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Abstract—Since the emergence of scholarly big data, there
have been several efforts for web-based services such as digital
library search engines (DLSEs). However, much of the design and
specifications of an accessible, usable, scalable, and sustainable
DLSE have not been well represented and discussed in the
literature. We argue that these four characteristics are essential
to providing a high-quality service for scholarly big data from
both the user and developer’s perspectives. This paper reviews the
design, implementation, and operation experiences, and lessons of
CiteSeerX, a real-world digital library search engine. We analyze
the strengths and weaknesses of the current design, and proposed
a new design with a revised architecture, enhanced hardware, and
software infrastructure. The Alpha version of the new design
has been implemented and tested. The new system replaces
MySQL and Apache Solr with a single instance of Elasticsearch,
which plays a dual role of data storage and search. Another
major improvement is the integration of extraction and ingestion,
which significantly boosts document ingestion speed. The web
application is re-engineered to enhance the user experience by
applying a learning-to-rank model and offering more refined
search tools. The system is also improved in many other aspects.
We believe the design considerations and experience can benefit
researchers and engineers who plan, design, and upgrade future
systems with comparable scales and functionalities.

Index Terms—scholarly big data, big data infrastructure, big
data search, big data service

I. INTRODUCTION

A digital library is an information system that usually
indexes a large collection of digitized documents and provides
web-based or API services for users to search, retrieve, browse,
and download documents that are maintained locally or re-
motely. Like many other big data systems [8], such a system
is usually comprised of various modules, each responsible for
different tasks. To provide high-quality services, such a system
needs to be accessible, usable, scalable, and sustainable. Being
accessible requires that all or part of the services are still
available upon unexpected failures, e.g., a web server is down.
Being usable requires the system to provide multiple interfaces
for users to access data, such as a user-friendly web interface,
a search API, and an OAI-PMH (Open Archives Initiative
Protocol for Metadata Harvesting) service [9]. Being scalable
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requires the system to be capable of ingesting a large number
of documents and still responding to requests from high
volumes of user traffic, both fulfilled within a reasonable time.
Being sustainable requires the system to be functional with
relatively low cost on hardware, software, and maintenance.

Many institutional digital libraries employ off-the-shelf
open-source frameworks such as DSpace, Fedora Commons,
and Blacklight. DSpace or Ferora Commons provides an
underlying architecture for digital repositories, but lacks com-
plete management, indexing, discovery, and delivery applica-
tions. Blacklight is a Ruby on Rails engine for creating search
interfaces on top of Apache Solr. Although it is straightforward
to deploy a web application out-of-box, designing the ingestion
pipeline and customizing the discovery interface (such as
finding similar papers) is nontrivial. Commercial digital library
services such as Google Scholar (GS), Microsoft Academic
(MA), and Semantic Scholar (S2) rely on the parent search
engines and/or contractual data services with publishers and
therefore unlikely to be available as a general public frame-
work. The operating cost of these digital library services is
generally high and not affordable for institutions with limited
budgets.

In this paper, we share our experience and lessons of
operating CiteSeerX, a real-world DLSE, launched 20 years
ago and has continuously evolved and improved since then.
Different from commercial digital library services, CiteSeerX
has been built and maintained under an academic setting, with
a limited budget and human resources. The source code is
open-source1. The current system is relatively stable with both
pros and cons. We analysed the architecture and infrastructure
and identified challenges it faces to provide a reliable service
for a much larger volume of scholarly big data. To overcome
these challenges, we have designed a new architecture to
fulfill the above requirements. The components of the new
architecture include open-source software frameworks and
customized workflows. We would like to emphasize that
this is an experience paper. We are not reporting any new
research. Rather we are describing the unique perspective of
our academic team in the engineering choices we made over

1https://github.com/SeerLabs/CiteSeerX
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a period of more than a decade to sustain and evolve a system
catering to real users.

II. RELATED WORKS

The inception of DLSEs can be traced back to the end of
the 20th century. CiteSeer, originally launched in 1998 and
renamed “CiteSeerX” in 2008, was one of the pioneers that
implemented the automated indexing technique to connect
research papers as a network, which made it possible for
users to find related papers using citation graphs [14]. Google
launched GS in 2004 [35], with its index derived from a
crawl of full-text journal content provided by both commercial
and open access publishers and author homepages. Being a
digital library featuring completeness, GS has been regarded
as one of the major data sources for scientists and evaluators
to evaluate academic contributions using citation counts and
h-index. Microsoft launched the Windows Live Academic
Search around 2006, which was the progenitor of MA [30],
[37]. MA once claimed 248 million publications2 indexed. In
2015, the Allen Institute for Artificial Intelligence (AllenAI)
launched S2, which claims 196 million paper records indexed
at the time of writing. S2 integrates many AI techniques
in machine learning (ML), deep learning (DL), and natural
language processing (NLP). Another example that features
modern NLP techniques is IBM’s Science Summarizer [11].
There are also numerous digital library infrastructures built for
specific communities, such as arXiv [15] and its sister websites
(e.g., bioXiv, AgriRXiv, and MedRxiv), NASA’s ADS, NCBI’s
PubMed [16], and DOE’s OSTI system. Another type of
DLSEs works as a mixture of digital libraries and social
networking websites, some soliciting documents from users
and offering various social networking features. Examples of
this type include ResearchGate [28] and AMiner [31].

