Adaptive wavelet distillation from neural networks
through interpretations

Wooseok Ha' Chandan Singh? Francois Lanusse®

haywse@berkeley.edu chandan_singh@berkeley.edu francois.lanusse@cea.fr

Srigokul Upadhyayula* Bin Yu!?
sup@berkeley.edu binyu@berkeley.edu

! Statistics Department, UC Berkeley
2 EECS Department, UC Berkeley
3 AIM, CEA, CNRS; Université Paris-Saclay, Université Paris Diderot, Sorbonne Paris Cité
4 Advanced Bioimaging Center, Department of Molecular & Cell Biology, UC Berkeley

Abstract

Recent deep-learning models have achieved impressive prediction performance,
but often sacrifice interpretability and computational efficiency. Interpretability is
crucial in many disciplines, such as science and medicine, where models must be
carefully vetted or where interpretation is the goal itself. Moreover, interpretable
models are concise and often yield computational efficiency. Here, we propose
adaptive wavelet distillation (AWD), a method which aims to distill information
from a trained neural network into a wavelet transform. Specifically, AWD pe-
nalizes feature attributions of a neural network in the wavelet domain to learn an
effective multi-resolution wavelet transform. The resulting model is highly predic-
tive, concise, computationally efficient, and has properties (such as a multi-scale
structure) which make it easy to interpret. In close collaboration with domain
experts, we showcase how AWD addresses challenges in two real-world settings:
cosmological parameter inference and molecular-partner prediction. In both cases,
AWD yields a scientifically interpretable and concise model which gives predictive
performance better than state-of-the-art neural networks. Moreover, AWD identi-
fies predictive features that are scientifically meaningful in the context of respective
domainsl. All code and models are released in a full-fledged package available on
Github.

1 Introduction

Recent advancements in deep learning have led to impressive increases in predictive performance.
However, the inability to interpret deep neural networks (DNN5s) has led them to be characterized as
black boxes. It is often critical that models are inherently interpretable [1-3], particularly in high-
stakes applications such as medicine, biology, and policy-making. In these cases, interpretations which
are relevant to a particular domain/audience [3] can ensure that models behave reasonably, identify
when models will make errors, and make the models more amenable to inspection and improvement
by domain experts. Moreover, interpretable models tend to be faster and more computationally
efficient than large neural networks.
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One promising approach to constructing interpretable models without sacrificing prediction perfor-
mance is model distillation. Model distillation [4—6] transfers the knowledge in one model (i.e., the
teacher), into another model (i.e., the student), where the student model often has desirable properties,
such as being more interpretable than the teacher model. Recent works have considered distilling a
DNN into inherently interpretable models such as a decision tree [7-9] or a global additive model [10],
with some success. Here, we consider distilling a DNN into a learnable wavelet transform, which
is a powerful tool to describe signals both in time (spatial) and frequency domains that has found
numerous successful applications in physical and biomedical sciences.
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Figure 1: Adaptive wavelet distillation uses attributions from a trained DNN to improve its wavelet
transform, while satisfying constraints for reconstruction error and wavelet constraints. See Eq. 8 for
the precise formulation of the optimization objective.

Wavelets have many properties amenable to interpretation: they can form an orthogonal basis, identify
a sparse representation of a signal, and tile different frequencies and spatial locations (and sometimes
rotations), allowing for multiresolution analysis. Most previous work has focused on hand-designed
wavelets for different scenarios rather than wavelets which adapt to given data. Recent work has
explored wavelets which adapt to an input data distribution, under the name optimized wavelets or
adaptive wavelets [11-19]. Moreover, some work has used wavelets as part of the underlying structure
of a neural network, as in wavelet networks / wavelet neural networks [20-25], or the scattering
transform [26,27]. However, none of them utilize wavelets for interpretable model distillation.

Fig 1 outlines Adaptive Wavelet Distillation (AWD), our approach for distilling a wavelet transform
from a trained DNN. A key novelty of AWD is that it uses attributions from a trained DNN to improve
the learned wavelets;” this incorporates information not just about the input signals, as is done in
previous work, but also about the target variable and the inductive biases present in the DNN.?

