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Microorganisms can efficiently navigate in anisotropic complex fluids, but the
precise swimming mechanisms remain largely unexplored. Their dynamics are
determined by the interplay between multiple effects, including the fluid’s
orientation order, swimmer’s undulatory gait, and the finite length. Here we
extend the numerical study of the two-dimensional undulatory motions of a
flexible swimmer in lyotropic liquid-crystalline polymers (LCPs) by Lin et al.
(2021) to the scenarios of arbitrary swimming directions with respect to the
nematic director. The swimmer is modeled as a nearly inextensible yet flexible
fiber with imposed traveling-wave like actuation. We investigate the
orientation-dependent swimming behaviors in nematic LCPs for an infinite long
sheet (i.e., Taylor’s swimming sheet model) and finite-length swimmers. We
demonstrate that the swimmer must be sufficiently stiff to produce undulatory
deformations to gain net motions. Moreover, a motile finite-length swimmer can
reorient itself to swim parallel with the nematic director, due to a net body
torque arising from the asymmetric distribution of the polymer force along the
body.

1. Introduction

There have been extensive studies on understanding swimming and locomotion
of biological swimmers (e.g., bacteria and microalgae) in microfluidics
environments where inertia is negligible (Purcell (1977); Lauga & Powers
(2009)). Especially, the recent advancements in nanotechnology and fabrication
permit biomimetic medical micro-/nano-robots to navigate in non-Newtonian
synthetic or biological fluids (Nelson et al. (2010); Li et al. (2017); Palagi &
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Fischer (2018); Wu et al. (2020)). Understanding the microscale locomotion
dynamics in complex anisotropic fluids is essential to design such microrobots
that can efficiently operate inside the body for clinical applications. Of
particular interest here is to uncover the propulsion mechanism of undulatory
microswimmers in a class of anisotropic fluids, such as liquid-crystalline
polymers, with orientation-dependent physical and material properties. For
example, experimental observations have suggested that when placed in
solutions of liquid crystal (LC) molecules (chromonic liquid-crystal disodium
cromoglycate), swimming bacteria may exhibit intriguing behaviors, such as
nematic director guided moving trajectories and activity-triggered topological
defect dynamics, due to the coupling between the flow generation and the
orientational order of the liquid medium (Zhou et al. (2014); Lavrentovich
(2016); Zhou (2018)).

Nevertheless, compared to the large body of literature on understanding the
dynamics in the isotropic Newtonian or non-Newtonian fluids, so far there have
been only a minimal number of theoretical and computational models developed
to understand swimming and locomotion in anisotropic fluids (Zhou et al.
(2017); Lintuvuori et al. (2017); Daddi-Moussa-Ider & Menzel (2018); Holloway
et al. (2018); Cupples et al. (2018); Rajabi et al. (2021)). Most of these studies
treat the fluid phase to be suspensions composed of small LC molecules, and
the corresponding mathematical descriptions of the constitutive relations are
often built upon the classical LC models of Ericksen-Leslie (EL) or Landau-de
Gennes type that uses phenomenological energy functions to characterize the
bend, twist, and splay deformations for the LC’s orientational topological
structures (DeGennes (1974); Larson (1999)). Also, undulatory microswimmers
are modeled as either a rigid rodlike particle (Zhou et al. (2017)) or infinitely
long swimming sheets (Krieger et al. (2015, 2019)). Recently, Lin et al. (2021)
developed a fluid-structure interaction model to study the anisotropic
undulatory swimming motion of a finite-length flexible swimmer in LC fluid for
the first time. Instead of using similar phenomenological, top-down LC models,
we adopted a bottom-up (Q—tensor model coarse-grained form Doi’s kinetic
theory (Doi & Edwards (1988)) to describe the ambient fluid as suspensions of
long, stiff liquid-crystalline polymers. Combining asymptotic analysis and direct
simulations, we have studied and illustrated the enhanced (retarded) swimming
motions in the nematic regime when the swimming direction is parallel with
(perpendicular to) the nematic director.

Using the same (Q—tensor model of the Doi type, we extend the studies of
simple parallel or perpendicular gaits to more general scenarios when the
swimming direction is initially misaligned with the director. This work is also
inspired by the analytical model by Shi & Powers (2017) who obtained the
asymptotic solutions of a Taylor swimming sheet in solutions of small LC
molecules with an arbitrary alignment angle. Moreover, they demonstrated that
the misalignment between the swimming sheet and the director field could
effectively produce a net body torque via the imposed anchoring condition of
the director field on the wavy body. It is natural to ask (i) whether the
misalignment condition will similarly lead to net polymer torque when using
Doi’s Q—tensor that doesn’t require any anchoring condition to enforce
alignment, and (ii) how a finite-length swimmer responds to such
torque-imbalanced conditions arising from the LCP phase. Seeking the answers
to these questions will provide quantitative understandings of both efficiency
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3

and stability of undulatory gaits of microswimmers, either biological or
man-made, when navigating in anisotropic fluids.

The paper is organized as follows. Section 2 revisits the mathematical
formulation of the fluid-structure interaction framework by Lin et al. (2021). In
Section 3, we perform the asymptotic solutions of Taylor’s swimming sheet, and
carry out numerical simulations for infinitely long sheets and finite-length
swimmers using the Immersed Boundary (IB) method. Finally, we conclude and
make some discussions in Section 4. A few benchmarks studies and the
derivation of the asymptotic solutions are presented in the appendices.

