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Abstract

Distributed systems today offer rich features with numerous

semantics that users depend on. Bugs can cause a system

to silently violate its semantics without apparent anomalies.

Such silent violations cause prolonged damage and are diffi-

cult to address. Yet, this problem is under-investigated.

In this paper, we first study 109 real-world silent semantic

failures from nine widely-used distributed systems to shed

some light on this difficult problem. Our study reveals more

than a dozen informative findings. For example, it shows that

surprisingly the majority of the studied failures were violating

semantics that existed since the system’s first stable release.

Guided by insights from our study, we design Oathkeeper, a

tool that automatically infers semantic rules from past failures

and enforces the rules at runtime to detect new failures. Eval-

uation shows that the inferred rules detect newer violations,

and Oathkeeper only incurs 1.27% overhead.

1 Introduction

Users’ increasing reliance on distributed systems highlights

the importance of ensuring they work correctly. Unfortunately,

real-world distributed systems inevitably encounter failures.

When a failure is recognizable through explicit signals such

as crash, timeout, error code, or exception, timely actions can

still be taken to detect [22,40,46] and mitigate [41,52,53] the

failure. A vexing problem occurs when a system is operational

but silently breaks its semantics without apparent anomalies.

Take a distributed notification service as an example, which

provides an interface that promises to invoke the client call-

back whenever the status of some object changes. A bug may

cause this system to miss invoking the callback upon a change

or invoke the callback more than necessary. As another exam-

ple, a distributed file system that is supposed to replicate data

blocks by user-configured n copies may incorrectly under-

replicate some blocks without any explicit errors.

Such failures can lead to severe consequences because they

violate the guarantees a system provides to its users. They

also break the contracts that other components or applications

rely on, and result in amplified incorrectness. Moreover, since

the violation is silent, the damage exacerbates over time. For

example, as the buggy distributed file system that silently

violates its replication policy continues to run, more and more

newly created files will be subject to potential data loss.

System Ver.
Client Public Admin

Config.
API Method Command

ZooKeeper 3.4.6 38 219 13 30

ZooKeeper 3.6.2 78 2,853 18 128

HDFS 2.7.2 128 5,293 11 224

HDFS 2.10.0 162 6,306 12 449

Kafka 2.6.0 166 2,661 76 366

Kafka 2.8.0 171 3,107 86 379

Table 1: Number of public interfaces in popular distributed systems.

An interface can have multiple semantics under different settings.

Distributed systems today have rich semantics (Table 1)

exposed through client APIs, public methods including RPCs

among internal components, administrator commands, config-

uration parameters, etc. One interface often encodes multiple

guarantees. New interfaces and semantics are also continu-

ously introduced as a system evolves. These characteristics

together make it challenging to ensure that a distributed sys-

tem conforms to its semantics in production settings.

Indeed, real-world evidence shows that semantic violations

occur in practice. In a Google cloud incident [3], a traffic

engineering subsystem that is supposed to throttle traffic upon

congestion incorrectly throttled traffic even though the net-

work was not congested. Another highly-impactful global

outage [2] was caused by a quota system incorrectly reporting

the usage for a user ID service as zero.

However, other than anecdotal evidence, the problem of

silent semantic violations in distributed systems remains mys-

terious, despite its severe consequences. For instance, mature

distributed systems include extensive test cases to check the

correctness of their features. Thus, it is natural to assume

silent semantic violations are rare in production because test-

ing likely has eliminated most of them. In addition, while

adding assertions and runtime verification [43, 44, 48, 57] are

potential solutions, the conventional wisdom is that they are

expensive and semantic rules are difficult to get. It is also

unclear what kind of semantics are violated in practice.

To systematically understand this problem, we present, to

our best knowledge, the first empirical study on 109 real-

world silent semantic violations from nine widely-used dis-

tributed systems. Through these cases, we analyze key ques-

tions such as how prevalent are semantic violations in prac-

tice, what semantics are violated, why are these failures not

caught in testing, and how are these silent violations detected.

Our study provides quantitative data points to answer these
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questions. The study findings also challenge some conven-

tional wisdom and reveal gaps in the current practice. We

highlight several findings:

• Contrary to the belief that silent semantic violations rarely

occur in deployed systems, they have significant presence

(39%) among sampled failures of all kinds.

• While the studied systems get more extensively tested over

time and continue to add new features and semantics, their

initial semantics do not become more bulletproof. On the

contrary, more than two thirds of the failures violate seman-

tics that have existed since the system’s first stable release.

• Although these are distributed system failures, most (74%)

violations can be determined locally in some component.

• The violated semantics are often not untested but rather

well covered by existing test cases.

• Enabling assertions in release builds helps by converting

semantic violations into crash failures. One studied system

does this and has the lowest ratio of semantic failures.

• In many cases, although a semantic was initially honored, it

was later violated, thus one-time assertions are insufficient.

• Many system semantics are vulnerable to violations during

maintenance operations or node events.

Given the prevalence (as our study indicates) and severity

of silent semantic violations, we design a tool Oathkeeper to

help users check silent semantic violations at runtime. The

tool design is directly guided by insights from our study.

Specifically, we find that in 73% of the cases, developers

add regression tests after the failure is reported, which contain

valuable information about the failed semantic. However, the

majority of the studied cases still violate semantics that have

been tested before. A major reason for the gap is that these

regression tests are usually patch-driven: they only check if

the specific bug is fixed in a particular setup using a bug-

triggering workload. The underlying semantics can continue

to be broken with different root causes in different scenarios.

Based on this insight, Oathkeeper leverages the regression

tests and tries to infer the underlying semantic rules implied

by the tests. To do so, Oathkeeper runs the tests on both the

buggy version and patched version of the system, and takes

a template-driven approach to automatically infer semantic

rules from the two traces. Oathkeeper then deploys these

semantic rules to production to catch future violations that

are caused by different bugs under different conditions.

We evaluate Oathkeeper on ZooKeeper, HDFS, and Kafka.

Oathkeeper infers hundreds to thousands of semantic rules

from the old regression tests in these systems. With the in-

ferred rules, we evaluate Oathkeeper on seven real-world se-

mantic failures that were introduced long (9–34 months) after

the old failures. Oathkeeper detects violations for six of them.

With all rules enabled, Oathkeeper on average only incurs

1.27% throughput overhead to the target systems.

The contributions of this paper are two-fold: (i) the first

study on real-world silent semantic violations in nine popular

distributed systems; (ii) the design of Oathkeeper, which au-

tomatically infers semantic rules for large distributed systems

to check silent semantic violations at runtime.

The source code of Oathkeeper is publicly available at:

https://github.com/OrderLab/OathKeeper

2 Background

2.1 Definition
We consider a distributed system S that provides services

through a collection of operations. Each operation o has cer-

tain semantics [29]. The semantics encode guarantees that o

makes about the output, system states, and results of subse-

quent operations, in response to some triggering condition c.

The condition c can be a client request, an admin command

(at the server side), a message from internal components, as

well as an environment change including the passage of time.

The semantics of S are all the guarantees provided by the

history of operations S executes in response to a list of c.

A semantic violation (failure) occurs when S breaks some

of its semantics in an execution. The failures may exhibit ex-

plicit error signals, such as crashes, timeouts, and exceptions.

In such cases, the violations overlap largely with existing fail-

ure models and can be well addressed by existing techniques.

This work focuses on silent semantic violations, in which S

violates its semantics but remains operational without exhibit-

ing explicit error signals (S is unaware of its misbehavior). We

focus on this class of failures because they are under-studied

yet incur damaging consequences, and they pose significant

challenges to testing, failure detection, and recovery.

