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Abstract

The Q-learning algorithm is a simple and widely-

used stochastic approximation scheme for rein-

forcement learning, but the basic protocol can

exhibit instability in conjunction with function

approximation. Such instability can be observed

even with linear function approximation. In prac-

tice, tools such as target networks and experience

replay appear to be essential, but the individual

contribution of each of these mechanisms is not

well understood theoretically. This work proposes

an exploration variant of the basic Q-learning pro-

tocol with linear function approximation. Our

modular analysis illustrates the role played by

each algorithmic tool that we adopt: a second or-

der update rule, a set of target networks, and a

mechanism akin to experience replay. Together,

they enable state of the art regret bounds on linear

MDPs while preserving the most prominent fea-

ture of the algorithm, namely a space complexity

independent of the number of step elapsed. We

show that the performance of the algorithm de-

grades very gracefully under a novel and more per-

missive notion of approximation error. The algo-

rithm also exhibits a form of instance-dependence,

in that its performance depends on the “effective”

feature dimension.

1. Introduction

The Q-learning algorithm (Watkins, 1989) is a classical

and widely-used method for estimating optimal Q-value

functions. As a stochastic approximation procedure for solv-

ing the Bellman fixed point equation, it comes with strong
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convergence guarantees when applied to tabular Markov

decision processes (e.g., (Tsitsiklis, 1994; Kearns & Singh,

1999; Even-Dar et al., 2003; Wainwright, 2019a; Li et al.,

2021)). When combined with function approximation, how-

ever, the basic Q-learning algorithm need not converge, and

can exhibit instability. This challenge has motivated various

proposals for stabilizing the updates. Among other mod-

ifications, experience replay is one ingredient that seems

essential to state-of-the-art performance. From a theoretical

point of view, however, these mechanisms are not well un-

derstood. This state of affairs leaves us with the following

open question: is it possible to derive a stable Q-learning

procedure with rigorous guarantees for a broad class of

problem instances?

On one hand, recent work has unveiled information-

theoretic barriers applicable to any algorithm (Weisz et al.,

2020; Zanette, 2020; Wang et al., 2020a; 2021; Weisz et al.,

2021; Foster et al., 2021). On the other hand, there exist

several MDP models for which sample-efficient RL is pos-

sible. In particular, a recent line of papers (Krishnamurthy

et al., 2016; Jiang et al., 2017; Sun et al., 2018; Zanette

et al., 2020b; Jin et al., 2021; Du et al., 2021) provide analy-

ses of RL procedures for certain MDP classes, and provide

procedures that have polynomial sample complexity, albeit

with non-polynomial computational complexity.

The starting point of this paper is to study Q-learning

in some settings in which model-free algorithms1 admit

polynomial-time implementation. Examples include the

class of low-rank MDPs (Jin et al., 2020; Zanette et al.,

2020a; Agarwal et al., 2020b;a; Zanette et al., 2021a), and

various generalizations thereof (Wang et al., 2019; 2020b).

Although the underlying algorithms are polynomial-time,

they can still require prohibitive amounts of computation

and storage in practical settings. For instance, the memory

requirement scales linearly with the amount of experience

collected, which limits its practical applicability.

The Q-learning algorithm is popular in applications pre-

cisely because of its low computational complexity, as well

1Sample efficient learning algorithms have also been obtained
for other settings, see the papers (Ayoub et al., 2020; Modi et al.,
2020; 2021).



Stabilizing Q-learning with Linear Architectures for Provably Efficient Learning

as memory requirements that do not scale with the iteration

count. Thus, we are led to ask whether it is possible to de-

vise a version of Q-learning that is provably efficient when

applied to low-rank MDPs. We address this question in the

general exploration setting, so that a number of challenges

come into play, including credit assignment, moving targets,

and distribution shift.

1.1. Our contributions

The main contribution of this paper is to design and analyze

a variant of the Q-learning algorithm that is guaranteed to

minimize regret over the class of low-rank MDPs. Three

main ingredients are key in our analysis: (1) a second-order

update rule for improved statistical efficiency; a set of target

networks (Mnih et al., 2015) to stabilize the updates, and

most importantly, a replay mechanism called policy replay.

This mechanism is similar to experience replay used in the

deep RL literature (e.g., (Mnih et al., 2013)). While the

second-order scheme and the target networks have been

used in the optimization and the RL literature before, the

policy replay mechanism is one key reinforcement learning

contribution made in this paper. It stabilizes the learning

process by eliminating the distribution shift problem that

naturally arises when converging to an optimal controller.

Taken together, these algorithmic tools yield state-of-the-

art regret bounds on H-horizon low-rank MDPs with d-

dimensional feature representations. At the same time, they

preserve one of the most important features of Q-learning,

namely a memory requirement that—thanks to the policy

replay mechanism—grows only logarithmically with sample

size.

We now provide an informal preview of our main result.

We consider an MDP with a finite action space of cardinal-

ity |A|, and take (rescaling as needed) the optimal value

function to be bounded in [0, 1]. Letting K the number of

episodes elapsed, we have the following:

Theorem 1 (Informal statement). There is a Q-

learning algorithm that achieves the regret upper bound

Õ(H2d3/2
√
K) while using Õ(d3H2) storage and per-step

computational complexity O(d2|A|).

To our knowledge, this is the first regret bound for Q-

learning with any function approximator, which makes it

the first algorithm with bounded memory complexity for the

considered setting. The regret bound is competitive with

the state-of-the-art results (Jin et al., 2020), in particular

sub-optimal by a factor of H in the regret bound.

In this work, we also introduce a new notion of model

misspecification, one especially well-suited to the analysis

of temporal difference RL algorithms. It is a much weaker

requirement than the `∞-norm bounds on mis-specification

adoped in prior analyses; instead, it involves the expected

off-policy prediction error. To the best of our knowledge,

this leads to the mildest form of approximation error control

for regret-minimizing algorithms using temporal differences

and function approximation.

Our results are also partially instance-dependent, in the

sense that we obtain faster rates for “easier problems”. In

particular, we show that the dimension d in Theorem 1 can

(mostly) replaced by the effective dimension, a quantity

that can be much smaller. We are not aware of instance-

dependent results of this type when the algorithm is not

provided with side knowledge of the problem structure.

Due to space limitation, the relation with past work is dis-

cussed in Appendix A.1.

2. Background and problem formulation

2.1. Finite-horizon Markov decision proceses

In this paper, we focus on finite-horizon Markov decision

processes; see the standard references (Puterman, 1994;

Bertsekas & Tsitsiklis, 1996) for more background and de-

tail. A finite-horizon MDP is specified by a positive integer

H , and events take place over a sequence of stages indexed

by the time step h ∈ [H]
def
= {1, . . . , H}. The underlying

dynamics involve a state space S , and are controlled by ac-

tions that take values in some action setA. In the analysis of

this paper, the state space is allowed to be arbitrary (discrete

or continuous), but we restrict to a finite action space.

For each time step h ∈ [H], there is a reward function rh :
S ×A → R, and for every time step h and state-action pair

(s, a), there is a probability transition function Ph(· | s, a).
When at horizon h, if the agent takes action a in state s, it

receives a random reward drawn from a distribution Rh(s, a)
with mean rh(s, a), and it then transitions randomly to a

next state s′ drawn from the transition function Ph(· | s, a).
A policy πh at stage h is a mapping from the state space S to

the action space A. Given a full policy π = (π1, . . . , πH),
the state-action value function at time step h is given by

Qπ
h(s, a) = rh(s, a) + ES`∼π|(s,a)

H∑

`=h+1

r`(S`, π`(S`)),

where the expectation is over the trajectories induced by

π upon starting from the pair (s, a). When we omit the

starting state-action pair (s, a), the expectation is intended

to start from a fixed state denoted by s1. Any policy is

associated with a value function V π
h (s) = Qπ

h(s, πh(s)),
along with a Bellman evaluation operator

T π
h (Qh+1)(s, a) = rh(s, a)

+ ES′∼Ph(s,a)EA′∼πQh+1(S
′, A′).

Under some regularity conditions (Puterman, 1994; Shreve



Stabilizing Q-learning with Linear Architectures for Provably Efficient Learning

& Bertsekas, 1978), there always exists an optimal policy π?

whose value and action-value functions achieve the suprema

V ?
h (s) = V π?

h (s) = sup
π

V π
h (s), and

Q?
h(s, a) = Qπ?

h (s, a) = sup
π

Qπ
h(s, a).

uniformly over all states and actions. We use

Eπ[φh]
def
= E(Sh,Ah)∼π[φh(Sh, Ah)] to denote the

expected feature vector at timestep h.

We analyze algorithms that produce sequences of policies

{π1, . . . , πK}, and for any such sequence, we define the

regret

REGRET(K)
def
=

K∑

k=1

Es1∼ρ

(
V ?
1 − V πk

1

)
(s1). (1)

Whenever we have a sequence n1, . . . , nk of values we

denote with n1:k =
∑k

i=1 n
i their sum.

2.2. Structural conditions

Let now us lay out some assumptions on the MDPs and

function approximation schemes.

2.2.1. LINEAR FUNCTION APPROXIMATIONS

For each h ∈ [H], let φh : S × A 7→ R
d be a given

feature map. Throughout this paper, we assume the uniform

boundedness condition

sup
s,a
‖φh(s, a)‖2 ≤ 1 for all h ∈ [H]. (2)

For a given parameter vector θh ∈ R
d, define the function

fh,θ(s, a)
def
=
〈
φh(s, a), θh

〉
. With a slight abuse of nota-

tion, given a partitioned vector θ = (θ1, . . . , θH) ∈ (Rd)H ,

we use the shorthand fθ = (f1,θ1 , . . . , fH,θH ) for the asso-

ciated collection of functions.

In this paper, we study algorithms that produce linear func-

tions in the class

Q(lin) def
=
{
fθ | ‖θh‖2 ≤ 1 for all h ∈ [H]

}
. (3a)

Note that the bounded feature map condition (2), in conjunc-

tion with the Cauchy-Schwarz inequality, implies that

‖fh,θh‖∞ = sup
s,a
|fh,θh(s, a)| ≤ 1 for any fθ ∈ Q(lin).

Consequently, the function class is contained with the larger

class of action-value functions (s, a) 7→ Qh(s, a) that are

uniformly bounded in sup-norm—more precisely, the class

Q(all) def
= {(Q1, . . . QH) | ‖Qh‖∞ ≤ 1 for all h ∈ [H]}.

(3b)

The definitions above can be specialized for a specific

timestep h in a natural way, in which case we denote the

corresponding function spaces by Q(lin)
h and Q(all)

h .

2.2.2. BELLMAN CONDITIONS

Our work covers both the settings with low inherent Bell-

man error (e.g., (Munos & Szepesvári, 2008; Zanette et al.,

2020b)) as well as low-rank MDPs (e.g., (Yang & Wang,

2020; Jin et al., 2020)), which we introduce next. In both

cases we assume that Q(lin)
H+1 = Q(all)

H+1 = {0}.
Assumption 1 (Bellman closure). We say that an MDP and

a feature representation φ have zero inherent Bellman error

if for each h ∈ [H] and any Qh+1 ∈ Q(lin)
h+1, there exists

Qh ∈ Q(lin)
h such that Qh = ThQh+1.

Assumption 2 (Low-Rank). An MDP is low rank with re-

spect to the feature representation φ if for each h ∈ [H], the

following holds:

∀Qh+1 ∈ Q(all)
h+1, there exists Qh ∈ Q(lin)

h s.t. Qh = ThQh+1.

It can be shown that the class of low-rank MDP models

is strictly contained within the class of MDPs with zero

inherent Bellman error; see the paper (Zanette et al., 2020b)

for further details.

Model misspecification: When the representation condi-

tions do not exactly hold, we need to measure model mis-

specification. With this aim, we introduce two definitions

of model misspecification that are appropriate for RL with

temporal difference methods. The first one measures the vi-

olation of Assumption 1 with respect to a stationary external

controller, while the second one measures the violation with

respect to Assumption 2 when a single stationary controller

is not available.

Before stating the definitions, let us introduce some more

notation and terminology along with their motivation. Let

π be a policy that generates a dataset used to fit a predictor.

Using the data generated by π, we will make predictions

about a target policy π which could be arbitrary. The pre-

dictor that we seek should fit T Q′ where Q′ ∈ Q(lin) or

Q′ ∈ Q(all) depending on whether we seek to quantify the

violation of Assumption 1 or Assumption 2, respectively.

Accordingly, define the population minimizer θπ,Q
′,h along

π with Q′ as next state value function as

θπ,Q
′,h def

= argmin
θ∈B

E(Sh,Ah)∼π

{
〈φh(Sh, Ah), θ〉 − (ThQ′)(Sh, Ah))

}2

. (4)

Let us now state a definition of model misspecification that

measures the violation with respect to Assumption 1 (Bell-

man closure) whenever there exists an external stationary
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controller π. This definition involves a non-negative error

term ν ≥ 0 referred to as transfer error.

