

θ−dependent behavior is consistent with our previous study of the parallel228

(θ = 0) and perpendicular (θ = π/2) swimming motions in LCPs by Lin et al.229

(2021). Interestingly, this result also recovers the θ−dependency derived by Shi230

& Powers (2017) and Cupples et al. (2018) in the transversely isotropic limit of231

the EL-type models.232

To further validate our analytical predictions, we perform direct simulations233

correspondingly for a relatively stiff (σb = 0.5) sheet undergoing a234

small-amplitude (A = 0.01) undulation in strongly aligned LCPs (ζ = 50) with235

the crowdness factor being ignored (β = 0). To model an infinite-length236

swimmer, we place it in a square box of size Ls × Ls = 1 × 1 with periodic237

boundary conditions. Instead of directly setting Pe−1t = 0, we choose238

Pe−1t = 10−3, which effectively adds a small damping effect in order to stabilize239

numerical solutions. We observe that for all simulations, when changing the240

alignment angle θ with respect to the director, the sheet quickly approaches241

steady-state undulations while maintaining the swimming motions along the242

x−axis. As shown in figure 1(b), the computed speed ratios indeed exhibit243

quantitatively similar orientation-dependent swimming behaviors as panel(a).244

We then calculate the net polymer force exerted on the swimmer by mapping245

the force distribution in the Eulerian coordinates to the Lagrangian frame as246

F p(t) =
1

Ls

∫
ΩL

∫
Ωf

∇ · τp (x, t) δ (X(s)− x) · êUdxds, (3.5)247

where the net force is projected along with the swimming direction defined by248

the unit vector êU = U/|U|, with U the center-of-mass velocity of the swimmer.249
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Figure 1: The mean-speed ratio ULC/UN of an infinite-length sheet as a
function of alignment angle θ in nematic LCPs (ζ = 50, β = 0, Pe−1

t = 0.001).
(a) Asymptotic solutions of Taylor’s swimming sheet. (b) Results of numerical
simulations for a stiff sheet when choosing σb = 0.5. The rescaled net polymer

force F p (c) and torque T p (d) as functions of time at different θ.

Similarly, we define the net polymer torque rescaled by the sheet length as250

T p(t) =
1

Ls

∫
ΩL

∫
Ωf

r×∇ · τp (x, t) δ (X(s)− x) · êzdxds, (3.6)251

where the unit vector êz points to the out-of-plane direction. As shown in252

panel(c) for typical F p(t) curves obtained at different values of θ, the speed253

enhancement at steady states directly correlates with a positive F p, indicating254

that the polymer force distribution yields an effective thrust force to increase255

the mean swimming speed; while F p(t) appears to be negative for all retarded256

swimming cases, corresponding to an effective drag force to slow down the257

swimmer speed, and its magnitude |F p| becomes larger and larger as θ → θm258

where ULC approaches its minimum value. Meanwhile, as shown in panel(d),259

T p(t) always vary symmetrically about a zero mean, which well explains why an260

infinite swimming sheet can keep the same swimming direction without being261

subjected to any net body torque.262
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Figure 2: Reorientation of a stiff (σb = 0.5), finite-length (Ls = 1) swimmer in
nematic LCPs (ζ = 8, β = 0.005, Pe = 1, Pe−1

t = 0.02), initially when choosing
θ = π/6 (a-c) and π/3 (d-f). (a,d) Sequential snapshots of swimmer shape
during the transient. The background shows the typical nematic director

distributions at certain time instants. The arrow denote the swimming direction
at quasi steady states. Insets: Instantaneous polymer force distributions

Fp (s, t). The net polymer force (b,e) and torque (c,f) are plotted as functions of
time, with both the instantaneous (light-color lines) and the moving-averaged

(dark-color lines) values.