2. Mathematical Model

We first set up the problem and review the dimensionless equations of the
mathematical model developed by Lin et al. (2021) for completeness. Consider a
one-dimensional flexible swimmer of length L,, whose undulatory kinematics
can be described by the parametric form X (s,t) in terms of the local arc length
s € [0, L] and time ¢ > 0. The swimmer is initially positioned along the x—axis
initially, with an imposed target body curvature of a traveling-wave form in the
Lagrangian frame as

Ko (s,t) = —k*Asin (ks — wt) . (2.1)

Equation (2.1) describes the (rightward) propagating traveling waves with
amplitude A, wavenumber k, and angular frequency w. In the following, we fix
the wavenumber &k = 27 and angular frequency w = 2. Imposing actuation in
equation (2.1) drives elastic deformations to yield a force distribution F, (X)
along the body, which effectively leads to periodic shape changes (or swimming
gaits). Following Peskin (2002), the Lagrangian body force can be derived by
performing the variational derivative upon the elastic energy F, i.e.,

SE[X (s,1)]
X

Here the total elastic energy E [X] includes the contributions from both stretching
(denoted by subscript s) and bending (denoted by subscript b) deformation (Fauci
O 0X

& Peskin (1988))
BIX (s,8)] = Q/QL ('83 - 1>2ds—i— (;b/g (‘?;jf -n—/io)zds (2.3)

where n denotes the local normal direction. After computing the elastic forces in
the moving Lagrangian frame (denoted by {2;), we then convert it to the Eulerian
form f, (x,t) in the fixed coordinates as

F. (X,t) = (2.2)

£ (x,1) = /Q F, (5,4) 5 (x — X (s,1)) ds, (2.4)

where § denotes the Dirac delta function that maps between the Eulerian and
Lagrangian domain (Peskin (2002)), written as

5(X—X):%p (x;LX>p<y;LY>. (2.5)
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123 Here h denotes the Eulerian mesh width, and the function p(r) is constructed
124 using four adjacent points as

07 |T’ 2 27
pr) =4t (52— V=TF12pT=47), 2>Ir[>1,  (26)
1 3—2[7‘|+\/1—|—4|r|—4r2), 1>|r| >0,

126 which guarantees momentum conservation (Peskin (2002)).

127 In the fluid phase (denoted by (2;), the constitutive evolution equation for
128 LCPs hydrodynamically couples with the fluid velocity field u, and takes the
129 following form

v ¢ 1 I 1
130 D+2E.S—Pe(D-D—D.S)—Pe(D—2>+PetAD, (2.7)

131  where B = %—? +u-VD — (D-Vu+ Vu” - D) is the so-called upper-convected
132 time derivative, E = 1 (Vu+ Vu”) is the symmetric strain-rate tensor. And, D
133 and S are the second and fourth moment of a probability distribution function
134 for rodlike particles (Doi & Edwards (1988)), where S can be reconstructed by
135 the lower-order moments via various moment closure methods (e.g., Bingham
136 closure (Bingham (1974); Gao et al. (2015))). The maximal nonnegative
137 eigenvalue and the associated unit eigenvector for the two-dimensional
138 order-parameter tensor Q = D — I/2 define the scalar-order parameter and the
139 nematic director, respectively, which characterize the topological features of the
140 orientational structures of LCPs. In all simulations, we set up the initial LC
141 field such that its director has a certain alignment angle 6 € [0, 7] with respect
142 to the swimmer (see the schematic inserted in figure 1(a)). The coefficient ¢
143 represents the strength of a mean-field alignment torque arising from the
144 Maier-Saupe (MS) potential that effectively models the enhanced steric
145 interactions between polymers at a finite or high volume fraction (Doi &
146 Edwards (1988)). To resolve the fluid-structure interactions (FSIs), we solve the
147 Stokes equations

148 V-u=0, (2.8)
149 Vp—Au=ErvV. .7, +f. (2.9)

150 Here the first forcing term on the right-hand-side of (2.9) represents the force
151 exerted upon the ambient fluid from the undulatory swimmer. The second term
152 is due to the extra stress of LCPs

153 Tp:(D—;)—C(D-D—S:D)—i—BE:S, (2.10)

154 In the above equations, we introduce two Péclet numbers, Pe and Pe;, which
155 characterize the ratio of the time scales for rod’s rotation and transport over that
156 of undulation (i.e., w™'), respectively. Here Pe characterizes the time evolution
157 of the orientation field. In this study, we focus on the regime of Pe ~ O(1)
158 when the non-Newtonian swimming behaviors become prominent. Meanwhile,
159 Pe; is chosen to be at least one order of magnitude higher than Pe so that the
160 translational diffusion effect is small or negligible. The Ericksen number is chosen
161 to be Er ~ O(1) that characterizes the relatively strong coupling between the
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LCPs and the viscous solvent (Krieger et al. (2015)). In addition, the stress term
with a small empirical “crowdedness” factor 5 ~ O(1072) — O(1072) (Feng et al.
(2000)) takes into account the inextensibility of rodlike particles. We emphasize
that our model doesn’t require imposing additional boundary conditions (e.g.,
anchoring condition) to couple the D field and the swimmer motion. Hence, unlike
the EL model that enforces the LC molecules’ orientations on the swimmer’s
body by imposing anchoring conditions, here the orientation variation of LCPs
are driven by the induced near-body fluid flows as a result of FSIs.