Silent semantic violations differ from other failure modes

in observability. Fail-stop failures cause complete loss of func-

tionality, which can be observed with simple measures such as

monitoring heartbeats. Fail-slow [32], partial failures [46] and

gray failures [37] only cause some functionality to be broken

(slow). But these issues can still be observed with generic

approaches, e.g., checking exceptions or timeouts [45]. In

comparison, silent semantic violations are difficult to observe

without a deep understanding of S’ semantics and execution.

Another way to interpret the “silent” aspect is on the se-

mantics being violated. If S only has a few operations, all of

which have well-defined and thoroughly checked semantics,

semantic violations in S will be observable failures. Unfortu-

nately, distributed systems have a large number of interfaces

(Table 1), many of which have loosely-defined (or hidden)

semantics that cannot be easily checked. Consequently, viola-

tions of such semantics are difficult to detect and address.

2.2 An Example

We show an example of silent semantic failures from our study

(Section 3). ZooKeeper is a coordination service with a hier-

archical data model. Its clients store data by creating znode

in a namespace. A special type of znode is called ephemeral

node. The semantics of the ephemeral node create() opera-

tion guarantees that the znode exists for as long as the creating
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ZooKeeper service

Kafka 

consumer1

/kk/consumer1

ephemeral znode

disconnected

semantic violation: znode should be removed

Kafka client

get /kk/consumer1

Figure 1: A silent semantic failure in ZooKeeper.

client’s session and will be deleted once the associated session

ends. The triggering conditions are the create request and the

client session disconnection. Ephemeral nodes are commonly

used to store membership information. For example, HDFS

implements its leader election using ephemeral nodes [27].

In a production ZooKeeper failure [13], some ephemeral

node still existed even though the client session that created

them was long gone. Specifically, a Kafka consumer crashed

but the associated znode was not deleted (Figure 1). As a re-

sult, when Kafka clients queried ZooKeeper to discover con-

sumer information, they kept trying to connect to the crashed

consumer. In other settings, this semantic violation can propa-

gate to other dependent applications, e.g., it will break HDFS

namenode’s automatic fail-over feature, which depends on the

ephemeral node semantics, causing an HDFS service outage.

3 Study Methodology

Compared to other failure modes in distributed systems, silent

semantic violations are not well understood. To fill this gap,

we conduct a study on user-reported silent semantic failures

from nine large-scale distributed systems (Table 2). We select

these systems because they are representative, mature, widely

used in production, and record many user-reported failures.

To collect the failure cases, we first query the study systems’

issue trackers to find tickets that (1) are marked as “bugs”,

(2) have priorities higher than “minor”, (3) are resolved, (4)

involve the server components. This step returns a large num-

ber of tickets. We then randomly sample a subset (Table 2).

Among this subset, some are not real failures, such as issues

found in internal testing. The remaining ones (valid column in

Table 2) are potential production failures. We then read their

descriptions and check whether the failures violate system

semantics. We filter crashes, aborts, out-of-memory errors,

and semantic failures with clear error signals.

After the above step, we get a candidate set of production

silent semantic failures (Candidate column). Due to time

constraints, we perform in-depth analyses on a subset of the

candidate cases, preferring those with sufficient information

and discussions. This gives us the final study dataset (Studied

column) of 109 production semantic failure cases.

Note that our sample sizes vary across systems. This is

because the studied systems’ tickets vary greatly in terms

of their information, quality, and bug types. If using a fixed

sample size or ratio, one system can dominate the study and

produce extremely biased findings. Our sampling instead is

done iteratively: for a particular system, if after an initial

System Category Lang. All
Sampled Candi Stud

(valid) -date -ied

Cassandra (CS) Database Java 3,308 69 (54) 25 12

CephFS (CF) File Sys. C++ 673 673 (123) 37 12

ElasticSearch (ES) Search Java 4,101 101 (46) 26 10

HBase (HB) Database Java 6,143 233 (80) 32 14

HDFS (HF) File Sys. Java 3,409 99 (52) 22 14

Kafka (KF) Streaming Scala 2,764 142 (92) 39 13

Mesos (ME) Cluster Mgr. C++ 2,462 116 (47) 21 12

MongoDB (MG) Database C++ 14,776 355 (151) 30 10

ZooKeeper (ZK) Coordination Java 1,141 134 (102) 36 12

Total 38,786 1,922 (747) 268 109

Table 2: Studied systems, the tickets (of various kinds) in the issue

tracker of each system, the cases we sampled, and cases studied.

sampling, its number of Candidate cases is too small or 0,

we sample more, until the candidate numbers for different

systems are relatively balanced. Note that each iteration in

this process is still randomly choosing from the All tickets.

Threats to Validity. Like all empirical studies, our study is

subject to validity problems such as the representativeness

and biases. We cover popular distributed systems of different

types, such as database, file system, and search engine, to

improve the representativeness. To minimize selection bias,

we randomly sample the cases. We also spread the sampling

across times so we are not biased by some specific version.

To reduce the manual inspection errors, we write a detailed

analysis document for each case and have multiple inspectors

examine each document to reach a consensus.

Although our study provides informative findings on se-

mantic failures in the studied systems, they may not be gen-

eralized to other systems beyond the scope this study was

conducted. Our study is also biased by programming lan-

guages (Java and C++); the findings may not generalize to

systems written in other languages such as Erlang or Elixir,

which embrace “let-it-crash” error handling philosophy [18].

4 Are Silent Semantic Failures Rare?

Prevalence. An important question about silent semantic vi-

olations is whether they occur rarely in production. Getting

accurate prevalence data requires examining thousands of

tickets for each system, which is a daunting task. We instead

obtain an approximate result by calculating the percentage

of silent semantic failures in our sample set. Specifically, we

calculate the percentages of the number of candidate cases in

Table 2 over the number of valid cases in the sample. Note that

the candidate cases are examined to be indeed silent semantic

failures, even though we only study a subset of them.

Finding 1: Silent semantic failures have significant presence

across all studied systems, occupying 20%–57% (39% on

average) of the sampled cases for all types of failures.

The percentages vary in different systems. Systems such

as ElasticSearch and Cassandra have a higher percentage of

semantic failures (57% and 46%, respectively). MongoDB

has the lowest ratio (20%). We will discuss in Section 8 these
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systems’ practices that may contribute to the differences.

Severity. How severe are these reported silent semantic fail-

ures? To answer this question, we analyze the severity levels

that developers assign to the issues. Some systems use slightly

different categories. We normalize them into three levels:

Blocker, Critical, Major. Based on the official descriptions,

Blocker means the issue “should block release until it is re-

solved”; Critical means the issue causes severe consequences

like data loss; Major means a “major loss of function”.

Overall, 45% of the studied cases have Blocker or Critical

priorities. The ZooKeeper failure [13] described in Section 2.2

is an example Blocker issue. As another example Blocker

issue, users reported that in their HDFS deployment, all the

replicas of some blocks are residing on the same rack [8],

which breaks the redundancy policy. This is clearly a severe

violation because replica placement is critical to HDFS data.

We also compare the priority distribution of semantic fail-

ures with all failures in the sample. The result is shown in

Figure 2. The average percentage of Blocker priority in seman-

tic failures increases from 15% to 21%, and the percentage of

Critical priority increases from 8% to 24%.

Interestingly, we find in some cases initially developers may

not consider the symptoms to be severe, but after further inves-

tigation developers upgrade the priority level, e.g., “Marking

as critical for 2.0. These ‘unexpected behaviors’ cause opera-

tor head-scratching and wasted hours of digging” [5].