3.2. Direct simulation of a finite-length swimmer263

Next, we examine the dynamics of a misaligned swimmer of length Ls = 1 in a264

periodic domain of size Lx × Ly = 4× 4, and choose a finite amplitude A = 0.05265

in actuation in equation (2.1). Unlike Taylor’s swimming sheet problem, deriving266

the analytical or semi-analytical solution for a finite-length swimmer could be267

delicate and far from being trivial. Therefore, in this section we rely on pure268

numerical simulations to study the anisotropic swimming behaviors.269

For all the stiff cases with σb = 0.5, it is seen that the swimmer can270

simultaneously translate and rotate, seemingly subjected to a net body torque.271

The swimmer shape change and trajectories during the transient reorientation272

dynamics are shown in figure 2(a) and (d) for θ = π/6 (see movie 1) and π/3273

(see movie 2), respectively. As shown in the two supplemental movies, the274

swimmer eventually performs steady-state undulatory swimming motions275

parallel to the director. We examine the time evolution of the net polymer force276

F p(t) (panels (b,e)) and torque T p(t) (panels(c,f)). To better analyze the277

strongly oscillating data (marked as light-color solid lines), we calculate their278

means (marked as dark-color solid lines) via moving averaging (Hardle &279
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Figure 3: The characteristic polymer force 〈fp〉 and fluid velocity 〈u〉 near the
stiff (σb = 0.5) swimmer superimposed on their magnitudes, corresponding to

the case in figure 2(a-c) when θ = π/6 initially.

Steiger (1995))280 〈
F p

〉
(t) =

1

T

∫ t+T

t

F p (t′) dt′, (3.7)281

〈
T p
〉

(t) =
1

T

∫ t+T

t

T p (t′) dt′, (3.8)282

where the sliding time window T = 1 is selected as the same as the undulation283

period. Unlike the results of infinitely long sheets in figure 1(d), here T p varies284

asymmetrically about zero with a positive mean
〈
T p
〉

before reaching the285

steady states, which hence effectively drives an entire-body, counter-clock-wise286

rotation of the swimmer. In addition, we observe the swimmer will achieve an287

enhanced speed at late times when swimming parallel with the director, due to288

a positive mean
〈
F p

〉
. The reorientation dynamics of a finite-length swimmer289

can be also explained by examining the instantaneous polymer force290

distribution in the Lagrangian frame, i.e.,291

Fp(s, t) =

∫
Ωf

∇ · τp (x, t) δ (X(s)− x) dx, (3.9)292

as shown in the insets of panel(a) and (d). Clearly, the Lagrangian polymer forces293

near the head and tail are highly aligned with the director. In the meantime, the294

distribution exhibits an apparent fore-aft asymmetry such that from head to tail,295

not only the force magnitude increases, but also its direction completely reverses,296

which leads to an effective non-zero body torque.297
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We then examine the characteristic near-body polymer force and flow field in298

the Eulerian frame by performing moving averages over one undulation period299

T = 1 as300

〈fp〉 (x, t) =
1

T

∫ t+T

t

∇ · τp (x, t′) dt′, (3.10)301

〈u〉 (x, t) =
1

T

∫ t+T

t

u (x, t′) dt′. (3.11)302

For the typical case at θ = π/6 shown in figure 3(a-c), 〈fp〉 reveals a strong303

(weak) polymer force generation near the tail (head) due to the hydrodynamic304

coupling between the elastic structure and the LC field. Especially, at t = 0, the305

resultant front-drag and rear-thrust forces are seen to be tilted with respect to306

the swimmer, and are consistent with the Lagrangian force distribution in figure307

2. At the steady-states, the near-body polymer force distribution recovers that308

of the parallel swimming motions along with the director by Lin et al. (2021).309

In panels(d-f), we show that the induced fluid flows remain extensile around the310

swimmer, with the magnitude decaying as the swimmer gradually finishes during311

reorientation.312

Nevertheless, the dynamics of soft swimmers can be entirely different from313

the stiff ones. As the examples shown in figure 4(a,b) where we choose σb to314

be two orders of magnitudes smaller than the stiff cases shown in figure 2, i.e.,315

σ = 0.005, but keeping the other parameters the same, the swimmer barely moves.316

When tracking the body-shape change (see movie 3 and 4), it turns out that the317

swimmer quickly relaxes from the initially curved shape (black lines) to become318

approximately straight (purple lines), with small-amplitude wiggling motions. As319

shown in the insets, the Lagrangian force distribution Fp(s, t) along the body320

doesn’t show any correlations with the nematic director field. Similar results are321

obtained for infinitely long soft sheets (not reported here). When performing322

parameter sweep, we find that non-trivial directional motions only occur when σb323

goes up to O(10−2). As shown in panel (c) and (d) for a typical case at σb = 0.05324

