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Abstract

Modern applications run various auxiliary tasks. These tasks
gain high observability and control by executing in the ap-
plication address space, but doing so causes safety and per-
formance issues. Running them in a separate process offers
strong isolation but poor observability and control.

In this paper, we propose special OS support for auxiliary
tasks to address this challenge with an abstraction called orbit.
An orbit task offers strong isolation. At the same time, it
conveniently observes the main program with an automatic
state synchronization feature. We implement the abstraction in
the Linux kernel. We use orbit to port 7 existing auxiliary tasks
and add one new task in 6 large applications. The evaluation
shows that the orbit-version tasks have strong isolation with
comparable performance of the original unsafe tasks.

1 Introduction

Applications in production frequently require maintenance
to examine, optimize, debug, and control their execution. In
the past, maintenance was primarily manual work done by
administrators. Today, there are increasing needs for applica-
tions to self-manage and provide good observability. Indeed,
many modern applications execute auxiliary tasks. These
tasks are designed for various purposes including fault de-
tection [18,27,37,43], performance monitoring [21,28,35],
online diagnosis [25], resource management [14,31], efc.
For example, PostgreSQL users can enable a periodic main-
tenance operation called autovacuum [17] that removes dead
rows and updates statistics; MySQL provides an option to run
a deadlock detection task [30], which tries to detect transac-
tion deadlocks and roll back a transaction to break a detected
deadlock; HDFS server includes multiple daemon threads,
such as a checkpointer that periodically wakes up to take a
checkpoint of the namespace and saves the snapshot.
Essentially, the structure of applications splits into two log-
ical realms of activities (Figure 1)—the main and the auxil-
iaries. Despite being peripheral, the latter tasks are important
for the reliability and observability of production software.
At the implementation level, though, auxiliary tasks’ exe-
cution is mixed with the main program’s in the same address
space, via direct function calls or as threads. Unfortunately,
this choice means the auxiliary tasks can incur severe inter-
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Figure 1: Three protection scenarios for modern applications. This
paper focuses on @.

ference to the application’s performance, due to unnecessary
blocking and contention on CPU, memory, network, and other
resources. In addition to costs, bugs in the auxiliary tasks can
easily affect the application reliability, e.g., a null-pointer bug
inside a checker function can crash the whole process.

The alternative is to execute an auxiliary task externally
in another process. This choice, however, would impose sig-
nificant limitations on what can be observed and what can
be changed. If the deadlock detector, for example, is run in a
separate process, it would not be able to directly inspect the
latest transactions or locks; even if it finds a deadlock it could
not apply changes to mitigate the issue.

A fundamental problem is that existing OS abstractions
for task execution—processes and threads—are designed for
the main activities, but are unfit for auxiliary tasks. They
force developers to either choose strong isolation but very
limited observability and control (in a separate process), or
high observability and control but little isolation (in a thread).
In this paper, we advocate direct OS support for the trend of
auxiliary execution to tackle this tension.

OS support for sub-process protection is not new. The
systems and security communities have proposed various
mechanisms [10, 12, 16, 24, 29, 40, 42, 47]. However, they
are designed for two other different purposes. As illustrated
in Figure 1, mechanisms such as SFI [42] are designed for
application extensibility (D). That is, safely execute some
untrusted third-party extension code, e.g., browser extensions
and user-defined-functions in database queries. Another cat-
egory of abstractions such as Wedge [10] and IwC [24] are
designed for secure partitioning (®), i.e., protecting some sen-
sitive procedures in the main program, e.g., session handler
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or key signing, in case the application is compromised.

These existing mechanisms are insufficient for the third
protection scenario (®)—maintenance. The auxiliary tasks
are written by the same developers and are trusted. They are
also by nature interactive with the main program and need to
constantly inspect the latest states of the main program. They
often need to additionally alter the main program execution.

In this paper, we investigate this under-explored protection
scenario. We summarize the common characteristics of auxil-
iary tasks, articulate the unique challenges of protecting such
tasks, and advocate for special OS support to close this gap.

We then take the first step to propose a new OS abstraction
called orbit for auxiliary execution. Orbit enables develop-
ers to conveniently add a wide range of auxiliary tasks that
execute safely and efficiently while assisting the application.

Orbit has several unique features compared to existing
sub-process abstractions such as threads, SFI, and IwC. An
orbit is a first-class execution entity with a dedicated address
space and is schedulable. Each orbit is bound with a main
process but provides strong isolation: (i) if an orbit task is
buggy and crashes, it does not affect the main process; (ii)
orbit executes asynchronously and can be directly enforced
with resource control, thus the main process is isolated from
an auxiliary task’s performance interference. At the same
time, orbit provides high observability. Each orbit’s address
space is mostly a mirror of the main program’s. Thus, when
the main process calls an orbit, the orbit can run the task
functions with the latest main program states. To meet the
need for some auxiliary task to change the main process, orbit
provides controlled alteration to safely apply updates.

There are two challenges in designing orbit. First, isolation
and observability are difficult to achieve together. Second,
isolation is known to be costly. Since the main process often
calls auxiliary tasks continuously, orbit can incur large perfor-
mance slowdown to the main process. Optimizations such as
using shared memory conflict with the goal of isolation.

To address the first challenge, we design a lightweight
memory snapshotting solution that leverages the copy-on-
write mechanism and provides automatic state synchroniza-
tion from the main process’ address space to orbit’s address
space whenever the main process calls the orbit task. To ad-
dress the second challenge, our insight is that while an aux-
iliary task may inspect various state variables in the main
program, the total size of the inspected state at each invoca-
tion is often a relatively small portion of the entire program
state. Thus, we take a simple approach that coalesces only
those state variables that an orbit task needs into what we call
orbit areas. The kernel dynamically identifies the active mem-
ory pages in the orbit areas that an orbit invocation requires
and only synchronizes these pages to the orbit side.

The lightweight memory snapshotting solution works at
page granularity, which has the advantages of simplicity, ro-
bustness, and ease of integration with all mainstream OSes
without depending on perfect instrumentations as in more

complex techniques such as shadow memory. The disadvan-
tage is that the page granularity incurs higher snapshot over-
head due to write amplification (snapshot an entire page even
if only one small object is changed) and often false sharing
(write protection on shared COW pages). We design several
optimizations including incremental snapshot, dynamic page
mode selection, and delegate objects to reduce the cost.

We have implemented a prototype of orbit in the Linux ker-
nel 5.4.91. To evaluate the generality of the orbit abstractions,
we collect 7 auxiliary tasks from 6 large applications includ-
ing MySQL, Apache, and Redis, and successfully port these
tasks using orbit. We also use orbit to write a new auxiliary
task for Apache. To demonstrate the isolation capability of
orbit, we inject faults to the orbit version of the tasks. Some
faults are directly based on real bugs in the task code. The
experiments show that the applications are protected from the
faults in all cases. We measure the cost of the isolation by
comparing the end-to-end application performance. The orbit
version applications only incur a median overhead of 3.3%.

In summary, this paper’s main contributions are as follows:
* We identify an under-explored category in protection for

auxiliary execution and summarize its characteristics.

e We design a new OS abstraction orbit to enable auxiliary
tasks that have both strong isolation and high observability.

* We implement orbit in the Linux kernel and evaluate it on
real-world auxiliary tasks in large applications.

The source code of orbit is publicly available at:
https://github.com/0OrderLab/orbit

2 Motivation and Goals
2.1 Auxiliary Tasks

Modern applications often execute various auxiliary tasks
designed for assisting reliability, performance, and security.
A few typical categories of auxiliary tasks include:

* Fault detection. Many applications have checkers to detect
faults dynamically. Examples include watchdogs [26] to
catch gray failures [19], deadlock checkers, and GC pause
detector. Some checkers are instrumented with compilers,
such as sanitizers to detect memory leaks.

¢ Performance monitor. It is common for applications to
have monitors that collect performance data. For instance,
Redis includes a slow log monitor to record queries that
take unusually long time.

* Resource management. Large applications run resource
management routines. For example, Cassandra periodically
runs compaction tasks to improve performance for future
queries; it also runs a task to asynchronously remove stale
records based on past delete requests.