Definition 1 (Model Misspecification w.r.t. Bellman Clo-

sure). An MDP and a feature map φ are ν-misspecified

with respect to the Bellman closure condition and the sta-

tionary policy π if for any policy π and action-value func-

tion Q′ ∈ Q(lin) the best on policy fit Qh : (s, a) 7→
〈φh(s, a), θ

π,Q′,h〉 along π satisfies the bound

∣∣∣
H∑

h=1

E(Sh,Ah)∼π

[
Qh(Sh, Ah)− (ThQ′

h+1)(Sh, Ah)
]∣∣∣ ≤ ν.

(5)

In summary, Definition 1 measures the average Bellman

error that arises when evaluating the predictor fit on the

controller’s distribution along other distributions. This is

a significantly more generous requirement than `∞ model

misspecification, and is algorithm-independent. Notice that

the expectation is inside the absolute value. We conclude

by presenting an extension of Definition 1, one that applies

to the exploration setting where there is no single stationary

controller that generates the dataset.

Definition 2 (Model Misspecification w.r.t. Low Rank). An

MDP and a feature map φ are ν-misspecified with respect

to the low rank condition if for any two policies π, π and

action value function Q′ ∈ Q(all), the best on policy fit

Qh : (s, a) 7→ 〈φh(s, a), θ
π,Q′,h〉 satisfies the bound (5).

The primary distinction between Definition 1 and Defini-

tion 2 is that the latter needs to hold when Q′ ∈ Q(all)

instead of just Q′ ∈ Q(lin).

3. Algorithms

This section is devoted to a description of the Q-learning

procedures analyzed in this paper. We begin by providing

some intuition for our algorithms in Section 3.1. Section 3.2

is devoted to the description of Stabilized, Second-Order,

Streaming Q-learning algorithm, or S3Q-LEARNING for

short. It corresponds to a stabilized and streaming form of

Q-learning that estimates the optimal policy based on data

drawn from some fixed (stationary) controller policy. We

use this algorithm as a building block for the more sophis-

ticated algorithm described in Section 3.3, which allows

for the data-generating policy to also change, essential to

obtaining an overall scheme with low regret. We refer to this

procedure as Sequentially Stabilized Second-order Stream-

ing Q-learning, or S4Q-LEARNING for short.

3.1. Some intuition

Let us begin by providing some intuition for the algorithms

that are proposed and analyzed in this paper. When the

basic form of Q-learning is implemented with linear func-

tion approximation, the updates are performed directly on

the parameter θ associated with the linear representation.

Upon observing the tuple (sh, ah, rh, s
′
h), representing the

experienced state, action, reward and successor state at level

h, the update rule for a user defined learning rate α ∈ R

takes the familiar form

θh ← θh − α∆φh(sh, ah) where (6)

∆ =
〈
φh(sh, ah), θh

〉
− rh −max

a′

〈
φh+1(s

′
h, a

′), θh+1

〉
.

Although Q-learning is a form of stochastic approximation,

as are stochastic gradient methods, the above update is not

equivalent to stochastic gradient. However, for the purposes

of analysis, it is useful to consider some restrictions under

which it can be related to a stochastic gradient method.

For a moment, let us additionally assume that (a) the next

timestep parameter θh+1 is never updated, and (b) the tu-

ple (sh, ah, rh, s
′
h) is drawn from a stationary distribution.

When these conditions are met, the update (6) corresponds

to a stochastic gradient update as applied to the squared loss

θh 7→ E(Sh,Ah,Rh,S′
h
)

[ 〈
φh(Sh, Ah), θh

〉

︸ ︷︷ ︸
predictor

−
(
Rh +max

a′

〈
φh+1(S

′
h, a

′), θh+1

〉)

︸ ︷︷ ︸
fixed target function

]2
, (7)

where the expectation is over the stationary distribution that

generates the data. This is an algorithm that we know how

to analyze.

With this perspective in place, our high-level idea is to

enforce these two conditions—namely, a fixed target and a

stationary distribution for drawing samples. However, so

as to be able to estimate an optimal policy while incurring

low regret, the next state-value function and the sampling

distribution cannot be “locked in” forever, but instead need

to evolve with time. The core algorithmic contribution of

this paper is the design of a device to periodically update

the next-state value function and the sampling distribution

so as to allow convergence to an optimal controller in a

stable way. In addition, we use a second-order update in

place of the first-order scheme (6) so as to achieve improved

statistical efficiency.

We first describe an algorithm for the controlled setting, in

which stream of states, actions, rewards and transitions are

generated by a stationary controller. In this case, only the

next-state action value function needs to be updated periodi-

cally, because the distribution that generates the experience

is fixed. Next, we design a meta-algorithm that performs

exploration while additionally ensuring that the Q-learning

update rule is fed with data from a stationary controller.
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3.2. S3Q-LEARNING

In this section, we introduce the Stabilized, Second-Order,

Streaming Q-learning algorithm, or S3Q-LEARNING for

short. The algorithm takes as input a stationary controller

policy π that generates a stream of states, actions, rewards

and transitions. Target networks are used to stabilize the

value function updates, which are performed via a second-

order update rule for improved statistical efficiency. This is

a streaming algorithm, meaning that each sample is imme-

diately processed and then discarded.

Learning mechanics: The S3Q-LEARNING algorithm is

detailed in Algorithm 1. The algorithm proceeds over a

sequence of epochs, denoted by e in the algorithm. Each

epoch is handled by the outermost “while” loop. Within

each epoch, the algorithm sequentially updates the target

networks2 Q̂tar
h at each level ` proceeding backward from

` = H to ` = 1. This order of updates ensures that the

next-timestep (` + 1) target network is always up to date

to compute the bootstrapped Q values needed at level ` to

compute the temporal difference (TD) error (see Line 12

and Eq. (8)). When the update has completed in every level

` ∈ [H], the target networks are stored in the predictor Q̂?,

which is the one that the algorithm considers to be the “best”

estimate of Q?. At this point, a new epoch begins.

Let us now describe the update rule in Lines 12 and 13.

At each timestep h the algorithm observes a tuple of state,

action, reward and transition (sh, ah, rh, sh+1) and uses

them to update θ̂h. To be clear, θ̂h is associated to a network

different from the target network Q̂tar
h for that timestep.

To perform the update, the algorithm first computes the

temporal difference error

TDh
def
= rh +max

a′
Q̂tar

h+1(sh+1, a
′)− 〈φh(sh, ah)), θ̂h〉

(8)

in Line 12 and then updates the network parameter θ̂h using

a second order update rule (in place of Eq. (6)) together with

the empirical covariance Σ−1
h , see Line 13. Such update

rule effectively minimizes the least-squares criterion (7), as

it coincides with the Sherman-Morrison rank one update.

The stopping condition in line 8 can be any arbitrary stop-

ping time; without it, the algorithm will simply keep running

indefinitely.

3.3. S4Q-LEARNING

When the stream of data is generated by a controller that

is converging to an optimal one—a necessary condition to

2In this work we refer to the next-timestep linear approximator
as to ‘target network’ for consistency with some of the Q-learning
literature. However, notice that our ‘networks’ are linear.

obtain low regret—the experience it generates is no longer

stationary. We will now introduce a simple device, the pol-

icy replay mechanism, that allows the controller to evolve

with time while ensuring that there is no distribution shift

during the Q-learning updates. It leads to an algorithm that

converges to an optimal controller under some assumptions.

This is achieved by sequentially invoking S3Q-LEARNING

using stationary controllers that are increasingly more opti-

mal; the resulting algorithm is called Sequentially Stabilized

Second-order Streaming Q-learning, or S4Q-LEARNING

for short, and is detailed in Algorithm 2.

Policy replay for experience replay: The policy replay

mechanism generates new experience using past policies.

The past policies are stored in the policy replay memory

Π
def
= {(πi, ni)}pi=1, which contains a set of policies πi as-

sociated to a number of samples ni. The policy replay mech-

anism extracts a stationary mixture policy from Π, defined

as the controller that plays each policy πi with probability

proportional to ni for the full episode. Such mixture policy

is taken as stationary controller to invoke S3Q-LEARNING,

along with a suitable exploration bonus to produce opti-

mistic Q-values that guide the exploration. The stopping

condition to be used in Line 8 in Algorithm 1 is the number

of trajectories cHmtot for an appropriate constant c, see line

Line 6 in Algorithm 2.

The policy replay mechanism is similar in purpose to experi-

ence replay where the experience {(si, ai, ri, s′i)} generated

so far is stored and used to retrain the network. However,

unlike experience replay, the policy replay memory does not

store the full dataset and instead just contains a ‘recipe’ for

generating a statistically similar dataset by re-playing past

policies. In this way, the memory complexity does not grow

with the number of iterations beyond a mild logarithmic

term, making our algorithm truly streaming. And while the

policy replay mechanism requires additional samples, the

regret remains well controlled because the policies in Π are

progressively more and more near-optimal: in the limit, the

policies in the policy replay memory generate samples with

vanishing regret.

Having described the policy replay mechanism, we can now

illustrate how S4Q-LEARNING conducts exploration using

such device.

Learning mechanics: The S4Q-LEARNING algorithm pro-

ceeds in phases which are indexed by p inside the algo-

rithm. At the beginning of each phase, the algorithm invokes

the S3Q-LEARNING subroutine with a controller πControl

that is a mixture policy among those in the current pol-

icy replay memory Π, as described in the prior paragraph.

The S3Q-LEARNING procedure then returns an optimistic

action-value function estimate Q from which the greedy

(optimistic) policy π is extracted in Line 7 of Algorithm 2.
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Algorithm 1 S3Q-LEARNING

1: Input: Controller π, (optional) stopping condition, (optional) bonus function b
2: Q̂tar

` (·, ·) = 0, ∀` ∈ [H + 1]; e = 0 . Initialize target network and epoch counter

3: while True do

4: e = e+ 1 . New epoch begins

5: for level ` = H,H − 1, . . . , 2, 1 do

6: θ̂` = 0; Σ` = λRegI; . Initialize network and covariance

7: for n` = 1, . . . , 2e do

8: if STOPPING CONDITION then return Q̂?

9: s1 ∼ ρ . Get start state

10: for timestep h = 1, 2, . . . , H do

11: Play ah = πh(sh) and get (rh, sh+1); φh
def
= φh(sh, ah) . Play and advance

12: TDh = rh +maxa′ Q̂tar
h+1(sh+1, a

′)− 〈φh, θ̂h〉, . Compute TD error

13: θ̂h ← θ̂h +
Σ−1

h
φh TDh

1+‖φh‖2

Σ
−1
h

; Σ−1
h ← Σ−1

h −
Σ−1

h
φhφ

>
h Σ−1

h

1+‖φh‖2

Σ
−1
h

. Update network and covariance

14: end for

15: end for

16: θ̂tar` = minθ∈B ‖θ − θ̂`‖2Σ`
. Project parameter

17: Q̂tar
` (·, ·)← 〈φ`(·, ·), θ̂tar` 〉 or Q̂tar

` (·, ·)← min{1, 〈φ`(·, ·), θ̂tar` 〉+ b`(·, ·)} . Update target network

18: end for

19: Q̂? ← Q̂tar . Save best approximator

20: end while

The S4Q-LEARNING algorithm then proceeds to collect tra-

jectories from the greedy policy π until “sufficient progress”

is made. In order to measure the progress, the agent main-

tains the accumulator T and updates it in Line 13. Once T
is larger than a certain value (see Line 16), the procedure

has made sufficient progress on the current data, so that Q
network should be updated with fresh data. The triggering

condition in Line 16 is essentially equivalent to checking

that the determinant of the cumulative covariance has dou-

bled with respect to that of the prior epoch (cf. a similar

condition for linear bandits (Abbasi-Yadkori et al., 2011)).

When the determinant doubles, the agent has acquired suffi-

cient information and a new policy may be computed. An

important difference here is that the determinant should

refer to the expected cumulative covariance, which is un-

known, and such determinant ratio must thus be estimated

from data; our accumulator T performs such task.

In order to update the Q network, S4Q-LEARNING con-

structs a new bonus function and adds the current greedy

policy π to the policy replay memory (together with the

number of trajectories that should be generated from such

policy). A new phase can now begin with a call to S3Q-

LEARNING using a newly constructed, more optimal con-

troller and smaller bonus function.

4. Main results

We now turn to the statement of our main results, along

with discussion of some of their consequences. We begin

in Section 4.1 by describing the form of the bonus function

used in our algorithms, along with the effective dimension

that appears in our bounds. Section 4.2 is devoted to our

main result—namely, a performance guarantee for the S4Q-

LEARNING algorithm. In Section 4.3, we elaborate upon the

guarantees for the S3Q-LEARNING algorithm that underlie

our main result.