In the following, we simulate the swimmer’s undulatory motions in lyotropic
LCPs with an arbitrary alignment angle using the spectral IB method
developed by Lin et al. (2021). We treat the swimmer to be nearly inextensible
by selecting a large stretching stiffness o, = 500 but varying the bending
stiffness over a wide range o, ~ O(107%) — O(107!). We choose the Lagrangian
line segment As and the Eulerian grid width h as As = 4h = 1/32 and the time
step At = 6.25 x 107°. Note that the constitutive model in (2.7) admits both
the isotropic and nematic equilibrium states, and hence naturally captures the
isotropic-nematic (I-N) phase transition when ( is beyond a certain critical
value (. ((. = 4 in 2D). Here we focus on studying the swimming mechanisms in
the nematic regime (i.e., { > (.) where the nematically aligned LC structures
lead to intriguing anisotropic swimming behaviors. It needs to be mentioned
that when non-dimensionalizing the governing equations, to flexibly model
swimmers of either a finite and an infinite length, we choose the actual wave
speed and period of the imposed traveling-wave signal as the velocity (typically
on the order of several um/s) and time (on the order of a few seconds) scale,
respectively, and 2vkgT as the LCP’s stress scale with v being LCP’s effective
volume fraction (Lin et al. (2021)). We refer the reader to our previous
publication by Lin et al. (2021) for more details of the derivation of the
(Q—tensor model and the non-dimensionalization process. In addition, more
benchmark studies of the IB algorithm for an infinite swimming sheet are
presented in Appendix A.

3. Results and Discussion
3.1. Asymptotic analysis of Taylor’s swimming sheet

To understand the swimming mechanisms at different (initial) alignment angle
0, we first perform an asymptotic analysis for Taylor’s swimming sheet of an
infinite length (Taylor (1951); Lauga (2007); Shi & Powers (2017); Lin et al.
(2021)) in strongly-aligned nematic LCPs (i.e., ( — 00). Instead of imposing a
target curvature in (2.1), we describe the time-dependent undulatory motion by
specifying the kinematics of the vertical displacement in the moving coordinate
as

y(z,t) =esin(z —t), <1, (3.1)

which corresponds to the limit of o, — oo when the swimmer precisely follows the
imposed time-varying curvature. To facilitate analysis, we neglect the crowdness
effect (i.e., B =0) and the translational Brownian diffusion (i.e., Pe; ' — 0), and
employ a stream function ¢ to replace the incompressible fluid velocity such that

u=V x (¢8,) (3.2)
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where €, is the unit vector pointing to the out-of-place direction. Then we
impose a no-slip condition on the wavy sheet, and perform asymptotic analyses
by expanding all the variables in the form of f(9) with respect to ¢ (denoted by
index i) and (™! (denoted by index j). After some algebraic manipulations, we
can obtain the asymptotic solutions for the mean swimming speed at the order
of €2, i.e.,

1
¢

which leads to the speed ratio by comparing with the swimming speed in the
Newtonian fluid (with the subscript “N”) when neglecting the higher-order terms
of o(e?)

Ue = <U£269) + Ufé)) e?+o0(?), (3.3)

ULC — 14 Er Pe
Un ¢

Note that at § = 0 and 7/2, the above equation recovers the results by Lin et al.
(2021) when expanding their asymptotic solutions with respect to (~*. The reader
is referred to Appendix B for the derivation details.

As shown in figure 1(a), the mean-speed ratio in (3.4) varies
non-monotonically with 8, and is symmetric about the perpendicular direction
at § = w/2. An enhanced swimming speed, i.e., Urc/Ux > 1, is observed near
0 = 0 or 7 for near-parallel swimming motions, with the maximum value at
6 = 0 (or m); while a retarded swimming motion (Urc/Uy < 1) occurs when 6
approaches the minimum value close to 7/4, at 0, = %arccos (—%). Such
f—dependent behavior is consistent with our previous study of the parallel
(# = 0) and perpendicular (§ = 7/2) swimming motions in LCPs by Lin et al.
(2021). Interestingly, this result also recovers the #—dependency derived by Shi
& Powers (2017) and Cupples et al. (2018) in the transversely isotropic limit of
the EL-type models.

To further validate our analytical predictions, we perform direct simulations
correspondingly for a relatively stiff (o, = 0.5) sheet undergoing a
small-amplitude (A = 0.01) undulation in strongly aligned LCPs (¢ = 50) with
the crowdness factor being ignored (8 = 0). To model an infinite-length
swimmer, we place it in a square box of size L, x L, = 1 x 1 with periodic
boundary conditions. Instead of directly setting Pe;' = 0, we choose
Pe, ' = 103, which effectively adds a small damping effect in order to stabilize
numerical solutions. We observe that for all simulations, when changing the
alignment angle 6 with respect to the director, the sheet quickly approaches
steady-state undulations while maintaining the swimming motions along the
x—axis. As shown in figure 1(b), the computed speed ratios indeed exhibit
quantitatively similar orientation-dependent swimming behaviors as panel(a).
We then calculate the net polymer force exerted on the swimmer by mapping
the force distribution in the FEulerian coordinates to the Lagrangian frame as

(cos 46 + cos 20) . (3.4)

— 1

Fult) = - /Q [V (6,0)8 (X(5) =) - ey, (3.5)

where the net force is projected along with the swimming direction defined by
the unit vector & = U/|U]|, with U the center-of-mass velocity of the swimmer.
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Figure 1: The mean-speed ratio Urc/Un of an infinite-length sheet as a
function of alignment angle 6 in nematic LCPs (¢ = 50, 8 = 0, Pe; ' = 0.001).
(a) Asymptotic solutions of Taylor’s swimming sheet. (b) Results of numerical
simulations for a stiff sheet when choosing o, = 0.5. The rescaled net polymer

force F, (c) and torque T, (d) as functions of time at different 6.