Finding 2: Despite the lack of explicit error symptoms, silent

semantic failures are considered severe by developers and

users. Moreover, the sampled semantic failures are assigned

with higher priorities compared to all sampled failures.

Consequence. We next analyze the failure consequences. Fig-

ure 3 shows that besides incorrectness, semantic failures cause

serious consequences such as corruption and data loss.

The consequences are damaging because clients or users

are misled by the system’s seemingly normal reactions. For

example, Kafka guarantees that when a success response is

sent to a producer, the produced message will be persisted

by at least min.isr replicas. Otherwise, the producer will

be notified of an error, so it may retry the request. In one

failure [9], a leader replica switched to follower then back to

leader. Some messages produced were lost while the client

received responses with no error. This false success resulted

in data loss for the users.

Note that Figure 3 is about the reported impact of failures,

which is not always the semantic violation per se. For example,

in a MongoDB case, the maximum cache usage configuration

is not enforced. It takes a while for the violation to cause

a performance problem—which is the consequence of this

failure. But even before the system reaches the performance

collapse, a cache limit violation has occurred.

Finding 3: In addition to incorrectness (wrong responses),

silent semantic violations often cause severe consequences

including corrupt state, data or state loss, and security issues.

5 What Kind of Semantics Is Violated?

5.1 Sources of Violated Semantics

The studied failures violate various system-specific semantics.

We analyze where these semantics come from. There are four

sources and Figure 4 shows their distributions:

• API spec: a system API promises certain effect will (not)

occur, e.g., a successful return of removeWatch API is sup-

posed to remove the specified watcher.

• Internal behavior: the system’s documentation explicitly

guarantees that something should (not) occur about its in-

ternal behavior, which is not directly exposed to external

APIs, e.g., HDFS guarantees that if some Erasure Coding

blocks fail, they should be detected and reconstructed.

• User configuration: user configurations regulate some sys-

tem behaviors and the guarantees depend on the user set-

tings. For example, the max_hint_window_in_ms parameter

in Cassandra defines the maximum time window the coor-

dinator will generate hints for a dead host.

• Implicit: the semantics are not explicitly defined or docu-

mented, but users expect them to hold for a correct system.

Finding 4: Most (87%) studied failures violate semantics that

are explicitly defined in API specs, system docs, or configs.

Interestingly, in 10% of the studied cases, the system

does not respect its configuration’s semantics. For exam-

ple, if users set acl.inheritance to true, HDFS should en-

able ACL inheritance; but in one case the inherited ACL

permissions are masked [7]. This violation causes security

issues. The problem of misconfiguration is extensively re-

searched [20,21,35,56]. This finding suggests that even when

users set configuration properly, a system can still misbehave.
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As an example of Implicit semantics, in one HBase case [4],

a region is online in server A, but the region location registered

in the meta table is server B. While this consistency semantics

is a common sense, it is not explicitly declared.

Explicit documentation of semantics is indicative of de-

velopers’ awareness of its guarantees and importance. One

hypothesis is that if the semantics in a failure is not docu-

mented, it is understandable that developers did not make

enough efforts to enforce the semantics. This finding dis-

proves this hypothesis. However, the explicit documentations

do not translate into fewer violations. One reason is that devel-

opers often document the semantics in a vague (e.g., “should

produce correct results”) or incomplete way. A more fun-

damental gap is that the documentation is designed to be

human-readable but not machine-checkable. For example, the

semantics for ephemeral znode in ZooKeeper is documented

clearly, but the system does not have any mechanism or tool

to enforce this semantics in deployment.

Implications: Rich sources of documentation exist to lever-

age and judge semantic violations. Developers should move

from documenting semantics in informal text to rigorously

declare semantics that are mechanically checkable and en-

forceable.

5.2 Categorizations of Violated Semantics

Old vs. New Semantics Modern distributed systems often

keep adding new features. For example, the number of client

APIs in ZooKeeper increased from 38 in version 3.4.6 (2016)

to 78 in version 3.6.2 (2020). Similarly, HDFS’ key APIs in

fs.FileSystem increased from 128 in version 2.7.2 (2016) to

162 in version 2.10.0 (2019), along with significant increases

of semantics in other interfaces such as RPC methods.

Since around 90% of our studied failures occurred after

more than two years since the software’s initial release (Fig-

ure 5), a natural hypothesis is that most of them violate some

new semantics. We validate this hypothesis by analyzing the

age of semantics in the studied failures. We define old seman-

tics as ones that exist since the first major stable release of the

system and others as new semantics.

Surprisingly, we find only less than one third (32%) of our

studied failures violate relatively new semantics, while 68%

of them violate old semantics. Old semantics usually repre-

sent the most fundamental functionalities the system provides

since developers implement them first, and they usually un-

dergo extensive testing already. However, our finding suggests

that (1) even with new features added to the system, old se-

mantics are still ones violated the most; (2) even with testing

accumulating over the years, the reliability of old semantics

is not necessarily higher in newer versions. Take ZooKeeper

as an example. Its ephemeral znode interfaces and semantics

have existed since the first major stable release (3.0.0) in Oc-

tober 2008 [1]. However, there are still production failures

violating the guarantees of ephemeral znode reported by users

even 10 years later [15].

We further investigate why old semantics still keep getting

violated. There are three broad reasons: (1) new implementa-

tion is buggy, developers may optimize, refactor or refine the

implementation of existing functionality, which contain bugs

that break old semantics, e.g., a concurrency bug introduced

in changing an implementation to be multi-threaded; (2) new

feature adds buggy interactions, when some new feature is

added, developers may extend existing module to interact

with or support the new feature. For example, after HDFS

introduces the encryption zone feature, it needs to extend the

original snapshot file function and the new handling path is

buggy [6]; (3) latent bugs are exposed, as the most basic se-

mantics, these old semantics’ original implementations can

be complex and contain latent bugs that can only be exposed

in very specific scenario. In one ZooKeeper failure [14], users

find the ephemeral znodes are not deleted when the system

time changes unexpectedly. This bug exists for 6 years be-

fore it is discovered, because neither the testing nor most

deployments would exercise the system with the time change.

Note that we did not count the numbers of semantics in the

study, either for new or old semantics. This is because even

with explicit documentation such as API specs, determining

how many semantics are there for a given API can be subjec-

tive, which depends on the granularity of semantics. Instead,

we objectively judge if the specific semantics violated in a

failure were introduced in the initial release or not.

Finding 5: 68% of the studied failures violate old semantics.

Implications: Instead of having the false hope that old se-

mantics are reliable, developers should invest efforts to pre-

vent semantic violation regressions.

Local vs. Distributed Semantics Since the study subjects

are distributed systems, we analyze whether the semantic vi-

olations naturally require considering multiple distributed

components. This question is important to the design of run-

time verification techniques [43, 44, 48, 57].

We find that indeed 26% of the semantic violations require

global information to judge, e.g., whether the replica place-

ment policy in HDFS is correctly enforced, or whether states

in different Cassandra nodes match the consistency level.

However, interestingly, we find that the majority (74%) of

the violations can be determined in a local scope. For example,

appendTo in HDFS has the semantics of appending data to the

end of a target file and making it persistent. A buggy node

may fail to persist the new blocks or accidentally overwrite

them. The violations can be determined in this node.

One reason is that a distributed system component often
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keeps local copies of states for other components. For instance,

even though ZooKeeper session is a global concept (a client

connection to any follower or leader constitutes a session),

such state is acknowledged to the ensemble. Thus, each node

has a copy of the alive session and node list. The semantics

of ephemeral znode, which require knowledge of the session

information, can thus be checked locally in a ZooKeeper node.