* Recovery. Some routines in an application are designed for
assisting active recovery. HDFS continuously scans blocks
and schedules tasks to reconstruct blocks with low redun-
dancies. Databases also often employ checkpoint threads
that flush modified pages and write checkpoint records.
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const trx_t* check_and_resolve(lock_t* lock, trx_t* trx) {
do {
DeadlockChecker checker(trx, lock, mark_counter);
victim_trx = checker.search();
if (victim_trx != NULL && victim_trx != trx)
checker.trx_rollback();
} while (victim_trx != NULL && victim_trx != trx);
return victim_trx;
}
Figure 2: Deadlock checker function in MySQL.

The workflow of these tasks typically has three steps: (1) read
program states; (2) perform inspection work; (3) take actions
and modify some states. Depending on their goals, some tasks
only read a few program states, while others may inspect lots
of states. Some auxiliary tasks are relatively simple that exe-
cute synchronously with the main program, e.g., control flow
checks [8]. Others are long-running operations that usually
execute asynchronously, e.g., in a background thread. Our
main focus in this work is the latter type of auxiliary tasks,
since they often pose potential issues to the main program.

Note that some existing auxiliary tasks are written in their
current forms, not because of their inherent nature, but often
due to the lack of system support. For example, an existing
detection task may execute synchronously, because otherwise
the program state may be changed while the task is checking
it. However, if an efficient mechanism exists to automatically
snapshot the state to be checked, this task could be easily made
asynchronous. We aim to provide the support that improves
existing auxiliary tasks while enabling novel ones.

2.2 Example: MySQL Deadlock Checker

To make the discussion concrete, we use a representative
auxiliary task, the MySQL deadlock checker, as the running
example throughout the paper. Figure 2 shows its simplified
code snippet. This task is invoked regularly in the main pro-
gram. Specifically, in handling an update query, MySQL may
need to lock a record; if the locking fails, the checking task is
invoked. Each checking function invocation takes the blocked
lock and the transaction as arguments.

Inside check_and_resolve, a deadlock checker instance is
created, which runs a search algorithm to inspect the wait-for
graph involving the lock and trx objects as well as other
dependent variables. If the checker detects one potential dead-
lock, it will try to resolve the issue by choosing a victim
transaction and rolling it back (modify the state victim_trx).

2.3 Safety and Performance Concerns

Developers usually write auxiliary tasks to execute inside the
application process. While this choice makes it convenient
for the tasks to assist and monitor the main program, their
execution poses safety concerns because they execute in the
main program’s address space. A common issue is a buggy
task accessing invalid memory, which crashes the entire appli-
cation. In other scenarios, a buggy task may cause the main
program to get stuck, e.g., a low-priority data gathering thread
blocks the high-priority tasks in a similar vein as the infamous

Mars Pathfinder incident [36]. Or, the buggy task accidentally
modifies some global variables and causes the main program
to misbehave. Some issues occur indirectly because of the
address space sharing. For example, a defect in HDFS cre-
ates too many SafeModeMonitor threads and causes the main
program to fail with out of memory errors [4].

It might seem that crashing the main program when the aux-
iliary task is broken is acceptable for some critical auxiliary
tasks. For example, since the deadlock detector is important
for resolving deadlocks in transactions, if the detector has an
invalid memory access, it might be reasonable to crash the
main program. However, in practice, crashing the main pro-
gram is usually too costly (unavailability and slow recovery)
and often incurs unintended side effect (inconsistency and
data loss), especially considering that the bugs are not from
the main program. Alternatively, if we provide strong isola-
tion for auxiliary tasks, we can decouple the fate of the main
program from the fates of the auxiliary tasks, which will allow
developers to make better choices. For instance, developers
can implement a policy that if an auxiliary task dies, it will
be automatically restarted and pick up the previous progress,
without affecting the main program’s execution.

Besides safety, auxiliary tasks can also incur interference
to the main program’s performance. For instance, we mea-
sure the MySQL performance with the deadlock detector task
running. The result shows a 3.5%—79.5% drop in the query
throughput. This issue was reported by users [1].

In summary, auxiliary tasks are designed to actively im-
prove application reliability and performance, but paradox-
ically the shared-address-space execution model can cause
them to hurt the main program.

2.4 Why Fork or Sandbox Is Insufficient?

To address the safety and performance concerns of auxiliary
tasks, two potential alternatives exist: fork and sandbox.

Fork-based Execution Model In this approach, the appli-
cation makes a fork() system call before an auxiliary task
executes and switches to run the task functions in the child
process. The separate address space provides strong memory
isolation. In addition, the task has a copy of address space and
thus can inspect any main program states easily. Once fork()
completes, the main program can continue, while allowing
the auxiliary task to execute asynchronously.

Unfortunately, there are several issues. First, the cost is
substantial, which includes the creation of a heavy-weight
execution entity, as well as the copying of an address space.
Even with the copy-on-write optimization, the main program
may modify many pages afterward and trigger excessive copy-
ing. Moreover, for auxiliary tasks that execute frequently, the
fork overhead will be incurred at each task invocation.

Besides overhead, with the auxiliary task running as a child
process, it is difficult for the task to perform maintenance work
that requires modifying the main program states. For instance,
the MySQL checker can identify a victim transaction and
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perform a rollback, but the resolution only affects the child
process and would not help the parent process.

Sandbox-based Execution Model Another solution is to
execute an auxiliary task in a sandbox, which is well-suited to
execute untrusted code, e.g., browser renderer. A sandboxed
process has reduced privileges in accessing resources includ-
ing file systems and system calls, and may reside in a separate
fault domain using SFI techniques [42].

However, auxiliary tasks are not untrusted codes that sand-
boxes are designed for. They are written by the application
developers and are trusted. Their safety issues arise because
of bugs or unintended side effects such as invalid memory
access, infinite loops, using too much CPU, etc., rather than
accessing unwanted system calls or files. A sandboxed pro-
cess in a separate fault domain can access only the memory
segment allocated to them. It thus gains little observability of
the main program and cannot change the main program state.

RPCs or Shared Memory In principle, some aforemen-
tioned limitations can be circumvented using RPCs or shared
memory. In practice, such workarounds are not favored by de-
velopers, because neither model matches with how developers
write auxiliary tasks. Developers currently add auxiliary tasks
directly in the application codebase and can easily refer to
variables in the main program or invoke its functions. To use
the RPC model, developers need to convert many variables
and functions to be amenable to RPCs. Variables such as lock
and trx in MySQL are difficult to marshal and unmarshal
across calls. Frequent RPCs also add large overhead.

The shared memory model similarly requires cumbersome
setup and coordination. In addition, the main process would
have to wait until the auxiliary task finishes before continuing.
Otherwise, the task would inspect inconsistent states. Another
issue is that shared memory defeats the isolation purpose.
An auxiliary task may need to access variables that scatter
across the main program’s address space. As a result, the main
process may share a large portion of its address space, posing
significant safety issues like a thread-based auxiliary task.

3 Orbit: OS Support For Auxiliary Executions

The aforementioned challenges are largely because existing
OS abstractions for execution are designed for activities that
have clear modularity and isolation boundaries. Auxiliary
tasks are inherently interactive with the main program, but it
is also desirable to isolate their faults and avoid interference.
Developers are forced to choose either an abstraction that
offers high observability but weak isolation (e.g., thread), or
one with strong isolation but low observability (e.g. process).

To address this gap, we propose direct OS support for auxil-
iary execution with a new abstraction called orbit. Orbit offers
high observability of another execution entity, while providing
strong isolation. Its end goal is to enable developers to create a
variety of auxiliary tasks that assist applications in production
to enhance the applications’ reliability and performance.

Main orbit1 ; thread
orbit3 g address
; < — space
- automatic
@\V 0'0 E state sync
- — scratch
orbit2 o> alteration

Application
Figure 3: Multiple orbits co-exist with the main program at runtime
to provide observability and maintenance support.

3.1 Overview

An orbit task is a lightweight OS execution entity. Each task
is bound to “watch” one rarget process. A process can have
multiple orbit tasks as shown in Figure 3. They inspect dif-
ferent parts of the target’s states for different maintenance
purposes. Compared to existing abstractions, orbit has several
major unique properties:

* Strong Isolation. Each orbit task has its own address space.
Faults in an orbit would not jeopardize the main program or
other orbit tasks. Most orbit tasks execute asynchronously
without blocking the main program for a long time.