Similarly, we define the net polymer torque rescaled by the sheet length as
1
_ / / EX VT, (x,0)6 (X(s) — x) - 6.dxds, (3.6)
LS .QL Qf

where the unit vector €, points to the out-of-plane direction. As shown in
panel(c) for typical F,(t) curves obtained at different values of 6, the speed
enhancement at steady states directly correlates with a positive F,, indicating
that the polymer force distribution yields an effective thrust force to increase
the mean swimming speed; while F',(t) appears to be negative for all retarded
swimming cases, corresponding to an effective drag force to slow down the
swimmer speed, and its magnitude |F,| becomes larger and larger as 6 — 6,,
where Urc approaches its minimum value. Meanwhile, as shown in panel(d),
T,(t) always vary symmetrically about a zero mean, which well explains why an
infinite swimming sheet can keep the same swimming direction without being
subjected to any net body torque.
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Figure 2: Reorientation of a stiff (o5 = 0.5), finite-length (Ls = 1) swimmer in
nematic LCPs (¢ =8, 8 = 0.005, Pe = 1, Pe; ' = 0.02), initially when choosing
=m/6 (a-c) and /3 (d-f). (a,d) Sequential snapshots of swimmer shape
during the transient. The background shows the typical nematic director
distributions at certain time instants. The arrow denote the swimming direction
at quasi steady states. Insets: Instantaneous polymer force distributions
F, (s,t). The net polymer force (b,e) and torque (c,f) are plotted as functions of
time, with both the instantaneous (light-color lines) and the moving-averaged
(dark-color lines) values.

3.2. Direct simulation of a finite-length swimmer

Next, we examine the dynamics of a misaligned swimmer of length L, = 1 in a
periodic domain of size L, x L, = 4 x 4, and choose a finite amplitude A = 0.05
in actuation in equation (2.1). Unlike Taylor’s swimming sheet problem, deriving
the analytical or semi-analytical solution for a finite-length swimmer could be
delicate and far from being trivial. Therefore, in this section we rely on pure
numerical simulations to study the anisotropic swimming behaviors.

For all the stiff cases with o, = 0.5, it is seen that the swimmer can
simultaneously translate and rotate, seemingly subjected to a net body torque.
The swimmer shape change and trajectories during the transient reorientation
dynamics are shown in figure 2(a) and (d) for § = 7/6 (see movie 1) and /3
(see movie 2), respectively. As shown in the two supplemental movies, the
swimmer eventually performs steady-state undulatory swimming motions
parallel to the director. We examine the time evolution of the net polymer force
F,(t) (panels (b,e)) and torque T,(t) (panels(c,f)). To better analyze the
strongly oscillating data (marked as light-color solid lines), we calculate their
means (marked as dark-color solid lines) via moving averaging (Hardle &
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stiff (o5 = 0.5) swimmer superimposed on their magnitudes, corresponding to
the case in figure 2(a-c) when 8 = /6 initially.

Steiger (1995))
Fy=7 [ @ (37)

Ty0=7 [ Tawd, (3.8)

where the sliding time window T' = 1 is selected as the same as the undulation
period. Unlike the results of infinitely long sheets in figure 1(d), here T', varies
asymmetrically about zero with a positive mean <Tp> before reaching the
steady states, which hence effectively drives an entire-body, counter-clock-wise
rotation of the swimmer. In addition, we observe the swimmer will achieve an
enhanced speed at late times when swimming parallel with the director, due to
a positive mean (F,). The reorientation dynamics of a finite-length swimmer
can be also explained by examining the instantaneous polymer force
distribution in the Lagrangian frame, i.e.,

F,(s,t) = V-1, (x,t)d(X(s) — x) dx, (3.9)
2y
as shown in the insets of panel(a) and (d). Clearly, the Lagrangian polymer forces
near the head and tail are highly aligned with the director. In the meantime, the
distribution exhibits an apparent fore-aft asymmetry such that from head to tail,
not only the force magnitude increases, but also its direction completely reverses,
which leads to an effective non-zero body torque.
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We then examine the characteristic near-body polymer force and flow field in
the Eulerian frame by performing moving averages over one undulation period
T=1as

t+T
(£) (x,1) = % /t Vo (x,t)dt, (3.10)

() (x,) = ;/ﬁ u(x, ) dt. (3.11)

For the typical case at § = m/6 shown in figure 3(a-c), (f,) reveals a strong
(weak) polymer force generation near the tail (head) due to the hydrodynamic
coupling between the elastic structure and the LC field. Especially, at t = 0, the
resultant front-drag and rear-thrust forces are seen to be tilted with respect to
the swimmer, and are consistent with the Lagrangian force distribution in figure
2. At the steady-states, the near-body polymer force distribution recovers that
of the parallel swimming motions along with the director by Lin et al. (2021).
In panels(d-f), we show that the induced fluid flows remain extensile around the
swimmer, with the magnitude decaying as the swimmer gradually finishes during
reorientation.