(also see movie 5 and 6), the swimmer keeps translating and rotating but difficult325

reaching a steady-state.326

These results suggest that performing directional motions requires a swimmer327

to be sufficiently stiff, which facilitates the generation of desired undulatory328

deformations to gain net motions (Taylor (1951)). Once a finite-length swimmer329

starts moving in nematic LCPs, an asymmetric polymer force distribution330

automatically builds around the body with a non-zero net torque to drive the331

entire-body rotation. To quantitatively examine the role of σb in determining332

the rotational dynamics, we track the variation of the swimmer’s orientation333

vector êU using a moving average with T = 1334

〈φ〉 (t) =
1

T

∫ t+T

t

arccos (|êU (t′) · êx|) dt′. (3.12)335

As typical examples shown in figure 5(a) and (b), σb needs to go beyond O (10−2)336

to successfully reorient when the swimmer is initially misaligned with the director.337

Similar reorientation dynamics have been consistently observed in the nematic338

regime when choosing ζ ∼ O(1). To estimate the rotation time scale τR, we fit339

the time-dependent curves to a saturation function of the form 〈φ〉 (t) ∼ 1 −340

exp (−t/τR). As shown in panel(c) for the typical τR − θ curves plotted at two341

Rapids articles must not exceed this page length
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t = 20
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θ = π/3

(b)

t = 60
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σb = 0.05
θ = π/6

(c)

x

y
σb = 0.05
θ = π/3

(d)

Figure 4: Sequential snapshots of finite-length (Ls = 1) swimmers undulating in
nematic LCPs (ζ = 8, β = 0.005, Pe = 1, Pe−1

t = 0.02), when choosing the
different bending stiffness (σb = 0.005, 0.05) and initial angles (θ = π/6, π/3).

The background shows the typical nematic director distributions at certain time
instants. The initial shape is marked by the black color. In panel(a) and (b),

typical instantaneous shapes at quasi steady states are marked by purple color;
in panel(c) and (d), the transient shapes are taken at t = 20 (red), 40 (blue), 60
(purple), 80 (green), with the green arrow denoting the swimming direction at
t = 80. Insets in (a,b): Instantaneous polymer force Fp (s, t) at late times.

different values of σb, we see that soft swimmers generally rotates slower than stiff342

ones at any given θ. When σb is fixed, τR monotonically increases with θ, and the343

rotation time can be approximately one or two orders of magnitudes larger than344

the swimming period at large θ.345

Note that such anisotropic swimming behaviors are similar to those of346

squirmer, a coarse-grained micromechanical model of spherical active particles347

with specified slip velocity conditions on the surface (Blake (1971)), in nematic348

fluids. Several studies (Lintuvuori et al. (2017); Daddi-Moussa-Ider & Menzel349

(2018); Mandal & Mazza (2021)) have found that pusher-type particles with350

local extensile flow generation tend to align with the director while puller-type351

particles with contractile flows will swim perpendicular to the director. Indeed,352
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Figure 5: Reorientation dynamics of the swimmer in nematic LCPs (ζ = 8)
measured by the moving-averaged orientation angle 〈φ(t)〉 when the initial
alignment angle is chosen as π/6 (a) and π/3 (b) where σb varies over three

orders of magnitudes.
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Figure 6: Rotation time τR as a function of the initial alignment angle θ for
σb = 0.2, 0.5.

besides the steady-state “parallel gait” discussed above, Lin et al. (2021)353

reported a weak contractile flow around an undulatory swimmer that is initially354

aligned perpendicular to the director. But it is unclear whether such a355

“perpendicular gait” is stable, since slow entire-body rotation may still occur356

when θ is close to π/2, suggesting small disturbances could cause the rotation.357

Interestingly, the hydrodynamically induced reorientation dynamics for358

misaligned swimmers agree with the stability condition suggested by Shi &359

Powers (2017). In their work, the imposed anchoring condition is converted to360

assess the exerted (local) torque per unit length to be proportional to sin 2θ. It361

appears that the only stable steady-state motion (or equilibrium solution) is to362
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swim parallel with the director, i.e., θ = 0, such that the local torque vanishes.363