Although there are numerous DLSEs online, to the best
of our knowledge most papers published on case studies and
comparative studies have been focused on data services, e.g.,
[12]. There are few publications about advanced architectures
of DLSEs and the development and operation of these systems.
Entlich et al. (1997) described the architecture and content of
the CORE (Chemical Online Retrieval Experiment) project,
a library of primary journal articles in chemistry [10]. Lim
& Lu (1999) described Harp, a distributed query system for
legacy public libraries, which was based only on relational
databases [25]. Lagoze et al. (2002) reported the technical
and organizational infrastructure of the National Science,
Mathematics, Engineering, and Technology Education Digital
Library (NSDL) [24]. NSDL supported mainly the metadata
discovery of digital items through an OAI-PMH portal. The
content was also accessed using open network protocols such
as HTTP or FTP. The architecture and infrastructure used
by CiteSeerX are described in [33], [44]. Wu et al. (2014)
introduced a big data platform that provided various services
for harvesting scholarly information and enabling efficient
scholarly applications in a private cloud, which outlined the

2https://academic.microsoft.com/home
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Fig. 1. The top level architecture of the current system. Components with
red labels are subject to significant improvement in the new system.

basic components of the current CiteSeerX system [46]. The
architecture of ArnetMiner (now called AMiner) is shown in
[32], which consists of 5 main components: extraction, inte-
gration, storage and access, modeling, and search. The system
featured an author profile generator and used MySQL for
storage and indexing. Xia et al. (2017) reviewed big scholarly
data management systems and depicted a general architecture
of a digital library, consisting of the following modules: web
crawling, document extracting, information extraction, filtering
and categorizing, database, repositories, data discovery, and
sharing followed by data analysis [47]. There are no papers
reporting the architecture and infrastructure of many well-
known DLSEs such as GS, MA, and S2. There are several
reasons for this. First, many DLSE designs are proprietary and
not built for general purposes. Second, the cost of maintaining
the hardware and software infrastructure is relatively high.
However, understanding and investigating the architecture of
an information retrieval system will help people to understand
the usability of the output data by examining how the data
are manipulated throughout the pipeline. The experiences and
lessons will also benefit future efforts in building more robust
and reliable systems.

The paper is written in a comparative style. We first describe
the development and usage of the current system (Section III)
and then summarize the lessons learned in Section IV. Then
we describe our work on improving the current system (Sec-
tion V). We discuss the limitations of the new system in
Section VI.

III. DESIGN AND USAGE OF THE CURRENT SYSTEM

A. Architecture Overview

The current system (Fig. 1) is a typical mid-size crawl-
based DLSE [47]. The raw documents are obtained by actively
crawling open access (OA) PDFs from the Web. These PDFs
are then converted to text and classified, and only academic
documents are retained. A pipeline of learning-based extrac-
tors is then applied for extracting full text, metadata, citations,
keyphrases, acknowledgments, and non-textual information,
e.g., figures and tables. Metadata is populated into a relational
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database (MySQL) and various types of files are saved into the
production repository. The metadata in MySQL and the full
text from the repository are indexed by Apache Solr, which
powers the searching function. The system provides a web-
based user interface, an OAI-PMH API, and a database dump
on Google drive for research purposes.

B. Development History

The history of our system can be divided into three phases
[42]. In the first phase, a prototype was developed around
1998. The major components, including a web crawler, the
indexer, and the search API were written in Perl or C++, with
custom indexing and storage routines that implemented the
automatic citation indexing technique [14]. The seed URLs
were manually curated homepages of computer scientists. The
entire system was hosted on a single machine. The overall
traffic was relatively low but was trending.

In the second phase, the search engine was expanded to a
multi-server system. Specifically, multiple web servers with
a front-end load balancer were added to make the system
more available and scalable to higher incoming traffic. Apache
Lucene and later Apache Solr was introduced as the main
indexer, making the searching more scalable and stable. The
backbone software was rewritten using Java. The web appli-
cation was developed using a model-view-controller (MVC)
architecture. The frontend used a mixture of Java server pages
and JavaScript to generate user interfaces. The web application
was composed of servlets that interacted with the index and
database for keyword search and used the Data Access Objects
(DAO) to interface with databases and the repository. The
metadata extraction was built in Perl, working in batch mode.
The ingestion system fed data into a MySQL database and
global network block device (GNBD) shared by web servers.
The GNBD uses the Global File System (GFS) as its file
system. The documents were acquired using an incremental
web crawler developed using Django.

The system was running on a cluster of loosely coupled
physical servers, hosting nearly a million documents, and
was able to handle all incoming traffic during that period.
After 4–5 years, the hardware became stale and was prone
to fail, typically hard drives and RAID controllers. A single
hard drive failure could be restored because we configured
the disk arrays with RAID 5. However, multiple hard drives
and RAID controller failures could still happen and were
potentially disastrous. At the same time, the GFS system plus
the GNBD often unexpectedly fenced out web servers and/or
repository servers and brought the whole system down. The
physical servers were also rigid to scale up on commodity
hardware.

In the third phase, which is the current phase, the search
engine was migrated into a private cloud [44]. The software
was inherited from the second phase. Servers hosted inside the
private cloud were monitored by ESXi, a virtual environment
hypervisor developed by VMware for deploying and managing
virtual computers. This major upgrade of the infrastructure
made the whole system more elastic and easier to monitor.
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Fig. 2. Software stack of the current (top) and new system (bottom). Meanings
of synonyms are: LVS – Linux virtual service; HA – high availability; LB –
load balancer; EXT – extraction; RHEL – Red Hat Enterprise Linux.

We elaborate upon the infrastructure, operation, usage patterns,
and research uses in the subsections below.

C. Hardware and Software Infrastructure

The current infrastructure consists of three layers: a storage
layer, a processing layer, and an application layer. The storage
layer is composed of two physical servers whose sole purpose
is to store all types of data used by virtual machines (VMs).
Each server has 12 cores, 32GB RAM, and 30TB SATA hard
drives (HDDs). The processing layer consists of five high-end
servers connected to the storage layer, each having 12 cores,
96GB RAM, and 1TB SATA HDDs. The application layer
consists of various VMs overviewed by VMware ESXi 6. By
using a template-based workflow in a virtualized architecture,
setup time for new VMs has been reduced from a day to a
matter of minutes. Currently, all frontend and backend servers
are VMs except the web crawler server. This is because
empirically, the time it takes for our web crawler to finish
a batch crawl is much shorter on a physical server than on a
VM. That is, the overheads of virtualization are particularly
hurtful to crawler performance and, therefore, we host our
crawler on a physical machine.