4.1. Bonus function and effective dimension

Bonus function: The bonus function used in phase p is

bh(·, ·) def
= αh‖φh(·, ·)‖Σ−1

h
, where

αh
def
= c

{√
d log

(
dpn(1:p)

δ

)
+
√
λReg

}
. (9)

Here c > 0 is a universal constant; we use n(1:p) =∑p
i=1 n

(i) to denote the samples used in phases 1 through

p; and Σh is a cumulative covariance matrix. The empiri-

cally estimated cumulative covariance Σ is constructed as

follows. Let πControl denote the controller used to call S3Q-

LEARNING in phase p−1, and let π denote the greedy policy

used by S4Q-LEARNING in the same phase. The cumulative

covariance takes the form

Σh =

mtot∑

i=1

φihφ
>
ih + λRegI

︸ ︷︷ ︸
S3 Q-LEARNING

covariance
returned in phase p − 1

+

mp∑

j=1

φjhφ
>
jh

︸ ︷︷ ︸
S4 Q-LEARNING

covariance
added in phase p − 1

, (10)
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Algorithm 2 S4Q-LEARNING

1: Input: Bonus function b, update trigger TTrig = Θ(log pK
δ )

2: Πh = ∅; ∀h ∈ [H] . Initialize policy replay memory

3: for phase p = 1, 2, . . . do

4: mtot =
∑p−1

j=1 mj for (πj ,mj) ∈ Π . Get total # trajectories to simulate

5: πControl
def
= at the start of the episode play πj with probability mj/mtot, ∀j ∈ [p− 1] . Define controller

6: (Q,Σref )←S3Q-LEARNING(πControl, cHmtot, b), c ∈ R . Get optimistic Q values

7: πh(·) = argmaxa Qh(·, a), ∀h ∈ [H] . Extract greedy policy

8: Σ = Σref , m = 0, Th = 0, ∀h ∈ [H] . Initialize # trajectories and trigger value

9: repeat

10: s1 ∼ ρ . Get start state

11: for h = 1, 2, . . . , H do

12: Play a = πh(s); m = m+ 1 . Play and increment counter

13: Th ← Th + ‖φh(s, a)‖2(Σref
h

)−1
; Σh ← Σh + φh(s, a)φh(s, a)

> . Increment accumulator and covariance

14: Get next state s+; s← s+ . Advance

15: end for

16: until ∃h ∈ [H] such that Th ≥ TTrig

17: Π← Π ∪ {(π,m)}; bh(·, ·) = αh‖φ(·, ·)‖Σ−1
h

. Update policy replay memory and bonus

18: end for

where φih ∼ πControl, φjh ∼ π. Note that Σh is formed by

the sum of of the cumulative covariance matrix returned by

S3Q-LEARNING along with additional terms computed by

S4Q-LEARNING between Line 9 to Line 16 in phase p− 1.

Notice that the empirical covariance Σh is estimated de

novo within each phase p, and due to statistical fluctuations,

it does not grow monotonically across phases. Nonetheless,

the covariance and the bonus are two devices to measure the

progress of the algorithm.

Information gain and effective dimension: We now de-

fine the effective dimension d̃h at time step h. It is a scalar

quantity that governs the complexity of the exploration prob-

lem, defined as

d̃h = max
π

log
(
det
(
I + n

λReg
Eφh∼π[φhφ

>
h ]
))

. (11)

We note that this notion has been exploited in past

work (Srinivas et al., 2009; Yang & Wang, 2020; Agarwal

et al., 2020a; Du et al., 2021). The information gain can be

much smaller than the dimensionality d of the feature vec-

tors φ —that is, we can have d̃h � dh. This scaling holds,

for instance, when the feature moment matrix Eφh∼π[φhφ
>
h ]

is mostly concentrated along few directions; see Lemma 11

in Appendix D.2 for details.

4.2. Guarantees for S4Q-LEARNING

We are now ready to present our main result, namely a

bound on the regret incurred by all the policies that generate

rollouts, including those played by the S3Q-LEARNING

subroutine when it is called by S4Q-LEARNING. We assume

that the bonus function is defined according to Eq. (9) with

an appropriately chosen universal constant.

Theorem 1 (Performance Bound of S4Q-LEARNING). Con-

sider an MDP that is ν-misspecified w.r.t. Bellman closure

(cf. Definition 2). Then for any number of episodes, there

exists an event EK that holds with probability at least 1− δ,

and under this event, we have the following guarantees:

(a) The average regret of S4Q-LEARNING is upper

bounded as AVEREG(K) ≤

cL

{
H√
K

[
( H∑

h=1

d̃h
)
×
( H∑

h=1

(
dh + 1

)
d̃h
)
]1/2

+ ν

}

(12)

where L
def
= log

(
dptotK

δ

)
.

(b) The memory complexity is bounded as

O(Ld2H∑h d̃h) = O(Ld3H2) while the per-

step computational complexity is O(|A|d2).

See Appendix C for the proof of this claim.

In absence of model misspecification (ν = 0) and the special

case dh = d̃h for all h, the worst-case regret bound becomes

Õ
(
H2
√
d3K

)
. Here Õ includes constant and logarithmic

factors.

Some comments: When the value function is rescaled to

be in [0, H] instead of the unit interval [0, 1], the regret

bound of S4Q-LEARNING becomes Õ(H3
√
d3K), which
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is larger by only a factor of H relative to the state-of-the-art

Õ(H2
√
d3K) bound available for computationally tractable

algorithms (Jin et al., 2020).

This slightly sub-optimal sample complexity is counter-

balanced by a number of advantages of S4Q-LEARNING.

One major benefit is the low memory footprint, which de-

pends only on K via a logarithmic factor. To the best of our

knowledge, all previous methods that apply in this setting

need to store the full experience, leading to a memory re-

quirement scaling at least linearly in the number of episodes

K. For problems with a large number of interactions, this

linear scaling can be prohibitive.

Additionally if the horizon is not very large, the S4Q-

LEARNING bound might be substantially tighter than the

guarantees in Jin et al. (Jin et al., 2020), since it primarily

scales with the effective dimension d̃. To the best of our

knowledge, our result gives the first adaptive and tractable

algorithm for this setting with regret bounds depending on

the effective dimension d̃. In contrast, existing algorithms

with regret bounds in terms of the effective dimension need

to know its value to inherit an improved regret bound (Agar-

wal et al., 2020a; Yang & Wang, 2020); in this sense, they

are non-adaptive guarantees.

Finally, our approximation error guarantees are new for

value-based exploration algorithms and close some of the

gaps with respect to policy gradient methods. The approxi-

mation error of S4Q-LEARNING scales with the worst-case

off-policy expected prediction error. To the best of our

knowledge, temporal difference methods that perform ex-

ploration have only been analyzed with `∞-approximation

guarantees. Instead, in policy gradient algorithms (Agarwal

et al., 2020a; Zanette et al., 2021a), the approximation error

is measured in expectation with respect to an arbitrary com-

parator. Our approximation error depends on the worst-case

(with respect to the policies) approximation error, but the

error is still measured in expectation, and furthermore, the

expectation is inside the absolute value.

4.3. Guarantees for S3Q-LEARNING

When a stationary controller is available, the S3Q-

LEARNING algorithm can be used to maintain a running

estimate of the optimal action value function Q? with a

low memory footprint. This guarantee is of independent

interest: the basic protocol illustrated in Algorithm 1 serves

as a building block for sophisticated algorithms, with the

S4Q-LEARNING procedure analyzed in this paper being

one example. Of course, in the controlled setting the qual-

ity of the value function estimate will also depend on how

exploratory the controller policy is; some notation will be

introduced shortly to quantify this.

Let us define the expected cumulative covariance matrix

after n samples from the (controller) policy π as

Σh(n) = n
{
Eφh∼π

[
φhφ

>
h

]
+ λRegI

}
, (13)

where λReg > 0 is a fixed positive regularization parameter.

Given a stationary controller π and a bonus function b, the

S3Q-LEARNING algorithm returns a sequence of estimated

Q-functions Q̂? = (Q̂?
1, . . . , Q̂

?
H) ∈ Q(lin). In this section,

we state some bounds on the value function error Q̂? −
Q? when the bonus function b = 0 and the violation of

Assumption 1 (Bellman closure) is measured according to

Definition 1. (We consider the extension to the setting b ≥ 0
in Appendix D).

Our analysis involves the Bellman error associated with Q̂?,

defined for each h ∈ [H] and (s, a) as the discrepancy of

Q̂? in satisfying the Bellman equations with Q̂?
h+1 as the

next state value function:

Eh(s, a)
def
= Q̂?

h(s, a)−
(
ThQ̂?

h+1

)
(s, a). (14)

Our analysis shows how this Bellman error can be bounded

in terms of an uncertainty function and an approximation er-

ror. For a given integer sample size n > 1 and user-defined

error probability δ ∈ (0, 1), define the scalar quantity

αh(n, δ) = c

{√
d log

(
dneH

δ

)
+
√
λReg

}
, (15)

where c > 0 is a universal constant, whose specific value

can be determined via the proof.

Suppose that the algorithm terminates after etot epochs, and

let K be the total number of trajectories. For a given toler-

ance probability δmaster ∈ (0, 1), we define the uncertainty

function

Uh(s, a)
def
= αh(n

∗, δ∗)‖φh(s, a)‖(Σh(n∗))
−1 (16a)

where n∗ def
= K

4H , and δ∗
def
= δmaster

2He2totd
.

(16b)

We define the comparator error

∆π
h(s, a)

def
= (ThQ̂tar

h+1)(s, a)−
〈
φh(s, a), θ

π,Q̂tar
h+1,h

〉
.

(16c)

In order to state the theorem, let Eπ denote the expecta-

tion over the trajectories (S1, A1, . . . , SH , AH) induced by

following π after sampling from the starting distribution ρ.

Theorem 2 (Performance bound for S3Q-LEARNING).

Consider an MDP that is ν-misspecified w.r.t. Bellman clo-

sure (cf. Definition 1). If the S3Q-LEARNING algorithm is

run with the uncertainty function (16a), then for any episode

K, with probability at least 1− δmaster, it returns a solution

Q̂? such that:
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(a) Its Bellman error function Eh
def
= Q̂?

h −
(
ThQ̂?

h+1

)

satisfies the pointwise bound for each (s, a)

∣∣∣∣Eh(s, a) + ∆π
h(s, a)

∣∣∣∣ ≤ Uh(s, a). (17a)

(b) For each h ∈ [H], the greedy policy πh(s)
def
=

argmaxa Q̂
?
h(s, a) satisfies the bounds

− Eπ?

H∑

h=1

Uh(Sτ , Ah)− ν ≤ ES∼ρ(V̂
?
1 − V ?

1 )(S)

(17b)

≤ Eπ

H∑

h=1

Uh(Sτ , Aτ ) + ν.

Furthermore, the memory complexity of the algorithm is

bounded as O(d2H) and the per-step computational com-

plexity is bounded as O(d2 + |A|d).

See Appendix B for the proof of this claim.

5. Discussion

In this paper, we have introduced several modifications to

the basic Q-learning protocol so as to derive an exploratory

procedure that operates with linear function approximation,

and is equipped with performance guarantees while remain-

ing computation and memory-efficient. It is natural to ask

to what extent these modifications—the second-order up-

date rule, the use of target networks and policy replay—are

needed in order to obtain such guarantees.

On the second-order rule: Of the three ingredients, the

second-order update rule only serves to improve the sta-

tistical efficiency. When the target network and sampling

distribution are fixed, using first-order update rule in Eq. (6)

would be essentially equivalen to a stochastic gradient up-

date; such updates would minimizes the loss function (7)

with a rate 1/
√
n instead of the 1/n enabled by our second-

order updates. It should be observed that the higher cost

and memory of the second-order rule are not a problem

when conducting exploration, as the main computational

bottleneck is the calculation of the bonus function, while

the main memory requirement is due to the policy replay.

Nonetheless, if one is interested purely in the optimization

setting, where neither the replay memory nor the exploration

bonuses are needed, some techniques from variance reduc-

tion can be used in conjunction with a first-order update

rule (Frostig et al., 2015; Li et al., 2020; Wainwright, 2019b;

Mou et al., 2022) to lower the computational and space com-

plexity while retaining high sample efficiency. We leave this

as an interesting direction for future work.

On the use of target networks: The target networks con-

siderably simplify the analysis of the algorithm by establish-

ing a connection with linear regression with a fixed target.

There is no real downside with adopting target networks,

and whether they could be removed is left as future work.

On the policy replay mechanism: A truly critical ingre-

dient in this work is the policy replay mechanism, which

ensures that the Q-learning updates are performed on data

generated by a stationary controller and with the most re-

cent bonus and value function estimate. Without the replay

mechanism, the network weights would be updated with a

changing target—recall that the target networks need to be

updated periodically—and under a non-stationary distribu-

tion. The main issue is that the target networks contain both

statistical errors and bias due to the exploration bonus which

decay with time. In this case, the high errors present in the

target networks in early phases would hurt the algorithm in

later phases. Discounting early updates by an appropriate

learning rate to favor later updates may seem like a solution,

but this can lead to “catastrophic forgetting” of past expe-

rience because the learning distribution is non-stationary.