Nevertheless, performing quantitative analysis of the rotational stability364

condition for a finite-length swimmer using Doi’s Q−tensor model could be365

laborious, and will be the subject of possible future investigations.366

4. Conclusion and discussion367

To summarize, we have adopted the same Q−tensor model developed in our368

previous publication by Lin et al. (2021) to generally study the anisotropic369

motions of an undulatory swimmer in the nematic LCPs when the swimmer has370

an arbitrary alignment angle θ with respect to the director. For an371

infinite-length swimming sheet undergoing small-amplitude undulations, both372

the asymptotic analysis (i.e., Taylor’s swimming sheet model) and IB373

simulations capture the similar orientation-dependent swimming speed with374

respect to the alignment angle, which exhibits a non-monotonic trend of375

enhancement and retardation. Moreover, we have demonstrated that376

systematically varying the bending stiffness can lead to drastic swimming377

behaviors when subjected to the same type of actuation. Especially, we find378

that the swimmer has to be sufficiently stiff to produce desired undulatory379

deformation to gain net motions. When initially misaligned with the nematic380

director, a finite-length swimmer with a minimal bending stiffness can gradually381

reorient before it swims steadily along with the director, when subjected to a382

net polymer torque arising from LCPs. Note that our Q−tensor model is383

essentially apolar, and strictly satisfies angular-moment conservation at the384

microscopic level (Feng et al. (2000); Lin et al. (2021)). Hence, the net polymer385

torque is purely attributed to the finite length effect that effectively breaks the386

fore-aft symmetry of the LCP’s orientation structures surrounding the387

swimmer, leading to asymmetric near-body polymer force distribution. We388

emphasize that besides the typical cases presented above, qualitatively similar389

anisotropic swimming behaviors and reorientation dynamics have been390

consistently observed in nematic LCPs.391

Noticeably, some interesting agreements have been observed between the Doi-392

and EL-type models that incorporate different mechanisms for resolving the393

reciprocal coupling between the suspended polymers, moving structures, and394

fluid flows. For example, we have shown that the asymptotic solution of the395

mean swimming speed of Taylor’s swimming sheet in equation (3.4) has the396

same θ-dependency as that derived from an EL model by Shi & Powers (2017)397

in the transversely isotropic limit. Also, the reorientation of a misaligned398

finite-length swimmer captured in this study confirms the stability condition399

derived by the same authors in terms of the exerted local torque by LCPs400

arising from the anchoring conditions. However, we emphasize that Doi’s401

Q−tensor model doesn’t require enforcing the rods’ orientation directions along402

the swimmer body via any anchoring conditions. Instead, the variations of403

orientational structures are simultaneously determined by the induced404

near-body fluid flows and the LCP’s intrinsic nematic elasticity, which is mainly405

characterized by the MS potential and the rotational diffusion. Without406

specifying an explicit structure-orientation coupling at the solid boundary, the407

produced extra stresses effectively drive the fluid motions in a mean-field408

fashion, and couple with the undulatory swimming motions hydrodynamically409

via the no-slip conditions.410
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To seek further connections between the two different LC models, one may411

consider to add the contributions of distortion elasticity to the MS potential412

(Greco & Marrucci (1992)) to Doi’s model, leading to the equations that can413

mathematically recover the director formulation of the EL model in the limit of414

weak flow and mild spatial distortion (Feng et al. (2000)). Also, the high-order415

orientational derivatives in the distortion elastic terms require imposing416

additional boundary conditions for the orientation field, equivalent to applying417

anchoring conditions. Then it is straightforward to examine how swimming418

dynamics will change in response to the additional structure-orientation419

coupling. Moreover, it will be intriguing to study undulatory swimming motions420

in three dimensions where the nematic field may exhibit far more complex421

topological structures to impact the resultant FSIs and associated gait stability.422
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Appendix A. Numerical method validation430

We use the same spectral IB method developed by Lin et al. (2021). Here we431

show two benchmark studies for an infinite swimming sheet in both isotropic432

and anisotropic fluids. As shown in figure 7, we first study the undulatory433

swimming motions of infinite flexible sheet in an Oldroyd-B (OB) fluid where434

the dimensionless Deborah (De) number, playing a similar role as Pe in the LC435

cases, is defined as the wave frequency by the OB fluid relaxation time. We436

measured the mean center-of-mass swimming speed UOB of the swimmer, and437

compared the speed ratio with the numerical data by Salazar et al. (2016) and438

the asymptotic results for Taylor’s swimming sheet by Lauga (2007)439

UOB
UN

=
1 +

(
ηs

ηs+ηp

)
De2

1 + De2
, (A 1)440

where ηs and ηp respectively represent the solvent and polymer contribution to441

the viscosity. The Newtonian speed UN can be derived as442

UN =
1

2

(ω
k

)
(Ak)2 + O (Ak)

