

Discovery of Similarities across Debugging Tasks in Relations
within and between Virtual and Physical Objects

ChanMin Kim, Emre Dinç, Eunseo Lee, Afaf Baabdullah, Anna Y. Zhang, Brian R. Belland

cmk604@psu.edu, ezd287@psu.edu, eul374@psu.edu, afb5304@psu.edu, ybz5148@psu.edu, brb288@psu.edu
The Pennsylvania State University

Abstract: Analogical reasoning is critical in debugging. Still, the literature is unclear on how
non-CS major novice programming learners draw inferences from previous debugging tasks
when attempting to understand the present debugging task. We addressed the research question
How do novice programming learners discover relational commonalities across debugging
tasks in which block-code contains structural relations within itself and with a corresponding
robot? We used a theory-informed coding scheme to analyze interviews and screencasting data.
We found that (a) noticing similarities in function between the target task and the source task(s)
guided learners to discover relational commonalities within block code between the source
task(s) and the target task, (b) functional analogy was not necessary for discovery of every
relational commonality between the target task and the source task in block code, and (c)
noticing and using relational commonalities did not always lead to successful debugging.

Introduction
Strategies to facilitate analogical mapping between a source context and a target context have been studied in
many domains. In programming learning contexts, strategies tend to involve analogies connecting unfamiliar
programming concepts and rules to familiar ones (Muller & Haberman, 2008). But there has been less attention
paid to how non-CS majors draw inferences from their previous debugging task when attempting to understand
the present debugging task. Doing so requires that multiple relations be highlighted to make analogical
comparisons within debugging. That is, comparisons are not just between one structure (of a source task) to
another structure (of a target task) (e.g., leaves : a tree :: petals : a flower) but also for one set of structures from
multiple relations within a source debugging task to another set of structures from multiple relations within a
target debugging task. In this study, debugging tasks contain both virtual and physical objects and their relations.
For example, comparing block code in a source debugging task to block code in a target debugging task is part of
analogical reasoning, but so is comparing relations between block code and the robot in a source debugging task
to relations between block code and the robot in a target debugging task. As shown in the figures below, there are
common relational structures between virtual objects, Figure 1 (the source) and Figure 2 (the target). The relation
between the repeat # times block A and the movement blocks B is that B is repeated # times indicated in A. There
are relational structures also between the block code (the virtual object) and the robot (the physical object) in that
the robot is moved by the block code (the robot moves # times depending on the parameter in the repeat function),
which also creates parallel connectivity between the source debugging task and the target debugging task.

Figure 1
Source Task (Tracing a Square Once)

Figure 2
Target Task (Tracing a Rectangle 3 Times)

Research shows that people can recognize relational commonalities even with “conflicting object
matches” between two tasks (Gentner & Smith, 2013, p. 4). For example, when given one picture showing a tow
truck towing a car and the other picture showing a car towing a boat, people are highly likely to choose the boat
in the second picture as a corresponding object to the car in the first picture due to the common structural relation
between towing and being towed (Gentner & Smith, 2013). Block code in the present study was not an object as
familiar as daily objects like vehicles to our participants and also contained symbolic, visual, and material forms.
Thus, our research question was: How do novice programming learners discover relational commonalities across
debugging tasks in which block-code contains structural relations within itself and with a corresponding robot?

B A B A

ICLS2022 Proceedings 1185 © ISLS

Conceptual framework
Our conceptual framework was grounded in the analogical reasoning (e.g., Gentner & Smith, 2013) and computer
programming (e.g., Clement, Kurland, Mawby, & Pea, 1986) literatures but also design studies that investigated
analogical reasoning during design (e.g., Ahmed & Christensen, 2009; Chai, Cen, Ruan, Yang, & Li, 2015;
Cheong, Hallihan, & Shu, 2014; Gero & Kannengiesser, 2004). Our framework includes three perspective angles.
Analogical reasoning processes include the encoding, inferring, mapping, applying, and verifying phases (Gentner
& Smith, 2013; Sternberg & Rifkin, 1979). Analogical reasoning foci include visual, functional, behavioral, and
structural analogies (Chai et al., 2015; Gero & Kannengiesser, 2004). Analogical reasoning forms include
analogical comparisons in virtual objects, physical objects, and relation between virtual and physical objects. Our
framework defines small, large, and mixed analogical reasoning distances between the source and target tasks,
meaning a small distance having greater superficial similarities (Ahmed & Christensen, 2009; Muller, 2005).