When using linear function approximation, a concrete con-

sequence is that the algorithm can forget what it has learned

along the directions it played in the early phases.

Exploration algorithms inspired by Least Square Value It-

eration (LSVI) avoid these issues, because they update the

weights of the network by computing the full least-squares

solution using the most recent, and thus most accurate, tar-

get function. In this way, the next state value function is as

accurate as possible over the full domain, and is perturbed

everywhere by the most recent (and smallest) exploration

bonus, one that truly reflects the current model uncertainty.

Likewise, experience replay would alleviate these issues by

re-training the network using the most recent target network.

Unfortunately, doing so seems to require a replay buffer

of size proportional to all the experience collected so far,

making Q-learning no longer a truly streaming algorithm.

The policy replay memory is a simple solution to such issues,

one that preserves the streaming nature of Q-learning.

Due to space constraints, future directions are discussed in

Appendix A.2
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A. Additional Material

A.1. Relation to past work

There is a long line of past work on Q-learning for tabular problems, with results in both the asymptotic set-

tings (e.g., (Watkins & Dayan, 1992; Tsitsiklis, 1994; Jaakkola et al., 1994; Szepesvári et al., 1998)), as well as the

non-asymptotic setting (e.g., (Kearns & Singh, 1999; Even-Dar et al., 2003; Wainwright, 2019a; Li et al., 2021)). Other

work on Q-learning in tabular problems has derived regret bounds that are also near-optimal (Jin et al., 2018; Zhang et al.,

2020).

It is well known that once function approximation is introduced, then the Q-learning algorithm may diverge (Baird, 1995).

Such divergence does not occur in certain special cases, including when the dynamics are restricted to induce similar

directions in feature space (Melo et al., 2008), or the function approximators are `∞-contractive in an appropriate sense

(e.g. (Gordon, 1995)). Related results are presented in the papers (Tsitsiklis & Van Roy, 1997; Perkins & Pendrith, 2002;

Mehta & Meyn, 2009; Liu et al., 2020; Bhandari et al., 2018; Lakshminarayanan & Szepesvari, 2018). In contrast, our

analysis does not impose such conditions. We also note that there is some recent analysis of Q-learning with deep neural

networks (Fan et al., 2020) that leverages connectionms to neural fitted Q-iteration (Riedmiller, 2005; Munos & Szepesvári,

2008); see also the papers (Cai et al., 2019; Carvalho et al., 2020).

Some of the algorithmic techniques used in this work—specifically, the use of target networks and experience replay—are

believed to be essential to recent empirical successes in reinforcement learning. Experience replay was introduced by

Lin (Lin, 1992), and popularized more widely by the influential paper (Mnih et al., 2013). To be clear, our replay mechanism

differs in that it does not store past rewards and transitions; this fact is essential to maintaining low memory complexity. Our

replay mechanism is related to the policy cover mechanism (Agarwal et al., 2020a; Zanette et al., 2021a), but differs in that

it needs to store high performance policies, and it is not used as starting distribution for policies roll-outs. As for target

networks, they have also been a core component of past empirical successes (Mnih et al., 2015).

We note that recent work by Agarwal et al. (Agarwal et al., 2021) also shows the importance of forms of experience replay,

in establishing a result related to our Theorem 2. Our work shows that experience replay is not needed when the controller is

stationary. Indeed, our primary contribution is in the exploration setting (cf. Theorem 1), whose literature we discuss next.

A related and concurrent work in the exploration setting is (Liu & Su, 2022).

To the best of our knowledge, this paper constitutes the first analysis of an exploratory form of Q-learning combined

with function approximation. It can be compared with the work of Jin et al. (Jin et al., 2020), who proved guarantees for

exploration based on a form of least-squares value iteration (LSVI) with optimism for the class of low-rank MDPs. However,

their algorithm has a space complexity that grows linearly with time, and the approximation error requirements are expressed

via sup-norm (`∞) bounds. Better approximation error requirements with respect to a fixed comparator are given by policy

gradient methods (Agarwal et al., 2020a; Zanette et al., 2021a), whose memory complexity still grows with the required

accuracy3. Our work shows that attractive approximation error guarantees are not unique to policy gradient algorithms:

temporal difference methods also inherit favorable—albeit different—guarantees. While this has recently been noted in

the offline setting, such guarantees were enabled by a dataset generated from a stationary distribution (Xie et al., 2021), as

opposed to a reactive controller (Zanette et al., 2021b), which is the standard case in the exploration setting.

Finally, to our knowledge none of algorithms discussed so far inherit instance-dependent regret bounds while being agnostic

to the setting. The bulk of past instance-dependent results correspond to tabular problems (e.g., (Zanette & Brunskill, 2019;

Zanette et al., 2019; Simchowitz & Jamieson, 2019; Yin & Wang, 2021; Tirinzoni et al., 2021; Al Marjani & Proutiere, 2021;

Xu et al., 2021a; Wagenmaker et al., 2021b; Yang et al., 2021; Khamaru et al., 2021; Xia et al., 2022); a few exceptions

include the logarithmic regret bounds given in the paper (He et al., 2021) and the recent paper (Wagenmaker et al., 2021a),

as well as some partially instance-dependent results on kernel LSTD (Duan et al., 2021). Other studies related to Q-learning

include the papers (Li et al., 2022; Yan et al., 2022; Shi et al., 2022; Santos et al., 2021; Xu et al., 2021b).

A.2. Future directions

Our work focused exclusively on linear approximations of Q-functions, but some of the underlying ideas are more generally

applicable. One interesting direction is to extend our analysis to models with low Eluder dimension (Wang et al., 2020b;

3In the paper (Agarwal et al., 2020a), the policy cover grows linearly with the iteration count while the method (Zanette et al., 2021a)
needs to store past trajectories to perform data reuse.
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Kong et al., 2021), and to see whether the regret bound can be improved. Second, our definition of approximation error is

very permissive, in that it only measures the expected prediction error. It would be interesting to understand whether or

not there exist exploration algorithms based on least-square value iteration (without “policy replay”) that inherit similar

guarantees. Finally, this work establishes a partial form of instance-dependence, in that the results depend on the effective

dimension. In the simpler tabular setting, the instance dependence of Q-learning has been studied through the lens of local

minimax theory (Khamaru et al., 2021; Xia et al., 2022) to obtain completely sharp instance-dependent guarantees. It would

be interesting to develop similarly sharp analyses in this more general setting with function approximation.
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B. Proofs for the S3Q-LEARNING algorithm

This section is devoted to proving the bounds on S3Q-LEARNING stated in Theorem 2. At the same time, we also establish a

related result, to be stated momentarily as Theorem 3. The proofs of both results share a very similar structure, following the

same argument except for the way in which the violation of Assumption 1 or Assumption 2 is measured. More precisely,

Theorem 2 measures misspecification according to ν, which is zero when Assumption 1 holds and the bonus is zero. On the

other hand, Theorem 3 measures misspecification using ν defined according to Definition 2. This quantity is zero under

the low-rank assumption (Assumption 2). Thus, both theorems can be proved within a common framework, with the only

difference being the way in which ν is defined.

Let us now state the second result to be proved in this section.

Theorem 3. Consider an MDP that is ν-misspecified w.r.t. the low rank assumption according to Definition 2; assume

b ≥ 0 pointwise. With the uncertainty function (16a), for any episode K, the S3Q-LEARNING algorithm returns a solution

Q̂? with Bellman error E such that with probability at least 1− δmaster:

(a) The Bellman error function satisfies the pointwise bound

min{0,−Uh + bh}(s, a) ≤
(
Eh +∆π

h

)
(s, a) ≤

(
Uh + bh

)
(s, a). (18)

(b) For each h ∈ [H], the greedy policy πh(s)
def
= argmaxa Q̂

?
h(s, a) satisfies the bound

ES∼ρ(V̂
?
1 − V ?

1 )(S) ≤ ES∼ρ(V̂
?
1 − V π

1 )(S) ≤ Eπ

H∑

h=1

(Uh + bh)(Sτ , Aτ ) + ν. (19)

Proof : For each epoch, the argument can be broken into four steps.

• First, we show that for any level ` ∈ [H], the second-order update rule (13) produces the same iterates as least-squares

regression would.

• Second, we show for any level ` ∈ [H], learned predictor Q̂? uses at least ∼ 1
H of the total data.

• Third, we bound the least-square prediction error under either Assumption 1 or Assumption 2. This analysis controls

the error made by the algorithm at each level ` ∈ [H] during the epoch under consideration.

• The final step is to compute how the least-square errors propagate and accumulate through timesteps, thereby leading

to the final performance bound in terms of the learned action value function Q̂?.

Notation: Let us summarize here some notation for convenient reference. We say that the algorithm has completed learning

at level ` in epoch e if n` = 2e, i.e., when the loop over n` has terminated. We indicate with ne = 2e the number of samples

allocated in the epoch e.

Let {(si, ai, ri, s′i)}ne

i=1 be the samples acquired at level ` in epoch e. For a parameter vector θ and a next-state action-value

function Q′, define the (`, e)-empirical loss as

L̂`e(θ || Q′)
def
=

ne∑

i=1

[〈
φ`(si, ai), θ

〉
− ri −max

a′
Q′(s′i, a

′)
]2

+ λReg‖θ‖22, (20)

where λReg > 0 is a given regularization parameter. With a minor overload of notation, Recalling the class of linear functions

Q(lin) from equation (3a), we define

Qmin = argmin
Q∈Q(lin)

L̂`e(Q || Q′) (21)

if Qmin can be written as Qmin : (s, a) 7→
〈
φ(s, a), θmin

〉
, where θmin = argmin‖θ‖2≤1 L̂`e(θ || Q′).
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B.1. Main argument

We now proceed to the core of the argument. When the algorithm terminates at the evaluation episode K, it returns the

predictor Q̂?. For the rest of the proof, we let etot be the epoch in which Q̂? was last updated upon termination of the

algorithm. Moreover, our proof makes use of three auxiliary lemmas, which we begin by stating.

Lemma 1 (Equivalence with Least-Squares). Upon completion of level ` within epoch e, the S3Q-LEARNING algorithm

returns a parameter vector θ̂tar`e such that

θ̂tar`e = arg min
‖θ‖2≤1

{
L̂`e(θ || Q̂tar

`+1,e)
}
. (22)

See Appendix B.2 for the proof of this claim.

We emphasize that the target network Q̂tar
`+1,e remains fixed throughout a given epoch. The lemma establishes that the

second-order update rule produces the same solution as a batch least-square regression would.

Our next step is to lower bound the number of samples used to solve the regression problem:

Lemma 2 (Number of Samples). Upon termination in episode K, the algorithm returns a parameter sequence θ̂? = {θ̂?` }H`=1

such that

θ̂?` = argmin
‖θ‖2≤1

L̂`,etot(θ || Q̂?
`+1) for each ` ∈ [H] (23)

and moreover, the level ` regression problem uses at least n` ≥ K
4H of the form {(si, ai, ri, s′i)}n

`

i=1.

The above lemma states that nearly all the data collected are used. The proof can be found in Appendix B.3.

Given this equivalence to least-squares regression and the lower bound on the sample size, we can now leverage standard

analysis of linear regression so as to bound the prediction error. Recall our definition of the error function

E`e(s, a)
def
= Q̂tar

`e (s, a)−
(
T`Q̂tar

`+1,e

)
(s, a). (24)

Lemma 3 (Least Square Error Bounds). The S3Q-LEARNING procedure returns a predictor Q̂?
` whose error E` is

sandwiched as

min
{
0, (−U`(s, a) + b`(s, a))

}
−∆π

` (s, a)
(a)

≤ E`(s, a)
(b)

≤ U`(s, a) + b`(s, a)−∆π
` (s, a) (25)

with probability at least 1− δ.

See Appendix B.4 for the proof of this claim.

Lemma 3 allows us to quantify the empirical Bellman backup error and uses Assumption 1 (Bellman closure) or Assumption 2

(Low-Rank) depending on the setting (i.e., optimization vs exploration). In the zero-bonus setting (b = 0), the error term can

be bounded symmetrically by the uncertainty function (see Eq. (25)), which is always positive. The min function on the left

hand side arises due to “clipping” the Q̂tar
` values, so that adding a bigger bonus b` does not necessarily make Q̂tar

` (and its

error function) more positive.