This paper deviates significantly from a typical NeurIPS paper. While there has been an explosion
of work in “interpretable machine learning” [28], there has been very limited development and
grounding of these methods in the context of a particular problem and audience. This has led to much
confusion about how to develop and evaluate interpretation methods [29, 30]; in fact, a major part of
the issue is that interpretability cannot be properly defined without the context of a particular problem
and audience [3]. As interpretability and scientific machine learning enter a new era, researchers
must ground themselves in real-world problems and work closely with domain experts.

This paper focuses on scientific machine learning—providing insight for a particular scientific au-
dience into a chosen scientific problem— and from its outset, was designed to solve a particularly
challenging cosmology problem in close collaboration with cosmologists. We showcase how AWD
can inform relevant features in a fundamental problem in cosmology: inferring cosmological parame-
ters from weak gravitational lensing convergence maps.* In this case, AWD identifies high-intensity
peaks in the convergence maps and yields an easily interpretable model which outperforms state-of-
the-art neural networks in terms of prediction performance. We next find that AWD successfully
provides prediction improvements in another scientific application (now in collaboration with cell-
biology experts): molecular-partner prediction. In this case, AWD allows us to vet that the model’s
use of clathrin corresponds to our domain knowledge about how clathrin must build up slowly then
fall in order to predict a successful event. In both cases, the wavelet models from AWD concisely
explains model behavior using extremely few parameters (e.g. 10), while also extracting compressed

’By attributions, we mean feature importance scores given input data and a pre-trained DNN.
3Though we focus on DNNs, AWD works for any black-box models for which we can attain attributions.
“For the purpose of this work, we work with simulated lensing maps.



representations of the input in comparison to a standard wavelet model. We hope that the depth and
grounding of the scientific problems in this work can spur further interpretability research in real-
world problems, where interpretability can be evaluated by and enrich domain knowledge, beyond
benchmark data contexts such as MNIST [31] where the need for interpretability is less cogent.

2 Background on wavelet transform and TRIM

2.1 Wavelet transform

Wavelets are a class of functions that are localized both in the time and frequency domains. In the
classical setting, each wavelet is a variation of a single wavelet v, called the mother wavelet. A
family of discrete wavelets can be created by scaling and translating the mother wavelet in discrete
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where each wavelet in the family v, , (t) represents a unique scale and translation of ¢. With a
carefully constructed wavelet ¢ (see Appendix A.2), the family of wavelets (1) forms an orthonormal
basis of L?(R). Namely, any signal z € L?(R) can be decomposed into

Xr = Z Zdj [n]¢j7n, (2)
noj

where the wavelet (or detail) coefficients d;[n] at scale 27 are computed by taking the inner product
with the basis functions, d;[n] = (z,1;,) = [ x(t)1;,(t)dt. The decomposition (2) requires an
infinite number of scalings to calculate the discrete wavelet transform. To make this decomposition
computable, the scaling function ¢ is introduced so that
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where ¢ ., (t) = 277/2¢(277t — n) represent different translations of ¢ at scale 2/ and a;[n] =
(x, ¢ .n) are the corresponding approximation coefficients. Conceptually, the ¢ ; ,, form an orthogonal
basis of functions that are smoother at the given scale 27 and therefore can be used to decompose
the smooth residuals not captured by the wavelets [32].

A fundamental property of the discrete wavelet transform is that the approximation and detail
coefficients at scale 27+1 can be computed from the approximation coefficients of the previous scale
at 27 [33,34]. To see this, let us define the two discrete filters, lowpass filter & and highpass filter g

hfn] = %at/z)w—n» and gln] = %w/m,w— n)). 4

Then the following recursive relations hold between the approximation and detail coefficients at two
consecutive resolutions:

{%‘H[p] = >, hln —2plaj[n] = a; x h[2p]; 5)
djt1lp] = >_, gln — 2plaj[n] = a;j « g[2p],

where we denote h[n] = h[—n] and g[n] = g[—n]. Conversely, the approximation coefficients at
scale 27 can be recovered from the coarser-scale approximation and detail coefficients using

th 2njaj41(n +Zg — 2n]djt+1[n]. (6)

Together, these recursive relations lead to the filter bank algorithm, the cascade of discrete convolution
and downsampling, which can be efficiently implemented in time O (Signal length). The discrete
wavelet transform can be extended to two dimensions, using a separable (row-column) implementation
of 1D wavelet transform along each axis (see Appendix A.1).