The load balancer uses heartbeat-ldirectord3 to provide the
Linux Virtual Service (LVS) that carries the virtual IP of the
landing page. Our system employs Heritrix for web crawling,
Tomcat for web service, MySQL for database management,
Solr for searching, Apache PDFBox for text extraction, and
a number of AI-powered software packages for classification
[4], metadata extraction [18], near-duplicate detection [39],
and author name disambiguation [34]. The system also pro-
vides APIs based on SOAP/WSDL, which exposes all the
functionalities for programmatical access. The system provides
a search API, which allows software programs to access search
results using Atom or RSS feeds through an OAI interface.
We use the XFS file system and implement a RESTful API
that retrieves files from the repository server to the web
server. The users can access these data and perform searching,
browsing, downloading through a web-based interface. Django
and Drupal frameworks were used for building websites that

3https://www.suse.com/c/load-balancing-howto-lvs-ldirectord-heartbeat-2
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Fig. 3. Usage based on page views from July 2017 to December 2020. Most
users are directed to the PDF viewer page for an article by search engines,
which index the text from the article hosted by our system.

Fig. 4. Number of users from the top-5 countries based on number of
visits from June 2017 to December 2020. Spikes are seen during April and
November of every year, which are aligned with the end of semesters in most
US universities.

display web crawling statistics. The software stack of the
current system is shown in Fig. 2 (top).

D. Usage Patterns

The current system has served more than 23 million page
views between 2017 and 2020, out of which 18 million pages
views were unique (Fig. 3). The system served more than 9
million unique users, with more than 1 million returning users.
Fig. 4 shows the timeline of usage in terms of the number of
visits for top-5 countries. The number of US users peaked
at 73,271 in April 2018. The US generally has the highest
number of visitors, followed by China and India.

The current system has enabled much research and educa-
tion by making research documents, associated metadata, and
frameworks publicly available. The system receives weekly re-
quests for metadata and other datasets, most of which are from
research groups. The OAI is accessed approximately 100,000
times daily. The data has been used for a variety of research
topics such as document type classification [4], keyphrase
extraction [13], citation recommendation [20], collaborator
recommendation [6], and citation context recommendation [5].

E. Availability and Security
High availability and security are crucial for us to provide

a 24/7 online service. We adopted several strategies below.
a) Load Balancing: The entry point contains a pair

of twin load balancers, one active and the other standby.
If the active load balancer fails, the standby load balancer
automatically takes over the virtual IP and the traffic. All
servers are behind an institutional firewall so physical IPs or
MAC addresses are not exposed to the outside traffic. The
system contains three web servers with the same hardware
specifications and web application deployment. The load bal-
ancer distributes incoming traffic across the three web servers
using the weighted least connection algorithm.

b) Data Redundancy: The system contains three
database servers, two slaves replicating a master. The master
database handles all metadata lookups. One of its replicas
supports the OAI service. The other stands by in case the
master fails. The system also contains two Solr servers in the
master-slave setting. The system has a backup repository that
syncs to the master repository periodically. Once the master
fails, the backup is used in the read-only mode. All disks
are configured with RAID 5, which allows one hard drive
failure in a disk array. RAID 5’s distributed parity evens out
the stress of a dedicated parity disk among all RAID members.
Write performance is also increased since all RAID members
participate in the serving of write requests.

c) Traffic Control: Iptables is a command-line firewall
utility that uses policy chains to allow or block traffic. When a
connection tries to establish itself on the system, iptables looks
for a rule in its list to match it to. If it does not find one, it
resorts to the default action. We apply a chain of sophisticated
Iptables rules on the load balancer and web servers. One usage
is to block certain IP addresses that attempted to send brute-
force requests without respecting robots.txt, which is a plain
text file telling search engine crawlers which pages or files
a crawler can or can not request from a website. Because of
the large number of download requests, by default, the system
applies a threshold of up to 3000 downloads from a single IP
address, which we consider sufficient for individual users. The
web application controller maintains an allow-list that gives
unlimited access to certain user-agents, such as googlebot. We
also specify the “Crawl-delay” in the robots.txt file to curb the
request cadences from web crawlers. The web application also
uses a custom module to filter out any tags embedded in the
queries to prevent malicious code injected into the system,
such as cross-site scripting (XSS).

d) Activity Monitor: A dedicated VM is setup to peri-
odically send direct requests to the web, database, index, and
repository servers. If the monitor does not receive expected
responses within a certain time (which varies depending on
the type of servers), the monitor will email the administrators
to resolve the issues. This method was proven effective at
alarming the administrators at high traffic volume, Linux
kernel panic, or hardware failures.

The strategies above proved to be useful to achieve high
availability and security. However, some of them needed to
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be adjusted to accommodate changes in the architecture of
the new system, as we will describe later. The load balancer
uses heartbeat-ldirectord installed on a VM. Although it has
been working well, installation and configuration has a steep
learning curve and upgrading it with the OS is non-trivial. It
also depends on the server status, which may not be reliable.
Because of these reasons, the software-based load balancers
will be replaced by a hardware load balancer, which is more
reliable. Because of the adoption of Elasticsearch, data are
shared and distributed across multiple servers, which tolerates
one or multiple servers (depending on the cluster size and the
number of shards) to fail without bringing the system down.
RAID is still necessary for most servers except for the index
servers that already provide data redundancy by sharding data.
RAID 10 will be adopted for certain mission-critical servers
with many HDDs in the array, such as the extraction server,
allowing a maximum of two drives to fail.