Our next step to establishing the bounds (17b) is to analyze how errors propagate. We begin with the rightmost inequality in

equation (17b). Since Q? is the optimal Q-function, we have the pointwise inequality

(Q̂? −Q?)(s, a) ≤ (Q̂? −Qπ)(s, a) for all (s, a) pairs,

valid for any policy π; in particular, this bound holds for the greedy policy π with respect to Q̂?. Moreover, for this greedy

policy, we have

Q̂?
h = Eh +

(
ThQ̂?

h+1

)
= Eh +

(
T π
h Q̂?

h+1

)
, for all h ∈ [H].
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Since Qπ satisfies the Bellman evaluation equations Qπ
h =

(
T π
h Qπ

h+1

)
for each h ∈ [H], the claim now follows, as Q̂?

h can

be thought of as the action value function of π on an MDP with dynamics specified by T π , and reward function consisting

of a portion from T π , along with an additional reward equal to E.

The proof of the left inequality in equation (17b) is similar. In particular, we observe that

Q̂?
h = Eh +

(
ThQ̂?

h+1

)
≥ Eh +

(
T π?

h Q̂?
h+1

)
, for all h ∈ [H].

Expanding the definition of error function along the trajectories identified by π? concludes the proof of the claim.

B.2. Proof of Lemma 1 (Equivalence with Least-Squares)

Fix an epoch e and let the current level be `. By construction, the target network for the next state value function Q̂tar
`+1,e has

already been updated in that epoch. We observe that S3Q-LEARNING is updating θ̂h in a way equivalent to Algorithm 3

with ak = φh and bk = rh +maxa′ Q̂tar
h+1(sh+1, a

′) and B = {x | ‖x‖2 ≤ 1}.

Algorithm 3 STREAMING LEAST SQUARES

1: Σ1 = λRegId×d

2: x′′
0 = 0

3: for k = 1, 2, . . . do

4: Receive (ak, bk)

5: x′′
k = x′′

k−1 +
Σ−1

k
ak(bk−a>

k x′′
k−1)

1+a>
k
Σ−1

k
ak

6: Σ
−1

k+1 = Σ
−1

k − Σ
−1

k aka
>
k Σ

−1

k

1+a>
k
Σ

−1

k ak

7: end for

8: return argmin‖x‖2≤1 ‖x− x′′
K‖2ΣK+1

Thus, in order to prove Lemma 1, it suffices to show that Algorithm 3 finds the empirical risk minimizer. In particular, we

claim that given any sequence of tuples (a1, b1), . . . , (ak, bk), then upon termination, Algorithm 3 returns the constrained

minimizer

arg min
‖x‖2≤1

{ K∑

k=1

(
x>ak − bk

)2
+ λReg‖x‖22

}
. (26)

In order to prove this claim, we introduce some helpful notation. With the initialization A0
def
=
√
λRegId×d and B0

def
= 0,

define the recursions

Ak
def
=

[
Ak−1

a>k

]
, Bk

def
=

[
Bk−1

bk

]
(27)

The associated solution to the normal equations is given by x′
k

def
= (A>

k Ak)
−1A>

k Bk. With these definition, we then have

the equivalences

x′
k

(i)
= argmin

x
‖Akx−Bk‖22

(ii)
=

k∑

i=1

(
x>ai − bi

)2
+ λReg‖x‖22, (28)

where step (i) follows by definition; and step (ii) follows from how the dataset (A0, b0) was constructed, in particular

including the pair {(
√

λRege1, 0), . . . , (
√

λReged, 0)} prior to the k samples {(ai, bi)}ki=1.

Now we proceed by induction on the index k. For the base case k = 0, observe that x′
0 = x′′

0 and A>
0 A0 = λRegI by the

given initialization. Turning to the induction step, let us suppose that the equalities

x′
k−1 = x′′

k−1, and A>
k−1Ak−1 = Σk (29)
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hold for a certain k ≥ 1. We can write the next iterate x′
k as

x′
k = (A>

k Ak)
−1A>

k Bk =
(
A>

k−1Ak−1 + aka
>
k

)−1 [
A>

k−1 ak
] [Bk−1

bk

]

(iii)
=

[
(
A>

k−1Ak−1

)−1 −
(
A>

k−1Ak−1

)−1
aka

>
k

(
A>

k−1Ak−1

)−1

1 + a>k
(
A>

k−1Ak−1

)−1
ak

]
(
A>

k−1Bk−1 + akbk
)
,

where step (iii) follows from the Sherman Morrison rank-one matrix inversion formula (e.g., (Golub & Van Loan, 2012)).

Recalling that

x′
k−1 =

(
A>

k−1Ak−1

)−1
A>

k−1Bk−1,

we find that

x′
k = x′

k−1 +
(
A>

k−1Ak−1

)−1
akbk −

(
A>

k−1Ak−1

)−1
aka

>
k

(
A>

k−1Ak−1

)−1

1 + a>k
(
A>

k−1Ak−1

)−1
ak

(
A>

k−1Bk−1 + akbk
)

= x′
k−1 +

(
A>

k−1Ak−1

)−1
akbk −

(
A>

k−1Ak−1

)−1
aka

>
k

x′
k−1︷ ︸︸ ︷(

A>
k−1Ak−1

)−1
A>

k−1Bk−1

1 + a>k
(
A>

k−1Ak−1

)−1
ak

= x′
k−1 +

(
A>

k−1Ak−1

)−1
ak
(
bk − a>k x

′
k−1

)

1 + a>k
(
A>

k−1Ak−1

)−1
ak

.

Since x′
k−1 = x′′

k−1 by the induction hypothesis, it follows that x′
k = x′′

k as the above display matches Line 5 of Algorithm 3.

Applying the Sherman-Morrison rank one update, we find that

(Σk+1)
−1 = (A>

k Ak)
−1. (30)

Thus, we have established that the equalities (29) hold for every k. The proof is concluded upon noticing that x′′
k is the

unconstrained solution to the loss in (26), and the projection step in the final line of the algorithm is thus equivalent to

solving (26) with the constraint x ∈ B.

B.3. Proof of Lemma 2 (Number of Samples)

In every epoch the algorithm updates the target networks in the order Q̂tar
H,e, . . . , Q̂

tar
1,e . Since the algorithm returns

Q̂?
` = Q̂tar

`,etot
for each ` ∈ [H], the statement (23) follows by construction of the algorithm and Lemma 1.

It remains to lower bound the number of samples involved in the computation of Q̂?
` . By construction, every epoch e uses

exactly 2eH trajectories. Let m denote the number of trajectories in the current (unfinished) epoch etot + 1 when we

evaluate the algorithm (at the stopping time in the episode K). We must have

K = H
(
21 + 22 + · · ·+ 2etot +m

)
≤ H

(
2etot+1 + 2etot+1

)
= 4H2etot . (31)

Since the algorithm in epoch etot has sampled H2etot trajectories, using the above relation we deduce that it must have used

H2etot ≥ K
4 total episodes, meaning at least n` ≥ K

4H in every level to solve the regression problem (23), as stated.

B.4. Proof of Lemma 3 (Least Square Error Bounds)

Let {(si, ai, ri, s′i)}ne

i=1 be the sequence of ne states, actions, rewards, successor states acquired while learning level ` in

epoch e. We drop the epoch index e = etot as this is fixed through the proof.

Within an epoch, S3Q-LEARNING updates the target networks in the order Q̂tar
H , Q̂tar

H−1, . . . , Q̂
tar
2 , Q̂tar

1 . Thus, when the

algorithm updates Q̂tar
` , it must use Q̂tar

`+1, which has already been updated in that epoch, to compute the backup in Line 12.

Notice that the next-timestep target Q̂tar
`+1 stays fixed while learning at level `. Observe that regardless of the choice of bonus

(so in either the optimization or exploration setting), we have ‖Q̂tar
`+1‖∞ ≤ 1 by construction.
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We introduce the shorthand ∆π
i

def
=
(
T`Q̂tar

`+1

)
(si, ai)− 〈φ`(si, ai), θ

π,Q̂tar
`+1,`〉 for the comparator error evaluated at (si, ai).

With this shorthand, we can write

ri +max
a′

Q̂tar
`+1(s

′
i, a

′) =
(
T`Q̂tar

`+1

)
(si, ai) + ηi = 〈φ`(si, ai), θ

π,Q̂tar
`+1,`〉+∆π

i + ηi, (32)

where ηi
def
= ri + maxa′ Q̂tar

`+1(s
′
i, a

′) −
(
T`Q̂tar

`+1

)
(si, ai) is the Bellman noise. Note that conditioned on (si, ai), the

random variable on the left hand side is bounded in [−1,+1].

Now, to conclude we use the following high-probability error bound on a perturbed least-squares estimator. Given a joint

distribution µ over pairs (X,Y ), define the constrained least-squares estimate

θ?
def
= min

‖θ‖2≤1
E(X,Y )

(〈
X, θ

〉
− Y

)2
. (33a)

Given n i.i.d. samples (xi, yi) ∼ µ, we define the empirical version of this estimator

θ̂
def
= min

‖θ‖2≤1

1

n

n∑

i=1

(〈
xi, θ

〉
− yi

)2
. (33b)

The following result bounds the difference between the empirical and population estimates:

Lemma 4 (Convergence to Population Minimizer). The empirical estimate (33b) satisfies the bound

‖θ̂ − θ?‖(
nEµxx>+λI

) ≤ c
{√

d log
dn

δ
+
√
λ
}

(34)

with probability at least 1− δ.

See Appendix B.5 for the proof of this claim.

After redefining δ and collecting probabilities, Cauchy-Schwartz now ensures with probability 1− δ that

∣∣〈φ`(s, a), θ̂
tar
` − θπ,θ̂

tar
`+1,`

〉∣∣ ≤ ‖φ`(s, a)‖(Σ`(n?))
−1‖θ̂tar` − θπ,θ̂

tar
`+1,`‖Σ`(n?) ≤ α(n?, δ?)‖φ`(s, a)‖(Σ`(n?))

−1

︸ ︷︷ ︸
≡U`(s,a)

, (35)

where we have used the definition (16a) for the uncertainty parameter with the number of samples given by Lemma 2

(Number of Samples) together with a union bound over the horizon and the random epoch at evaluation time.

We now use the bound (35) to prove the two inequalities in equation (25).

Proof of inequality (25)(b): We begin with the upper bound. Due to the clipping step, we are guaranteed to have the upper

bound Q̂tar
` (s, a) ≤

〈
φ`(s, a), θ̂

tar
`

〉
+ b`(s, a), and hence

Q̂tar
` (s, a)−

〈
φ`(s, a), θ

π,θ̂tar
`+1,`

〉
=
〈
φ`(s, a), θ̂

tar
` − θπ,θ̂

tar
`+1,`

〉
+ b`(s, a)

(i)

≤ U`(s, a) + b`(s, a),

where step (i) follows from our earlier inequality (35). Thus, we have established the bound (25)(b) once we recall the

definition of transfer error ∆π
` .

Proof of the lower bound (25)(a): We now turn to the lower bound. By construction, we have ‖Q̂tar
` ‖∞ ≤ 1, so that we

can write

Q̂tar
` (s, a) = min

{
1,
〈
φ`(s, a), θ̂

tar
`

〉
+ b`(s, a)

}
.
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Consequently, by adding and subtracting the term
〈
φ`(s, a), θ

π,θ̂tar
`+1,`

〉
, we have

Q̂tar
` (s, a) = min

{
1,
〈
φ`(s, a), θ̂

tar
` − θπ,θ̂

tar
`+1,`

〉
+ b`(s, a) +

〈
φ`(s, a), θ

π,θ̂tar
`+1,`

〉}

(i)

≥ min
{
1,−U`(s, a) + b`(s, a) +

〈
φ`(s, a), θ

π,θ̂tar
`+1,`

〉}

(ii)

≥ min
{
0,−U`(s, a) + b`(s, a)

}
+
〈
φ`(s, a), θ

π,θ̂tar
`+1,`

〉
.

where step (i) uses our earlier bound (35), and step (ii) follows since
〈
φ`(s, a), θ

π,θ̂tar
`+1,`

〉
≤ 1. In this way, we have shown

that

Q̂tar
` (s, a)− (T`Q̂tar

`+1)(s, a) ≥ min
{
0,−U`(s, a) + b`(s, a)

}
−∆π

` (s, a),

as claimed in equation (25)(a).

B.5. Proof of Lemma 4

Our proof makes use of known bounds on the excess risk in a linear regression problem. In particular, consider a regression

problem based on covariate vectors φ ∈ R
d and responses y ∈ R that satisfy the bounds ‖φ‖2 ≤ 1 and |y| ≤ ymax.

With the shorthand z = (φ, y), define the least-squares loss Lw(z) =
1
2 (y−

〈
φ, w

〉
)2. For some distribution P over Rd×R,

define the constrained population and empirical minimizers

w? def
= arg min

‖w‖2≤B
EZ∼PLw(Z), and ŵ

def
= arg min

‖w‖2≤B

1

n

n∑

i=1

Lw(Zi)

where {Zi}ni=1 are drawn i.i.d. according to P.