Methods

Participants and context
Participants were 19 undergraduates who engaged with a robotics and play unit in a required three-credit play-
based activities course in an early childhood and elementary education program of a large public university in the
northeastern United States. The unit was for 90 minutes per week for eight weeks. All but two participants had
completed field experience at the preschool, kindergarten, and/or lower elementary grades. All but one participant
indicated no to little programming knowledge prior to the unit. Both members of the pair reported in this proposal
- Judith and Anne - were female and juniors. All names have been changed.

Debugging tasks
Participants were invited to debug a series of buggy code segments given along with descriptions that explained
expected behaviors of robots in an early childhood’s play and learning context. In total, nine debugging tasks with
increasing difficulties were given, five of which were done in class as paired debugging tasks and four of which
were done as homework individually. Three practice tasks were given between debugging tasks. In this proposal,
we present one debugging task called “Cleaning the Playroom” as the target task (Figure 4), and its similarities
and dissimilarities with one of the source tasks called “Color Game” (see Figures 3 and 4).

Figure 3
Code for the Color Game Task

Figure 4
Code for the Cleaning the Playroom Task

Data collection
Participants’ computer screens were recorded during debugging. Their reflections and final code were collected
during the unit and interviews were conducted after the unit ended. The total length of all screen-recordings was
about 33 hours. Anne and Judith’s screen-recording was about 3.5 hours. They were also video-recorded.

Data analysis
We developed a coding scheme based on our conceptual framework grounded in the analogical reasoning
literature (Chai et al., 2015; Clement et al., 1986; Gentner & Smith, 2013; Gero & Kannengiesser, 2004, 2014;
Gero & McNeill, 1998; Ruppert, 2013; Sternberg, 1977; Sternberg & Rifkin,1979). The coding scheme included
encoding and inferring, mapping, applying, and verifying as high-level nodes. All nodes had sub-nodes for
small distance, large distance, and mixed distance. Mapping sub-nodes were used to code visual, functional,
behavioral, and structural analogies. Applying sub-nodes were used to code correct and incorrect uses of
relevant or irrelevant similarities and dissimilarities. We first pilot-tested the coding scheme by applying it to

ICLS2022 Proceedings 1186 © ISLS

data from two participants’ debugging tasks (Octagon and Hexagon). After coding independently, we met to
reach consensus and address discrepancies in coding. Then, we independently coded two other participants’ data
from debugging the Energy versus Obstacle task. We met again to reach consensus and address discrepancies in
coding. Then, we did another round of independent coding for data from Anne and Judith’s debugging the
Energy versus Obstacle task. Upon completion of the third pilot coding task, we again met to discuss coding,
and decided to add mixed distance to the coding scheme. Then, we recoded using the revised coding scheme
independently and reached consensus. Finally, we coded Anne and Judith’s data from their Cleaning the
Playroom debugging in NVivo. The average interrater reliability ICC score was 0.849.

Findings and Discussions
Figure 5
Summary of Anne and Judith’s Analogical Comparisons during Debugging

Noticing similarities in function between the target task and the source task(s) guided learners to discover
relational commonalities within block code between the source task(s) and the target task. For example,
analogical comparisons that Anne and Judith went through from ① to ② and ③ in Figure 5 depict that they did
not begin seeing ③ the relational commonality between the target task (the Cleaning the Playroom task) and the
source task (the Color Game task) in the structural relation between the line navigation and the repeat blocks until
they noticed ① ② the functional commonalities of line navigation and repeat blocks between the target and source
tasks. The role of such a functional analogy, in this case, is productive considering that it eventually led to the
discovery of ④ ⑤ relational commonalities between the block code and the robot in the target and source tasks.
Such a productive role of functional analogy is contradictory to findings in analogical reasoning literature in which
functional comparisons were found to limit reasoners’ capacity to identify relevant analogy (Cheong et al., 2014).
The multimodal forms of objects in the present study may have impacted this finding. Due to symbolic, visual,
and material forms used in debugging tasks and relational structures embedded within and between the multiple
forms, understanding function of objects was critical to understanding objects and structures within them and
associated with other objects. It seems natural to use tangible analogies ① ② to visualize analogies that are not
immediately visible ③. Table 1 shows the pair’s discourse and actions during analogical comparisons.

Functional analogy was not necessary for discovery of every relational commonality between the
target and the source tasks in the structure within block code. As shown in ⑧, the participants were able to
map the relation between the repeat while and the variable blocks in the target task to that in the source task.
Noticing this relational commonality led to attention to ⑨ functional commonalities of logic blocks in the target
and source tasks. While functional analogies were used again to understand the logic blocks and their structures
in ⑨, as in ①, this could be attributed to less familiarity with logic blocks compared to more familiarity with
repeat blocks built through analogical comparison from ① to ⑤.