IV. PROS AND CONS OF THE CURRENT SYSTEM

A. Strengths

The current architecture has the following strengths. First,
the system is based on the LAMP (Linux-Apache-MySQL-
PHP) architecture, except that Apache was replaced by Tomcat
and PHP was replaced by JavaScript and Java. The MVC
design pattern has been widely adopted and has proven reliable
for various sizes of web applications. The major tools are
open-source and have a large user population. Therefore, it
is relatively easy to find solutions to technical problems from
online forums such as Stackoverflow.com.

On the backend, the metadata and citation information is
first ingested into MySQL and then into Solr, which was
a natural extension of the standard LAMP architecture. The
role of a search platform like Solr was crucial for a DLSE
because MySQL could not effectively handle full-text queries.
Separating data storage and search was a reasonable approach
when the data size was not very large (below 10 million
documents). As seen in Section III-E, the current system
adopted different ways to increase the redundancy to avoid
the single-point-of-failure.

In the web crawling cluster, document metadata are stan-
dardized, which allows the system to import data harvested
with different formats and schema of output. Saving the origi-
nal downloading URLs was necessary for both re-crawling and
legal purposes. This helps users to file the Digital Millennium
Copyright Act (DMCA) claims.

B. Weaknesses

However, the current architecture also suffers from several
weaknesses. Although some of them are temporarily bearable,
ignoring them in the long term has the potential to cause
catastrophic damage such as permanent data loss or unac-
ceptable user experience. The major challenges are caused by
the increasing size and growth rate of academic documents.
Table I shows the current and projected numbers of files.

First, the ingestion module is a key bottleneck to increasing
document collection. The throughput of the web crawler, the

TABLE I
THE CURRENT AND PROJECTED DATA SIZE. M=MILLION.

Type Current Future Notes

Full text papers 10M 35M

Database size 550GB 1.8TB MySQL
Largest table (rows) 250M 875M

Database dump 300GB 900GB .sql
Database buffer 38GB 128GB 10% cached

Indexed records 70M 245M Apache Solr
Index size 360GB 1.2TB

Index heap 36GB 120GB 10% cached

Repository 15TB 53TB File system
PDF 10TB 35TB
TXT 900GB 3TB

XML 400GB 1.4TB

Figures 10TB 35TB Estimated

Crawl 43TB 150TB Estimated

extraction, and the ingestion modules are approximately 500k,
200k, and 50k documents in a day, respectively. The ingestion
system is slow because (1) it is single-threaded and (2) the
near-duplication detection module needs to first read from the
MySQL database, whose hit rate (the proportion of keys that
are being read from the key cache in memory instead of from
disk) decreases gradually as the data size increases.

Second, when the size of the collection reaches 35 million,
estimated to be the number of OA academic documents that
were available online in 2014 [23], the MySQL database will
grow up to 1.8TB. The citation graph will contain at least 245
million nodes and nearly 1 billion edges. To retain a reasonable
hit rate, MySQL demands the hosting server to scale up with
at least 200GB memory to cache at least 10% data (the
OS consumes at least 20% memory). Although a MySQL
cluster could achieve extremely high availability, distributing
data across multiple shards will slow down queries that join
multiple tables. Dumping and importing such a big database
could take days to over a week.

The scalability issue also affects Solr. Although Solr can
easily scale up to 80+ million documents on a single server,
simply increasing its memory heap may decrease performance
due to garbage collection [19]. The current master-slave archi-
tecture is hard to scale out. SolrCloud requires ZooKeeper and
installation and configuration both tools impose a significant
overhead because these two are not well-integrated.

The growing size also impacts data sharing and backup.
Table I shows that as the data grows, the download service
for all OA documents will reach at least 53TB. Adding the
database (1.8TB), the index (1.2TB), and a backup for each,
the total disk space needed will be about 109TB. Although
this can be fulfilled using a regular server, backing up and
sharing such a repository across servers is non-trivial. The time
to backup the entire repository will take weeks. In addition,
each document is associated with several other types of files
such as TXT and XML files. The total number of files and
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folders to move will be at least 35 × 4 = 140 million. In
the current production repository, all types of files associated
with an academic document are saved under a single directory.
Although this provides a convenient way to access files, it
takes an extremely long time to traverse the entire repository
for exporting a specific type of file (e.g., TXT only).

The frontend also needs to be improved. The search engine
uses the default ranking function of Apache Solr, which is
based on term frequency-inverse document frequency (TF-
IDF). Although this algorithm can effectively capture terms
that match the query, it suffers from low relevancy for am-
biguous queries. The web-based user interfaces only contains
a search box and does not offer other options that allow users
to narrow down search results based on subject categories [22],
[40] and other properties.

From the developer’s point of view, the system contains
many complicated dependencies and several software packages
are not supported anymore (e.g., Perl packages). Furthermore,
although the current code was written in a highly structured
manner, the use of DAO made the hierarchical structure very
deep and rigid, so it is difficult to add new features or modify
existing functionalities. Specifically, the ingestion module is
strongly coupled with the controller, so it is difficult to disen-
tangle numerous dependencies and parallelize the ingestion.

V. DESIGNING A NEW SYSTEM

A. Design Considerations

The new system was designed to meet the four requirements
introduced in Section I by addressing limitations of the current
system. Specifically, the system should be able to keep running
at a low cost for 10 years, assuming there are no catastrophic
natural disasters. The system should be usable to a growing
user population and continue supporting scholarly big data to a
broad research community. Finally, the system should provide
a reliable service with enriched data through accessible user
interfaces. To this end, the major changes are below.

1) Design a scalable web crawler and crawl the majority
(if not all) of OA academic documents.

2) Transition to using a more scalable (potentially NoSQL)
database.

3) Integrate and parallelize extraction and ingestion with
upgraded hardware to accelerate these two processes.