We claim that the excess risk associated with the constrained least-squares estimate ŵ can be bounded as

EZ∼P[Lŵ(Z)− Lw?(Z)] ≤ 1

n

{
32(B + ymax)

2 ×
[
d log

(
32Bn(B + ymax)

)
+ log

(
1
δ′

)]
+ 1
}
, (36)

with probability at least 1− δ′. This bound follows as a consequence of a result due to Mehta (Mehta, 2017). In particular,

the maximum value the loss can take is L2
max = (B + ymax)

2. Applying Theorem 1 in the paper (Mehta, 2017) to the

least-squares objective, which is 1/(4L2
max)-exp-concave, yields the claim.

To conclude, the proof of Lemma 4 follows by combining the bound with Lemma 16 (Excess Risk with Regularization).

C. Proof of Theorem 1

This section is devoted to the proof of the performance bound on S4Q-LEARNING stated in Theorem 1. At a high level, the

proof consists of three steps. First, we decompose the regret into a sum of partial regrets incurred in each phase. Second, we

show that the exploration bonus correctly quantify the uncertainty; this allows the algorithm to ensure optimism. Finally, we

use an elliptic potential argument and a bound on the number of phases to conclude the proof.

Notation: Letting p be the current phase, we use Q(p) and V (p) (respectively) to denote the Q-action-value and value

functions returned by S3Q-LEARNING, (cf. Line 6) and θ(p) to denote the associated parameter of its linear representation.

We let π(p) be the policy extracted in Line 7 of S4Q-LEARNING after termination of S3Q-LEARNING. Let n(p) be

the (random) number of times that the policy is executed in phase p between Line 9 and Line 16 of S4Q-LEARNING

(Algorithm 2). Denote with ptot the total number of phases, including the one that is still in progress at the evaluation

episode K. We let b(p) denote the bonus (17) created at the end of phase p− 1 in Line 17 of Algorithm 2; the bonus will be

actively used in phase p. We use the shorthand ∆
(p)
h with the same meaning as Eq. (16c) where the policy π is the one used

in phase p within S3Q-LEARNING.
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C.1. Main argument

We begin by decomposing the regret of S4Q-LEARNING into the sums of partial regrets generated in each phase p =
1, . . . , ptot. The partial regret REGRET

(p) in phase p corresponds to the regret incurred by playing all policies in that phase.

Policy rollouts that generate regret are performed in one of two places: (i) in the call to S3Q-LEARNING (see Line 6 of

S4Q-LEARNING), or; (ii) by S4Q-LEARNING between Line 9 and Line 16. We can write

REGRET
(p) def

=
∑

π played in
the call to

S3 Q-LEARNING

in phase p

ES1∼ρ (V
?
1 − V π

1 ) (S1) +
∑

π played in
the main loop of

S4 Q-LEARNING

in phase p

ES1∼ρ (V
?
1 − V π

1 ) (S1). (37)

The following lemma leverages the mechanics of the algorithm to upper bounds the total regret up to episode K by expressing

it as a sum of the regrets generated only by the main loop of S4Q-LEARNING (so excluding the call to S3Q-LEARNING).

What makes this possible is that S3Q-LEARNING only plays the policies from the policy replay memory Π(p), which have

already been played by the controller (S4Q-LEARNING). Summing over the phases and accounting for possible statistical

deviations (due to sampling from the policy mixture) yields the following claim:

Lemma 5 (Phased Regret). With probability at least 1− δ, uniformly over all K, we have the upper bound REGRET(K)
def
=∑ptot

p=1 REGRET
(p) ≤ T1 + T2, where

T1
def
= H

{ ptot∑

p=1

p−1∑

j=1

n(j) × ES∼ρ

[
V ?
1 (S)− V π(j)

1 (S)
]}

+H log
(
ptot

δ

)
and (38a)

T2
def
=

ptot∑

p=1

n(p) × ES∼ρ

[
V ?
1 (S)− V π(p)

1 (S)
]
. (38b)

See Appendix C.2 for the proof of this claim.

Note that T1 corresponds to the regret associated with S3Q-LEARNING, whereas T2 is associated with S4Q-LEARNING. To

be clear, the regret to S4Q-LEARNING excludes the regret of the policies that are rolled out within the S3Q-LEARNING

subroutine. Now notice that for some constant c ∈ R we can write the total number of episodes as

K = cH

ptot∑

p=1

p−1∑

j=1

n(j)

︸ ︷︷ ︸
Total trajectories by

S3 Q-LEARNING

+

ptot∑

p=1

n(p)

︸ ︷︷ ︸
Total trajectories by

S4 Q-LEARNING

.

Applying the Cauchy–Schwarz inequality yields the bound REGRET(K) ≤ T3 ×
√
T4, where

T3
def
=

√√√√cH

ptot∑

p=1

p−1∑

j=1

n(j),

ptot∑

p=1

n(p), and

T4
def
= cH

ptot∑

p=1

p−1∑

j=1

n(j)
[
ES∼ρ

(
V ?
1 − V π(j)

1

)
(S)
]2

+

ptot∑

p=1

n(p)
[
ES∼ρ

(
V ?
1 − V π(p)

1

)
(S)
]2
.

Thus, a standard
√
K regret bound can be obtained as soon as the term T4 is bounded. The next step is then to transform T4

into an estimation problem through optimism.

Recall from equation (9). that we introduce optimism via an exploration bonus of the form

b
(p)
h (s, a)

def
= α

(p)
h ‖φh(s, a)‖(Σ(p)

h
)−1 (39)

for all state-action pairs. This bonus is created in Line 17, and passed to S3Q-LEARNING. The uncertainty parameter α(p) to

be used in phase p is defined in Eq. (9). To be clear, the covariance matrix used to construct the bonus is the one in the
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current phase Σ(p). In order to proceed, we must relate the bonus to the uncertainty function. Let us define the reference

covariance

Σ
(p)

h
def
=

p−1∑

j=1

n(j)
Eφh∼π(j) [φhφ

>
h ] + λRegI.

We also recall our earlier definition (15) of the uncertainty parameter

α
(p)
h = c

{√
d log

(
dpn(1:p)

δ

)
+
√
λReg

}
. (40)

On our way to prove optimism, the next proposition highlights the relation between the bonus and the uncertainty function.

Lemma 6 (Bonus Bound). Set λReg = Θ(log dpn(1:p)

δ ). There exists a large enough c ∈ R in Eq. (40) such that with

probability at least 1− δ jointly for all episodes K we have the pointwise bound

U
(p)
h ≤ b

(p)
h ≤ coU

(p)
h (41)

for some constant co ∈ R.

The lemma is proved in Appendix C.3, and it allows us to claim that the algorithm is optimistic (using the left inequality

above) but without using a bonus that is too large (right inequality above) which would create too much regret. We verify

such optimistic claim in Appendix C.4. Recall the definition of transfer error in Eq. (5) and the comparator error in Eq. (16c)

where Q̂tar
h+1 = Q

(p)
h+1 is the network returned by S3Q-LEARNING.

Lemma 7 (Near-Optimism). Suppose that the event in Lemma 6 holds jointly for all episodes K. Then optimism holds in

the following sense:

Q
(p)
h (s, a) ≥ Q?

h(s, a)−
H∑

τ=h

E(S′
τ ,A

′
τ )∼π?|(s,a)∆

(p)
τ (S′

τ , A
′
τ ), ∀(s, a) (42a)

As a consequence, under the same event, we have

ES∼ρV
(p)
1 (S) ≥ ES∼ρV

?(S)− ν. (42b)

From the optimism in the procedure, at any phase j, we have the bound

0 ≤ ES∼ρ

(
V ?
1 − V π(j)

1

)
(S) ≤ ES∼ρ

(
V

(j)
1 − V π(j)

1

)
(S) + ν,

and hence

T4 . T4a + T4b +


cH

ptot∑

p=1

p−1∑

j=1

n(j) +

ptot∑

p=1

n(p)




︸ ︷︷ ︸
=K

ν2

where

T4a
def
= cH

ptot∑

p=1

p−1∑

j=1

n(j)
[
ES∼ρ

(
V

(j)
1 − V π(j)

1

)
(S)
]2
m and T4b

def
=

ptot∑

p=1

n(p)
[
ES∼ρ

(
V

(p)
1 − V π(p)

1

)
(S)
]2
.

In turn bounding T4a and T4b, we find that

T4 . Hptot

p∑

j=1

n(j)
[
ES∼ρ

(
V

(j)
1 − V π(j)

1

)
(s)
]2

+Kν2.
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The remainder of the proof is devoted to deriving a high probability bound on the first term of the above display. Using the

error bounds on S3Q-LEARNING from Theorem 3, we can write

T4 . Hptot

p∑

j=1

n(j)
[ H∑

h=1

E(Sh,Ah)∼π(j)(U
(j)
h + b

(j)
h −∆

(j)
h )(sh, ah)

]2
+Kν2

. Hptot

p∑

j=1

n(j)
[ H∑

h=1

E(Sh,Ah)∼π(j)(U
(j)
h )(sh, ah)

]2
+Kν2.

The second step follows by bringing ν outside the square and by bounding the bonus by using Lemma 6 (Bonus Bound).

Putting together the pieces, we have

T4

(i)

. H2ptot

p∑

j=1

n(j)
H∑

h=1

[
E(Sh,Ah)∼π(j)U

(j)
h (sh, ah)

]2
+Kν2

(ii)

≤ H2ptot

H∑

h=1

p∑

j=1

n(j)
E(Sh,Ah)∼π(j)

[
U

(j)
h (sh, ah)

]2
+Kν2

= H2ptot

H∑

h=1

p∑

j=1

n(j)
E(Sh,Ah)∼π(j)

[
α
(j)
h ‖φh(sh, ah)‖(Σ(j)

h )−1

]2
+Kν2,

where step (i) follows from the Cauchy–Schwarz inequality, and step (ii) follows from Jensen’s inequality. Notice that that

we have the ordering α
(1)
h ≤ · · · ≤ α

(p)
h ≤ · · · ≤ α

(ptot)
h , i.e., the sequence of reference parameter uncertainty must be

non-decreasing. Consequently, we find that

T4 . H2ptot

H∑

h=1

(
α
(ptot)
h

)2 p∑

j=1

n(j)
E(Sh,Ah)∼π(j)‖φh(sh, ah)‖2

(Σ
(j)
h )−1

+Kν2. (43)

We now proceed to bound the sum of the quadratic terms, a quantity that arises in linear bandit analysis. In order to do so,

we need to define the triggering value used in Line 16 of Algorithm 2.

Ltrig = Θ
(
log

np

δ

)
(44)

where n ≤ K is the number of times the condition has been checked in phase p. We obtain the following lemma which is

proved in Appendix C.5.

Lemma 8 (Elliptic Potential). Assume λReg = Θ(log dpn(1:p)

δ ) ≥ 1. There exists a setting Ltrig as defined in Eq. (44) such

that with probability at least 1− δ we have

p∑

j=1

n(j)
E(Sh,Ah)∼π(j)‖φh(sh, ah)‖2

(Σ
(j)
h )−1

≤ 8 (Ltrig + 1) d̃h. (45)

Continuing the bound (43), recalling the definition (40) and applying Cauchy-Schwartz gives us

T4 . H2ptot

(
H∑

h=1

(
α
(ptot)
h

)2
d̃h

)
× 8 (Ltrig + 1) +Kν2

. H2ptot

H∑

h=1

(
dh + log

dptotK

δ

)
d̃h × 8 (Ltrig + 1) +Kν2.

To conclude, it remains to bound the total number ptot of phases; we state the bound here and prove it in Appendix C.6.
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Lemma 9 (Number of Phases). Under the conditions of Lemma 8, the total number of phases up to episode K is upper

bounded as

ptot ≤
H∑

h=1

d̃h

log
(
1 + 1

8Ltrig

) (46)

with probability at least 1− δ.

C.2. Proof of Lemma 5

The total regret up to episode K can be expressed as a sum of regret incurred in different phases

REGRET(K) =

ptot∑

p=1

REGRET
(p). (47)

Notice that in every phase p, the S3Q-LEARNING procedure is invoked with the policy replay memory Π(p) which consists

of the mixture policy
∑p−1

j=1 n
(j)π(j) and in addition S4Q-LEARNING plays the policy π(p) between Line 9 and Line 16

(in Algorithm 2) for exactly n(p) trajectories. Notice that in this proof the sequence {n(j)}p1 is assumed to be fixed, i.e.,

non-random.

Outside of the call to S3Q-LEARNING, S4Q-LEARNING induces a regret exactly equal to

S4Q-LEARNING’s REGRET
(p) = n(p) × ES∼ρ

(
V ?
1 − V π(p)

1

)
(s). (48)

In the same phase p, the regret due to the call to S3Q-LEARNING in Line 6 of S4Q-LEARNING is

S3Q-LEARNING’s REGRET
(p) ∝ H

p−1∑

j

N
(j)
Q × ES∼ρ

(
V ?
1 − V π(j)

1

)
(s) (49)

where N
(j)
Q is the random number of times that policy π(j) is actually played within S3Q-LEARNING in phase p. Intuitively,

N
(j)
Q ≈ n(p) since EN

(j)
Q = n(p). We make this precise by applying a Bernstein inequality for martingales (cf. Thm. 1

from the paper (Beygelzimer et al., 2011)).