Noticing and using relational commonalities did not always lead to successful debugging. For
example, when Anne and Judith noticed ⑩ the relational commonality between the target and the source tasks in
the structural relation between the variable and the logic blocks, they then fixated on ⑪ analogical comparison of
the numeric value in the math block between the target and source tasks. This analogy was unrelated to bugs in
the target task, thereby leading to studying ⑫ the function of variable blocks.

Implications for research and practice

ICLS2022 Proceedings 1187 © ISLS

The present study contributes to advancing the analogical reasoning literature by adding empirical findings of
novice programmers’ learning processes that involve tasks with complex relational commonalities. It also
enriches research on debugging through the lens of analogical reasoning. Its practical contribution is to CS
education in that understanding of non-CS majors’ reasoning during debugging can be used in broadening
participation in CS.
Table 1
Part of Anne and Judith’s Debugging Episode

Debugging scene Source task Target task Analogical comparisons
Judith: Why do you think
the Ozobot did what it did?
Anne: Because this [follow line
to next intersection or line end]
block wasn’t here [in the repeat
block] like this if statement (She
pointed out the if/do condition
for red intersection to indicate
the correct place for the follow
line to next intersection or line
end block) ① ②

Line
navigation
block was
within repeat
block before
logic block,
which made
the robot move
continuously.

Line navigation block
was out of the repeat
block in the buggy
code.

They focused on the location
of line navigation block in the
target task: outside of repeat
block, not inside repeat
block.
The pair noticed similarities
in function of line navigation
and repeat blocks between
the target and the source tasks
①	②, which made the robot
move continuously.

Judith: What is a rule?
Anne: but like a movement [line
navigation block] before the if
statement ③. I don't know.

Line
navigation
block was
within repeat.

Line navigation block
should be within the
repeat block to make
line navigation block
work repeatedly
between intersections.

They began noticing
similarity in relation between
line navigation block and
repeat block between the
target and source tasks ③.

Judith: All right. What if we put
a follow line or line navigation
block underneath of a repeat
block ③ in order for it to follow
a grid [on the map]? ④ ⑤ (She
indicated the rule by
highlighting the correct place of
line navigation block within
repeat and its relation with the
robot’s movement)

The robot
moved on the
map because
line navigation
block was
within the
repeat block.

The robot did not
move on the map
because line
navigation block was
outside of repeat
block.

They developed a rule
indicating the relationship
between line navigation block
and repeat block ③. They
then noticed similarity in
relation between line
navigation block within
repeat block and the robot’s
movement on the map in the
target and source tasks ④ ⑤.

References
Ahmed, S., & Christensen, B. T. (2009). An in situ study of analogical reasoning in novice and experienced

design engineers. Journal of Mechanical Design, 131(11). doi:10.1115/1.3184693
Chai, C., Cen, F., Ruan, W., Yang, C., & Li, H. (2015). Behavioral analysis of analogical reasoning in design:

Differences among designers with different expertise levels. Design Studies, 36, 3–30.
Cheong, H., Hallihan, G., & Shu, L. H. (2014). Understanding analogical reasoning in biomimetic design: An

inductive approach. In J. S. Gero (Ed.), Design Computing and Cognition ’12 (pp. 21–39). Dordrecht:
Springer Netherlands. doi:10.1007/978-94-017-9112-0_2

Clement, C. A., Kurland, D. M., Mawby, R., & Pea, R. D. (1986). Analogical reasoning and computer
programming. Journal of Educational Computing Research, 2(4), 473–486.

Gentner, D., & Smith, L. A. (2013). Analogical learning and reasoning. Oxford University Press.
Gero, J. S., & Kannengiesser, U. (2004). The situated function–behaviour–structure framework. Design Studies,

25(4), 373–391. doi:10.1016/j.destud.2003.10.010
Muller, O. (2005). Pattern oriented instruction and the enhancement of analogical reasoning. In Proceedings of

the 2005 international workshop on Computing education research - ICER ’05 (pp. 57–67). Seattle,
WA, USA: ACM Press. doi:10.1145/1089786.1089792

Muller, O., & Haberman, B. (2008). Supporting abstraction processes in problem solving through pattern-
oriented instruction. Computer Science Education, 18(3), 187–212. doi:10.1080/08993400802332548

Sternberg, R. J., & Rifkin, B. (1979). The development of analogical reasoning processes. Journal of
Experimental Child Psychology, 27(2), 195–232. doi:10.1016/0022-0965(79)90044-4

ICLS2022 Proceedings 1188 © ISLS

