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Abstract: Analogical reasoning is critical in debugging. Still, the literature is unclear on how 
non-CS major novice programming learners draw inferences from previous debugging tasks 
when attempting to understand the present debugging task. We addressed the research question 
How do novice programming learners discover relational commonalities across debugging 
tasks in which block-code contains structural relations within itself and with a corresponding 
robot? We used a theory-informed coding scheme to analyze interviews and screencasting data. 
We found that (a) noticing similarities in function between the target task and the source task(s) 
guided learners to discover relational commonalities within block code between the source 
task(s) and the target task, (b) functional analogy was not necessary for discovery of every 
relational commonality between the target task and the source task in block code, and (c) 
noticing and using relational commonalities did not always lead to successful debugging. 

Introduction 
Strategies to facilitate analogical mapping between a source context and a target context have been studied in 
many domains. In programming learning contexts, strategies tend to involve analogies connecting unfamiliar 
programming concepts and rules to familiar ones (Muller & Haberman, 2008). But there has been less attention 
paid to how non-CS majors draw inferences from their previous debugging task when attempting to understand 
the present debugging task. Doing so requires that multiple relations be highlighted to make analogical 
comparisons within debugging. That is, comparisons are not just between one structure (of a source task) to 
another structure (of a target task) (e.g., leaves : a tree :: petals : a flower) but also for one set of structures from 
multiple relations within a source debugging task to another set of structures from multiple relations within a 
target debugging task. In this study, debugging tasks contain both virtual and physical objects and their relations. 
For example, comparing block code in a source debugging task to block code in a target debugging task is part of 
analogical reasoning, but so is comparing relations between block code and the robot in a source debugging task 
to relations between block code and the robot in a target debugging task. As shown in the figures below, there are 
common relational structures between virtual objects, Figure 1 (the source) and Figure 2 (the target). The relation 
between the repeat # times block A and the movement blocks B is that B is repeated # times indicated in A. There 
are relational structures also between the block code (the virtual object) and the robot (the physical object) in that 
the robot is moved by the block code (the robot moves # times depending on the parameter in the repeat function), 
which also creates parallel connectivity between the source debugging task and the target debugging task.  
 

Figure 1 
Source Task (Tracing a Square Once) 

Figure 2 
Target Task (Tracing a Rectangle 3 Times) 

 
 

 

Research shows that people can recognize relational commonalities even with “conflicting object 
matches” between two tasks (Gentner & Smith, 2013, p. 4). For example, when given one picture showing a tow 
truck towing a car and the other picture showing a car towing a boat, people are highly likely to choose the boat 
in the second picture as a corresponding object to the car in the first picture due to the common structural relation 
between towing and being towed (Gentner & Smith, 2013). Block code in the present study was not an object as 
familiar as daily objects like vehicles to our participants and also contained symbolic, visual, and material forms. 
Thus, our research question was: How do novice programming learners discover relational commonalities across 
debugging tasks in which block-code contains structural relations within itself and with a corresponding robot?  
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Conceptual framework 
Our conceptual framework was grounded in the analogical reasoning (e.g., Gentner & Smith, 2013) and computer 
programming (e.g., Clement, Kurland, Mawby, & Pea, 1986) literatures but also design studies that investigated 
analogical reasoning during design (e.g., Ahmed & Christensen, 2009; Chai, Cen, Ruan, Yang, & Li, 2015; 
Cheong, Hallihan, & Shu, 2014; Gero & Kannengiesser, 2004). Our framework includes three perspective angles. 
Analogical reasoning processes include the encoding, inferring, mapping, applying, and verifying phases (Gentner 
& Smith, 2013; Sternberg & Rifkin, 1979). Analogical reasoning foci include visual, functional, behavioral, and 
structural analogies (Chai et al., 2015; Gero & Kannengiesser, 2004). Analogical reasoning forms include 
analogical comparisons in virtual objects, physical objects, and relation between virtual and physical objects. Our 
framework defines small, large, and mixed analogical reasoning distances between the source and target tasks, 
meaning a small distance having greater superficial similarities (Ahmed & Christensen, 2009; Muller, 2005).   