Let 0 ≤ Xj
def
= ES′∼ρ(V

?
1 −V π(j)

1 )(s′) ≤ 1 be the random regret in step j of S3Q-LEARNING; here the randomness comes

from the random index j of the policy mixture. Let ntot =
∑p−1

j=1 n
(j); we can write

ntot∑

t=1

Xt =

p−1∑

j=1

N
(j)
Q × ES′∼ρ

(
V ?
1 − V π(j)

1

)
(s′).

By construction, the Xt’s are i.i.d., and E
∑ntot

t=1 Xt =
∑p−1

j=1 n
(j)

ES′∼ρ(V
?
1 − V π(j)

1 )(S′). Therefore, upon invoking

Theorem 1 from the paper (Beygelzimer et al., 2011) and recalling that X2
t ≤ Xt, we find that

ntot∑

t=1

Xt ≤
ntot∑

t=1

EXt + 2

√√√√(
ntot∑

t=1

EtXt

)
log( 1δ ) + 2 log( 1δ )

with probability at least 1− δ. Completing the square on the right hand side and applying Cauchy–Schwarz inequality yields

the upper bound 2
∑ntot

t=1 EXt + 3 log
(
1
δ

)
.

Thus, the regret contributed by S3Q-LEARNING in phase p can be upper bounded by the cumulative regret by S4Q-

LEARNING (excluding its call to S3Q-LEARNING)—viz.

S3Q-LEARNING’s REGRET
(p) . H

p−1∑

j

n(j) × ES∼ρ

(
V ?
1 − V π(j)

1

)
(s) + 3H log

1

δ
.

Summing together these contributions over all phases, and applying the union bound over all possible phases yields the

claim.
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C.3. Proof of Lemma 6 (Bonus Bound)

The main part of the proof is to show that the empirical covariance matrices are accurate enough. S4Q-LEARNING constructs

the cumulative covariance used to construct the bonus to be used in phase p as the sum of two terms: 1) the covariance

estimate returned by S3Q-LEARNING in Line 6 of Algorithm 2 and 2) the increment obtained by S4Q-LEARNING between

Line 9 and Line 16 of Algorithm 2 . We can write:

Σ
(p)
h = λRegI +

n(1:p−1)∑

i=1

φihφ
>
ih

︸ ︷︷ ︸
S3 Q-LEARNING’s Covariance Estimate

+

n(p)∑

j=1

φjhφ
>
jh

︸ ︷︷ ︸
S4 Q-LEARNING’s increment

. (50)

For simplicity we have denoted with n(1:p−1) =
∑p−1

i=1 n(i); the first summation is over the feature vectors {φi} sampled by

S3Q-LEARNING and the second is over the feature vectors {φj} examined by S4Q-LEARNING. Notice that there exists a

setting λReg = Θ(log d
δ ) that allows us to use Proposition 1 (Concentration of Regularized Covariance) twice and claim

with probability at least 1− δ/2

Σ
(p)
h =

λReg

2
I +

n(1:p−1)∑

i=1

φihφ
>
ih +

λReg

2
I +

n(p)∑

j=1

φjhφ
>
jh

� 2λRegI + 2n(1:p−1)
Eφ∼Π(p−1)φhφ

>
h + 2n(p)

Eφ∼π(p)φhφ
>
h

= 2λRegI + 2n(1:p)
Eφ∼Π(p)φhφ

>
h

= 2Σ
(p)

h .

(We have indicated with φ ∼ π(p) the random feature sampled according to the policy mixture using the policy replay

memory). We conclude that under such event we must have

b
(p)
h (s, a) = α

(p)
h ‖φh(s, a)‖(Σ(p)

h
)−1 ≥ α

(p)
h ‖φh(s, a)‖(Σ(p)

h )−1 = U
(p)
h (s, a).

and under the same event

b
(p)
h (·, ·) = α

(p)
h ‖φh(·, ·)‖(Σ(p)

h
)−1 ≤ 2α

(p)
h ‖φh(·, ·)‖(Σ(p)

h )−1 = coU
(p)
h (·, ·). (51)

A union bound over all possible phases and rescaling δ concludes.

C.4. Proof of Lemma 7

When S3Q-LEARNING terminates, Theorem 3 ensures it returns a state-action value function Q̂? such that

Q̂?
h(s, a) =

(
T`Q̂?

h+1

)
(s, a) + Eh(s, a), and

min{0,
(
−U(p)

h + b
(p)
h

)
(s, a)} −∆

(p)
h (s, a) ≤ Eh(s, a),

where both relations hold uniformly over all state-action pairs (s, a). Conditioned on the event from Lemma 6, we have

−∆(p)
h (s, a) = min{0,−U(p)

h (s, a) + b
(p)
h (s, a)} −∆

(p)
h (s, a) ≤ Eh(s, a).

which implies that Eh(s, a) ≥ −∆(p)
h (s, a) for all state-action pairs and time steps h.

Using this bound, we now perform backwards induction over the timestep h in order to prove that

Q̂?
h+1(sh+1, ah+1) ≥ Q?

h+1(sh+1, ah+1)−
H∑

τ=h+1

E(s′τ ,a
′
τ )∼π?|(sh+1,ah+1)∆

(p)
h (s′τ , a

′
τ ), ∀(sh+1, ah+1) (52)

For the base case h = H , all action-value functions are zero, so that the bound (52) certainly holds.
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Now assume that the bound (52) holds at timestep h+ 1, for some h ∈ {1, . . . , H − 1}; we need to show that it also holds

at timestep h. Fix an arbitrary state-action pair (s, a). From our earlier lower bound, we have

Q̂?
h(s, a) =

(
ThQ̂?

h+1

)
(s, a) + Eh(s, a)

≥
(
T π?

h Q̂?
h+1

)
(s, a) + Eh(s, a)

(i)

≥
(
T π?

h Q?
h+1

)
(s, a) + Eh(s, a)−

H∑

τ=h+1

E(s′τ ,a
′
τ )∼π?|(s,a)∆

(p)
h (s′τ , a

′
τ )

≥
(
ThQ?

h+1

)
(s, a)−

H∑

τ=h

E(s′τ ,a
′
τ )∼π?|(s,a)∆

(p)
h (s′τ , a

′
τ ).

Here step (i) follows from the induction hypothesis. Thus, we have shown that the bound (52) holds at timestep h, which

completes our proof via induction.

C.5. Proof of Lemma 8

We now prove the elliptic potential bound stated in Lemma 8. Let φ
(j)
ih be the i experienced feature vector at level

h that S4Q-LEARNING uses to check the triggering condition in Line 16 during phase j. Since λReg ≥ 1 we have

‖φ‖
(Σ

(j)
h

)−1 ≤ 1, ∀‖φ‖2 ≤ 1. Thus, when the triggering condition holds, the condition itself is not violated by much:

Ltrig ≤
n(j)∑

i=1

‖φ(j)
ih ‖2(Σ(j)

h
)−1
≤

n(j)−1∑

i=1

‖φ(j)
ih ‖2(Σ(j)

h
)−1

︸ ︷︷ ︸
≤Ltrig

+ ‖φ(j)

n(j)h
‖2
(Σ

(j)
h

)−1

︸ ︷︷ ︸
≤1

≤ Ltrig + 1. (53)

Using Lemma 12 (Proportional Estimates) and Proposition 1 (Concentration of Regularized Covariance), we find that with

probability at least 1− δ

n(j)
E(Sh,Ah)∼π(j)‖φh(sh, ah)‖2

(Σ
(j)
h )−1

≤ 4n(j)
E(Sh,Ah)∼π(j)‖φh(sh, ah)‖2(Σ(j)

h
)−1

≤ 8

n(j)∑

i=1

‖φ(j)
ih ‖2(Σ(j)

h
)−1
≤ 8 (Ltrig + 1) .

Now recall that

Σ
(j+1)

h = Σ
(j)

h + n(j)
E(Sh,Ah)∼π(j)φh(sh, ah)φh(sh, ah)

>.

Since (Ltrig + 1) ≥ e− 1, we can invoke Lemma 11 (Information gain bounds) so as to ensure that

n(j)
E(Sh,Ah)∼π(p)‖φh(sh, ah)‖2

(Σ
(j)

)−1
≤ 8 (Ltrig + 1) log

det
(
Σ

(j+1)

h

)

det
(
Σ

(j)

h

) .

Summing over the phases and cancelling terms in the telescopic sum yields

p∑

j=1

n(j)
E(Sh,Ah)∼π(j)‖φh(sh, ah)‖2

(Σ
(j)
h )−1

≤ 8 (Ltrig + 1) log
det
(
Σ

(p+1)

h

)

det
(
Σ

(1)

h

)

≤ 8 (Ltrig + 1) d̃h.

A union bound over all possible phases concludes.
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C.6. Proof of Lemma 9 (Number of Phases)

For invertible matrices A and B, note that A � B implies that A−1 � B−1, and moreover, we have the equivalence

A � B ⇐⇒ x>Ax ≤ x>Bx for all x ∈ R
d. We now combine Lemma 12 with Proposition 1 so as to argue that Algorithm 2

makes sufficient progress. In particular, consider each time that Line 16 of Algorithm 2 triggers a new phase at level h. Then

with probability at least 1− δ, we must have

n(p)
E(Sh,Ah)∼π(p)‖φh(sh, ah)‖2

(Σ
(p)
h )−1

≥ 1

4
n(p)

E(Sh,Ah)∼π(p)‖φh(sh, ah)‖2(Σ(p)
h

)−1

≥ 1

8

n(p)∑

i=1

‖φ(p)
ih ‖2(Σ(p)

h
)−1

≥ 1

8
Ltrig.

When this bound holds and the the triggering condition is satisfied at level h in phase p, then the information ratio must

increase by a constant fraction: more precisely, Lemma 11 guarantees that

det(Σ
(p+1)

h )

detΣ
(p)

h

=
det
(
Σ

(p)

h + n(p)
E(Sh,Ah)∼π(p)φh(sh, ah)φh(sh, ah)

>
)

detΣ
(p)

h

≥ 1 + n(p)
E(Sh,Ah)∼π(p)‖φh(sh, ah)‖2

(Σ
(p)
h )−1

≥ 1 +
1

8
LTrigger(δphase).

By induction, in phase p we must have (notice that we are ignoring the additional contribution that arises when level h is not

the one that triggers a new phase)

detΣ
(p+1)

h

detΣ
(1)

h

≥
(
1 +

1

8
Ltrig

)s
(p)
h

(54)

where s
(p)
h is the number of switches up to phase p that were triggered at level h. Taking log gives

s
(p)
h ≤

log
detΣ

(p+1)
h

detΣ
(1)
h

log
(
1 + 1

3Ltrig

) . (55)

Recalling the total number of switches across levels equals the total number of phases, i.e.,
∑H

h=1 s
(p)
h = ptot, together with

the relevant union bound over phases concludes.

D. Auxiliary results

In this appendix, we collect together various auxiliary results that we use in our main argument, along with their proofs.

D.1. Information Gain

Lemma 10 (Upper Bound on Information Gain).

log

(
detΣ

(ptot+1)

h

detΣ
(1)

h

)
≤ d̃h ≤ d log

K

dλReg

. (56)

We must now bound the determinant of Σ
(ptot)

h to compute the maximum number of phases; we proceed in a way similar to

Lemma 10 of (Abbasi-Yadkori et al., 2011), the only difference being that the increments are not rank one. Let α1, . . . , αd
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be the eigenvalues of Σ
(ptot)

h . We must have

det
(
Σ

(ptot)

h

)
=
∏

i

αi ≤
(∑

i αi

d

)d

=

(
TrΣ

(ptot)

h

d

)d

. (57)

We can upper bound the trace as follows:

Tr
(
Σ

(ptot)

h

)
=

ptot∑

p=1

Tr
(
n(p)M

(p)

h

)
=

ptot∑

p=1

n(p) Tr
(
E(Sh,Ah)∼π(p)φh(sh, ah)φh(sh, ah)

>)

=

ptot∑

p=1

n(p)
E(Sh,Ah)∼π(p) Tr

(
φh(sh, ah)φh(sh, ah)

>)

≤
ptot∑

p=1

n(p)

≤ K.

Combining with the prior displays and recalling that Σ
(0)

h = λRegI yields the claim.