4
. (A 2)443

Next, we performed the convergence tests for an infinite stiff swimming sheet444

swimming in LCPs as shown in figure 8 where we examine the time-dependent445

velocity components by varying the grid width, time step, domain size, and446

stiffness separately.447

Appendix B. Asymptotic analysis448

In the moving frame of the swimmer, we consider the vertical displacement of an449

infinitely-long wavy sheet with the described traveling-wave motion as y(x, t) =450
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Figure 7: Time-averaged center-of-mass speed UOB for undulatory swimming
motion in an Oldroyd-B fluid when choosing De = 1.
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Figure 8: Convergence tests with the time-dependent centre-of-mass velocity ux

and uy when changing (a) the Eulerian grid width, (b) the domain size, and (c)
the bending stiffness σb . These parameters are fixed: σs = 500, σb = 0.5, A=

0.01, Pe = 1, Er = 1, ζ = 8, Pet
−1 = 0.02, β = 0.0005 and θ = π/6.

A sin(kx− ωt). We then rescale it as451

y(x, t) = ε sin(x− t), (B 1)452

by choosing 1/k the length scale, 1/ω the time scale, and ω/k the velocity scale.453

To model Taylor’s swimming sheet, we assume a small amplitude ε = Ak �454

1. Following the classical work by Lauga (2007), we adopt a stream function455

ϕ(x, y, t) to describe the two-dimensional incompressible flow as456

u = ∇× (ϕêz) . (B 2)457

Hence the velocity components can be computed as ux = ∂ϕ/∂y, uy = −∂ϕ/∂x.458

The boundary conditions for ϕ(x, y, t) arise from conditions at infinity and on459

the undulatory sheet with a steady speed −ULC êx. Then the far-field condition460
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at y =∞ becomes461

∇ϕ|(x,∞) = ULC êy. (B 3)462

On the swimming sheet, the no-slip velocity condition is imposed as463

∇ϕ|(x,ε sin(x−t)) = ε cos(x− t)êx. (B 4)464

Recalling the forced Stokes equation465

∇p = ∆u + Er∇ · τp, (B 5)466

where polymer stress, when ignoring β, is given as467

τp =

(
D− I

2

)
− ζ (D ·D−D : S) . (B 6)468

We focus on the effects of alignment angle θ on swimming speed in the nematic469

regime, and adopt a classical quadratic closure to approximate the fourth-moment470

S (Doi & Edwards (1988)) as471

S = DD, (B 7)472

which facilitates analytical manipulation in the following. Note that this closure473

becomes more and more accurate in deep nematic when ζ � ζc. Now the evolution474

equation of D reads475

∇
D+2E : S = − 1

Pe

(
D− I

2

)
+

ζ

Pe
(D ·D−D : S), (B 8)476

with
∇
D an upper-convected time derivative. When applying the curl on both sides477

of equation (B 5), we have478

∇× (∇ · τp) =
1

Er
∇4ϕêz. (B 9)479

Next, we expand all the variables with ε to the second order and δ = ζ−1(ζ � 1)480

to the first order, i.e.,481

ϕ = ε(ϕ(10) + δϕ(11)) + ε2(ϕ(20) + δϕ(21)) +O
(
ε3, δ2

)
, (B 10)482

τ = (τ (00) + δτ (01)) + ε(τ (10) + δτ (11)) + ε2(τ (20) + δτ (21)) +O(ε3, δ2), (B 11)483

D = (D(00) + δD(01)) + ε(D(10) + δD(11)) + ε2(D(20) + δD(21)) +O(ε3, δ2),
(B 12)

484

ULC = ε(U
(10)
LC + δU

(11)
LC ) + ε2(U

(20)
LC + δU

(21)
LC ) +O

(
ε3, δ2

)
. (B 13)485486

After some manipulations, we can derive the following governing equations at487

different orders:488

O (ε0, δ−1)order:489 ∑
k+l=0

(
D(k0) ·D(l0) −D(k0) : S(l0)