Current runtime verification solutions typically aggregate

global states across all nodes to check property violations.

Obtaining such global information can be both expensive

and tricky, e.g., dealing with consistency issues in capturing

distributed snapshots [23]. Our finding suggests it may be suf-

ficient to use local checkers to expose many semantic failures.

Finding 6: The violations in semantic failures can be usually

(74%) determined in the scope of a single component.

Implications: Employing local checkers can potentially ex-

pose many semantic violations.

Safety vs. Liveness Semantics Some failures break safety-

related guarantees. For example, in Kafka, the maximum num-

ber of consumers in a group should not be larger than a config-

ured limit, but users found more consumers joined the group.

In comparison, other semantics are liveness related. For

example, ZooKeeper specifies that a container-type znode

with no child znodes should eventually be deleted. Even when

we observe some empty container node exists, it does not

necessarily indicate this guarantee is violated because it might

still hold some time later. Without context, one can interpret

some safety guarantee, such as a correct response should be

returned, to be involving liveness, because even if a response

is not received, it could be still on the way. We refer to the

system’s official documentation for making the distinction.

If the documentation explicitly states that when an operation

returns, something (e.g., a notification) will eventually happen,

then a failure about its absence is a liveness violation.

It is generally challenging to check liveness properties [38],

because there can be infinite possibilities in the execution that

eventually produce the desired effect. Fortunately, we find

most (86%) of our studied failures violate safety semantics.

Finding 7: 86% of the studied cases violate safety semantics.

Implications: There is usually a fixed time point to determine

if a system has violated its semantics.

6 Why Do Silent Semantic Failures Occur?

We analyze what causes a system to break its semantics. We

are interested in identifying potential common bug patterns in

the root causes, which can inform the designs of bug finding

tools to eliminate semantic failures before production.

Some semantic failures are caused by bugs such as memory

error, data race, and integer overflow, which are well studied

with many tools designed to detect them. We find only 12% of

the cases are caused by such bugs. The remaining failures are

caused by system-specific logic bugs including design flaws,

which are difficult to be caught by bug detection tools.

op1_start op1_end

Timeshort-lived 

semantics

long-lived semantics

op2_start op2_end

(33%)

(67%)

(33%)

(10%)

1

2

3 (40%) 4 (17%)

Figure 6: Timing of semantic violation.

An interesting finding is that even for failure cases that

violate the same or related semantics, their root causes can be

quite different. Take the ZooKeeper ephemeral znode as an

example: (1) ZK-1208 is caused by a race condition: when

ZooKeeper is handling the close session request, it deletes

ephemeral znodes and then removes the session, in between a

create operation causes new ephemeral znodes to be added;

(2) In ZK-3144, the violations are caused by an incorrect

order: during request processing, the lastProcessedZxid is

updated before sessions are modified, so a snapshot may not

include the change and the ephemeral node is not deleted

after log replay; (3) In ZK-2355, the violations are caused

by buggy error handling: follower fails while reading the

proposal packet, but resetting lastProcessedZxid is missed in

the error handler; (4) In ZK-2774, the system time of a server

is changed unexpectedly, and session expiration codes rely

the absolute system time, which causes the ephemeral znodes

to persist after the client is disconnected for a long time.

Finding 8: Only 12% of the studied failures are caused by

well-defined bugs such as race conditions, while most cases

are caused by a wide variety of logic bugs. Even for failures

violating the same semantics, the root causes are diverse.

Implications: It can be challenging to exploit code patterns

to eliminate semantic violations through static bug detection.

7 How Are Semantic Failures Manifested?

Timing of Violation Understanding when semantics are

violated can shed light on how to detect the violation.

As Figure 6 shows, some semantics only exist during the

execution of its associated operation (at return point), e.g.,

read operation should return the latest data. We call them

short-lived semantics. In comparison, some semantics exist

even after its associated operation finishes, e.g., the specified

file in create operation should be persisted and continue to

be available after create returns. They often only cease to

apply after some other event, e.g., until a delete operation on

the same file is executed. We call them long-lived semantics.

Interestingly, we find that 67% of the cases violate long-

lived semantics. This is partly because these semantics have a

larger “vulnerability” window compared to short-lived seman-

tics: a violation can occur anytime in its lifespan. ZooKeeper

ephemeral znode and watches are such examples. Essentially,

the system must maintain the promise for a long time.

We categorize the violation timing into four scenarios: at

the end of short-lived semantics (①), e.g., wrong response,

at the start (②) or in the middle (③) or near the end (④) for

long-lived semantics. An example for ② is in HDFS-12217

the snapshot operation did not capture all open files, which
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violates the long-lived snapshot semantics since the beginning.

An example for ③ is HDFS-9083: at the block creation time,

the block placement policy is honored; but after some node

failures, all replicas of the block reside on the same rack. ④

happens when the semantics should cease to apply but did

not, e.g., ephemeral nodes should be removed when clients

timeout. Figure 6 shows the distributions of the four scenarios.

Finding 9: Near two thirds of the studied cases violate some

long-lived semantics. In 40% of the cases, the semantics are

initially honored but are violated in the middle.

Implications: It is crucial to continuously monitor semantic

guarantees, even after the initial semantic check passes.

Failure Triggering Conditions We further examine what

triggers the semantic failures. Figure 7 shows the result.

Finding 10: More than half of the studied failures are trig-

gered by specific requests, while 39% of the failures require

particular timing to trigger. Semantic failures often (41%)

only manifest themselves under multiple types of conditions.

HDFS-14514 is an example of semantic failure that re-

quires multiple types of triggering conditions. The semantic

violation (read out file size from snapshot is incorrect) can be

only triggered when 1) snapshot.capture.openfiles is set; 2)

create empty directory and encryption zone; 3) a client keeps

a file open for write under the empty directory; 4) append

several times; 5) perform a maintenance operation, snapshot.

We also find that in 23% of the cases, the triggering con-

dition is certain system maintenance operation, such as com-

paction, cluster upgrade, node decommissioning. Such events

do not occur frequently. They trigger semantic violations of-

ten because during the maintenance operation, the system

execution enters a different mode, which exposes rare bugs.

Implications: The reliability of semantics is vulnerable to

maintenance operations or node events. Operators and the

system should check violations during and after such actions.

8 Current Practice for Semantic Failures

8.1 Testing
Since semantic violations concern functionality correctness,

testing is responsible for catching them. The prevalence (Sec-

tion 4) of many semantic failures in production seems to

suggest a lack of testing. But that is not the case. The systems

we study have extensive test cases—a median of 1309 test

files. In addition, in 73% of the studied cases, the system has

at least one test case covering the violated semantics.

Then why the studied failures are not exposed during test-

ing? The earlier Finding 10 provides some clues. In many

cases, even though there are related test cases, they lack some

operations or arguments key to trigger the production failure.

Even when the test cases have the proper operations and argu-

ments, they only exercise the system under one timing, one

configuration or normal scenarios, while the bugs are only

triggered with unique timing, configuration, or node failures.

Are the failure triggering conditions so special that it is

impossible for developers to foresee? Interestingly, we find

that in many cases, similar triggering scenarios do exist in the

test suite but they are not used in testing the violated feature.

Finding 11: Semantic violations occur not simply due to a

lack of testing. The violated semantics are usually (73%)

covered by some existing test. In more than half of the studied

failures, similar triggering conditions exist in the test suite.