4) Split the repository into subrepositories, each of which
carries a specific type of files.

5) Redesign the frontend to interact with the new backend
and give users more options to search and navigate. The
code structure should be shallower, which is easier for
future development and maintenance.

6) Balance the redundancy, cost, and complexity to achieve
the overall availability and security levels.

B. Architecture

The architecture of the new system is depicted in Fig. 5.
Several notable changes are summarized below. (1) A Scrapy-
based breadth-first parallel crawler has already been developed
to harvest PDF documents by directly following links from

existing large digital repositories, e.g., Microsoft Academic
Graph (OAG) and the Internet Archive Scholar. The CDI
middleware [43] converts crawl metadata into a standard
format, which is fed into the Extraction and Ingestion System
(EIS). (2) The EIS system contains a customizable and paral-
lel extraction module that takes PDFs as input and outputs
metadata, citations, figures and tables, math formulas, and
keyphrases, which are directly ingested into Elasticsearch
and the production repository, with a minimal number of
intermediate files to reduce disk I/O. (3) The web application
interacts with Elasticsearch and processes both searching and
metadata retrieval requests. The database, which is only used
for research purposes, pulls data from Elasticsearch.

1) Web Crawler: We use verified sources such as S2, MAG,
arXiv.org, PubMed, Internet Archive, and other .edu sources
to obtain seed URLs. These sources generally provide rich and
high-quality academic documents, so we can crawl less useless
PDFs. We built a multi-threaded high throughput Scrapy-based
crawler that can download 1 million PDF documents in 7–8
hours using up to 48 processes. The crawled metadata such as
the source URLs, timestamps, and checksums (encrypted using
SHA1) are stored in Elasticsearch, a NoSQL datastore. It is
worth mentioning that even crawling URLs from the sources
above generated a considerable amount of non-academic doc-
uments, such as presentations, books, and, resumes. We use a
basic academic filter [26] to filter out these documents.

2) Extraction and Ingestion System (EIS): The EIS frame-
work converts academic documents in PDF format into search-
able formats. The framework processes extraction, clustering,
and ingestion of each document into Elasticsearch. The core
component of the EIS system is PDFMEF (PDF Multi-
entity Extraction Framework), a customizable and scalable
framework for extracting content from scholarly documents
[41]. PDFMEF encapsulates various content classifiers and ex-
tractors, such as Apache PDFBox, a learning-based academic
paper classifier, and pdffigures2 [7] to perform comprehensive
information extraction. We employ GROBID [27] for parsing
and re-structuring raw documents into structured XML/TEI
encoded documents. We then pipeline the XML into extraction
parsers to extract various types of information. The EIS system
starts with the crawled metadata that contains the PDF file
locations. The modules are described below.

a) Extraction: PDFMEF extracts various types of entities
such as metadata, authors, citations, and figures from PDF doc-
uments. The code is containerized and additional entities like
entities, math equations, and figures are extracted in parallel,
i.e., multiple documents can be processed simultaneously. The
code is adapted to run asynchronously in separate containers in
batches so that slower extraction on relatively large documents
does not decrease the overall document processing rate.

b) Clustering (aka deduplication or conflation): We de-
fine a cluster to be a distinct bibliographic unit that contains
either a full-text document or a citation record or both of them.
Under this definition, clustering is the process of identifying
near-duplicate paper records and their citations in other papers.
We implement the key-mapping algorithm [45] as an online
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Fig. 5. The architecture of the new digital library system.

parallel process to make ingestion near real-time. The idea
is to index the keys generated by concatenating title snippets
and author names and use these keys to match documents.
When ingesting a paper its keys are compared with existing
keys to retrieve candidate clusters using Elasticsearch’s GET-
by-id API. Doing so enables parallelization of the algorithm
while also significantly reducing the search space during
matching. This gives an enormous boost in extraction and
ingestion throughput of about one million documents a day.
The candidate clusters are further matched by using similarity
metrics from [26] before merging the entity into a cluster. The
similarity metric Stitle is obtained as the harmonic mean of
Jaccard index (J) and containment measure (C):

Stitle =
2JC

J + C
, J =

N1 ∪N2

N1 ∩N2

 , C =
|N1 ∩N2|

min(| N1 |, | N2 |)
where N1, N2 are normalized n-grams (n = 3) of the cur-

rent title and matched cluster title respectively. The similarity
threshold is empirically set to 0.6.

c) Index Schema: In the current database, papers, ci-
tations, and authors are stored in separate tables. Although
it is intuitive to make separate indices when migrating data
from MySQL to Elasticsearch, it is not the most efficient way
because the system still needs to jointly query different indices
to obtain certain results. To take advantage of the fast searching
performance of Elasticsearch, we organize all data into a single
index, a short version of which is depicted in the Fig. 6. The
advantage of this design enables us to store both full-text
papers and citations together in form of clusters. Since the
search is performed on clusters, the search engine result page
(SERP) will not include near-duplicates. The citation relation
information is stored in the cited_by field that contains
a list of paper ids cited by the current cluster. To retrieve
citations for a given cluster we retrieve all clusters that contain
the current paper_id in its cited_by field.

d) Ingestion: The paper data and citation data are
converted into entities consumable by the Elasticsearch

Fig. 6. Major fields in the single index schema for Elasticsearch.