Methods 

Participants and context 
Participants were 19 undergraduates who engaged with a robotics and play unit in a required three-credit play-
based activities course in an early childhood and elementary education program of a large public university in the 
northeastern United States. The unit was for 90 minutes per week for eight weeks. All but two participants had 
completed field experience at the preschool, kindergarten, and/or lower elementary grades. All but one participant 
indicated no to little programming knowledge prior to the unit. Both members of the pair reported in this proposal 
- Judith and Anne - were female and juniors. All names have been changed.  

Debugging tasks  
Participants were invited to debug a series of buggy code segments given along with descriptions that explained 
expected behaviors of robots in an early childhood’s play and learning context. In total, nine debugging tasks with 
increasing difficulties were given, five of which were done in class as paired debugging tasks and four of which 
were done as homework individually. Three practice tasks were given between debugging tasks. In this proposal, 
we present one debugging task called “Cleaning the Playroom” as the target task (Figure 4), and its similarities 
and dissimilarities with one of the source tasks called “Color Game” (see Figures 3 and 4).  
 

Figure 3 
Code for the Color Game Task 

Figure 4 
Code for the Cleaning the Playroom Task 

            

Data collection 
Participants’ computer screens were recorded during debugging. Their reflections and final code were collected 
during the unit and interviews were conducted after the unit ended. The total length of all screen-recordings was 
about 33 hours. Anne and Judith’s screen-recording was about 3.5 hours. They were also video-recorded.  

Data analysis 
We developed a coding scheme based on our conceptual framework grounded in the analogical reasoning 
literature (Chai et al., 2015; Clement et al., 1986; Gentner & Smith, 2013; Gero & Kannengiesser, 2004, 2014; 
Gero & McNeill, 1998; Ruppert, 2013; Sternberg, 1977; Sternberg & Rifkin,1979). The coding scheme included 
encoding and inferring, mapping, applying, and verifying as high-level nodes. All nodes had sub-nodes for 
small distance, large distance, and mixed distance. Mapping sub-nodes were used to code visual, functional, 
behavioral, and structural analogies. Applying sub-nodes were used to code correct and incorrect uses of 
relevant or irrelevant similarities and dissimilarities. We first pilot-tested the coding scheme by applying it to 
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data from two participants’ debugging tasks (Octagon and Hexagon). After coding independently, we met to 
reach consensus and address discrepancies in coding. Then, we independently coded two other participants’ data 
from debugging the Energy versus Obstacle task. We met again to reach consensus and address discrepancies in 
coding. Then, we did another round of independent coding for data from Anne and Judith’s debugging the 
Energy versus Obstacle task. Upon completion of the third pilot coding task, we again met to discuss coding, 
and decided to add mixed distance to the coding scheme. Then, we recoded using the revised coding scheme 
independently and reached consensus. Finally, we coded Anne and Judith’s data from their Cleaning the 
Playroom debugging in NVivo. The average interrater reliability ICC score was 0.849.  

Findings and Discussions 
Figure 5 
Summary of Anne and Judith’s Analogical Comparisons during Debugging 

 

 
 

Noticing similarities in function between the target task and the source task(s) guided learners to discover 
relational commonalities within block code between the source task(s) and the target task. For example, 
analogical comparisons that Anne and Judith went through from ① to ② and ③ in Figure 5 depict that they did 
not begin seeing ③ the relational commonality between the target task (the Cleaning the Playroom task) and the 
source task (the Color Game task) in the structural relation between the line navigation and the repeat blocks until 
they noticed ① ② the functional commonalities of line navigation and repeat blocks between the target and source 
tasks. The role of such a functional analogy, in this case, is productive considering that it eventually led to the 
discovery of ④ ⑤ relational commonalities between the block code and the robot in the target and source tasks. 
Such a productive role of functional analogy is contradictory to findings in analogical reasoning literature in which 
functional comparisons were found to limit reasoners’ capacity to identify relevant analogy (Cheong et al., 2014). 
The multimodal forms of objects in the present study may have impacted this finding. Due to symbolic, visual, 
and material forms used in debugging tasks and relational structures embedded within and between the multiple 
forms, understanding function of objects was critical to understanding objects and structures within them and 
associated with other objects. It seems natural to use tangible analogies ① ② to visualize analogies that are not 
immediately visible ③. Table 1 shows the pair’s discourse and actions during analogical comparisons.  