A fundamental gap is that developers tend to write tests

driven by examples or fixes for a specific bug. Such tests

are not expressive enough to preserve the underlying se-

mantics and prevent regression. Consequently, developers

spend repeated efforts to add tests. In HDFS-14514, the

server reads snapshot file with incorrect length from encrypted

zones. This exact semantics is already checked in an existing

test case. If that test “copies” one line of test configuration

dfsAdmin.createEncryptionZone(...) from other tests, the

new bug will be triggered and exposed.

Implications: Coverage of semantics alone is insufficient.

Developers should introduce variances in existing test cases.

It is also useful to “copy” triggering conditions across tests.

More fundamentally, developers should write more general

tests for the semantic properties rather than specific examples.

8.2 Assertions

Assertions are a common method for catching logic bugs,

which are major contributors to semantic failures (Section 6).

They are typically only used in development and are turned

off by default in release build for performance and stability.

Some of our studied systems use assertions in production:

MongoDB has added many invariant checks since 2014 [11].

Interestingly, as Section 4 shows, MongoDB has the lowest ra-

tio of semantic failures compared to other systems. While this

practice may cause instability, e.g., some users got infrequent

crashes due to invariant check failures after upgrading to new

versions [12], developers still prefer to fix the underlying bugs

rather than turning off assertions completely.

We observe two gaps in the current practice. First, most

existing assertions are pre-condition checks on the sanity of

function arguments. They are too low-level to catch semantic

violations, which require checking system functionalities and

usually the operation history (e.g., in checking consistency

violations [48]). Second, existing assertions are usually only

activated once during an operation, e.g., the entry of a function.

But many semantics are long-lived (Section 7), which require
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continuous validation until the lifespan of semantics ends.

Finding 12: Although in 51% of the failures the buggy func-

tions have some sanity checks, few (9%) cases can be poten-

tially detected by adding proper sanity checks.

Implications: Enabling assertions helps reduce silent seman-

tic violations. However, developers should add more semantic-

level invariant checks besides sanity checks.

8.3 Observability

Since our studied failures are silent violations, how do users

notice these subtle failures then? Understanding this question

can reveal insights to improve the observability of semantic

failures. We carefully examine the discussion threads in each

ticket. In 34 cases, users mentioned their experience clearly.

For all of these cases, users discovered the issues through

noticing something suspicious in some “side channels”. We

categorize them into two types: (i) benign errors in other

requests (32%); (ii) anomalies in logs, files, or performance

of other tasks (68%). In HBASE-11654, users find out the

violations by noticing splitting directories in /hbase/WALs/,

which is “very strange” because “those logs should have been

replayed and deleted”. In KAFKA-9137, users observe the

failure by seeing an increase in eviction rate in the logs. In

CASSANDRA-6527, users found tombstones appeared even

though they never used delete for a column family.

It might seem that we can rely on users to manually detect

system semantic failures. Note that there is a survival bias: our

studied cases by definition are identified, but in practice silent

semantic violations can be easily missed because (i) users do

not monitor the systems 24×7; (ii) when they check, they may

not inspect the proper signals. When users notice the failures,

the damage may be already done. In CASSANDRA-6527,

users commented: “Fortunately, we have noticed that quickly

and canceled the migration. However, we were quite lucky.”

How to make semantic failures more observable? First, if a

system API has no interaction with others, it is hard to judge

its correctness based on a single piece of information. In prac-

tice users often use multiple related APIs to cross-compare re-

sults. In HBASE-15236, users observe the violations because

Get and Scan return different sizes for the same bulkloaded

hfiles. Second, current systems often do not expose enough

information about theirs internal states, thus users have to ad-

hocly infer whether a promise is obeyed or not. Existing error

messages (e.g., a legitimate exception for another request)

only focus on the current request, which is hard to link to the

semantic violation in past correlated requests.

Finding 13: Semantic violations are currently observed from

“side channels”: 32% from errors in other requests, 68% from

anomalies in logs, files or performance of other tasks.

Implications: Designs of overlapping APIs improve observ-

ability of semantic violations. Systems should provide more

admin APIs for convenient query of their internal states. Error

messages should provide hints about past correlated requests.

9 Oathkeeper: A Semantic Violation Checker

Guided by our study, we build a tool Oathkeeper to check

semantic violations for large-scale distributed systems.

9.1 Design Overview and Workflow

Oathkeeper takes a runtime approach to check semantic viola-

tions in production. This choice is motivated by our findings

that semantic failures have diverse root causes (Finding 8) and

often difficult to expose in testing due to complex triggering

conditions (Finding 10).

Central to a runtime verification approach is what invari-

ants to use. Existing solutions rely on users to write dis-

tributed assertions to check the correctness of distributed pro-

tocols [43, 44] or network functions [57]. In those scenarios,

the semantics to check are limited and well-defined. But in

our cases, the systems have abundant (Table 1) and loosely-

defined semantics. Even for semantics that can be described in

simple expressions informally, mapping them to the concrete

checkable invariants in the complex systems code is hard.

These factors make manual construction a daunting task.

Insight and Key Idea. The insight behind Oathkeeper is

based on our finding that the majority of the studied failures

violate old semantics (Finding 5) despite the decent cover-

age of testing (Finding 10). When a semantic failure occurs,

developers usually add regression tests. But these tests only

check if the specific bug is fixed in a specific setup, while the

same semantics can be violated repeatedly in other scenarios.

Based on this insight, Oathkeeper leverages the existing

regression tests developers write for past semantic failures

and automatically extracts the essence—the violated seman-

tic rules. Oathkeeper then enforces these rules at runtime to

detect future semantic violations, which may be caused by

different bugs under different conditions.

Input and Output. To apply Oathkeeper to a new system,

users supply a system-wide configuration and a list of past

semantic failure metadata. The former provides basic infor-

mation about the system such as the compilation command

and test directory, and optionally the classes to include for

analysis. The latter metadata is provided in the form of git

commit id (for version switching) and regression test name.

Oathkeeper outputs the likely semantic rules (Section 9.3).

Prior runtime verification tools focus on invariants expressed

as predicates among key state variables in a system such

as lock_id and lock_mode. This representation alone can be

insufficient or complex to express the semantics of large dis-

tributed systems. Instead, Oathkeeper focuses on rules that

describe relations among semantics-related events, particu-

larly operation invocations and state updates. Such an event

relation rule is expressive to capture various semantics.

Workflow. Figure 8 shows the tool’s workflow. Oathkeeper

operates in two stages. In the offline stage, Oathkeeper instru-
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Figure 8: Workflow of Oathkeeper.

ments the target systems to record major events (❶). It then

exercises the system twice with the regression tests: once us-

ing the patched version and the second time using the buggy

version. This will generate two sets of traces (❷). The infer-

ence engine infers likely semantic rules from the traces of the

patched version (❸). The verifier applies the inferred seman-

tic rules against the traces of the buggy version and output

rules that are violated in the buggy traces (❹). We assume

these violated rules are potentially related to the semantic

failure. Further optimizations are applied to remove noises

and redundancies (❺). In the online stage, Oathkeeper only

performs minimal instrumentation that is relevant to these

final semantic rules from the offline stage. The event tracer

ingests traces from the system in real time. The Oathkeeper

verifier continuously checks the traces against the deployed

semantic rules and reports violations (❻).

9.2 Instrumentation and Trace Generation

For both inferring semantic rules and runtime verification,

we need to first instrument the system to obtain execution

traces. The Oathkeeper traces use a uniform event schema

that captures operation-related events and state-related events.