Nevertheless, the dynamics of soft swimmers can be entirely different from
the stiff ones. As the examples shown in figure 4(a,b) where we choose o, to
be two orders of magnitudes smaller than the stiff cases shown in figure 2, i.e.,
o = 0.005, but keeping the other parameters the same, the swimmer barely moves.
When tracking the body-shape change (see movie 3 and 4), it turns out that the
swimmer quickly relaxes from the initially curved shape (black lines) to become
approximately straight (purple lines), with small-amplitude wiggling motions. As
shown in the insets, the Lagrangian force distribution F,(s,t) along the body
doesn’t show any correlations with the nematic director field. Similar results are
obtained for infinitely long soft sheets (not reported here). When performing
parameter sweep, we find that non-trivial directional motions only occur when o,
goes up to O(1072). As shown in panel (c) and (d) for a typical case at o, = 0.05
(also see movie 5 and 6), the swimmer keeps translating and rotating but difficult
reaching a steady-state.

These results suggest that performing directional motions requires a swimmer
to be sufficiently stiff, which facilitates the generation of desired undulatory
deformations to gain net motions (Taylor (1951)). Once a finite-length swimmer
starts moving in nematic LCPs, an asymmetric polymer force distribution
automatically builds around the body with a non-zero net torque to drive the
entire-body rotation. To quantitatively examine the role of o, in determining
the rotational dynamics, we track the variation of the swimmer’s orientation
vector éy using a moving average with 7' =1

1 t+T

(6) () = 7 / arccos (&g (1') - &) dt'. (3.12)

t

As typical examples shown in figure 5(a) and (b), o, needs to go beyond O (10~2)
to successfully reorient when the swimmer is initially misaligned with the director.
Similar reorientation dynamics have been consistently observed in the nematic
regime when choosing ¢ ~ O(1). To estimate the rotation time scale 7z, we fit
the time-dependent curves to a saturation function of the form (¢) (t) ~ 1 —
exp (—t/7r). As shown in panel(c) for the typical 7gp — 6 curves plotted at two
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Figure 4: Sequential snapshots of finite-length (L, = 1) swimmers undulating in

nematic LCPs (¢ = 8, 8 = 0.005, Pe = 1, Pe; * = 0.02), when choosing the

different bending stiffness (o, = 0.005,0.05) and initial angles (8 = 7/6,7/3).
The background shows the typical nematic director distributions at certain time

instants. The initial shape is marked by the black color. In panel(a) and (b),
typical instantaneous shapes at quasi steady states are marked by purple color;
in panel(c) and (d), the transient shapes are taken at ¢t = 20 (red), 40 (blue), 60
(purple), 80 (green), with the green arrow denoting the swimming direction at
t = 80. Insets in (a,b): Instantaneous polymer force F,, (s,t) at late times.
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different values of o, we see that soft swimmers generally rotates slower than stiff

ones at any given #. When oy is fixed, 7 monotonically increases with 6, and the

rotation time can be approximately one or two orders of magnitudes larger than
the swimming period at large 6.

Note that such anisotropic swimming behaviors are similar to those of
squirmer, a coarse-grained micromechanical model of spherical active particles
with specified slip velocity conditions on the surface (Blake (1971)), in nematic

fluids. Several studies (Lintuvuori et al. (2017); Daddi-Moussa-Ider & Menzel

(2018); Mandal & Mazza (2021)) have found that pusher-type particles with
local extensile flow generation tend to align with the director while puller-type
particles with contractile flows will swim perpendicular to the director. Indeed,
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Figure 5: Reorientation dynamics of the swimmer in nematic LCPs (¢ = 8)

measured by the moving-averaged orientation angle (¢(¢)) when the initial

alignment angle is chosen as /6 (a) and /3 (b) where o}, varies over three
orders of magnitudes.
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Figure 6: Rotation time 7r as a function of the initial alignment angle 6 for
op = 0.2,0.5.

353 besides the steady-state “parallel gait” discussed above, Lin et al. (2021)
354 reported a weak contractile flow around an undulatory swimmer that is initially
355 aligned perpendicular to the director. But it is unclear whether such a
356 “perpendicular gait” is stable, since slow entire-body rotation may still occur
357 when 6 is close to m/2, suggesting small disturbances could cause the rotation.
358 Interestingly, the hydrodynamically induced reorientation dynamics for
359 misaligned swimmers agree with the stability condition suggested by Shi &
360 Powers (2017). In their work, the imposed anchoring condition is converted to
361 assess the exerted (local) torque per unit length to be proportional to sin26. It
362 appears that the only stable steady-state motion (or equilibrium solution) is to
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swim parallel with the director, i.e., 8 = 0, such that the local torque vanishes.
Nevertheless, performing quantitative analysis of the rotational stability
condition for a finite-length swimmer using Doi’s Q—tensor model could be
laborious, and will be the subject of possible future investigations.