Functional analogy was not necessary for discovery of every relational commonality between the 
target and the source tasks in the structure within block code. As shown in ⑧, the participants were able to 
map the relation between the repeat while and the variable blocks in the target task to that in the source task. 
Noticing this relational commonality led to attention to ⑨ functional commonalities of logic blocks in the target 
and source tasks. While functional analogies were used again to understand the logic blocks and their structures 
in ⑨, as in ①, this could be attributed to less familiarity with logic blocks compared to more familiarity with 
repeat blocks built through analogical comparison from ① to ⑤.  

Noticing and using relational commonalities did not always lead to successful debugging. For 
example, when Anne and Judith noticed ⑩ the relational commonality between the target and the source tasks in 
the structural relation between the variable and the logic blocks, they then fixated on ⑪ analogical comparison of 
the numeric value in the math block between the target and source tasks. This analogy was unrelated to bugs in 
the target task, thereby leading to studying ⑫ the function of variable blocks.  

Implications for research and practice  
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The present study contributes to advancing the analogical reasoning literature by adding empirical findings of 
novice programmers’ learning processes that involve tasks with complex relational commonalities.  It also 
enriches research on debugging through the lens of analogical reasoning. Its practical contribution is to CS 
education in that understanding of non-CS majors’ reasoning during debugging can be used in broadening 
participation in CS.  
Table 1 
Part of Anne and Judith’s Debugging Episode   

Debugging scene Source task Target task Analogical comparisons 
Judith: Why do you think 
the Ozobot did what it did?  
Anne: Because this [follow line 
to next intersection or line end] 
block wasn’t here [in the repeat 
block] like this if statement (She 
pointed out the if/do condition 
for red intersection to indicate 
the correct place for the follow 
line to next intersection or line 
end block) ① ② 

Line 
navigation 
block was 
within repeat 
block before 
logic block, 
which made 
the robot move 
continuously. 

Line navigation block 
was out of the repeat 
block in the buggy 
code. 

They focused on the location 
of line navigation block in the 
target task: outside of repeat 
block, not inside repeat 
block. 
The pair noticed similarities 
in function of line navigation 
and repeat blocks between 
the target and the source tasks 
①	②, which made the robot 
move continuously. 

Judith: What is a rule?  
Anne: but like a movement [line 
navigation block] before the if 
statement ③. I don't know. 
 

Line 
navigation 
block was 
within repeat. 

Line navigation block 
should be within the 
repeat block to make 
line navigation block 
work repeatedly 
between intersections. 

They began noticing 
similarity in relation between 
line navigation block and 
repeat block between the 
target and source tasks ③.  

Judith: All right. What if we put 
a follow line or line navigation 
block underneath of a repeat 
block ③ in order for it to follow 
a grid [on the map]? ④ ⑤ (She 
indicated the rule by 
highlighting the correct place of 
line navigation block within 
repeat and its relation with the 
robot’s movement) 

The robot 
moved on the 
map because 
line navigation 
block was 
within the 
repeat block. 

The robot did not 
move on the map 
because line 
navigation block was 
outside of repeat 
block. 

They developed a rule 
indicating the relationship 
between line navigation block 
and repeat block ③. They 
then noticed similarity in 
relation between line 
navigation block within 
repeat block and the robot’s 
movement on the map in the 
target and source tasks ④ ⑤. 
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