2.2 Transformation Importance (TRIM)

The work here requires the ability to compute attributions which identify important features given
input data and a trained DNN. Most work on interpreting DNNs has focused on attributing importance
to features in the input space of a model, such as pixels in an image or words in a document [35-39].
Instead, here we rely on TRIM (Transformation Importance) [40], an approach which attributes
importance to features in a transformed domain (here, the wavelet domain) via a straightforward
model reparameterization.

Formally, let f be a pre-trained model that we desire to interpret. If ¥ : X — W is a bijective
mapping that maps an input x to a new domain w = ¥(x) € W, TRIM reparameterizes the model
as f'=fo U1 where ¥—! denotes the inverse of ¥. In the case that ¥ is not exactly invertible,
TRIM adds the residuals to the output of U1, i.e., f’ is reparameterized by f'(w) = f(¥ 1w + r)
where w = W¥(z) and r = x — U1 (w). If S indexes a subset of features in the transformed space
indicating which part of the transformed input to interpret, we then define

TRIMy f(ws) = attr(f'; ws), (7

where attr(; w) is an attribution method that is evaluated at w and outputs an importance value, and
where wg denotes the subvector of w indexed by S. The choice of the attribution method aztr() can
be any local interpretation technique (e.g. LIME [35] or Integrated Gradients (IG) [37]); here we
focus mainly on the saliency map [41], which simply calculates the gradient of the model’s output
with respect to its transformed input to define feature attribution. We leave more complex attribution
methods such as IG or ACD [38] to future work.

3 Adaptive wavelet distillation through interpretations

Adaptive wavelet distillation (AWD) aims to learn a wavelet transform which effectively represents
the input data, as well as capture information about a model trained to predict a response using
the input data. Whether or not the resulting wavelet model is (i) sufficiently interpretable and (ii)
predictive depends on the context of the problem. Here, we provide two scientific data problems
where wavelet models satisfy both criteria (Sec 4).

We now detail how AWD wavelets can be built upon to form an extremely simple model in various
contexts (see Sec 4). We first require that the wavelet transform is invertible, allowing for recon-
struction of the original data. This ensures that the transform does not lose any information in the
input data. We next assure that the learned wavelet is a valid wavelet: the wavelet function ¢ and
the corresponding scaling function ¢ span a sequence of subspaces satisfying the multiresolution
axioms [42]. Finally, we add the distillation part of AWD. We calculate the attribution scores of a
given model f for each coefficient in the wavelet representation, and try to find a wavelet function
1) that makes these attributions sparse. Intuitively, this ensures that the learned wavelet should find
a representation which can concisely explain a model’s prediction. Writing the discrete wavelet
transform using the discrete filters h and g (see Eq. 4), we now give a final optimization problem for
AWD:

1 1
min}jg]iz&: L(h,g) = o zi:Hl‘i — T3+ o zzj W(h,g,xi; X) +~ zi:||TRIM\IJ,f(‘I’J?i)||1> 8

Reconstruction loss Wavelet loss Interpretation loss

where W denotes a wavelet transform operator induced by v, and Z; denotes the reconstruction of the
data point z;. Here A,y > 0 represent hyperparameters that are tuned by users. The only parameters
optimized are the lowpass filter h and the highpass filter g. The corresponding scaling and wavelet

functions can be obtained from (h, g) via the following mapping [32]: ¢(w) = I MQ\;;“’) and

n (w) = %@\(w / 2)$(w /2), where ¢ and 1) represent the Fourier transforms of ¢ and 1) respectively.