¢ Convenient Programming Model. The orbit abstraction
preserves the current way of how developers write auxiliary
tasks. Developers write the orbit task functions within the
main program and directly refer to almost any state vari-
ables of the main program. They can also easily convert
existing functions into orbits. This programming model is
close to the thread model that developers are familiar with.

* Automatic State Synchronization. A defining character-
istic of the orbit task’s address space is that it is mostly a
mirror of fragments in the target’s address space. The frag-
ments are those states that the orbit task needs to inspect.
The underlying OS will automatically synchronize the spec-
ified states to the orbit address space in one direction, which
occurs before each task invocation in the main program.

Controlled Alteration. A regular orbit only observes the
main program, while a privileged orbit is allowed to alter
the main program state. However, it cannot change arbitrary
state at arbitrary times. The modification has to be made
using scratch space and well-defined interfaces.

First-class Entity. Orbit tasks are first-class OS entities.
They are schedulable like a normal process or thread. This
property differs from existing sub-process abstractions
such as SFI-based sandboxes and lightweight-context [24],
which are subordinates to the main program and not schedu-
lable. These abstractions typically have to execute syn-
chronously. An orbit task can be also directly enforced with
various limits such as CPU quota.

3.2 Design Challenges and Insight

There are two core challenges that we need to address. First,
how to enable orbit tasks to continuously inspect the main
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API

Description

orbit *orbit_create(const char *name, orbit_entry entry,
void* (*init)(void))

int orbit_destroy(orbit *ob)

orbit_area *orbit_area_create(size_t init_size, orbit =ob)

void *orbit_alloc(orbit_area *area, size_t size)

create an orbit task with a name, an entry function, and an
optional initialization function

destroy the specified orbit task

create an orbit memory area with an initial size

allocate an object of size from the orbit area

long orbit_call(orbit *ob, size_t narea, orbit_area* areas,

orbit_entry func_once, void *arg, size_t argsize)
orbit_future *orbit_call_async(orbit *ob, int flags, size_t narea,

orbit_area** areas, orbit_entry func_once, ...)

long pull_orbit(orbit_future *f, orbit_update *update)
long orbit_push(orbit_update *update, orbit_future *f)

invokes a synchronous call to the orbit task function with
the specific area(s) and arguments, blocks until task finishes
invokes an asynchronous call to the orbit task function,
returns an orbit_future that can be later retrieved

main program waits and retrieves update from orbit future f
orbit passes update to an existing orbit future f

Table 1: Main orbit APIs.

program states conveniently, given that observability and iso-
lation are difficult to achieve together? Second, how fo mini-
mize the performance cost while providing strong isolation?
Isolation inevitably incurs cost. A straightforward design can
incur excessive performance slowdowns. Optimizations that
can potentially reduce costs, such as using shared memory,
are often in conflict with the goal of fault isolation.

Our observations about the characteristics of typical aux-
iliary tasks reveal insight to address the challenges. While
an auxiliary task may inspect various states in an execution,
the total size of the inspected state at each invocation is often
a relatively small portion of the entire program state. In ad-
dition, an auxiliary task often performs work incrementally:
once the task inspects some state instance in one invocation,
the task may not inspect that instance in the next invocation.

4 Orbit Designs

In this section, we describe the designs of the orbit abstraction
and how to achieve the properties described in Section 3.

4.1 System Interfaces

The orbit abstraction is exposed through system calls accom-
panied by a user-level library. Table 1 shows the major APIs.
Developers create an orbit task in place in the appli-
cation codebase using orbit_create, specifying the task
entry function. The entry function pointer is defined as
long(*orbit_entry)(void *argbuf, void *store),VVhiCh is similar
to the entry function definition in pthread_create. However,
the orbit entry function executes in a separate address space.
This function is also only invoked later by the main program
through explicit orbit calls. In other words, the orbit task in-
vocation is decoupled from the orbit creation and can occur
repeatedly. The void =argbuf points to a buffer in the orbit’s
address space, which is used later during each task invoca-
tion to hold the arguments. An optional initialization function
can be passed to orbit_create. It is useful when some orbit
task needs to allocate structure in its address space to keep
bookkeeping information. The orbit_create returns an orbit
handle for the main program to use in later invocations.

+ struct orbit *dlc;
+ struct orbit area *area;

1
2
3
4 int mysqld _main() {

5 + dlc = orbit_create("dl_checker",check_and_resolve,NULL);
6 + area = orbit_area_create(4096);

7

8

}

9 lock_t* RecLock::lock alloc(trx t* trx) {
10 lock_t* lock;

11 - lock = (lock_t*) mem heap alloc(heap, sizeof(*lock));
12 + lock = (lock_t*) orbit_alloc(area, sizeof(*lock));

13 return lock;

14 }

15

16 dberr_t lock_rec_lock() {

17 if (status == LOCK_REC_FAIL) {

18 - check_and_resolve(lock, m trx);

19 + dlc_args args = {lock, m_trx};

20 + orbit_call(dlc, 1, &area, &args, sizeof(dlc_args));
21}

22 }

Figure 4: Using orbit to enhance the MySQL deadlock detector.
The core logic check_and_resolve in Figure 2 remains the same.

The orbit task invocations are done through either the syn-
chronous orbit_call or asynchronous orbit_call_async.
The latter would be particularly common to use. The seman-
tics of the orbit_call_async guarantee that the states needed
for the task are snapshotted before the API returns. As a result,
the main program can continue executing other logic while
the orbit task runs concurrently.

This API will return an orbit_future f. The main pro-
gram can wait on f later through orbit_future_get when
it requires knowing the update from the orbit task, just like
the typical asynchronous programming models that devel-
opers are familiar with. Asynchronous orbit task execution
along with the automatic state synchronization feature allows
developers to exploit concurrency in the system.

Figure 4 shows an example of using orbit for the MySQL
deadlock detector. The task core logic remains the same,
but the invocation is split into two steps. Developers use
orbit_create to create an orbit at the beginning (line 4),
which specifies the entry function check_and_resolve. An
orbit area is created. The allocations of the lock (line 12) and
trx objects are changed to allocate from the orbit area. The
original function call (line 19) is replaced with an orbit_call
to invoke the previously created orbit with the area and argu-
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Figure S: Orbit areas in the main program to be monitored.

ments. Alternatively, developers can use orbit_call_async
to asynchronously perform deadlock checking.

4.2 Managing Orbit

When a process creates an orbit using orbit_create, the
kernel internally represents the orbit with a control block and
records the target process the orbit is bound with. To avoid
intrusive code changes to the Linux kernel function interfaces,
we currently re-use the existing task_struct (with new fields
and a subset of existing fields) to represent the orbit entity.

The main program maintains a orbit_children list
in its task_struct, mapping orbit IDs to the orbit’s
task_struct. Each orbit maintains a orbit_info structure
in its task_struct, that contains the basic execution states of
orbit and a FIFO queue of orbit calls.

The kernel also allocates a dedicated address space for the
orbit, which is initially kept to a minimum (mostly code pages
of the main program). As a first-class OS abstraction, orbit is
a schedulable entity and can be enforced with resource limits
like a regular process. At the creation time, the orbit is in an
idle state, waiting for the task invocations. If an orbit task is
terminated (e.g., because of its own bugs), it can be configured
to be automatically restarted. In that case, after a restart, the
orbit task will be reattached to the main program. The main
program can explicitly destroy a specific orbit task.

4.3 Synchronizing States to Orbit

Each orbit executes in a separate address space but regularly
inspects the state in the main program. To facilitate conve-
nient inspection, the orbit abstraction provides a key feature
of automatic synchronization for the referenced state. This
automatic synchronization is one-way from the address space
of the main to the orbit’s. We propose a lightweight memory
snapshotting solution for providing this feature.

Determining States One challenge is that an orbit task
often inspects state variables that scatter across the main pro-
gram’s address space. Therefore, coarse-grained snapshot-
ting would include too many unneeded objects in the snap-
shot memory regions, which would not only waste significant
memory but also incur large overhead to the application. In
addition, while the set of variables an orbit task inspects may
be fixed and known at the static compilation time, the dynamic
addresses and sizes of these variables can change over time.

For example, the MySQL deadlock detector checks different
lock and txn objects in different invocations.