4. Conclusion and discussion

To summarize, we have adopted the same ()Q—tensor model developed in our
previous publication by Lin et al. (2021) to generally study the anisotropic
motions of an undulatory swimmer in the nematic LCPs when the swimmer has
an arbitrary alignment angle 6 with respect to the director. For an
infinite-length swimming sheet undergoing small-amplitude undulations, both
the asymptotic analysis (i.e., Taylor’s swimming sheet model) and IB
simulations capture the similar orientation-dependent swimming speed with
respect to the alignment angle, which exhibits a mnon-monotonic trend of
enhancement and retardation. Moreover, we have demonstrated that
systematically varying the bending stiffness can lead to drastic swimming
behaviors when subjected to the same type of actuation. Especially, we find
that the swimmer has to be sufficiently stiff to produce desired undulatory
deformation to gain net motions. When initially misaligned with the nematic
director, a finite-length swimmer with a minimal bending stiffness can gradually
reorient before it swims steadily along with the director, when subjected to a
net polymer torque arising from LCPs. Note that our (Q—tensor model is
essentially apolar, and strictly satisfies angular-moment conservation at the
microscopic level (Feng et al. (2000); Lin et al. (2021)). Hence, the net polymer
torque is purely attributed to the finite length effect that effectively breaks the
fore-aft symmetry of the LCP’s orientation structures surrounding the
swimmer, leading to asymmetric near-body polymer force distribution. We
emphasize that besides the typical cases presented above, qualitatively similar
anisotropic swimming behaviors and reorientation dynamics have been
consistently observed in nematic LCPs.

Noticeably, some interesting agreements have been observed between the Doi-
and EL-type models that incorporate different mechanisms for resolving the
reciprocal coupling between the suspended polymers, moving structures, and
fluid flows. For example, we have shown that the asymptotic solution of the
mean swimming speed of Taylor’s swimming sheet in equation (3.4) has the
same #-dependency as that derived from an EL model by Shi & Powers (2017)
in the transversely isotropic limit. Also, the reorientation of a misaligned
finite-length swimmer captured in this study confirms the stability condition
derived by the same authors in terms of the exerted local torque by LCPs
arising from the anchoring conditions. However, we emphasize that Doi’s
@Q—tensor model doesn’t require enforcing the rods’ orientation directions along
the swimmer body via any anchoring conditions. Instead, the variations of
orientational structures are simultaneously determined by the induced
near-body fluid flows and the LCP’s intrinsic nematic elasticity, which is mainly
characterized by the MS potential and the rotational diffusion. Without
specifying an explicit structure-orientation coupling at the solid boundary, the
produced extra stresses effectively drive the fluid motions in a mean-field
fashion, and couple with the undulatory swimming motions hydrodynamically
via the no-slip conditions.
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To seek further connections between the two different LC models, one may
consider to add the contributions of distortion elasticity to the MS potential
(Greco & Marrucci (1992)) to Doi’s model, leading to the equations that can
mathematically recover the director formulation of the EL model in the limit of
weak flow and mild spatial distortion (Feng et al. (2000)). Also, the high-order
orientational derivatives in the distortion elastic terms require imposing
additional boundary conditions for the orientation field, equivalent to applying
anchoring conditions. Then it is straightforward to examine how swimming
dynamics will change in response to the additional structure-orientation
coupling. Moreover, it will be intriguing to study undulatory swimming motions
in three dimensions where the nematic field may exhibit far more complex
topological structures to impact the resultant FSIs and associated gait stability.
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Appendix A. Numerical method validation

We use the same spectral IB method developed by Lin et al. (2021). Here we
show two benchmark studies for an infinite swimming sheet in both isotropic
and anisotropic fluids. As shown in figure 7, we first study the undulatory
swimming motions of infinite flexible sheet in an Oldroyd-B (OB) fluid where
the dimensionless Deborah (De) number, playing a similar role as Pe in the LC
cases, is defined as the wave frequency by the OB fluid relaxation time. We
measured the mean center-of-mass swimming speed Upp of the swimmer, and
compared the speed ratio with the numerical data by Salazar et al. (2016) and
the asymptotic results for Taylor’s swimming sheet by Lauga (2007)

s 2
UOB _ 1+ (TIST-IFTIP) De
UN 1 + D82 ’

where 7, and 7, respectively represent the solvent and polymer contribution to
the viscosity. The Newtonian speed Uy can be derived as
1 /w

Uy =3 (E> (Ak)? + O (Ak)* . (A2)
Next, we performed the convergence tests for an infinite stiff swimming sheet
swimming in LCPs as shown in figure 8 where we examine the time-dependent
velocity components by varying the grid width, time step, domain size, and
stiffness separately.

(A1)

Appendix B. Asymptotic analysis

In the moving frame of the swimmer, we consider the vertical displacement of an
infinitely-long wavy sheet with the described traveling-wave motion as y(z,t) =
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i Lauga (analytical)
0.05 O Salazar et al. (numerical)
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Figure 7: Time-averaged center-of-mass speed Upp for undulatory swimming
motion in an Oldroyd-B fluid when choosing De = 1.
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Figure 8: Convergence tests with the time-dependent centre-of-mass velocity u,
and uy when changing (a) the Eulerian grid width, (b) the domain size, and (c)
the bending stiffness o, . These parameters are fixed: o5 = 500, o, = 0.5, A=
0.0, Pe=1,Er=1,¢ =8, Pe,~! = 0.02, 8 = 0.0005 and 0 = 7/6.
Asin(kx — wt). We then rescale it as
y(x,t) = esin(x — t), (B1)

by choosing 1/k the length scale, 1/w the time scale, and w/k the velocity scale.
To model Taylor’s swimming sheet, we assume a small amplitude ¢ = Ak <
1. Following the classical work by Lauga (2007), we adopt a stream function
o(z,y,t) to describe the two-dimensional incompressible flow as

u=V x (gé,). (B2)