)
= 0. (B 14)490

O (ε0, δ0)order:491

τ (00)
p =

(
D(00) − I

2

)
−
∑
k+l=0

∑
i+j=1

(
D(ki) ·D(lj) −D(ki) : S(lj)

)
, (B 15)492
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∂D(00)

∂t
+
∑
k+l=0

∑
i+j=0

[
u(ki) · ∇D(lj) −

(
D(ki) · ∇u(lj) +∇u(lj)T ·D(ki)

)
+ 2E(ki) : S(lj)

]
= − 1

Pe

(
D(00) − I

2

)
+

1

Pe

∑
k+l=0

∑
i+j=1

(
D(ki) ·D(lj) −D(ki) : S(lj)

)
.

(B 16)493

O (ε0, δ1)order:494

τ (01)
p = D(01) −

∑
k+l=0

∑
i+j=2

(
D(ki) ·D(lj) −D(ki) : S(lj)

)
, (B 17)495

∂D(01)

∂t
+
∑
k+l=0

∑
i+j=1

[
u(ki) · ∇D(lj) −

(
D(ki) · ∇u(lj) +∇u(lj)T ·D(ki)

)
+ 2E(ki) : S(lj)

]
= − 1

Pe
D(01) +

1

Pe

∑
k+l=0

∑
i+j=2

(
D(ki) ·D(lj) −D(ki) : S(lj)

)
.

(B 18)496

O (ε1, δ−1)order:497 ∑
k+l=1

(
D(k0) ·D(l0) −D(k0) : S(l0)

)
= 0. (B 19)498

O (ε1, δ0)order:499

τ (10)
p = D(10) −

∑
k+l=1

∑
i+j=1

(
D(ki) ·D(lj) −D(ki) : S(lj)

)
, (B 20)500

∂D(10)

∂t
+
∑
k+l=1

∑
i+j=0

[
u(ki) · ∇D(lj) −

(
D(ki) · ∇u(lj) +∇u(lj)T ·D(ki)

)
+ 2E(ki) : S(lj)

]
= − 1

Pe
D(10) +

1

Pe

∑
k+l=1

∑
i+j=1

(
D(ki) ·D(lj) −D(ki) : S(lj)

)
.

(B 21)501

O (ε1, δ1)order:502

τ (11)
p = D(11) −

∑
k+l=1

∑
i+j=2

(
D(ki) ·D(lj) −D(ki) : S(lj)

)
, (B 22)503

∂D(11)

∂t
+
∑
k+l=1

∑
i+j=1

[
u(ki) · ∇D(lj) −

(
D(ki) · ∇u(lj) +∇u(lj)T ·D(ki)

)
+ 2E(ki) : S(lj)

]
= − 1

Pe
D(11) +

1

Pe

∑
k+l=1

∑
i+j=2

(
D(ki) ·D(lj) −D(ki) : S(lj)

)
.

(B 23)504

O (ε2, δ−1)order:505 ∑
k+l=2

(
D(k0) ·D(l0) −D(k0) : S(l0)

)
= 0. (B 24)506
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O (ε2, δ0)order:507

τ (20)
p = D(20) −

∑
k+l=2

∑
i+j=1

(
D(ki) ·D(lj) −D(ki) : S(lj)

)
, (B 25)508

∂D(20)

∂t
+
∑
k+l=2

∑
i+j=0

[
u(ki) · ∇D(lj) −

(
D(ki) · ∇u(lj) +∇u(lj)T ·D(ki)

)
+ 2E(ki) : S(lj)

]
= − 1

Pe
D(20) +

1

Pe

∑
k+l=2

∑
i+j=1

(
D(ki) ·D(lj) −D(ki) : S(lj)

)
.

(B 26)509

O (ε2, δ1)order:510

τ (21)
p = D(21) −

∑
k+l=2

∑
i+j=2

(
D(ki) ·D(lj) −D(ki) : S(lj)

)
, (B 27)511

∂D(21)

∂t
+
∑
k+l=2

∑
i+j=1

[
u(ki) · ∇D(lj) −

(
D(ki) · ∇u(lj) +∇u(lj)T ·D(ki)

)
+ 2E(ki) : S(lj)

]
= − 1

Pe
D(21) +

1

Pe

∑
k+l=2

∑
i+j=2

(
D(ki) ·D(lj) −D(ki) : S(lj)

)
.