To address this challenge, we take a simple approach that
coalesces only those state variables that the orbit tasks need
into what we call orbit areas. Orbit areas are fragments of the
main program’s address space. Each orbit area is composed of
contiguous virtual pages. An orbit’s address space is mostly
a mirror of orbit areas (Figure 5). The main program creates
an orbit area through orbit_area_create with an initial size
that is dynamically expandable. This API takes an orbit
argument. If specified, the kernel will create a memory region
in the orbit’s address space and ensure it has the same virtual
address of the orbit area in the main program before the API
returns. Otherwise, this mapping mirroring will be done when
an orbit later binds to an orbit area.

For the state variables that may be accessed by some orbit
task, their allocation points need to be replaced to allocate
from an orbit area through the orbit_alloc API. Similarly,
these variables can be freed using the orbit_free API The
main program can still use these variables like before.

Taking a Snapshot Dynamically, when the main program
makes a call to an orbit task function, the kernel identifies
the memory pages in the orbit area that contain the variables
the orbit task requires. Then the kernel updates the page table
entries (PTEs) of these pages to mark them as write pro-
tected for copy-on-write (COW). The PTEs are also copied
to orbit task’s page table with write-protected bit set. For con-
sistent snapshotting, the orbit call will return only after all
needed mappings are updated. Afterward, as long as the main
program and orbit task do not modify a page, no copying is
incurred; otherwise, they will have separate copies of the page.
Note that the above snapshotting process occurs on each orbit
call, so the mappings in the orbit address space constantly
change, but the orbit task is not re-created.

Concurrency To ensure safety under concurrency, the ker-
nel acquires necessary locks (e.g., mmap_sem in Linux) while
accessing the PTEs in the main program and the orbit. In
one orbit call, multiple pages may need to be snapshotted. To
provide a consistent snapshot for multi-threaded applications,
a conservative solution is to pause all the application threads
so that these pages are not modified during the snapshotting.
This pausing will incur a significant performance penalty.

We instead rely on application-level synchronization to
handle this situation properly. Indeed, if the objects needed
in an orbit call may be concurrently modified by some other
thread, the application would add proper locks in the original
call site to prevent race conditions. For example, the MySQL
deadlock checker invocation (Figure 4) is already inside a
critical section. Thus, when we port it to an orbit call, the
snapshot of the lock and m_trx objects is consistent.

Locks are intentionally not shared between orbit and the
main program, and thus orbit cannot directly alter the main
program’s lock states. It is possible that a complex orbit task
function acquires and releases locks during its execution. In
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such cases, acquiring locks can be moved upfront before the
orbit call. From our experience of porting tasks that require
synchronization (MySQL and Apache), we find that the origi-
nal auxiliary functions only run within a single global critical
section, which makes it straightforward to guarantee consis-
tency. Also, since a consistent snapshot is obtained under a
global lock, the orbit task can omit lock acquires in these
cases, since it runs singled-threaded in another address space.

Concurrent Orbit Calls Another challenge is to handle
state synchronization when some orbit tasks may be invoked
concurrently. For example, the MySQL deadlock detector is
invoked during request handling. Since MySQL uses multiple
threads to handle concurrent requests, the main program may
make another orbit call while the previous call is ongoing.

To address this challenge, the kernel maintains a task queue
for each orbit (Section 4.4 will describe this part). After
introducing the task queue mechanism, we need to ensure
orbit_call(_async) preserves the semantics that the task
invocation will get a consistent snapshot of relevant objects
at the time of the API call. The kernel does so by marking
COW for the main program’s PTEs of relevant orbit area
pages, storing the marked PTEs, and returning. The stored
PTEs will be installed to the orbit’s page table /ater when the
queued task executes. This works because, assume that the
main program has modified some page in the orbit area while
this invocation is in the task queue, COW will be triggered
in the main program side and the main program will get a
new page. The stored PTEs still point to the old physical page
containing the data at the time of the invocation.

Design Choice Rationale Our memory snapshotting lever-
ages the page protection and COW mechanism. Although
snapshot at the page granularity can be costly, it integrates
well in mainstream OSes and works reliably. Through sev-
eral optimizations (Section 4.6), we can effectively reduce
its performance costs. An alternative solution is to use fine-
grained object-level shadow memory, which allocates shadow
memory region, uses static analysis to identify and instrument
memory writes to the target objects, and checkpoints these
writes to the shadow memory region. We did not choose this
approach for several reasons. First, the shadow memory con-
sumes significant (often half) of the main program’s address
space, and because it is in the same address space, the isola-
tion is weak. Second, there can be many objects repeatedly
and unnecessarily checkpointed even when the orbit task does
not need them. Third, handling concurrency is challenging.
Lastly, it makes strong assumptions about the target appli-
cation and instrumentation accuracies, which are fragile to
apply to many complex applications.

4.4 Orbit Task Execution

When an orbit is created, it waits for the main program to
make orbit calls. Implementing the task execution is non-
trivial, because each call crosses two address spaces. In ad-
dition, the orbit may receive different styles of orbit calls,

orbit1

1 unsigned long ret = 0;
orbit_entry, func_ptr = NULL;
char argbuf[ARG_SIZE_MAX];

2
3
4 ...
5\while (true) {

6 if (orbit_task_return(ret) < 0) break;
7 ret unc_ptr ? func_ptr(store, argbuf)
8

9

User : entry_ func(store, argbuf);

mode

Kernel Py First half: return ret to main program

mode ° .
sbmae Second half: wait for next task, setup

user-level func_ptr, argbuf

orbit_info

Figure 6: Orbit execution loop waiting for task invocations from
main, facilitated by the helper system call orbit_task_return.

including concurrent calls. The kernel side needs to support
these different styles together.

For supporting potential concurrent calls, the kernel main-
tains a task queue for each orbit. For each invocation from the
main program, the kernel assigns a call id with an internal call
struct and inserts it into the queue. The orbit task execution
workflow processes the pending invocations in FIFO order.
Serializing the task invocation processing makes it much sim-
pler to ensure the correctness of the state synchronization.

To properly implement orbit task execution, we introduce
a helper system call orbit_task_return. As Figure 6 shows,
each orbit is a single-threaded worker executing this loop,
and invokes this system call in each iteration. When trapped
into the orbit_task_return syscall, the kernel knows which
main program this orbit corresponds to by looking up the
information in its orbit_info.

Internally, this kernel function consists of two halves. In
the first half, it returns the return value of the last orbit call to
the main program. Specifically, the kernel stores the passed
ret value into an internal struct corresponding to the last orbit
call, and then signals the thread that was executing the last
orbit call and blocked waiting for the call to finish. If no orbit
call has been made, this first half is skipped.

In the second half, the function waits for the next task from
the main program. This is done by waiting on a semaphore
in the orbit control block. Once the orbit tasks queue is non-
empty, the orbit_task_return proceeds and dequeues an
invocation. Recall that state snapshotting stores the marked
PTEs (Section 4.3) in an array for the pending invocation. The
kernel function at this point applies the snapshot by installing
the PTEs to the orbit’s page table. It then sets up the user-
space argbuf and func_ptr, and returns.

The kernel setups the user-level argbuf by copying the
orbit call arguments into it. The arguments are typically point-
ers (e.g., Lock and m_trx in Figure 4), thus only the address
values are copied. The actual objects to be referenced in the
task are in the orbit area. With the mirroring setup of the orbit
area (Section 4.3), the addresses map to equivalent objects.
The func_ptr is set to either the task entry function or the
function pointer specified in the pending orbit_call. The
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void trx_rollback(trx_t xvictim) { // within orbit task
orbit_update *scratch = orbit_update_create();
orbit_update_add_data(scratch, &victim->version);
victim->lock.cancel = true;
orbit_update_add_modify(scratch, &victim->lock.cancel, true);
orbit_update_add_operation(scratch, pthread_cond_signal,
&trx->slot->condvar);

orbit_push(scratch);
}
void handle_rollback(orbit_future xfuture) { // in main program
orbit_update update;
long ret = pull_orbit(future, &update);
TrxVersion *version = orbit_update_first(update)->data;
if (trx_is_alive(version))
orbit_apply(update);
}
Figure 7: Controlled state alteration for MySQL deadlock detector.

latter is particularly useful for an orbit to provide query func-
tionalities. For example, if an orbit stores some bookkeeping
information, the main program may want to query the orbit
about this information occasionally. Finally, the orbit exe-
cution loop invokes the appropriate task function with the
prepared argbuf (line 7 in Figure 6) at the user level.