Wavelet loss The wavelet loss ensures that the learned filters yield a valid wavelet transform. In
contrast to the wavelet constraints used in [11], our formulation introduces additional terms that
ensure almost sufficient and necessary conditions on the filters (h, g) to build an orthogonal wavelet
basis. Specifically, [32, Theorem 7.2] states the following sufficient conditions on the lowpass filter:



if h satisfies R R
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as well as some mild COl’ldlthIlS, it can generate a scaling function such that the scaled and translated
family of the scaling function forms an orthonormal basis of the space of multiresolution approxi-
mations of L2(IR). [43, Theorem 3] further shows that the orthogonality of translates of the scaling
function implies that the lowpass filter is orthogonal after translates by 2, i.e.,

1 ifk=0
zn: hn]h[n — 2] {0 otherwise ’ and as a result, |2 |2 (10)
Hence the conditions (9), (10) characterize the almost sufficient and necessary conditions on the
lowpass filter. Moreoever, [32, Theorem 7.3] shows that the valid highpass filter can be constructed
from the lowpass filter: in the time domain, it can be written as

gln] = (=1)"h[N — 1 —n], (11)

where NV is the support size of h. Together with (10), we can also deduce that the highpass filter has
mean zero, i.e., ) . g[n| = 0 which is necessary for the filter g. See Appendix A.2 for further details.

Finally, we want the learned wavelet to provide sparse representations so we add the /; norm penalty
on the wavelet coefficients. Combining all these constraints via regularization terms, we define the
wavelet loss at the data point x; as

W(h, g,zi; A) = AWy + (Z hln] - Zg [a])? + (I3 = 1)?

+ > ([h(w)[? + [A(w + )2 +Z Z Jh[n — 2k] — 1—0)2,

where g is set as in (11) and A > 0 controls strength of the sparsity of the wavelet representations.

We enforce the penalty (|2(w)|? + |[h(w + 7)|2 — 2)2, only at the discrete values of w € {22k | =
1,..., N} through the discrete Fourier transform. Notice that the wavelet loss does not 1ntr0duce any
additional hyperparameters besides A. In fact, we empirically observe that the sum of penalty terms,
except the sparsity penalty, remains very close to zero as long as the filters (h, g) are initialized using
known wavelet filters and the interpretation loss is not enforced too strongly.

Interpretation loss The interpretation loss enables the distillation of knowledge from the pre-
trained model f into the wavelet model. It ensures that attributions in the space of wavelet coefficients
W, are sparse, where the attributions of wavelet coefficients is calculated by TRIM [40], as described
in Sec 2.2. This forces the wavelet transform to produce representations that concisely explain the
model’s predictions at different scales and locations. The hyperparameter + controls the overall
contribution of the interpretation loss; large values of 7 can result in large numerical differences
from satisfying the conditions of the mathematical wavelet filters. To our knowledge, this is the first
method which uses interpretations from a pre-trained model to improve a wavelet representation.
This enables the wavelets to not only adapt to the distribution of the inputs, but also gain information
about the predicted outputs through the lens of the model f.

4 AWD improves interpretability, prediction performance, and compression
in two scientific problems and in simulations

Fig 2 shows a visual schematic of the distillation and prediction setup for one synthetic and two
scientific data problems in this section, whose details will be discussed in the following subsections.’
In both scientific problems, we build extremely simple models based on AWD which significantly
outperform the state-of-the-art DNN performance with far fewer number of parameters.®

3In all experiments, the wavelet function is computed from the corresponding lowpass filter using the
PyWavelets package [44] and building on the Pytorch Wavelets [45, Chapter 3] package.