(B 28)512

At the O (ε0)order, we can solve for homogeneous solutions. Now the boundary513

conditions at the O (ε1)order become:514

O (ε1, δ0)order:515

∇ϕ(10)
∣∣∣
(x,∞)

= U
(10)
LC êy, (B 29)516

517

∇ϕ(10)
∣∣∣
(x,0)

= cos(x− t)êx. (B 30)518

O (ε1, δ1)order:519

∇ϕ(11)
∣∣∣
(x,∞)

= U
(11)
LC êy, (B 31)520

521

∇ϕ(11)
∣∣∣
(x,0)

= 0. (B 32)522

Note that in the above, instead of being satisfied exactly along the wavy body,523

the no-slip boundary condition is projected onto the x−axis, i.e., at y = 0. And524

at the O (ε2)order, they take the form525

O (ε2, δ0)order:526

∇ϕ(20)
∣∣∣
(x,∞)

= U
(20)
LC êy, (B 33)527

528

∇ϕ(20)
∣∣∣
(x,0)

= − sin(x− t)∇
(
∂ϕ(10)

∂y

)
|(x,0). (B 34)529

O (ε2, δ1)order:530

∇ϕ(21)
∣∣∣
(x,∞)

= U
(21)
LC êy, (B 35)531
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532

∇ϕ(21)
∣∣∣
(x,0)

= − sin(x− t)∇
(
∂ϕ(11)

∂y

)
|(x,0). (B 36)533

To proceed, we choose to decompose the steady-state configuration tensor as534

D(00) = M(θ)D(00)M−1(θ) (B 37)535

where D(00) = diag
(
D

(00)
11 , 1−D(00)

11

)
, D

(00)
11 > 1/2, and the rotation matrix536

M(θ) =

(
cos θ − sin θ
sin θ cos θ

)
. Then we solve D(00) via equation (B 14) to obtain537

0 = M−1(θ)
∑
k+l=0

(
D(k0) ·D(l0) −D(k0) : S(l0)

)
M(θ)

=
∑
k+l=0

(
D(k0) ·D(l0) −

∑
l1+l2=0

(
D(k0) : D(l10)

)
D(l20)

) (B 38)538

which yields the equilibrium solutions539

D(00) =

(
1 0
0 0

)
, D(01) =

(
− 1

2
0

0 1
2

)
, D(02) =

(
− 1

4
0

0 1
4

)
. (B 39)540

We denote541

F = ∇u =

(
F11 F12

F21 −F11

)
. (B 40)542

At the O (ε1, δ0)order, we solve configuration tensor D(10) as543

D(10) = D
(10)
12

(
0 1
1 0

)
, (B 41)544

which leads to τ
(10)
p = 0 and D

(11)
11 = 0. We can further derive545

∇4ϕ(10) = 0. (B 42)546

Given the boundary conditions, we obtain the solution547

ϕ(10)(x, y, t) = (1 + y)e−y sin(x− t), (B 43)548

549

U
(10)
LC = 0, (B 44)550

leading to the solution551

D
(10)
12 = ye−y cos(x− t+ 2θ) + e−y cos(x− t). (B 45)552

At the O (ε1, δ1)order, using equation (B 22), we can derive553

τ
(11)
p = D

(12)
11

(
1 0
0 −1

)
. (B 46)554
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Using equation (B 23), we obtain the equations555

1

Pe
τ
(11)
p,11 − 2F

(10)
11 = 0, (B 47)556

∂D
(11)
12

∂t
− F (11)

12 +
1

2

(
F

(10)
12 − F (10)

21

)
= 0. (B 48)557

Then we can obtain the solutions558

τ
(11)
p,11 = D

(12)
11 = −2ye−y cos(x− t+ 2θ)Pe, (B 49)559

which leads to560

∇4ϕ(11) = 4(y − 1)e−y sin(x− t+ 4θ)ErPe. (B 50)561

Given the boundary conditions in equations (B 31-B 32), we obtain the solution562

ϕ(11)(x, y, t) =
1

6
y3e−y sin(x− t+ 4θ)ErPe, (B 51)563

564

U
(11)
LC = 0. (B 52)565

Substituting equation (B 51) into (B 47), we can derive the solution566

D
(11)
12 =

1

6
ErPe[(y3 − 3y2 +

3

2
y)e−y cos(x− t+ 6θ)

+ (3y2 − 3y)e−y cos(x− t+ 4θ) +
3

2
ye−y cos(x− t+ 2θ)]− e−y cos(x− t).