The major task execution workflow described earlier
applies to the asynchronous orbit calls as well. The
orbit_call_async returns an orbit_future, which is a ref-
erence to the asynchronous task. The main program can later
wait on this reference and retrieves updates from the com-
pleted asynchronous task, just like the typical asynchronous
programming models that developers are familiar with.

4.5 Controlled State Alteration

A privileged orbit is allowed to modify the main program
states. One solution is to identify pages in the orbit area that
the orbit has modified in its private copies and transparently
update the corresponding copies in the main program. The
updates are restricted to states belonging to an orbit area. A
complication arises if the main program also has since made
modifications to some pages in an orbit area. Automatically
merging the updates could introduce accidental changes.

To avoid introducing such accidental incorrectness, we in-
stead use a more controlled alteration mechanism by exposing
the pull_orbit and orbit_push system calls. Developers
call the orbit_push API in the orbit task functions to explic-
itly decide which updates to push to the main program side.
A corresponding call of pull_orbit in some main program
function will retrieve the updates and explicitly apply the up-
dates to the appropriate state variables. The orbit_push API
supports pushing flexible data types including raw bytes.

A scratch space is backed by some memory region holding
the data. The pushing is done efficiently by moving the PTEs
of the scratch space pages in the orbit page table to the main
program’s page table. Besides data, orbit_push also supports
pushing some operation (function pointer). This is useful if
the maintenance operation is difficult to conduct in the orbit
side, such as killing some main program’s thread.

Example Figure 7 shows an example for the MySQL dead-
lock detector, which represents a relatively complex use case.
Function trx_rollback creates a scratch orbit_update and
then pushes a TrxVersion by calling add_data. This data can
later be used to check whether the victim transaction is still
alive. A following add_modify call records the modification
of a single field. The next add_operation pushes a function
with its argument, which will later be invoked in the main
program side when the updates are applied and will signal the
specified conditional variable. The function pointers are valid
for both sides, since the code pages mapping are preserved.
The updates are then sent in a batch by calling orbit_push.
The handle_rollback function then pulls updates from
the future. If the task fails, the orbit task is recreated (omitted
in the figure). When the main program retrieves an update, it
applies the update if the transaction’s version is still alive.

4.6 Optimizations

We design several optimizations to further reduce the cost
of our memory snapshotting. There are two main overhead
sources: (1) iterate the PTEs for the active pages in an orbit
area, update COW flags, and create mappings in the orbit’s
address space; (2) page faults when an orbit area is modified.

4.6.1 Incremental Snapshotting

Overhead source (1) is incurred upon each orbit_call. In ad-
dition, we tear down the orbit’s mappings and reset the COW
flags of relevant PTEs in the main program when the orbit
runs finishes to avoid unnecessary page faults. For orbit areas
that have many active pages, this overhead can be significant.

We introduce an incremental snapshotting optimization to
reduce this overhead. We keep the mappings after an orbit
run finishes. Upon the next orbit_call, we iterate through
each remained PTE and check if it is the same as the main
program’s counterpart. If so, we keep it. Otherwise, we recre-
ate the mapping or discard it if the orbit area page is no longer
active. Thus, we only pay the mapping cost for the orbit area’s
pages that are modified by the main program since the last
run. One caveat is that keeping the mappings may incur un-
necessary page faults. This optimization helps when the main
program is not intensively updating the orbit area. We allow
developers to pass a flag in an orbit_call to indicate whether
to enable this mode (keep the mappings).

A second part of this optimization is a region-based mark-
ing scheme that aims to reduce the cost of looping through
each PTE in an orbit area. We track the PTEs by regions.
Specifically, we maintain a bitmap for each range of 512
PTEs (one PMD entry) in the orbit area. A 64-bit bitmap
partitions the 512 entries into 64 groups of 8 PTEs. Each bit
represents whether the consecutive 8 PTEs have faulted since
the last snapshot. During a page fault, the corresponding bit
is set to 1. After a snapshot, the snapshotted groups’s bits are
set to 0. In this way, we can jump to the next group of PTEs
that have changed by using bit-wise operation on the bitmap.
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// allocate with normal malloc
struct trx_ t {
struct {

- lock_t* wait_lock;
+ lock_t*& wait_lock;

// allocate with orbit_alloc
struct trx_t_delegate {

.o struct {
} lock; lock_t* wait_lock;
+ trx_t delegate *delegate(); } lock;
Yi Yi

(a) original full object
Figure 8: Delegate object for the struct trx_t in MySQL.

(b) delegate object

// new constructors
trx_t::trx_t(trx_t_delegate *d) : lock(d) {}
trx_lock_t::trx_lock_t(trx_t_delegate *d)
: wait_lock(d->lock.wait_lock) {}
// creating and binding delegate objects
void trx_init(trx_t =trx) {
auto delegate = (trx_t_delegate *)orbit_alloc(area,
sizeof (*trx_delegate));
new(trx) trx_t(delegate);
}

Figure 9: Create and bind delegate object for trx_t in MySQL.

4.6.2 Dynamic Page Mode Choice

Overhead source (2) is inherent in the COW mechanism. This
cost becomes significant when the orbit area pages are fre-
quently updated by the main program. In this case, COW
may perform worse than directly copying the page, which
eliminates later page fault penalty to the main program. COW
is effective if an orbit area page is infrequently updated.

We support page mode choice (COW or COPY) for an
entire orbit area and each page in the orbit area. The for-
mer is specified by developers when creating an orbit area.
The (likely) update-intensive objects can then be allocated
from a COPY-mode orbit area, which will use copying during
snapshot. For page-level mode choice, the kernel tracks the
statistics of fault rate as # of faults/# of snapshots for
each page. If the percentage exceeds a heuristic threshold of
30%, we determine the page mode as COPY. Besides, we also
impose a limit of 32KB on the total size of COPY pages, and
we choose the pages with the highest scores. This is used to
prevent exhausting too much memory, and achieve a relatively
balanced performance between COPY and COW (because
copying large memory region is slower than snapshotting).

4.6.3 Delegate Objects for Large Structs

Complex applications may define large structs, while the
states that an orbit is concerned with may be only a small
subset of the fields in a large struct. If we allocate the en-
tire large struct from the orbit area, it can incur unnecessary
snapshot and page faults due to false sharing.

We use delegate objects to mitigate this issue. The basic
strategy is to define a delegate struct for the large struct and
keep only the fields that are needed in the orbit task functions.
Then we allocate the delegate struct from an orbit area but pre-
serve the normal allocation (e.g., malloc) for the underlying
large struct. Each delegate object has a one-to-one binding to
its original struct. It is created at the same time of the orig-

inal struct as an additional argument to its constructor. To
connect the two structs, the relevant fields in the large struct
are changed to reference types (e.g., int to int &, int = to
int *&), and the struct constructor is modified to bind the
references to the delegate struct argument. The main program
still uses these fields like before without changes.

Figures 8 and 9 show an example of defining and using del-
egate object for the trx_t struct in MySQL. After introducing
this delegate object, the main program does not need to change
its usages, e.g., trx->lock.wait_lock still works. The orbit
task function uses the delegate object from trx->delegate().

In our ported systems, we pick those large structs whose
total size of accessed fields is smaller than the size of the
remaining fields as the target for optimization. Developers
can have their own choices to determine what are large structs
for delegate object optimization.

4.7 Compiler Support

Our current design requires replacing allocation points for
needed state variables (Section 4.3). Some applications al-
ready use custom functions to allocate their main objects. In
these cases, developers may only need to make minor changes
in the custom allocation function to use orbit_alloc.

In other cases, developers may need to find individual allo-
cation points and replace them. To help developers with this
task, we build an analyzer on top of LLVM [23].

Given an entry function to be converted to an orbit task, e.g.,
check_and_resolve in Figure 2, the analyzer runs forward
data-flow analyses to locate all relevant definition and allo-
cation points. Specifically, the analyzer first identifies heap
allocation calls in the main program. For each call, it con-
structs a use graph with the return value variable as the root.
Nodes in the use graph include both direct and indirect usage
points of the root based on the standard def-use chain analysis.