SFor example, the final molecular-partner prediction model contains only 10 parameters for the low-pass
filter, along with only 30 coefficients in the sparse linear model. The final distilled cosmology model learns only
10 parameters for the low-pass filter to make its predictions.
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Figure 2: Distillation and prediction setup for the three scenarios in Sec 4. (A) In synthetic simulations,
AWD is able to recover groundtruth wavelet (DBS) that are linked to a response variable (Sec 4.1). (B)
Wavelets distilled by AWD from an LSTM trained to predict molecular partners capture biologically
meaningful properties of a large build up in clathrin fluorescence followed by a sharp drop and enable
prediction using only a few key coefficients (Sec 4.2). (C) AWD finds wavelets that are efficient at
capturing cosmological information in weak lensing convergence maps and can improve state-of-the-
art performance of cosmological parameter inference using an AWD-based simple peak-counting
algorithm (Sec 4.3). Note that the model forms in (B) and (C) come from knowledge about the
domain problem.

4.1 Synthetic data

We begin our evaluation using simulations to verify whether AWD can recover groundtruth wavelets
from noisy data. In these simulations, the inputs x; are generated i.i.d. from a standard Gaussian
distribution NV'(0, 1). To generate the response variable, the inputs are transformed into the wavelet
domain using Daubechies (DB) 5 wavelets [46], and the response is generated from a linear model
yi = (Px;, 8) + €;, where the true regression coefficients are 2 for a few selected locations at
a particular scale and 0 otherwise; the noise ¢; is generated i.i.d. from a Gaussian distribution
N(0,0.12). Then, a 3-layer fully connected neural network with ReLU activations is trained on
the pairs of z;, y; to accurately predict this response. Note that for any non-singular matrix A, the
mapping = + (A~1Wz, AT 3) predicts the response equally well, but the representations in the
groundtruth wavelet explain the model’s prediction most concisely. The challenge is then to accurately
distill the groundtruth wavelet (DB5) from this DNN. This task is fairly difficult: AWD must not only
select which scale and locations are important, it must also precisely match the shape of h and g to
the groundtruth wavelet.

Fig 3 shows the performance of AWD on this task. We initialize the AWD lowpass filter to
different known lowpass filters corresponding to DB5+random noise (support size 10), Sym-
let 5 (support size 10), and Coiflet 2 (support size 12), as shown in Fig 3(A), and then min-
imize the objective in Eq. 8. In order to recover the groundtruth, we select hyperparameters
A and ~ that minimize the distance to the groundtruth wavelet ¢)*. Distance is measured via
d(vp,¢*) = min{ming ||¢)* — * |2, ming ||*¥ — 1*||2}, where ¢* is the wavelet 1 circular shifted
by k and 1 is the wavelet v flipped in the left/right direction. That is, d calculates the minimum ¢
distance between two wavelets under circular shifts and left/right flip. When the two wavelets have
different size of support, the shorter wavelet is zero-padded to the length of the longer [11]. Fig 3(B)
shows that for each different initialization, we find that the distilled wavelet gets considerably closer
to the groundtruth wavelet. In particular, the results for DB5+noise and Coiflet 2 are nearly identical
to the groundtruth and cannot be distinguished in the plot. This is particularly impressive since the
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Figure 3: AWD accurately identifies the groundtruth important wavelet in simulated data. (A) Plots
of the initial lowpass filters. (B) Final wavelets extracted by AWD.

support size of Coiflet 2 differs from that of the groundtruth wavelet, making the task more difficult.
Overall, these results demonstrate the ability of AWD to distill key information out of a pre-trained
neural network.

4.2 Molecular partner-prediction for a central process in cell biology

We now turn our attention to a crucial question in cell biology related to the internalization of
macromolecules via clathrin-mediated endocytosis (CME) [47]. CME is the primary pathway for
entry into the cell, making it essential to eukaryotic life [48]. CME is an orchestra consisting of
hundreds of different protein dynamics, prompting a line of research aiming to better understand this
process [49]. Crucial to understanding CME is the ability to readily distinguish whether or not the
recruitment of certain molecules will allow for endocytosis, i.e., successfully transporting an object
into a cell. Previous approaches have largely relied on the presence of a specific scission/uncoating
marker during imaging [50,51]. Alternatively, previous works use domain knowledge to hand-
engineer features based on the lifetime of an event or thresholds on the recruited amplitude of the
clathrin molecule [52,53].