Oathkeeper designs a load-time instrumentation library

that performs bytecode manipulation when a target system is

loaded. This way of instrumentation is convenient (without

re-compiling and re-packaging the system) and transparent.

To record operation events, the library adds hooks at the

beginning, return and exception point of a method. To record

state events, Oathkeeper takes a patch plus base approach.

It analyzes the given semantic failure patch and automati-

cally includes the list of classes involved in the patch file.

Users can optionally specify names of some important system

classes, such as SessionTrackerImpl. With the combined list

of classes, Oathkeeper performs simple analysis at the load-

ing phase of these classes to retrieve their member variables

of primitive or collections types, and treat them as the state

variables. It then identifies instructions that update these vari-

ables and insert a hook to emit a state update event with the

relevant context (variable name, location, etc.).

For each given test, Oathkeeper switches the target sys-

tem to the patched version. The tool executes the test with

the instrumented system and generates the trace of events.

Template Example

p⇒ q decommission a datanode should trigger reconstruction

s ↑⇒ p when datanode changes, associated watcher notifies clients

s ↑⇒ k ↑ after session disconnection, ephemeral node is removed

(s = c)⊕q read-only server should not provide write access

p+∆t⇒ q inserted data should expire after the TTL is reached.

s ↑→ q cf schema should be altered before alter command returns

p⇒⊙(s ↑,k ↑) after snapshot renaming, either new snapshot creation and

old snapshot deletion both occur or none of them occur

Table 3: Some templates integrated in Oathkeeper. p, q are opera-

tions, s and k are states, t is time, c is constant. ¬p means p can not

occur. ↑ means state changes. p+∆t means time t after p occurs.

Then Oathkeeper reverts the target system to the buggy ver-

sion (snapshot prior to the patch commit id). Since the buggy

version does not contain the test, Oathkeeper copies the re-

gression test from the patched version and executes it to get

the buggy trace. If the test cannot directly run on the buggy

version due to interface changes (e.g., a function used in the

test is not public in the buggy version), the tool supports user-

provided patches to fix the compatibility issue.

The trace is stored in a JSON file for ease of deserial-

ization. An example trace entry is {"type": "OpTriggerEvent",

"data":{"opName": "zookeeper.FileSnap.deserialize", "time":

1654026992, ...}}. The trace scale is usually moderate, because

it is generated from tests. For example, with ZooKeeper,

even under the full instrumentation mode (instrumenting

all classes), most end-to-end tests generate less than 10,000

events. A common scale is several thousands. We see large

traces in only 5/273 tests that produce over 500,000 events.

Under the diff mode (only instrument the classes affected by

the patch), the trace typically has hundreds of events.

9.3 Template-Driven Inference

A key challenge in the semantic rule inference step of

Oathkeeper is to integrate domain knowledge without requir-

ing significant manual effort, while also having reasonable

accuracy and efficiency. We take a template-driven approach

to address this challenge. We first summarize general seman-

tic rule patterns, such as happens-before relationship, atom-

icity, periodicity. For each pattern, we define one or more

parameterized templates, such as a state change event for

s must happen before the completion event of operation p.
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public abstract class InferScanner {

//init state variables

abstract void prescan(Set<Event> eventSet);

//always need to go through the whole traces

abstract void scan(Event event);

//check states after scan, and generate invariants

abstract List<Invariant> postscan();

}

public abstract class VerifyScanner {

//init state variables

abstract void prescan();

//return true if continues to scan, otherwise break

abstract boolean scan(Event event, Context context);

//check states after scan, and judge

abstract InvState postscan();

}

Listing 1: Inference and validation interfaces for each template.

Algorithm 1: Generic inference and validation workflow.

Input: L: a trace (list of events)

Output: a list of inferred invariants (one inv. is a template w/ context)

Func Infer(L):

/* get unique events in the trace (we define equality

individually for different types of events) */

unique_events← Set(L)

prescan(unique_events)

foreach event ∈ L do scan(event)

return postscan()

Input: L: a trace (list of events), context: parameters in templates, e.g.,

if an invariant is a1⇒ a2, context is a1 and a2

Output: the checking result of invariant (pass, fail or inactive)

Func Verify(L, context):

foreach event ∈ L do

if scan(event,context) then break

return postscan()

Func Main(Lpatched , Lbuggy):

inv_list← /0

foreach inv ∈ Infer(Lpatched) do
if Verify(Lbuggy, inv.context) == InvState.FAIL then

inv_list.add(inv)

return inv_list

Oathkeeper currently supports 18 templates. Table 3 shows

several examples. Our technical report [47] shows the full list.

The inference engine implements an inference algorithm

for each template. The algorithm checks if there are matches

in a given trace and derives concrete values to each template

parameter if so. We call each match a context for the template,

which is a potential invariant. For one template (e.g., p⇒ q), a

trace can have multiple contexts (e.g., a1⇒ a2 and a1⇒ a3).

The templates allow encoding domain-specific semantics

without significant specification effort. They also restrict the

search space so the inference engine only analyzes trace

events that match the template structure and parameter types.

While these templates may not represent the exact or full se-

mantics like a high-level specification does, they can capture

the essential ingredients for making the semantics hold.

The inference engine takes the trace obtained from running

the regression tests against the patched system. Each tem-

plate class implements an infer function that returns a list of

Algorithm 2: Implementation for template p⇒ q.

Func ImplyTemplate::InferScanner::prescan(S):

foreach event ∈ S do C.put(event, {})

foreach event ∈ S do

foreach event2 ∈ S do

if event != event2 then

C.get(event).put(event2, 0)

C.get(event2).put(event, 0)

Func ImplyTemplate::InferScanner::scan(event):

foreach (k,v) ∈ C.get(event) do v ← v + 1

foreach event2 ∈ C do

if event == event2 then continue

val ← C.get(event2).get(event)

if val > 0 then C.get(event2).put(event, val - 1)

Func ImplyTemplate::InferScanner::postscan(L):

lst ← []

foreach (k,v) ∈ C do

foreach (k2,v2) ∈ v do

/* add potential invariants when counter is 0 */

if v2==0 then lst.add(genImplyInv(k,k2))

return lst

Func ImplyTemplate::VerifyScanner::prescan():

ifHold ← true

ifActivated ← false

counter ← 0

Func ImplyTemplate::VerifyScanner::scan(event, context):

if event == context.left then

counter ← counter + 1

ifActivated ← true

else if event == context.right && counter > 0 then

counter ← counter - 1

return true

Func ImplyTemplate::VerifyScanner::postscan(L):

if counter != 0 then ifHold ← false

if !ifHold then return InvState.FAIL

if ifActivated then return InvState.PASS

else return InvState.INACTIVE

rules from the trace. Most templates follow three phases in

the infer function: pre-scan, scan, and post-scan (interfaces

defined in Listing 1). The pre-scan step typically builds an

index of the unique event set in the trace. The uniqueness

is determined by a custom function we define for different

types of events. For example, operation invocation events are

unique based on the signatures of invoked functions. The

scan step iterates through each event in the trace and up-

dates bookkeeping data structures such as an event occur-

rence map. The post-scan step generates invariants based on

the bookkeeping data structures. Templates that do not follow

this pattern can customize the procedures. For example, the

AfterOpAtomicStateUpdateTemplate iterates forward once

and scans backwards once; the StateEqualsDenyOpTemplate

scans the trace for each state type in the test.

The core inference algorithm for each template, while dif-

ferent, is relatively straightforward. It essentially involves

identifying events in the trace that match the type of a tem-

plate’s parameter, enumerating hypotheses (candidates) from

the contexts, and validating the hypotheses against the trace.