API. We use the single index solution, where each indexed
document is a document cluster that holds both metadata
and citation relationships, so we can easily find out its
citing and cited clusters. The PDFs are then renamed by
their SHA1 values. We store them in the repository server
by nesting them by name. For example, a PDF with SHA1
a7b98ea0f94b920920524cdeee142232d7ccc488
is stored at location /data/a7/b9/8e/a0/f9/4b/92/
a7b98ea0f94b920920524cdeee142232d7ccc488/
a7b98ea0f94b920920524cdeee142232d7ccc488.
pdf. These PDF resources are accessible through a REST
API that is served for end users via the search interface.
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e) Scalability: The EIS framework scales well to our in-
gestion throughput requirement. Extraction is a CPU-intensive
operation with a small memory footprint, which will thus ben-
efit from using a multi-core server. Ingestion to Elasticsearch
is a network-intensive operation. The system is designed to
extract and ingest a batch of documents using all available
cores. The batch processing time depends on the batch size, the
number of extraction processes, and the number of threads in
the ingestion thread pool. The system benefits from more cores
and higher batch sizes before it saturates. The best throughput
was observed with 128 processes, a 1000 thread pool, 1000
documents per batch with an ingestion rate of about 1 million
PDFs per day on a machine with dual AMD EPYC 7702P
64-Core hyperthreaded processors.

3) The Choice of Elasticsearch: We compared three
NoSQL datastores that support indexing and retrieval: Elas-
ticsearch, Apache Solr, and MongoDB. Graph databases like
Neo4j [38] were not considered because they were optimized
specifically for graph data. Although the citation graph can fit
into Neo4j, most data queries are still relational. Although all
of them support a JSON-based key-value pair data structure,
they act differently in large production systems [17].

One scalability metric is how fast the datastore ingests new
documents. To perform an even comparison, we designed an
experiment to ingest metadata of 1 million research articles.
These articles are randomly chosen from the Open Research
Corpus [1]. The metadata includes text content such as title
and abstract, with metadata such as venue, year, and authors,
which resembles a similar schema for the data we will index
into our system. For simplicity, default configurations of all the
tools were applied and we ran them on the same machine. We
use bulk indexing capabilities for all these frameworks. It took
123 seconds, 205 seconds, and 227 seconds for Apache Solr,
MongoDB, and Elasticsearch to finish indexing, respectively.
Although Elasticsearch is the slowest its speed is on the same
order of magnitude as Solr. We choose it because of the fol-
lowing reasons. First, MongoDB lacks a good tokenizer, text
analyzer, and strong support of full-text search. It is primarily
used for data storage, not search. Second, Elasticsearch offers
a much better horizontal scalability and documentation. It also
integrates well with powerful visualization tools like Kibana
and log analysis tools like Logstash.

4) Repository: We developed a RESTful API that retrieves
documents from an XFS repository to the web servers. We
keep using varnish to automatically cache frequently down-
loaded documents. This REST+XFS model is stable and easy
to deploy.

To solve the scalability problem, our solution is to split
the repository into sub-repositories, each of which carries
a certain type of file. These sub-repositories will be saved
in a storage-area network (SAN) hosted in our institution’s
data center. The web servers access the SAN storage via
iSCSI, which acts as a virtual SCSI cable. In this way, the
repository is hosted in a block storage array rather than as a
partition in a virtual server, which ensures that it is scalable.
The multipathing configuration between iSCSI clients (web

servers) and the SAN eliminates the single-point-of-failure in
the current system.

In the current system, user corrections are inserted into the
database and written into a new XML file into the repository.
In the new design, users do not have permission to modify
data. However, they can make modification requests if they
see any wrong metadata. Metadata updates are performed on
the backend. The repository is read-only, which enables an
incremental backup by just keeping track of new documents.

5) Web Application: The backend of the web application
utilizes the FastAPI framework for ease of development and
maintenance. For the frontend, Vue.js and Nuxt.js are chosen
because of the flexibility in the server-side rendering feature.
The utilization of a JavaScript framework, in general, allows
for more efficient development and maintainability through
a component-based design, strong documentation, and better
performance. The web application exists in a decoupled struc-
ture, allowing for separation of responsibilities and for the
backend and frontend to be developed relatively independently.

In addition to the key features such as searching and
querying paper data utilizing the built-in Elasticsearch API,
many features from the current system were inherited. For
example, co-citation and bibliographic coupling algorithms are
implemented to recommend similar papers. To collect user
data, feedback, and for users to request updates to incorrect
metadata, the account management, and authentication fea-
tures are adopted. When implementing the current features, the
Elasticsearch DSL library is used to reduce the code needed
in the service layer of the backend.

Several new features were implemented that do not exist in
the current system. The new system allows for faceted search.
When a user makes a query, that query is passed along to
the Elasticsearch instance and retrieves aggregations of the
authors and journals with the most results. These aggregations
are displayed in the user interface as a list of checkboxes,
which users can toggle to filter search results by including
only documents by certain authors. A filter is also added to
constrain the publication year to a new range. Autocomplete
is an added feature, by which the search bar will display a
list of titles in real-time that match the user’s query strings.
Elasticsearch’s “More Like This Query” API based on TF-IDF
is used for similar paper recommendations. A “like” button is
added to gather user feedback on high-quality papers.

C. Capacity Planning & Load Testing

The development Elasticsearch cluster is configured with
2 nodes each with 8 cores Intel Xeon Gold 5118 CPU @
2.30GHz. To determine the number of primary shards required
for a scale of about 100 concurrent users each making multiple
requests searching about one million full-text documents while
navigating the user interface, a load test was performed to test
the limits of a single primary shard until the latencies increased
beyond the desired experience. We used Locust, an open-
source load testing tool to test the Web API. The environment
is set up locally on a development server, without a load
balancer, and with an initial cold cache. In the experiments,
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TABLE II
LOAD TESTING ON SINGLE SHARD WITH 100 SIMULATED

CONCURRENT USERS ON SINGLE SHARD WITH NO REPLICAS.