Here, we aim to identify successful CME events with a learning approach, obviating the need for
an auxiliary marker or hand-engineered features. We use a recently published dataset [S0] which
tags two molecules: clathrin light chain A, which is used as the predictor variable, and auxilin 1,
the target variable. In this context, clathrin is used to track the progress of an event, (as recruitment
of clathrin molecules usually precedes scission) and recruitment of auxilin molecules follows only
when endocytosis successfully occurs (to facilitate disassembly of the clathrin-coated vesicle). See
data details in Appendix C. Time-series of fluorescence amplitudes (see Fig 2B) are extracted from
raw cell videos for clathrin [52] and used to predict the mean amplitude of the auxilin signal, an
indicator of whether an event was successful or not. The dataset is randomly split into a training set
of 2,936 data units of dimension 40 and a test set of 1,005 data units. This is a challenging problem
where deep learning has recently been shown to outperform classical methods. We train a DNN (an
LSTM [54]) to predict the auxilin response from the clathrin signal. The model shows state-of-the-art
prediction performance, but has extremely poor interpretability and computational cost, so we aim
here to distill it into a wavelet model through AWD.

Fig 4 shows qualitatively how the learned wavelet function i) changes as a function of the inter-
pretation penalty y (increasing to the right) and the sparsity penalty A (increasing downwards). In
the initial stage of training, we initialize the lowpass filter to correspond to the Daubechies (DB) 5
wavelet. Different combinations of the penalties lead to vastly different learned wavelets, though they
all tend to reveal edge-detecting characteristics for a reasonable range of hyperparameter values.

We now test the distilled wavelets for their predictive power. To create an extremely transparent
model, we extract only the maximum 6 wavelet coefficients at each scale. By taking the maximum
coefficients, these features are expected to be invariant to the specific locations where a CME event
occurs in the input data. This results in a final model with 30 coefficients (6 wavelet coefficients at 5
scales). These wavelet coefficients are used to train a linear model, and the best hyperparameters
are selected via cross-validation on the training set. Fig 2 shows the best learned wavelet (for
one particular run) extracted by AWD corresponding to the setting of hyperparameters A = 0.005
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highlighted in red is selected by cross-validation and yields the best prediction performance.
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and v = 0.043. Table | compares the results for AWD to the original LSTM and the initialized,
non-adaptive DB5 wavelet model, where the performance is measured via a standard R2? score, a
proportion of variance in the response that is explained by the model. The AWD model not only
closes the gap between the standard wavelet model (DBS5) and the neural network, it considerably
improves the LSTM’s performance (a 10% increase of R? score). Table 1 also includes predictive
performance of the adaptive wavelet when the interpretation loss is removed during the training; it
still outperforms the baseline wavelet (DBY), but fails to outperform LSTM. Moreover, we calculate
how well the AWD wavelet compresses its input. Specifically, we measure the proportion of wavelet
coefficients in the test set in which the magnitude and the attributions are both above 10~2. The
AWD wavelet exhibits much better compression than DBS5 (an 18% reduction), showing the ability of
AWD to simultaneously provide sparse representations and explain the LSTM’s predictions concisely.
The AWD model also dramatically decreases the computation time at test time, a more than 200-fold
reudction when compared to LSTM.

In addition to improving prediction accuracy, AWD enables domain experts to vet their experimental
pipelines by making them more transparent. By inspecting the learned wavelet, AWD allows for
checking what clathrin signatures signal a successful CME event; it indicates that the distilled
wavelet aims to identify a large buildup in clathrin fluorescence (corresponding to the building of
a clathrin-coated pit) followed by a sharp drop in clathrin fluorescence (corresponding to the rapid
deconstruction of the pit). This domain knowledge is extracted from the pre-trained LSTM model by
AWD using only the saliency interpretations in the wavelet space.

Table 1: Performance comparisons for different models in molecular-partner prediction. AWD
substantially improves predictive accuracy, compression, and computation time on the test set. A
higher R? score, and lower compression factor, and lower computation time indicate better results.
For AWD, values are averaged over 5 different random seeds.