Since the trace size is moderate, we can afford enumerations.

Example. We describe the inference of a representative tem-
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Figure 9: Inference and validation algorithm example.

plate p⇒ q, which represents that every invocation of oper-

ation p implies a subsequent operation invocation of q. For

example, createSession should usually imply closeSession.

The steps are listed in Algorithms 1 and 2.

We use Figure 9 (a) to show the process of inferring rules of

template p⇒ q from a patched trace [e1,e2,e3,e1,e2]. The

algorithm assumes all pairs <ei,e j> in the unique event set

are candidate contexts to the template, in which ei and e j are

of OpTriggerEvent type and the uniqueness is based on the

operation name. Then it attempts to find counterexamples to

invalidate wrong rules. The inference algorithm of this tem-

plate uses a simple counting approach that runs in three steps.

The pre-scan step constructs a nested map {event: {event:

int}} to record the occurrences for the event pairs. For each

event pair, the counter is initially zero. Then the scan step

iterates through each event e in the trace in order. If e is ei,

i.e., a key in the nested map, we increment the counters for all

entries with <ei, *> keys; if e is e j, we decrement the counters

for entries that have <*, e j> keys and have positive counters.

In the post-scan step, we check the final state of counters. If

the final counter does not reach zero, there is an orphan ei that

does not have subsequent e j. We get e1⇒ e2, e3⇒ e1 and

e3⇒ e2 at the end. Rules like e1⇒ e3 are removed because

no subsequent e3 occurs after the second e1.

9.4 Rule Validation

After step ❸, the inference engine could infer many likely

semantic rules. Oathkeeper then applies these rules against

the buggy traces (❹) and sees which rules are violated. Simi-

larly to inference, each template class needs to implement a

verify function. The verify function also usually consists of

three phases: pre-scan, scan, and post-scan. The pre-scan step

initializes auxiliary data structures specific to the template.

The scan step goes over the events in the trace and updates

the data structures. In some template, the scan step does not

need to iterate through all events in the trace if a contradictory

example is already found. The post-scan step checks the data

structures and returns the result, which could be PASS (rule

is activated and no contradiction is found), INACTIVE (the an-

tecedent of the rule does not occur, e.g., p⇒ q is inactive in

a trace without occurrences of p), or FAIL (at least one con-

tradiction is found). We only preserve rules that pass in the

patched trace and fail in the buggy trace.

Example. Algorithms 1 and 2 show the steps to verify tem-

plate p⇒ q. We use Figure 9 (b) to show the process of vali-

dating inferred rules from (a) on a buggy trace [e1,e2,e3,e1].

There are three rules to verify: e1⇒ e2, e3⇒ e1, e3⇒ e2. In

the pre-scan step, we first initialize a counter for each inferred

rule. The scan step then updates the counter: for rule ei⇒ e j,

if a processed event e matches ei, we increment the counter;

if e matches e j, we decrement the counter if it is positive. All

three rules are active as both e1 and e3 appear in the trace.

The post-scan step marks rules with non-zero counters as

FAIL: e1⇒ e2 and e3⇒ e2.

However, there could still be a significant number of rules

due to noises like unfinished tests (e.g., an assertion failed

in the middle of the test), new type events (new methods

introduced), coincidence, and methods that are used for testing

only. To reduce these noises, the verifier validates (❺) the

candidate rules against traces obtained from all test cases,

under the patched version, and discards rules that do not hold

in all traces. In addition, we filter uninteresting rules about the

system start-up or shut-down methods or thread run methods.

This is achieved by inserting special marker events at the

start and end of test method, and only running the inference

algorithms on trace region within the markers.

9.5 Runtime Checking

Oathkeeper deploys the refined semantic rules with the tar-

get system in production, along with the verifier and event

tracer. Oathkeeper performs load-time instrumentation to the

production system in a wrapper class of the entry points. Dif-

ferent from the offline stage, the instrumentation is selective

to only the deployed rules and is thus lightweight. The event

tracer stores in-memory traces from the target systems.

The runtime verifier schedules periodical tasks that validate

the current trace against each of the deployed semantic rules.

It reuses the same checking logic defined in the function

verify of the template. When the engine finds a semantic

rule reported as FAIL, it records the counterexamples in the

traces for debugging. It also schedules a second check on this

violated rule again shortly to tolerate transient violations or

inconsistencies in the trace. For high availability, Oathkeeper

generates alerts in the log upon detection of potential semantic

failures and does not attempt to crash the system.

9.6 Optimizations

The validation step can be time-consuming. With N (often

thousands) candidate rules and M (often hundreds) test cases,

we need to get M traces and check N×M times. To reduce the

validation time, we introduce a survivor optimization. After

a test finishes, we validate the rules, if some rule is already

“killed” (invalidated) by this test’s trace, it will not be carried

over to the remaining tests. Therefore, only the survived rules

will be validated to the end. Another optimization is to run

more closely related tests first. The rationale is that some test

takes a long time to run but is irrelevant to a given rule (thus

the test’s trace will not disprove the rule). By prioritization,

we can potentially invalidate false rules faster.
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We also add several optimizations to reduce the runtime

overhead. First, the event tracer only preserves the most re-

cent events within a time window, since always checking

full traces from the start is wasteful. The time window is

configured larger than checking frequency to avoid missing

checking events. The events involved in time-related semantic

rules are excluded as their expiration time is based on their

parameters. Second, to achieve both high concurrency and

low memory pressure, we decouple the checking from the

event emission with a ring buffer design inspired by high-

performance message queues [10]. Third, to avoid massive

new object creation frequently triggering garbage collection,

we reuse expired event objects in the ring buffers. Oathkeeper

also pre-allocates buffers for each type of events at the instru-

mentation phase to prevent buffer initialization blocking.

9.7 Implementation

We implement Oathkeeper in Java (JDK 8). Its instrumen-

tation library is built based on Javassist for class bytecode

manipulation. Its test engine leverages JUnit to manage and

execute test cases. The tool also includes a workflow script

such as checking out patched and buggy versions and check-

ing a semantic rule against given traces.

9.8 Limitations

Our approach makes several assumptions: 1) semantics should

be expressible with simple relations of events; 2) the system

has a number of test cases with good quality; 3) the failure

patch should not involve significant redesign or interface in-

terfaces. If some assumption does not hold, Oathkeeper may

fail to deduce good semantic rules.

10 Evaluation

We have integrated Oathkeeper with ZooKeeper, HDFS and

Kafka. We evaluate (1) whether Oathkeeper can leverage past

semantic failures to check new violations; (2) what runtime

overhead it incurs to the target system. The experiments are

done in servers with 20-core 2.2 GHz CPUs, 64 GB memory,

running Ubuntu 18.04. The Oathkeeper check engine is con-

figured to schedule and check rule violations every second.

10.1 Generation Overview

Oathkeeper requires old semantic failures and their associ-

ated regression tests as input to extract semantic rules. We

select old semantic failures and their regression tests to re-

produce (8 for ZooKeeper, 10 for HDFS and 8 for Kafka).

These tests cover major functionalities of the three systems.