API Endpoint TMed TAvg T90 RPS

/paper 5 9 13 10.5
/search 20 71 260 9.4
/show citing 10 31 80 10
/similar papers 6 7 9 8.7
/search suggestion 7 34 100 9.4
/citations 39 69 160 9.3
/document download 32 42 75 9.2

Total Aggregated 9 38 91 65.4

TMed, TAvg, and T90 are the median, average, and 90%
percentile response time in milliseconds, respectively.
RPS stands for Request Per Second.

we configured an Elasticsearch cluster with about one million
full-text documents and their citation clusters on an index
configured with one primary shard. Simulated users uniformly
choose one of the API endpoints to make HTTP requests every
1 to 2 seconds. Depending on the type of endpoint, that request
will randomly choose from either of the 5000 preselected
unique paper_id or the 5000 preselected cluster_id
to construct the query. For search and suggestion endpoints,
a random word generator is used to construct search terms.
Two tests were conducted. The first test was setup with 100
concurrent users (the current system has 40–60 concurrent
active users on average). Table II shows the result of the
first test. The new web API has a median response time of
9 ms with 65.4 requests per second. This is an extreme test
where there is only one primary shard and no replica shards,
the results show that approximately we require a shard for
every million documents and a sufficient number of replicas
to improve the latencies even further.

The second test probed the limit of the new web API and our
single index schema design. This test spawns 10 users every
second until all requests start to fail. The results are shown
in Fig. 7. At around 700 concurrent users with about 400
requests per sec, a fraction of requests started to fail. At around
2,000 concurrent users with 400 to 900 requests per sec, all
requests have failed. The current system usage is well below
this limit. The experiments demonstrated that the new system
should be able to handle a normal amount of incoming traffic
in the foreseeable future. Moreover, we configure the number
of primary shards and replicas by extrapolating the results
from the above experiments and could scale horizontally to
meet the required performance goals.

To improve the relevance of our search results, we use
s2search reranker4, which uses a LightGBM ranker trained on
query-document pairs. This ranker is built using real-world
usage data of S2, which we believe will serve as a good
baseline for our system. This model considers features such
as date, venue, abstract, and query overlap, title, and query
overlap to rerank the search results from Elasticsearch. We

4https://github.com/allenai/s2search

Fig. 7. Stress testing the limit of new web API and single index schema
design on single shard with one replica.

TABLE III
HARDWARE SPECIFICATIONS OF SERVERS WITH VARIOUS

FUNCTIONALITIES. VHDD STANDARDS FOR VIRTUAL HARD DRIVES.
ONLY PRODUCTION SERVERS ARE LISTED. ALL VHDDS USES RAID 5.

Function Type (#) Main Specifications

#Core RAM Storage Disk type

Web VM (x3) 2 5GB 1TB vHDD

Database VM (x2) 4 16GB 3TB vHDD

Index
PH (x2) 16 96GB 4TB SSD1

PH (x2) 16 64GB 8TB HDD1

VM (x3) 4 16GB 200GB vHDD

Extraction PH (x1) 40 196GB 4TB SSD2

Repository SAN – – 50TB vHDD
1 No RAID. 2After RAID 10.

will fine-tune and improve this ranker after the new production
system collects enough user clickthrough data.

D. Hardware and Software Infrastructures

Table III shows the new hardware. Major upgrades and
rationale are summarized below.

1) Private Cloud: The private cloud is retained and will
be used for deploying lightweight servers, including but not
limited to the Kibana server, Logstash server, staging server,
static web server, and monitoring server. Kibana is used for
visualizing Elasticsearch data. With the assistance of Logstash,
users can create interactive data dashboards using real-time
data. The staging server is used for feature development
and experiments. The master servers of the Elastic cluster
(described below) are also hosted in the cloud.

2) Elastic Cluster: A cluster consisting of 4 physical
servers and 3 VMs is setup to host Elasticsearch. There are
two main reasons to use data nodes as physical servers. First,
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these servers will be equipped with solid-state drives (SSDs),
instead of HDDs as in the private cloud. Although HDDs are
more affordable, SSDs are much faster, durable, and reliable
for a mission-critical unit. Many commercial search engines
have replaced HDDs with SSDs in their infrastructure [36].
Second, because Elasticsearch will play roles as a datastore
and a search engine, a dedicated TCP/IP connection will
ensure smooth communication from/to other servers.

3) EIS Server: The server hosting the EIS frame is also
outside the private cloud because this server will take heavy-
duty extraction and ingestion workload.

4) SAN: As mentioned in Section V-B, the repository will
be hosted in a SAN cluster located in an on-premise data
center managed by the institutional IT service.

5) Software Stack: The software stack of the new system is
shown in Fig. 2 (bottom). The new system uses Python as the
major developing language. Python offers many popular and
well-maintained packages such as Django and FastAPI. Python
is also a popular programming language for data science,
which makes it more convenient to integrate AI technologies.
Compared with the current system, the new system software
stack is simpler and thus more maintainable and extensible.

E. Challenges

Implementing the ingestion-time clustering and near-
duplicate detection of an existing paper is a challenging
task. The decision to mark a newly-crawled PDF as a near-
duplicate of an existing PDF has to be made real-time during
ingestion to not impact ingestion throughput. Since simhash
and hamming distance approach [29] would be complicated
and inefficient for our purpose, we designed a novel parallel
version of Key Mapping algorithm [45] by storing the key to
cluster mappings and further matching candidate clusters with
similarity metric to avoid false positives. The parallel version
avoids creating duplicates when ingested in parallel since the
keys of the PDF that is clustered first will be available in real-
time to the PDF clustered second as our key mapping index
leverages Elasticsearch’s GET-by-id API that works real-time.
We will investigate other algorithms, such as Locality Sensitive
Hashing [2] and Bloom’s filter [3], on this task.

The backend API development faced several revisions in
terms of how it should interact with Elasticsearch while
still allowing the frontend to make requests through it. We
considered using Django but it is more suitable for objects
stored in an SQL database, as opposed to a NoSQL server
like Elasticsearch. As such, we decided to go with FastAPI
because it is more suitable for general purposes.