After constructing the use graphs, the analyzer checks
whether any use graph can reach the arguments in a callsite of
the target function. If so, the allocation point associated with
the use graph is included in the result. Besides arguments, the
compiler also analyzes the non-local variables referenced in
the target function body and leverages the use graphs to iden-
tify their allocation points. If no allocation points are found
for an argument or non-local variable, the analyzer identifies
the definition point (e.g., it is a static global variable) using
reaching definition analysis and includes it in the result.

Currently, the analyzer only outputs a list of candidate al-
location or definition points. It does not replace these points
with orbit_alloc automatically, although that is feasible.

5 Evaluation

Our evaluation aims to answer several major questions: (1) Is
orbit general to (re)write auxiliary tasks in complex applica-
tions? (2) Can orbit-based tasks provide strong isolation? (3)
How much overhead does orbit incur for achieving isolation?
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No. Application Auxiliary Task Source Description

tl MySQL deadlock detector port Automatically detect transaction deadlocks & rollback transaction(s) to break deadlock
2 Apache proxy balancer port Load balancing to determine suitable proxy backend worker for request

t3 Apache lock watchdog new Periodically check for long mutex lock waits and output notifications to the log

t4 Nginx WebDAV PUT handler  port File upload handler for WebDAV PUT requests

t5 Varnish pool herder port Dynamically adjust thread pool sizes

t6 Redis Slow log port A system to log queries that exceeded a specified execution time

t7 Redis RDB persistence port Performs point-in-time snapshots of dataset at specified intervals

t8 LevelDB background compaction  port Compact sorted table files to maintain level size limit and improve performance

Table 2: Evaluated auxiliary tasks in six large software.

small (32 MB) medium (1G) large (8G)

orbit 80.51 (8.67) 116.36 (9.12) 115.30 (11.09)
fork 294.24 (27.99) 6859.36 (43.87) 53519.45 (1150.71)

Table 3: Mean latencies (in microseconds) of creating orbit versus
process. Numbers in parentheses are standard deviations in 100 runs.

5.1 Evaluation Setup

The experiments are performed in a KVM-enabled QEMU
virtual machine with 4-core vCPU and 10GB memory by
default, running Debian 10 with our custom kernel. The host
machine provides a 20-core Intel Xeon Silver 4114 CPU
(2.20GHz), 32GB memory and 480GB SSD running Ubuntu
18.04 LTS. We run all experiments using Linux’s default
4KB-sized pages on x86-64, with huge page disabled.

We additionally repeat the experiments on a bare-metal
machine, which show matching relative results. Our technical
report [20] presents the bare-metal version experiment results.

5.2 Microbenchmark

We first evaluate the performance of creating and invoking
orbit with microbenchmarks. We measure the orbit creation
under different memory footprint settings of the main program.
For a given memory setting, the benchmark program allocates
the size, fills it with non-zero data to ensure the kernel actually
allocated a physical page for it before running the measured
action. It then calls orbit_create and measures the latency.
We compare the orbit creation with fork.

Table 3 shows the result averaged over 100 runs. The initial
address space for orbit is minimum with mostly code and
stack pages (Section 4.2). Compared to fork, this gives per-
formance benefits for creating isolated address spaces even
with a large memory footprint, as most unneeded data are
not copied. When the main program has an 8 GB memory
footprint, fork is 464 x slower than creating an orbit.

We also measure the latency of orbit_call_async. Fig-
ure 10 shows the result averaged over 20 runs. In general, orbit
call time increases almost linearly with the size of orbit area,
because it is dominated by the snapshotting cost. For example,
making an orbit call with 32MB memory snapshotted takes
272.9 ps, which is comparable to the performance of forking
a process with 32MB data shown in Table 3. An orbit call
with 8GB snapshotted takes 58.6 ms, which is slightly higher

s |—=— orbit_call_async
w

=

2 103 4

C

i)

© 102 4

10t 4 ; . : .
4KB 32KB 256KB 2MB 16MB 128MB 1GB 8GB

State size
Figure 10: Orbit call latencies with different sizes of snapshot state.

than forking 8 GB memory. This is due to the more compli-
cated implementation of snapshotting, such as incremental
snapshotting and support for several snapshotting modes.

5.3 Applying Orbit on Large Applications

To evaluate the generality of the orbit abstraction, we apply
orbit on 6 large applications, MySQL, Apache, Nginx, Var-
nish, Redis and LevelDB, which have complex codebases and
use diverse programming paradigms.

We use orbit to port 7 existing, representative auxiliary
tasks in the applications (Table 2). They cover typical auxil-
iary tasks ranging from fault detection, debugging, resource
management, and performance optimization. Two tasks, the
Apache proxy balancer and the Nginx WebDAV handler, can
be also considered main features. We evaluate them to test the
boundaries of tasks that orbit can support. We successfully
port all 7 tasks. We run each application’s unit tests to verify
the ported tasks preserve the original functionalities, even
though the tasks now execute the separate address spaces.

We also use orbit to write a new auxiliary task, a lock
watchdog, in Apache as an exercise. This task periodically
checks if some thread in Apache is stuck and pinpoints the
long-holding locks. We add a counter and held locks in thread-
local storage. For every lock operation, the main program
threads increment the counter, and the number of held locks.
A background thread makes an orbit_call to the watchdog
every second with all threads’ counters and held locks. The
orbit resets all counters. It also stores historic data of the last
held locks and the number of iterations that there is no activity
for each thread. When the orbit finds that some thread has has
no activity over a threshold (60s), it orbit_pushes a return
value to inform the main program, which triggers another
orbit_call to the orbit’s diagnosis function that finds the
root cause. Figure 11 shows the watchdog thread function.
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void watchdog_loop() {
long next_op = WATCHDOG;
while (true) {
if (next_op == WATCHDOG)
next_op =orbit_call(..., wd_areas, wd_func, ...);
else if (next_op == DIAGNOSIS)
next_op =orbit_call(..., diag_areas, diag_func, ...);

Figure 11: The Apache lock watchdog thread
5.4 Fault Isolation

5.4.1 Fault Injection Testing

We evaluate the isolation capability of orbit by performing
fault injection testing on all 8 auxiliary tasks. We inject null
pointer deference faults at different times during a task’s exe-
cution. In all cases, the system successfully isolates the faulty
orbit without causing impact to the application and restarts
the task gracefully to reattach to the running main process. In
some systems, graceful failure handling is implemented by re-
turning an application-specific error code after witnessing an
error return code from orbit_call. For example, in Apache
proxy handler, we return a HTTP_SERVICE_UNAVAILABLE after
checking the orbit state in main program.

As a first-class OS entity, orbit also provides isolation of
performance interference and resource overuse faults in aux-
iliary tasks. We inject two such faults in Redis slowlog (t6),
and mitigate them with cgroup. We enforce a memory limit
of 256 MB on the orbit task, and inject a memory allocation
of 512 MB in orbit task, which this task would never use
up. Cgroup triggers an OOM kill immediately when the task
goes over the memory limit, and the main process gracefully
restarts the orbit task. We also inject one CPU hogging for
10 seconds, and modify cfs_quota scheduler parameter with
cgroup to bring CPU usage from taking up one whole core
down to 10% of single-core CPU time shown in top.

For our newly implemented task in Apache (t3), we inject
a long sleep right after one thread has acquired a lock. The
watchdog immediately triggers a diagnosis once it finds the
counter has not been updated for 60s. The diagnosis function
pinpoints the thread ID that holds the lock, along with the
location where the lock is acquired.

5.4.2 Real-world Bug Testing
We reproduced 4 real-world bug cases from MySQL, Apache,
Redis and Nginx that involve the four tasks.

MySQL assertion failure We reproduced the MySQL Bug
#28523042 [7]. This bug is introduced in MySQL 8.0 and
adds incorrect assertions, which result in assertion failures.
We reintroduced this bug into our orbit-enabled MySQL
5.7.31. For demonstration purposes, we modified some part of
the expressions that touch the new variables in the 8.0 version,
to make the backported code run on the 5.7.31 version.
When a deadlock occurs in the original buggy version, the
whole MySQL server crashes, and all clients’ connections
are dropped. With the orbit-protected deadlock detector, even

though the orbit task crashed, the MySQL server is still alive.
After the default MySQL lock wait timeout is exceeded, one
transaction is chosen as the victim, and all other transactions
can continue to finish successfully.