We add a switch in the system code to easily enable and dis-

able the patch for the semantic failure bugs. We then apply

Oathkeeper to the source code to add instrumentation points,

run the regression tests with the patch switch turned on and

off, and execute other steps in Oathkeeper (Section 9.1). For

each case, Oathkeeper infers many raw semantic rules. After

JIRA Id Violated Semantics

ZK-1496 ephemeral node should be deleted after session expired

ZK-1667 watcher should return correct event when client reconnected

ZK-3546 container node should be deleted after children all removed

HDFS-14699 failed block need to be reconstructed

HDFS-14317 edit log rolling should be activated periodically

HDFS-14633 file rename should respect storageType quota

KAFKA-12426 partition topic ID should be persisted into metadata file

Table 4: Evaluated newer semantic failures.

the validation and optimization step, the rule set is signifi-

cantly reduced. In total, Oathkeeper extracted 285 rules for

ZooKeeper, 1,209 rules for HDFS, and 150 rules for Kafka.

10.2 Checking Newer Violations

We evaluate whether the inferred rules are useful to catch new

semantic failures. Given Oathkeeper’s approach, it is likely

less effective with unseen semantics. We reproduce 7 newer

(9–34 months later) failures (Table 4) that violate related

semantics in the old cases, but with different root causes.

With the inferred rules, Oathkeeper detects violations for 6

of them. These newer violations are known bugs by the time

we conducted this experiment. However, their root causes

and triggering conditions are completely different from the

failures used to extract semantic rules. Oathkeeper detects

these newer violations with only knowledge from the old

failures, which demonstrates the tool’s detection capability.

We show one example in Figure 10. ZK-1496 is not in our

study dataset, but its symptom is similar to a studied failure

ZK-1208 that was reported 9 months ago prior to ZK-1496 in

an older release. Users found that the ephemeral znodes were

not deleted long after the client exited. The root cause is a

race condition bug that while the session tracker is removing

the expired session, another thread is processing an ephemeral

node creation request. In ZK-1208, developers added a fix

to mark sessions as closing to prevent ephemeral node cre-

ation on expiring sessions, and introduced a regression test.

Oathkeeper executes the regression test on ZooKeeper twice

with patch enabled and disable, and generates two traces (c)

and (d). Then Oathkeeper infers rules (e) from the patched

traces. Not all inferred rules are useful. Oathkeeper only pre-

serves rules that fail in buggy traces and pass all tests (f).

Rules such as 3 are filtered when being validated on all tests.

Finally, two verified rules 1 and 2 detect the violations (g).

Oathkeeper fails to detect ZK-1667: client A sets a watch

on /d and then disconnects, client B deletes /d and recreates

it; when client A reconnects, it receives a NodeCreated event

instead of NodeDataChanged event. The violated semantics fits

into one of our templates. However, due to the quality of the

old watch test in our pool, Oathkeeper infers other rules.

The average detection time is 0.91 seconds. This result

does not contradict with the long-lived semantics finding in

Section 7. In the experiments, we trigger the conditions to

reproduce the failure soon and measure the detection time

from the start time of the violation.

We compare Oathkeeper with a state-of-the-art invariant
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found the overhead mainly comes from memory and GC in-

stead of synchronization, which motivated our ring buffer

design (Section 9.6) that significantly reduced the overhead.

10.5 Rule Activation and False Positive

We deploy the inferred rules to a cluster of ZooKeeper, HDFS,

and Kafka instances. We run a set of workloads against the

instances. We first measure the rule activation ratio during

the experiment. A rule is activated if the check engine finds

the antecedent of the rule has occurred. For ZooKeeper, 11%

of the rules are activated. The remaining rules are not acti-

vated due to the lack of workloads, faulty conditions, etc.,

to trigger the antecedent events. For HDFS and Kafka, the

activation ratio is 66% and 48%. We then measure the false

positive ratio among the activated rules. The result is 4% for

ZooKeeper, 9% for HDFS, and 12% for Kafka. This result

benefits from the validation steps described in Section 9.4:

Oathkeeper eliminates falsely inferred rules by validating the

rules against both the buggy trace and the traces from all test

cases of a target system. Adding profile runs or a dynamic

ban mechanism can further remove the false rules.

11 Related Work

Semantic Bugs. Several studies [42,55,58] analyze the preva-

lence of semantic bugs in open-source server software. Our

study analyzes semantic failures in distributed systems. Be-

yond the difference that we investigate distributed systems,

the study of bugs is in general a complementary effort to

the study of failures. The former focuses on analyzing the

static code patterns, while the latter focuses on the dynamic

manifestations and system misbehavior.

Several solutions are proposed to detect semantic bugs in

file systems and DBMS, including cross-checking multiple

file system implementations [50], fuzzing [39], and testing

using pivoted query [54]. Both cross-checking and fuzzing

focus on finding bugs offline. Oathkeeper focuses on a com-

plementary direction of inferring semantic rules for runtime

checking. We hope our study can motivate future work to

extend these solutions to detect semantic bugs in distributed

systems. We observe some open challenges to cross-check

distributed systems: distributed systems usually provide a

wide variety of semantics that are less rigorously specified

compared to file systems, which have well-defined seman-

tics (e.g., POSIX standard) and many implementations. Each

distributed system has its unique semantics and may not be

cross-checkable. In addition, they often contain many internal

and background mechanisms that provide semantic guaran-

tees but the semantics are not easy to be tested. For fuzzing,

the challenge is that many silent semantic violations require

external faulty events (e.g., node restarts, network error) to

trigger besides input. Thus, fault injection testing is needed.

Distributed Systems Failure Study. Understanding failures

has been an important theme in distributed system literature,

with a series of empirical studies [16, 17, 19, 25, 31, 32, 36,

37, 46, 51], e.g., on fail-slow faults [32], gray failures [37],

and network partitions [17]. These failures usually have some

error signals such as timeouts. Our study complements these

studies and focuses on the under-explored silent semantic

failures in distributed systems.

Runtime Verification. Prior works have explored runtime

assertions to verify distributed protocols [43, 44], file sys-

tems [28], and network functions [57]. Runtime verifica-

tion [34] is also studied in embedded systems and Java bench-

mark programs [24]. Recent works [45, 46] propose intrinsic

watchdogs that detect partial faults with clear error signals.

Lu et al. propose a runtime checker for consistency viola-

tions [48]. Overall, there is a lack of runtime verification

solutions for monitoring the semantic correctness of large-

scale distributed system implementations. Our proposed tool

Oathkeeper explores automatically extracting semantic rules

to check a variety of semantics for large distributed systems.

Invariant Mining. Inferring likely invariants from software

execution traces have been studied, e.g., Daikon [26] and

DIDUCE [33]. They mainly focus on mining invariants on

the relationship of program variables for single-component

software, e.g., off < array.length. These invariants are too

low-level to capture the semantics of distributed systems.

Dinv [30] is proposed to infer protocol invariants of pro-

gram variables across nodes. It runs complex program slicing

to instrument program variables influenced by network com-

munication. It then uses Daikon to infer invariants from the

logs of running the system’s test suite. I4 [49] infers inductive

invariants for verifying distributed protocols.

Oathkeeper is complementary to the two efforts. Instead of

protocols and variable relations, we focus on inferring high-

level semantic rules for large distributed systems, most of

which are not about protocols. Also unlike Dinv, Oathkeeper

does not rely on complex static analysis to work and thus

does not suffer from analysis inaccuracies and scalability

limitations. Oathkeeper takes a unique approach of leveraging

past failures and semantic templates to extract semantic rules.

12 Conclusion

Silent semantic violations pose a severe challenge to dis-

tributed systems reliability. This paper sheds light on this

under-explored yet important problem by presenting a study

on real-world failures in popular distributed systems. It re-

veals that sadly “a promise is often not a promise”. Guided by

our study, we design a tool Oathkeeper that automatically ex-

tracts semantic rules from past semantic failures, and enforces

these rules at runtime to check future violations.
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