Deployment of the new system using Docker containers
also posed challenges. Because users may make requests from
the web UI or the API, we wanted the backend API to be
accessible so that users still have access to the API service
when the web UI is down. The solution was to move both
the frontend and backend services into Docker containers. An
Nginx proxy server is used for routing requests to either the
web application or the API service based on the URL string.

This configuration allows users to access data from the web
UI or the API using the same port.

VI. ISSUES

One limitation is that there is still not a system that oversees
and manages all servers. On the front end, Apache Kubernetes
is a promising system for automating web application de-
ployment and management. On the backend, Apache Airflow
allows for better managing different extraction tasks. For web
crawling, the documents are still collected by batch crawling
URLs from other digital repositories. To increase freshness, an
intelligent incremental crawler can be developed that predicts
the emergence of new documents from author homepages
by analyzing crawl history and then download them [21].
Currently, the extraction is synchronous with the ingestion.
Future work includes making them asynchronous using mes-
sage queues in Kafka. This could lighten the workflow and
further improve throughput.

VII. CONCLUSIONS

Here we described the design and implementation of a new
digital library system and compared it with the current system.
With the goals of making the new system more accessible, us-
able, scalable, and sustainable, we inherited valuable features
of the current system but also made several major changes to
architecture, hardware, and software. In the new architecture,
the searching and datastore functionalities are consolidated
into Elasticsearch. The web application is re-engineered using
Vue.js for the frontend stack and Nuxt.js as the universal
server-side rendering (SSR), both having a smaller learning
curve, robust documentation, and code transparency, which
supports the continuous development and convenient deploy-
ment. The backend is refactored so information extraction
and ingestion modules are integrated and parallelized, which
significantly boosted the ingestion speed to at least 1 million
documents per day. The Alpha version of the framework is
accomplished and under vigorous testing. A prototype based
on the ACL Anthology containing about 55k documents will
be available, followed by deployment with the full collection.
The framework software will be open-source to the public after
the system is fully deployed.

We expect the deployed system to provide a sustainable
service with more complete, up-to-date, and semantic access
to scholarly big data. We believe this framework will benefit
the building of more scalable and customizable institutional
digital library systems.

ACKNOWLEDGMENT

We gratefully acknowledge partial support from the Na-
tional Science Foundation (Award#: 1823288).

Authorized licensed use limited to: Old Dominion University. Downloaded on July 25,2022 at 17:46:14 UTC from IEEE Xplore.  Restrictions apply. 



151

REFERENCES

[1] W. Ammar, D. Groeneveld, C. Bhagavatula, I. Beltagy, M. Crawford,
D. Downey, J. Dunkelberger, A. Elgohary, S. Feldman, V. A. Ha, R. M.
Kinney, S. Kohlmeier, K. Lo, T. C. Murray, H.-H. Ooi, M. E. Peters,
J. L. Power, S. Skjonsberg, L. L. Wang, C. Wilhelm, Z. Yuan, M. van
Zuylen, and O. Etzioni. Construction of the literature graph in semantic
scholar. In NAACL-HLT, 2018.

[2] A. Andoni and P. Indyk. Near-optimal hashing algorithms for ap-
proximate nearest neighbor in high dimensions. Commun. ACM,
51(1):117–122, Jan. 2008.

[3] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM, 13(7):422–426, July 1970.

[4] C. Caragea, J. Wu, S. D. Gollapalli, and C. L. Giles. Document
type classification in online digital libraries. In Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence, February 12-17,
2016, Phoenix, Arizona, USA., pages 3997–4002, 2016.

[5] H. Chen, Y. Yang, W. Lu, and J. Chen. Exploring multiple diversification
strategies for academic citation contexts recommendation. Electron.
Libr., 38(4):821–842, 2020.

[6] H.-H. Chen, L. Gou, X. Zhang, and C. L. Giles. Collabseer: A
search engine for collaboration discovery. In Proceedings of the 11th
Annual International ACM/IEEE Joint Conference on Digital Libraries,
JCDL ’11, page 231–240, New York, NY, USA, 2011. Association for
Computing Machinery.

[7] C. Clark and S. K. Divvala. Pdffigures 2.0: Mining figures from research
papers. In Proceedings of the 16th ACM/IEEE-CS on Joint Conference
on Digital Libraries, JCDL 2016, Newark, NJ, USA, June 19 - 23, 2016,
pages 143–152, 2016.

[8] V. P. de Almeida, S. Bhowmik, G. F. Lima, M. Endler, and K. Rothermel.
DSCEP: an infrastructure for decentralized semantic complex event
processing. In X. Wu, C. Jermaine, L. Xiong, X. Hu, O. Kotevska,
S. Lu, W. Xu, S. Aluru, C. Zhai, E. Al-Masri, Z. Chen, and J. Saltz,
editors, IEEE International Conference on Big Data, Big Data 2020,
Atlanta, GA, USA, December 10-13, 2020, pages 391–398. IEEE, 2020.

[9] H. V. de Sompel, M. L. Nelson, C. Lagoze, and S. Warner. Resource
harvesting within the OAI-PMH framework. D Lib Mag., 10(12), 2004.

[10] R. Entlich, J. Olsen, L. Garson, M. Lesk, L. Normore, and S. Weibel.
Making a digital library: The contents of the core project. ACM Trans.
Inf. Syst., 15(2):103–123, Apr. 1997.

[11] S. Erera, M. Shmueli-Scheuer, G. Feigenblat, O. P. Nakash, O. Boni,
H. Roitman, D. Cohen, B. Weiner, Y. Mass, O. Rivlin, G. Lev, A. Jerbi,
J. Herzig, Y. Hou, C. Jochim, M. Gleize, F. Bonin, and D. Konopnicki.
A summarization system for scientific documents. In S. Padó and
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