Hence the velocity components can be computed as u, = d¢/dy, u, = —0p/0x.
The boundary conditions for ¢(z,y,t) arise from conditions at infinity and on
the undulatory sheet with a steady speed —Upcé€,. Then the far-field condition
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at y = oo becomes

Vol (400) = ULcéy. (B3)
On the swimming sheet, the no-slip velocity condition is imposed as
VSO’(x,esin(m—t)) = ecos(x — t)e,. (B4)
Recalling the forced Stokes equation
Vp=Au+ErvV.r7, (B5)
where polymer stress, when ignoring [, is given as
Tp:<D—;>—C(D-D—DZS). (B6)

We focus on the effects of alignment angle 8 on swimming speed in the nematic
regime, and adopt a classical quadratic closure to approximate the fourth-moment
S (Doi & Edwards (1988)) as

S = DD, (B7)

which facilitates analytical manipulation in the following. Note that this closure
becomes more and more accurate in deep nematic when ¢ > (.. Now the evolution
equation of D reads

1 I ¢

\%
D+2E:S:—Pe(D—2>+PQ(D-D—D:S), (B8)

v
with D an upper-convected time derivative. When applying the curl on both sides
of equation (B5), we have

1
Vx(V-1,) = EV‘lgpéz. (B9)

Next, we expand all the variables with ¢ to the second order and § = (7*(¢ > 1)
to the first order, i.e.,

p = (P +3pM) + 2PV + 6p%Y) + 0 (€%, 6%), (B10)

P (T(oo) + 57.(01)) + 5(7'(10) + 57.(11)) + 62(7.(20) + 57.(21)) +0(e%,6%), (B11)

D = (D 4+ DY) 4 (DY 4§DV + 2D 4 D) 4 O(&?, 62)(’13 |

12

Upe = (UL + 6UD) + 2(U + 6UZY) + 0 (8, 62) . (B13)

After some manipulations, we can derive the following governing equations at
different orders:
O (°, 6 H)order:

3 (D<ko> . DO _ ko) . S(lO)) —0. (B 14)
k+1=0
O (°,0%)order:
1 ; , ; ,
o0 _ <D<oo> _ 2) - Y Y (DD DI s) . (B1s)

k+1=01i+j5=1
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aD<00>

+ 3 [uuﬂ) D<1j>_(D<ki>,Vu<lj>+Vu<mT,D >+2E<kz> S(la)}

k+1=0 i+j=0

— _Pi <D(00) _ I> Z Z (D(m .DW _ ) . S(lj)) ]
e 2

k+l 0i+j=1
(B 16)
O (£°, 6" )order:
7_15 01) Z Z (D (ki) . l7 _D(’C’L) . S(ZJ)), (B 17)
k-+1=0i+j=2
oD . ) ) . T
k) gD _ (D®) . 7y T (ki) . gLs)
St > > [u VDY — (DH) . vu® + vu® . D) 4+ 2B : 50|
k-+1=0i+j=1
1 , ,
DO+ = 3 3 (D) .DW _ D) g,
Pe Pe k+1=0i+j= 2( )
(B 18)
O (e',0 1)order:
Z (D(kO).D(IO) _ Do . S(lO)) 0. (B19)
k+1=1
O (g',6°%)order:
710 =pto _ 3~ 3 (Dam') . DU _D(ki):s(lj))’ (B 20)
k+i=1i+j=1
oD (10 . ) ) . T
k) gD _ (D®) . 7y T (ki) . gLs)
St > > [ VDY — (DH) . u® + vu®" . D) 4+ 2B : 50|
k41=1i+j=0
1 , ,
DU | (k) . D) _ plkd) . gU)
Pe Pe Z Z (D DS )
k41=1i+j=1
(B21)
O (', 6%)order:
W=Dty _ 3 <D<m>,D<u>_D<m>:Sw)), (B22)
k=1 i+j=2
11
3D( )+ > % [ (ki) . ypUd) _ (Dum ,Vu<lj>+vl1<mT,D<ki>> +2E(ki>:s<1j>}
k+l=1i+j=1
D(H) Z 3y (D<kz .DW _ ki . S(u).
P k+l 1i+j=2
(B23)
O (2,6 Horder:
3 (D<k0>.D<ZO>—D’<0> S“O)) 0. (B24)

k+1=2
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507 O (g2,8°)order:

508 70 = pe _ $° Z( D¢ . (ly)_D(kn:S(lj))’ (B25)

k+i=2 i+j=1

Z Z [um) vD) _ (D(kvt).Vuaj) +Vu(u>T.D(kz‘>)+2E(m>:S(m}
k4+1=2 i+j=0
_ 1 peo ki) . ) _ k) . q(l)
5D Z > (D®. DY — D 1)
k+l 2i+j=1
509 (B26)
510 O (e?,6%)order:

11 T;Q DL _ Z Z ( . — DD . S(lj)) ’ (B 27)

k+1=2 i+j=2

+3 [uwz) vDU) _ (Duﬂ') vu + vu®" . p fm) 4+ oE®*D . Suy)}

k+1=2 i+j=1
D(21) Pe Z Z (D(kl D _ ko) :S(lj)>.

k+1=2i+75=2
512 (B28)
513 At the O (¢°)order, we can solve for homogeneous solutions. Now the boundary
514 conditions at the O (e')order become:
515 O (e',0%)order:

516 Vo =UVe,, (B 29)
517 (:09)

518 Vo o) cos(x — t)é,. (B30)

z,0

519 O (g',8")order:

520 Vb (e, (B31)
521 (@,00)

522 Vb oy 0. (B32)

523 Note that in the above, instead of being satisfied exactly along the wavy body,
524 the no-slip boundary condition is projected onto the z—axis, i.e., at y = 0. And
525 at the O (¢?)order, they take the form

526 O (e?,0%order:

527 V20 =UPe,, (B 33)
528 (@,0)
agp(w)
529 V) :—sinw—tv< ) 2.0)- B34
o = —sin =0V (252 (B31)
530 O (e?,6%)order:
531 VD o = Ule,, (B 35)
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V(p(zl)

(11)
= —sin(zx — )V <agy ) |(2,0)- (B 36)

To proceed, we choose to decompose the steady-state configuration tensor as

(,0)

D) = M(9)DCOM*(6) (B37)

where D) = diag (DSOM - Dﬁo)), DY > 1/2, and the rotation matrix

M(0) = cosf - sin 0 . Then we solve D9 via equation (B 14) to obtain
sinf  cos#

0=M"'0) Y (DWJ) D) — D*O . s<lo>) M(6)

k+1=0
(B38)
— Z (D(ko) . Doy _ Z <D(k0) :D(llo)> D(le))
k+1=0 li+12=0
which yields the equilibrium solutions
S 10 -0 o -+ 0
00) — o) — (2 02 — ("1
() 8) o= (4 1) (3 ) o
We denote
Fii Fio
F= = ) B4
Vu <F21 —F11> (B 40)
At the O (g',6°)order, we solve configuration tensor D19 as
D — p0 (V1) (B41)
10
which leads to T;Elo) = 0 and Dﬁl) = 0. We can further derive
Vil = . (B42)
Given the boundary conditions, we obtain the solution
(2, y, 1) = (1 +y)e Vsin(z — 1), (B43)
Ul — o, (B44)
leading to the solution
DY) = ye Y cos(x — t + 20) + e~ cos(z — t). (B45)

At the O (g', §')order, using equation (B 22), we can derive

A= (5 ). (B0
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Using equation (B 23), we obtain the equations

1
Be 710 _9p(0 — g, (B47)
oDV 1
o FL (FE” - FL7) =0, (B 48)
Then we can obtain the solutions
151111) = DSQ) = —2ye Y cos(z — t + 20)Pe, (B49)
which leads to
Vi = 4(y — 1)e Ysin(x — t + 40)ErPe. (B50)
Given the boundary conditions in equations (B 31-B 32), we obtain the solution
1
O (2,9,t) = gy‘q‘e*y sin(x — t 4 40)ErPe, (B51)

Uld) =o. (B52)

Substituting equation (B51) into (B47), we can derive the solution
—an 1 3
DY = éErPe[(y3 —3y* + iy)e*y cos(z — t + 66)

+ (3y* — 3y)e Y cos(x —t + 46) + ;yefy cos(x —t +20)] — e™¥ cos(x — t).
(B53)

At the O (£2,6°)order, we solve configuration tensor D29 via equation B 24
and get the form

(20) _ 10)°
Dy’ =-Dy, . (B54)
Using equation (B 25), we have
2

7 — (DR 207+ 20D - ) (3 ). @)

Using equation (B 26), we can derive the equations

aD(QO) I
T 20O pllo 4 P— 20 =, (B 56)
oD

St (u<10> : v) DL _ GO 4 o0 p0) _ (B57)

Then we can obtain

. 1 (20)
(20) 8D11
T = —Pe
p,11 8t

+2F09DEY | =, (B58)

leading to
Vi) = 0. (B 59)
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Applying the boundary conditions (B 33-B 34), we obtain

1 1
00 (2,y,1) = —§ye_2y cos(2x — 2t) + SV (B60)
U2 _ 1
e’ =g (B61)
At the O (£2,")order, using equation (B 27), we first derive the equations

2
Tﬁﬁ = DY 2D — 2D DY + 2D D + D~ 4D
1 =203 D,

(21) o (21)
Tp22 = ~Tpii-

(B62)
Using equation (B 28), we can further derive

(21
Wi op(Y +2FL DY + 2R DGY —2BLY DY + A =0,

ot Pe 'py11
(2D)
6D(91t2 + (u(w) . V) D(ll) + ( (11) V) D(lo) _ F1(221) _ % (FQ(fO) _ F1(220)>
+2D(10) (E (11) E(lo)) + 2E(10 D§121 Pe 152112 —0.
(B63)

Then we obtain

720 = 2Pe (2E§§°>D§§°> + Eﬁ(’)) . (B64)

We applying the same manipulation used in equation (B9) and take the time
averaging to get the form of 3V

d—y2<g0(21)>(:p, y) = 2ErPe (cos 20y” + cos 40y) e *. (B65)

Applying the boundary conditions leading to the solution

d cos 20 cos 46 + cos 260 cos 46 + cos 26
— (Y = —2ErPe 2 ~2y
dy(so ) (z,y) r 5 Yt 5 y+ 1 e
ErPe
+ (cos46 + cos 20),
(B66)
ErP
Uz = r2 ° (cos 46 + cos 260) . (B67)
Hence, we can eventually solve for the speed ratio at the O (¢2,6') order as
(20) (21)
ULc (U +oUg ) ErPe
= =14+ ——(cos4 + cos20). B68
- — ) (B65)
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