AWD Standard LSTM AWD w/o in-
Wavelet (DB5S) terp. loss
Regression (R? score)  0.262 (0.001) 0.197 0.237 0.231 (0.001)
Compression factor 0.574 (0.010) 0.704 N/A 0.651 (0.003)
Computation time 0.0002s 0.0002s 0.0449s 0.0002s

4.3 Estimating a fundamental parameter surrounding the origin of the universe

We now focus on a cosmology problem, where AWD helps replace DNNs with a more interpretable
alternative. Specifically, we consider weak gravitational lensing convergence maps, i.e., maps of
the mass distribution in the universe integrated up to a certain distance from the observer. In a
cosmological experiment (e.g. a galaxy survey), these mass maps are obtained by measuring the
distortion of distant galaxies caused by the deflection of light by the mass between the galaxy and
the observer [55]. These maps contain a wealth of physical information of interest, such as the total
matter density in the universe, €,,,. Current cosmology research aims to identify the most informative
features in these maps for inferring the cosmological parameters such as €2,,,. The traditional summary
statistic for lensing maps is the power spectrum which is known to be sub-optimal for parameter



inference. Tighter parameter constraints can be obtained by including higher-order statistics, such as
the bispectrum [56] and peak counts [57]. However, DNN-based inference methods claim to improve
on constraints based on these traditional summaries [58-60].

Here, we aim to improve the predictive power of DNN-based methods while gaining interpretability
by distilling a predictive AWD model. In this context, it is critically important to obtain interpretability,
as it provides deeper understanding into what information is most important to infer {2,,, and can be
used to design optimal experiments or analysis methods. Moreover, because these models are trained
on numerical simulations (realizations of the Universe with different cosmological parameters), it is
important to validate that the model uses reasonable features rather than latching on to numerical
artifacts in the simulations. We start by training a model to predict €2, from simulated weak
gravitational lensing convergence maps. We train a DNN” to predict €2,,, from 100,000 mass maps
simulated with 10 different sets of cosmological parameter values at the universe origin from the
MassiveNuS simulations [62] (full simulation details given in Appendix D), achieving an R? value
of 0.92 on the test set (10,000 mass maps); Fig 2C shows an example mass map.

We again construct an interpretable model using the wavelets distilled by AWD from the trained DNN.
To make predictions, we use the simple peak-counting algorithm developed in a previous work [59],
which convolves a peak-finding filter with the input images. Then, these peaks are used to regress
on the outcome. In contrast to the fixed filters such as Laplace or Roberts cross used in previous
works [59], here we use the wavelets distilled by AWD, which result in three 2D wavelet filters (LL,
LH, HL) and the 2D approximation filter (LL). The size of the distilled AWD filters is 12x12 and
inspection of these filters shows a majority of the mass is concentrated on 3x3 subfilters (see Fig 2C).
Then we extract those subfilters to use for peak-finding filters—by doing so, the size of the filters
match with those used in [59] (additional details given in Appendix D.1). The hyperparameters for
AWD are selected by evaluating the predictive model’s performance on a held-out validation set.

Table 2 shows the results of predicting using the peak-finding algorithm with various filters. The
evaluation metric is the RMSE (Root mean square error). Its performance again outperforms the
fully trained neural network (Resnet) model and the standard non-adaptive wavelet (DB5) model, as
well as other baseline methods using Laplace filter and Roberts cross filter (see Appendix D.1 for
details on how these filters are defined). Without the interpretation loss, the adaptive wavelet fails to
outperform the Roberts cross filter and Resnet model. Moreover, as can be seen in the compression
factor, the AWD wavelet provides more efficient representations for the mass maps as well as concise
explanation for the DNN’s predictions compared to the DB 5 wavelet.

Table 2: Performance comparisons for different models in cosmological parameter prediction. The
lower RMSE and compression factor indicate better results. For RMSE, standard deviations are
estimated from 10, 000 bootstrap samples.