Apache proxy balancer segfault We reproduced Apache
Bug #59864 [6]. The user reported that under a proxy balancer
configuration with a pair of unavailable fail-over backends
pointing to each other, Apache entered infinite recursion when
it searched for suitable backend, resulting in stack overflow.
We isolate the backend selection in orbit, and successfully
catch such failure. Instead of dropping connection, the main
program now returns a more meaningful “Temporary Un-
available” message when it finds that orbit task has failed.

Furthermore, although web servers like Apache and Ng-
inx often use fault-tolerance mechanisms like multi-process
workers, such mechanisms cannot provide fault isolation for
concurrent requests within the same worker. When one of the
requests triggers a fault, all other connections to this worker
also gets disconnected. This applies to both multi-threading
(Apache) and event-driven architecture (Nginx) within one
worker. Orbit further provides a finer level of isolation by
isolating auxiliary tasks within one worker.

Nginx WebDAYV segfault Nginx Bug #238 [5] was triggered
when a custom WebDAV PUT (i.e., file upload) user request
did not include document body. The PUT handler assumes the
request body pointer to have been allocated, and thus causes
null pointer dereference. Similar to the previous Apache bug,
the ported orbit version gracefully catches the failure and
returns meaningful messages, while also preventing other
requests in the same worker from disruption.

Redis Slowlog memory leak Although Redis uses single-
threads for its request processing, its background threads can
still cause issues. In case #4323 [2], a race condition happens
when both slowlog and asynchronous lazy-free thread decre-
ment a refcount, leading to neither of them freeing the object.
Developer mitigated this issue by making a copy of the object.
Our orbit implementation, on the other hand, transfers the
object from snapshotted orbit area and designates resource
management solely to the orbit’s address space. Since orbit
and the main process do not share the reference counter, race
condition is eliminated in the first place.

5.5 Performance Overhead

We measure the end-to-end application performance impact
with the orbit-based tasks. We choose application workloads
that ensure the auxiliary tasks are triggered frequently.

For MySQL (t1), we run OLTP read-write test provided
by the sysbench [3] benchmark tool with 16 clients. We run
both Apache watchdog task (t3) and Varnish (t5) using ab with
1KB document length and 4 clients. Varnish web cache service
uses a stock Nginx as backend. For Apache proxy balancer
case (t2), we wrote a custom benchmark using libcurl to
mix 90% non-proxy requests with 10% proxy requests with
4 clients because ab does not support mixed requests. Nginx
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Figure 12: End-to-end application performance with the orbit-based
(safe) tasks versus the original (unsafe) tasks.

Task tl 2 3 t4 t5 6 t7 8
80.7 02 99

Calls/s 510.1 1127.8 1 11420 1

Table 4: Orbit call frequency in evaluated auxiliary tasks.

WebDAV (t4) benchmark is written in a similar way, with
10% WebDAV upload requests. We run both of the Redis
tasks (t6, t7) with YCSB 95% read 5% write test using 32
threads, with either of the tasks enabled separately. We run
LevelDB (t8) using a sequential-fill workload with LevelDB
built-in benchmark tool to trigger compaction frequently.

Figure 12 shows the normalized throughput for the 8§ cases.
Most of the (safe) orbit tasks show comparable performance to
vanilla (unsafe) tasks. The median overhead is 3.3%. The new
task t3 in Apache is compared with the original Apache with-
out our lock watchdog. It has the smallest overhead (0.04%).
The largest overhead (10.2%) is the MySQL deadlock checker,
which is acceptable considering the strong isolation.

We choose workloads that stress test the orbit tasks. As
Table 4 shows, all the tasks are frequently invoked. For exam-
ple, the MySQL deadlock checker orbit is invoked 510 times
per second. In practice, it may not be invoked this frequently.
Developers can also add sampling logic for orbit calls.

We also tested less intensive workloads. We reduced
the write operations in MySQL (t1)’s OLTP workload, and
changed the 90%/10% mix of t2 and t4 to 99%/1% mix. Task
t1 and t2 only incur 1.6% and 1.2% overhead, respectively,
while t4 has a negligible overhead of 0.18%.

For the MySQL deadlock detector, we implemented a
fork version by creating a fork on each invocation to
check_and_resolve. However, we did not implement IPC
to pass results back to the main process, but if implemented,
the fork-based performance would become even worse. In
comparison, the orbit version has full functionality of push-
ing updates. We compare the MySQL performance under
the three versions of detector: vanilla, fork-based, and orbit-
based, using a user workload [1]. Figure 13 shows the result.
The orbit version is slower than the vanilla as expected, but
6x faster than the fork-based version. For the orbit version
we also compare the performance difference using the syn-
chronous orbit_call versus using orbit_call_async. Un-
der 8 threads, the performance with asynchronous call is only
1.2% faster than the synchronous call because of limited con-
currency opportunities. But under 16 threads, the performance
difference becomes much larger as Figure 14 shows.

Throughput Latency Orbit area FPQ TRXsize

No-opt. 1728.0 QPS  340.5 us 25.7 MB 11.70 912 bytes
Delegate  3308.1 QPS 393 us 1.0 MB 6.91 104 bytes
Changes +91.4%  -88.5% -96.1% -40.9% -88.6%

Table 5: Optimization effect of delegate object technique. (FPQ
stands for page faults per query)

Task tl 2 t3 t4 t5 t6 t7 t8

Orbit area 828 20 8 4 8 268 80,644 240
Percentage 033 040 0.12 0.12 0.001 1.6 769 0.65

Table 6: Snapshot sizes (KB) in evaluated auxiliary tasks and their
relative percentages (%) of the main program memory footprint.

5.6 Effectiveness of Optimizations

Incremental snapshotting We show the effect of incremen-
tal snapshotting by gradually allocating new objects in the
orbit area and making orbit calls. We measure orbit call laten-
cies with area sizes from 2 to 256 MB with an increment of
2 MB. Figure 15 shows the result averaged over 20 runs.
Without the optimization, the kernel wastes most cycles
walking all the unchanged PTEs and thus requires longer
latency. With the optimization, the new data that needs to be
snapshotted in every call is a constant (2 MB). For an orbit
area of 256 MB, the optimization reduces the latency by 40x.

Delegate Objects We use delegate object technique to mini-
mize states size during snapshots, while also reduce unnec-
essary page faults due to main process memory writes to the
other fields that orbit task does not use.

In the MySQL deadlock detector, we applied delegate ob-
ject technique to transaction type trx_t, lock type lock_t,
and lock information lock_sys. We observe that identifying
such optimization opportunities is straightforward. For exam-
ple, the trx_t is 70-field struct with only 4 fields being used
in the orbit task, which is clearly an optimization target.

‘We run the user workload [1] with 16 clients on a 8-core
vCPU QEMU VM and compare the throughput, latency, orbit
area size, and average page faults per query. Table 5 shows
the results. The optimization improves average throughput by
91%, and the orbit call latency to be 7.7 x shorter. The total
number of page faults throughout the run increases because
the throughput also improves, but on average, the number of
page faults each request incurs is reduced by 40.9%. In orbit
calls, 96.1% of unneeded memory is saved from snapshots.
In particular, the delegate object size for trx_t is only 11%
of the original transaction structure.

5.7 Memory Footprint

Orbit provides efficient snapshotting because orbit only snap-
shots on necessary data for auxiliary task. We measure the
average memory footprint of orbit area that was snapshotted
during orbit calls. Table 6 shows the snapshot sizes along
with their percentages of the main process’s memory foot-
print. Among the ported tasks, 6 out of 8 allocate less than 1%
of process data in orbit area. Redis RDB takes snapshot on its
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Figure 13: MySQL deadlock detector vanilla
versus the orbit-based and fork-based version.

Task tl 2 t4 5 t6 (7

Manualport 7 16 7 3 11 12 56
Compiler 7 56 44 3 20 65 195
Common 5 8 5 19 11 39

Total

Table 7: Allocation points in our manual port and compiler result.

key-value dictionary that dominates the memory usage, and
thus require the largest portion of memory to be snapshotted.

5.8 Usage Effort

We count the lines of code changes we make to applications in
porting the 7 existing auxiliary tasks. The changes include (1)
replacing the allocation and free points with orbit allocations;
(2) making orbit calls, pushing updates, and applying updates.