(B 53)567

At the O (ε2, δ0)order, we solve configuration tensor D(20) via equation B 24568

and get the form569

D
(20)
11 = −D(10)

12

2

. (B 54)570

Using equation (B 25), we have571

τ
(20)
p =

(
D

(21)
11 − 2D

(20)
11 + 2D

(10)
12 D

(11)
12 −D

(10)
12

2
)(

1 0
0 −1

)
. (B 55)572

Using equation (B 26), we can derive the equations573

∂D
(20)
11

∂t
+ 2F

(10)
12 D

(10)
12 +

1

Pe
τ
(20)
p,11 = 0, (B 56)574

∂D
(20)
12

∂t
+
(
u(10) · ∇

)
D

(10)
12 − F

(20)
12 + 2E

(10)
11 D

(10)
12 = 0. (B 57)575

Then we can obtain576

τ
(20)
p,11 = −Pe

∂D(20)
11

∂t
+ 2F

(10)
12 D

(10)
12

 = 0, (B 58)577

leading to578

∇4ϕ(20) = 0. (B 59)579
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Applying the boundary conditions (B 33-B 34), we obtain580

ϕ(20)(x, y, t) = −1

2
ye−2y cos(2x− 2t) +

1

2
y, (B 60)581

582

U
(20)
LC =

1

2
. (B 61)583

At the O (ε2, δ1)order, using equation (B 27), we first derive the equations584 
τ
(21)
p,11 = D

(22)
11 − 2D

(21)
11 − 2D

(10)
12 D

(11)
12 + 2D

(10)
12 D

(12)
12 +D

(11)
12

2

− 1
2
D

(10)
12

2

,

τ
(21)
p,12 = 2D

(10)
12 D

(12)
11 ,

τ
(21)
p,22 = −τ (21)p,11 .

(B 62)585

Using equation (B 28), we can further derive586 
∂D

(21)
11

∂t
− 2E

(20)
11 + 2F

(11)
12 D

(10)
12 + 2F

(10)
12 D

(11)
12 − 2E

(10)
12 D

(10)
12 + 1

Pe
τ
(21)
p,11 = 0,

∂D
(21)
12

∂t
+
(
u(10) · ∇

)
D

(11)
12 +

(
u(11) · ∇

)
D

(10)
12 − F

(21)
12 − 1

2

(
F

(20)
21 − F (20)

12

)
+2D

(10)
12

(
E

(11)
11 − E

(10)
11

)
+ 2E

(10)
11 D

(11)
12 + 1

Pe
τ
(21)
p,12 = 0.

(B 63)587

Then we obtain588

τ
(21)
p,11 = 2Pe

(
2E

(10)
12 D

(10)
12 + E

(20)
11

)
. (B 64)589

We applying the same manipulation used in equation (B 9) and take the time590

averaging to get the form of ϕ(21)591

d2

dy2
〈ϕ(21)〉(x, y) = 2ErPe

(
cos 2θy2 + cos 4θy

)
e−2y. (B 65)592

Applying the boundary conditions leading to the solution593

d

dy
〈ϕ(21)〉(x, y) = −2ErPe

(
cos 2θ

2
y2 +

cos 4θ + cos 2θ

2
y +

cos 4θ + cos 2θ

4

)
e−2y

+
ErPe

2
(cos 4θ + cos 2θ) ,

(B 66)594595

U
(21)
LC =

ErPe

2
(cos 4θ + cos 2θ) . (B 67)596

Hence, we can eventually solve for the speed ratio at the O (ε2, δ1) order as597

ULC
UN

=
ε2
(
U

(20)
LC + δU

(21)
LC

)
1
2
ε2

= 1 +
ErPe

ζ
(cos 4θ + cos 2θ) . (B 68)598
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