AWD Roberts- Laplace DBS5 Resnet AWD
Cross Wavelet w/o
interp.
loss

Regression (RMSE x1072)  1.029 1.259 1.369 1.569 1.156 1.354
(0.033) (0.039) (0.047) (0.048) (0.024)  (0.047)
Compression factor 0.610 N/A N/A 0.620 N/A 0.616

Fig 2C shows the learned AWD filters corresponding to the best distilled wavelet. The learned
wavelet filters are symmetric and resemble the "matched filters” which have been used in the past to
identify peaks on convergence maps in the cosmology literature [63,64]. We expect from cosmology
knowledge that much information is contained in the peaks of the convergence maps (their amplitude,
shape, and numbers), so this indeed matches our expectations based on physics. The high predictive
performance further demonstrates that the AWD filters are more efficient at capturing cosmological
information and better adapted to the shape of the peaks, than standard wavelets could do.

Moreover, the adaptive wavelet distillation allows us to look at "wavelet activation maps" (see Fig D2)
to localize where in the convergence maps important information is concentrated. In other words,

"The model’s architecture is Resnet 18 [61], modified to take only one input channel.



we can indeed see that the AWD wavelet concentrates on identifying high intensity peaks, which is
where most of the “localized” information is expected from theory.

5 Discussion

In this work, we introduce AWD, a method to distill adapative wavelets from a pre-trained supervised
model such as DNNs for interpretation. Doing so enables AWD to automatically detect and adapt to
aspects of data that are important for prediction in an interpretable manner. The benefits of distilling
relevant predictive information captured in a DNN are demonstrated through applications to synthetic
and real data in two scientific settings. Overall, AWD allows us to interpret a DNN in terms of
conventional wavelets, bringing interpretability with domain insights while simultaneously improving
compression and computational costs, all while preserving or improving predictive power.

Limitations and future work AWD works well in particular domains where wavelets are a rea-
sonable modeling choice, such as images and time-series, which possess multi-scale structure. Other
domains, such as DNA-sequence data or text data which do not posses this structure would not benefit
from AWD. Therefore, it is important to use domain knowledge to decide whether AWD can be
beneficial for a given task and domain. We also used domain knowledge to pick reasonable choices
for the number of scales in the distilled wavelet transform, and achieved strong performance without
tuning this parameter. Future work could include more analysis on the effect of the number of scales,
or an optimization procedure to pick it.

In this paper we test our method with the saliency attribution method; however, many alternative
interpretation techniques have been proposed recently, such as SHAP [36] or Contextual Decom-
position [38,65], and the comparison between different interpretation techniques can be carefully
explored in the context of a particular problem and audience. Care must be taken to ensure that these
methods can be efficiently optimized, as even the simplest saliency methods requires taking a second
partial derivative during distillation, which is computationally expensive especially for large data and
network sizes.

Throughout the experiments, the learned wavelets are initialized to a filter corresponding to a known
wavelet. Initializing to a known wavelet filter makes the optimization faster and more stable, but
when initializing randomly, the predictive performance can be unstable, especially when the variance
of the initialization is high. However, this can be solved by initializing at any known wavelet
(potentially with some random noise added to it) or first performing a few steps of the optimization
without the interpretation loss before adding it in. Another promising strategy is initializing with an
(unsupervised) dictionary of wavelets [19].

The current work learns a single-layer wavelet transform, but the complex nature of modern datasets
often require strong nonlinearities. Future work could extend AWD beyond a single-layer wavelet
transform, e.g. by borrowing ideas from scattering transform [27] or to other interpretable models [2,
66]. This would allow for bridging closer to deep learning while keeping interpretability, which
can be effectively applied to other areas, such as computer vision and natural-image classification.
We hope to continue this line of research in order to improve the interpretability and computational
efficiency of DNN models across many domains ranging from physical and biomedical sciences to
computer vision and information technology.

Societal impacts AWD generally helps alleviate many concerns around DNNSs, both in terms of
interpretability and computational resources. However, its optimization at training time necessitates
training a DNN, which can incur high computational cost (and therefore corresponding impacts from
energy usage). Additionally, the interpretability granted by AWD could lead to over-reliance on the
fitted models, even in applications where it does not perform well.
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