The combined changes for (1) range from 40 to 158 lines
with a median of 115 lines. The Redis RDB task requires the
most changes. We modified some application functions that
create certain data structures to provide two versions (one for
regular code paths, another for code paths to the orbit task) to
avoid putting many unneeded objects in the orbit area. These
modifications involved either duplicating the original function
or changing its interface. The combined changes for (2) range
from 45 to 272 lines with a median of 96 lines.

Our analyzer (Section 4.7) was developed after and moti-
vated by our manual porting effort. We apply it on 6 of the
evaluated tasks. The new implementation (t3) case has 0 orig-
inal allocation points, thus it does not apply. The tool cannot
analyze allocations in C++ STL container accurately due to
its limited support for STL’s complicated internal allocation
implementation, thus t8 is excluded.

Table 7 shows the result of manually ported allocation
points, detected points and the common ones between the two.
From all 56 ported allocation points, our compiler detects
39 of them (70%). The detected points include ported, un-
ported correct points, and false points. For the tasks that have
larger number of detected but un-ported points (such as t7),
we observe that most of these detected points are correct.
They are missed from porting because our workload does
not exercise those functionalities. There are also a few cases
missing from detection because of unexpected corner cases.
For example, a variable in Varnish (t5) used by the auxiliary
task was directly allocated on stack instead of using allocator.

6 Discussions and Limitations

As a new abstraction support for auxiliary tasks, our current
orbit design has several limitations.

Time (s)
Figure 14: MySQL performance under 16
threads with sync. and async. orbit calls.

32 64 96 128 160 102 224 256
Size (MB)

Figure 15: Orbit incremental snapshotting la-

tency on a growing allocation size.

N 4

60 80 100 120

State synchronization Our state synchronization mecha-
nism works at the page granularity, which can incur unneces-
sary snapshot costs and page faults. Fine-grained object-level
snapshotting is feasible but heavily depends on accurate static
analysis and instrumentation. We plan to explore potential
hybrid solutions that have the advantages of both approaches.

Observable states Our design only considers observing
memory states, but not other system states such as file states.
Those states would be more complicated to coordinate as they
involve kernel and library buffer and position pointer. Creat-
ing file snapshots will require a different technique. The tasks
we ported are relatively modular and self-contained. For ex-
ample, our ported checkpointing tasks (Redis RDB, LevelDB
compaction) require file operations, but they can create, write,
close, and move files within the same orbit context, without
the need to share file descriptors with the main program.

Code changes and compiler support We currently require
developers to replace the allocation points of needed state
variables. For some tasks, a relatively large number of places
may need to be replaced. Our future work plans to leverage
lightweight memory tracing [32] to dynamically identify the
state variables and minimize the code changes.

The analysis in our compiler support for assisting develop-
ers to use orbit is basic. Although it supports field-sensitive
pointer analysis, it can still miss corner-case allocation points.
Developers need to manually find these points. Furthermore,
our implementation of def-use chain analysis is not accurate
enough to determine complex data flow, and thus will yield
a handful of false positives. We will enhance the compiler
support to enable fully automated porting for developers.

Comparison of programming difficulty Compared to pro-
gramming with threads, using orbit requires the additional
effort to properly change some allocation points. However,
although developers do not need to change allocations when
using threads, they still need clear knowledge of all the global
variables that will be accessed in the thread, and ensure proper
synchronizations for them. Thus, developers likely already
have some knowledge about the allocation points of these vari-
ables. In addition, some of the synchronization would become
unnecessary when using orbit. Therefore, the programming
overall would be comparable.

Compared to the RPC model, orbit allows developers to
write task functions in the same application codebase and di-
rectly refer to existing variables and functions. Unlike RPCs
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that require code changes to enable object marshalling and
unmarshalling, which are difficult for complex objects like
transactions and locks, using orbit does not require such
changes. With the mirroring orbit area, orbit calls directly
access needed objects when crossing the address spaces.

Tolerance of bugs Orbit aims to protect the main program
from issues in the auxiliary task execution. It tolerates com-
mon bugs such as memory errors in the auxiliary task func-
tions, as well as bugs in the main program that pass bad (or
corrupt) values to the auxiliary tasks.

It does not prevent an auxiliary task from sending an in-
correct update back to the main program and cause the main
program to malfunction. But the orbit abstraction encour-
ages modularization for auxiliary execution, i.e., an orbit task
performs most of its operations in a separate address space
before pushing updates back. This modularization minimizes
the time window for the main program to see bad values and
increases the chance that the orbit task itself encounters issues
(e.g., dereferencing a bad pointer) before the main program
does, which still achieves protection. This is also one reason
we choose to provide one-way automatic state synchroniza-
tion (Section 4.3) with controlled state alteration, instead of a
transparent, eager bidirectional state synchronization.

Auxiliary versus main tasks Determining whether a task is
auxiliary or main can be subjective. While orbit is designed
for auxiliary tasks, it does not require a clear-cut distinction—
developers can use it to execute some tasks that they consider
as main features for achieving strong isolation. We demon-
strate this usage in the evaluation with two cases (t2 and t4).

7 Related Work

There is a wealth of work on protection and fault isolation.
They vary widely in their target scenarios (OS extensibility,
application extensions, sensitive code, efc.), goals (reliability,
security, etc.), and approaches (software, hardware, hybrid).
Our work is complementary to the existing efforts and targets
a different, emerging protection scenario—auxiliary tasks in
modern applications. Our proposed orbit abstraction aims to
provide strong isolation for auxiliary tasks, while also achiev-
ing high observability and convenient usage.

SFI [42] is a software isolation technique that restricts
the memory accesses of untrusted code in an application by
rewriting the application binary. XFI [16] similarly uses bi-
nary rewriting to instrument software guards to check memory
accesses. Extensive work has followed up this direction, such
as NaCl [47] and RLBox [29]. As Section 2.4 elaborates, the
sandbox model is not well suited for auxiliary tasks.

Several sub-process OS abstractions [10, 12, 24] provide
secure partitioning in applications. They generally use pri-
vate memory for executing sensitive code to ensure security.
Wedge [10] provides the sthread primitive to partition an
application into compartments and a scheme to tag memory
regions and define access rights for the tags. Shreds [12] pro-
vides a segment of an execution unit called shred and relies

on the ARM memory domains hardware feature to provide
a private memory pool for each shred. Lightweight context
(IwC) [24] creates a separate address space for each IwC in an
application and allows a process to switch to some /wC when
executing sensitive code. These abstractions typically get exe-
cuted synchronously and are not independently schedulable.

Determinator OS [9] provides a private workspace model
for deterministic parallelism. It runs user code in spaces and
relies on processes to explicitly synchronize the spaces. Orbit
provides automatic, fine-grained state address space synchro-
nization between orbit and the main program. An orbit also
has richer features due to its completely different design pur-
pose. SpaceJMP [15] allows a process to define multiple
address spaces and switch between address spaces, but with
a main goal of enabling applications to use more physical
memory rather than fault isolation.

Memory checkpointing takes snapshots of a running pro-
gram’s memory for debugging, failure recovery, quick ini-
tialization, efc. [11, 13,22,46] The checkpoint techniques
usually rely on the copy-on-write (COW) mechanism through
fork [33, 34, 38] or mprotect. On-demand-fork [48] opti-
mizes the fork performance by extending COW to page tables.
Orbit synchronizes only needed objects in the orbit areas.
Lightweight memory checkpointing [41] uses shadow mem-
ory to checkpoint at object granularity. While it is more fine-
grained than the page-level COW, shadow memory has several
disadvantages for our scenario as described in Section 4.3.
Overall, we focus on designing a complete OS abstraction for
the isolation of auxiliary tasks. Our work is complementary
to existing solutions and can benefit from their optimizations.

Protection schemes are also extensively explored in the
context of OS extensibility. To name a few, Nooks [39] pro-
vides isolation of device drivers by executing them in dif-
ferent protection domains and using Extension Procedure
Call (XPC) for control transfer; Mondrian memory protection
(MMP) [44, 45] provides fine-grained protection by using
hardware extensions and permission tables.

8 Conclusion

We discuss the trend of auxiliary tasks in applications and the
lack of system support for providing safe and efficient execu-
tion for these tasks. We propose a new OS abstraction orbit
to address the gap. Orbit offers high observability and flexible
control, while providing strong isolation and efficiency. We
evaluate orbit on 8 auxiliary tasks from 6 large applications.
The applications achieve enhanced safety with the orbit tasks,
and only incur a median of 3.3% performance overhead.
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