D.2. Bounds on the information gain

Lemma 11 (Information gain bounds). For any random vector φ ∈ R
d, scalar α > 0 and positive definite matrix Σ, we

have the upper bound

log
det(Σ + αE[φφ>])

detΣ
≤ αE‖φ‖2Σ−1 . (58a)

Moreover, we have the lower bounds

log
det(Σ + αE[φφ>])

det(Σ)
≥ log

(
1 + αE‖φ‖2Σ−1

) (i)

≥ α

L
E‖φ‖2Σ−1 , (58b)

where (i) holds whenever αE‖φ‖2Σ−1 ≤ L for some L ≥ e− 1,

Proof. We first begin with equivalent expression for the determinant ratio. Letting λj(M) denote the jth-ordered eigenvalue

of a matrix M , we have

det(Σ + αEφφ>)

detΣ
= det(I + αΣ− 1

2E[φφ>]Σ− 1
2 ) =

d∏

j=1

λj

(
I + αΣ− 1

2Eφφ>Σ− 1
2

)

=

d∏

j=1

(
1 + αλj

(
Σ− 1

2Eφφ>Σ− 1
2

))
. (59)

Proof of the upper bound (58a): Taking logarithms in equation (59) and using the elementary bound log(1 + t) ≤ t, valid

for t ≥ 0, we have

log
(det(Σ + αEφφ>)

detΣ

)
=

d∑

j=1

log
(
1 + αλj

(
Σ− 1

2Eφφ>Σ− 1
2

))
≤

d∑

j=1

{
αλj

(
Σ− 1

2Eφφ>Σ− 1
2

)}

(i)
= αTr

(
Σ− 1

2Eφφ>Σ− 1
2

)

(ii)
= αE‖φ‖2Σ−1 ,

where step (i) follows since the trace is equal to the sum of the eigenvalues, and step (ii) follows from cyclic properties of

the trace operator, and some algebra.
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Proof of the lower bound (58b): In order to prove the lower bound, we again begin with equation (59). Notice that

the eigenvalues are all non-negative since the matrix Σ− 1
2E[φφ>]Σ− 1

2 is positive semidefinite. Thus, we can ignore the

higher-order terms in the product so as to obtain the lower bound

det(Σ + αEφφ>)

detΣ
≥ 1 + α

d∑

j=1

λj

(
Σ− 1

2Eφφ>Σ− 1
2

)
= 1 + αE‖φ‖2Σ−1 , (60a)

where the final equality follows by the same sequence of calculations as in step (ii) above.

In order to complete the proof, observe that f(x) = log(1+x) is a concave function. Thus, for any a ≥ e−1 and x ∈ [0, a],
we can set λ = x

a ∈ [0, 1], and write

log(1 + x) = f(x) = f
(
λa+ (1− λ)0

) (iii)

≥ λf(a) + (1− λ)f(0) = λf(a)
(iv)

≥ λ = x
a , (60b)

where step (iii) follows from Jensen’s inequality; and step (iv) is valid for any a ≥ e− 1.

Finally, taking logarithms in inequality (60a) and applying the lower bound (60b) yields

log
det(Σ + αEφφ>)

detΣ
≥ log

(
1 + αE‖φ‖2Σ−1

)
≥ α

L
E‖φ‖2Σ−1 ,

as claimed.

D.3. Proportional estimates under the triggering condition

Suppose that the triggering condition holds, so that we have the lower bound

n∑

i=1

Zi ≥ 32ϕ√
n

(
δ

2n2

)
+ 8ϕn

(
δ

2n2

)
def
= LTrigger(δ). (61)

The following lemma shows that under this condition, the sample average Ŝn
def
= 1

n

∑n
i=1 Zi is close to the expectation

E[Z].

Lemma 12 (Proportional Estimates). Under the triggering condition (61), for any δ ∈ (0, 1), we have the sandwich result

1
2 Ŝn ≤ E[Z] ≤ 3

2 Ŝn with prob. at least 1− δ. (62)

In order to prove this claim, we first show that for any fixed n at which the triggering conditioning holds, the sandwich

bound (62) holds with probability at least 1− δ′, where δ′ = δ
2n2 . We can then take a union bound over all n = 1, 2, . . . to

conclude that for any n, sandwich bound (62) holds with probability at least 1−∑∞
n=1

δ
2n2 ≥ 1− δ, as required.

Thus, for the remainder of the proof, we study the problem for a fixed sample size n. Our proof is based two auxiliary results.

First, for i.i.d. random variables {Zi}ni=1 taking values in [0, 1], the sample average Ŝn satisfies the following empirical

Bernstein bound: for any δ ∈ (0, 1),

P

[
∣∣Ŝn − E[Z]

∣∣ ≤
√

ϕ√
n(δ)V̂arZ

n + ϕn(δ)
n−1

]
≥ 1− δ (63)

where ϕ√
n (δ) = 2 log( 4δ ); ϕn (δ) =

7
3 log(

4
δ ), and

V̂arZ =
1

n(n− 1)

∑

1≤i<j≤n

(Zi − Zj)
2

is the empirical variance. This claim is a consequence of two applications of the empirical Bernstein bound from the

paper (Maurer & Pontil, 2009), as applied to the random variables Z and then 1− Z, followed by a union bound to obtain

the two-sided claim give here.
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Next, we observe that the sample variance can be upper bounded as

V̂arZ
def
=

1

n− 1

(
n∑

i=1

Z2
i −

n∑

i=1

Zi

)
≤ 1

n− 1

n∑

i=1

Z2
i ≤

1

n− 1

n∑

i=1

Zi ≤ n
n−1 ≤ 2, (64)

using the fact that each Zi ∈ [0, 1].

Now combining the empirical Bernstein bound (63) with the variance bound (64), we find that

∣∣Ŝn − E[Z]
∣∣ ≤ 1

n

{√
2Ŝnϕ√

n (δ
′) + 2ϕn (δ

′)
}

with prob. at least 1− δ′. (65)

The triggering condition (61) ensures that nŜn ≥ 32ϕ√
n (δ

′) + 8ϕn (δ
′), whence 1

nϕ
√
n (δ) ≤ Ŝn

32 and 1
nϕn (δ) ≤ Ŝn

8 .

Putting together the pieces, we find that

|Ŝn − E[Z]| ≤ 1
n

{√
2Ŝnϕ√

n (δ) + 2ϕn (δ)
}
≤

√
(Ŝn)2

16
+

Ŝn

4
=

Ŝn

2

with probability at least 1− δ′. Re-arranging shows that we have the sandwich relation 1
2 Ŝn ≤ E[Z] ≤ 3

2 Ŝn with probability

1− δ′, as claimed.

D.4. Non-Isotropic Proportional Estimates of the Empirical Covariance

An important step in the analysis is ensuring that the empirical covariance matrices computed by the algorithm are sufficiently

close to their (conditional) expectations. In this section, we discuss how to use matrix Chernoff techniques to establish the

requisite bounds.

Let {Zk}nk=1 be a sequence of independent, symmetric and positive definite random matrices of dimension d. d. Suppose

that

0 ≤ λmin(Zk), λmax(Zk) ≤ LZ , for all k = 1, . . . ,K. (66)

The following result provides bounds on the sum W =
∑K

k=1 Zk.

Proposition 1 (Concentration of Regularized Covariance). Under the above conditions, for any δ ∈ (0, 1) and λ ≥
2LZ

log 2d
δ

log 36
35

, we have

1

2
(W + λI) � EW + λI � 3

2
(W + λI) . (67)

with probability at least 1− δ.

Proof. In fact, we establish a somewhat more general claim: namely, for any ε > 0 and λ > 0, we have

P

( 1

1 + ε
(W + λI) � EW + λI � 1

1− ε
(W + λI)

)
≥ 1− 2d

(
1− ε2

4

) λ

LZ+ λ
K

. (68)

In order to recover the stated claim (67) we fix ε = 1
3 . On one hand, if LZ ≤ 1

2
λ
K , then we have the (deterministic) sandwich

relations

0 �W � 1
2λI, and 0 � EW � 1

2λI

so that the bound (67) holds deterministically. On the other hand, if LZ ≥ 1
2

λ
K , then the claim follows by choosing

λ ≥ 2LZ
log( 2d

δ
)

log( 36
35 )

.

In order to prove the bound (68), we make use of the following matrix Chernoff inequality:
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Lemma 13 (Matrix Chernoff). Consider the sum Y =
∑K

k=1 Xk of a sequence {Xk}k≥1 of independent, symmetric PSD

matrices whose eigenvalues all lie in the interval [0, L], and suppose that E[Y ] = I . Then we have

(1− ε)I � Y � (1 + ε)I (69)

with probability at least 1− 2d
(
1− ε2

4

) 1
L

for all ε ∈ (0, 1).

This claim follows by applying Theorem 5.1.1 from Tropp (Tropp, 2015) twice, for the upper and lower tail respectively,

combined with the inequalities

e−ε

(1− ε)1−ε
≤ 1− ε2

4
, and

eε

(1 + ε)1+ε
≤ 1− ε2

4
, valid for any ε ∈ [0, 1),

along with the fact that a ≤ b implies that ax ≤ bx for all strictly positive scalars a, b, x.

Using Lemma 13, we can now prove the bound (68). We define “regularized” versions of Zk and W via X ′
k

def
= Zk + λ

K I

and Y ′ def
=
∑K

k=1 X
′
k. By definition, we have

Y ′ =
K∑

k=1

(
Zk +

λ

K
I

)
= W + λI and EY ′ = EW + λI. (70)

Thus, in order to prove the claim, it suffices to establish a high probability bound on the event

E def
=
{
(1− ε)Y ′ � EY ′ � (1 + ε)Y ′

}
. (71)

Since λmin(EY
′) ≥ λ, the matrix EY ′ is strictly positive definite, and the matrix (EY ′)−

1
2 exists. We use it to define the

new matrices

Xk
def
= (EY ′)

− 1
2 X ′

k (EY
′)
− 1

2 , and (72)

Y
def
=

K∑

k=1

Xk = (EY ′)
− 1

2

(
K∑

k=1

X ′
k

)
(EY ′)

− 1
2 = (EY ′)

− 1
2 (Y ′) (EY ′)

− 1
2 .

Note that we have E[Y ] = I by construction, so that the matrix Chernoff bound (69) can be applied. We observe that

λmax(Xk) = ‖Xk‖2 ≤ ‖ (EY ′)
− 1

2 X ′
k (EY

′)
− 1

2 ‖2 ≤ ‖ (EY ′)
− 1

2 ‖2‖X ′
k‖2‖ (EY ′)

− 1
2 ‖2 ≤

1

λ

(
LZ +

λ

K

)
def
= L.

Applying the bound (69) yields

(1− ε)I � Y � (1 + ε)I.

with the stated probability. Finally, we can pre- and post-multiply by (EY ′)
1
2 and then use Eq. (72) so as to obtain

(1− ε)EY ′ � (EY ′)
1
2Y (EY ′)

1
2 = Y ′ � (1 + ε)EY ′.

Recalling the definition (70) of Y ′, we see that this sandwich is equivalent to the stated claim (67).

D.5. Concentration of Log Determinants

In this section, we prove the following claim:

Lemma 14 (Concentration of Log Determinants). Let {xi} be i.i.d. vector random variables from some distribution such

that ‖xi‖2 ≤ 1. If λ & log(dnδ ) ≥ 1 and G1 � λI then with probability at least 1− δ jointly for all n = 1, 2, . . . it holds

that

1

4
log

det(G1 + nExx>)

detG1
− (8
√
2 + 4) log

8n2

δ
≤ log

det
(
G1 +

∑n
i=1 xix

>
i

)

detG1
≤ 8 log

det(G1 + nExx>)

detG1
+ 8 log

8n2

δ
.
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Let us now prove it. Let Gi = G1 +
∑i−1

j=1 xjx
>
j . Using Lemma 11 in (Abbasi-Yadkori et al., 2011) we can write

1

2

n∑

i=1

‖xi‖2G−1
i

≤ log
det
(
G0 +

∑n
i=1 xix

>
i

)

detG0
≤

n∑

i=1

‖xi‖2G−1
i

.

Thus, we will now focus on bounding the sums of the quadratic functions. Proposition 1 together with a double union bound

over n ensures that if λ & log(dnδ ) then for all n with probability at least 1− δ/2, we have

n∑

i=1

‖xi‖2G−1
i

=

n∑

i=1

xiG
−1
i xi ≤ 2xi

(
G1 + E

i−1∑

j=1

xjx
>
j

)−1

xi

= 2xi

(
G1 + (i− 1)Exx>
︸ ︷︷ ︸

=EGi

)−1

xi = 2‖xi‖2(EGi)−1 .

Similarly, under the same event specified by Proposition 1, we have

n∑

i=1

‖xi‖2G−1
i

=

n∑

i=1

xiG
−1
i xi ≥

1

2
xi

(
G1 + E

i−1∑

j=1

xjx
>
j

)−1

xi

=
1

2
xi

(
G1 + (i− 1)Exx>
︸ ︷︷ ︸

=EGi

)−1

xi =
1

2
‖xi‖2(EGi)−1 .

Now consider the random variable Xi = ‖xi‖2(EGi)−1 − E‖xi‖2(EGi)−1 . Since EGi � I , we have

EX2
i ≤ E‖xi‖4(EGi)−1 ≤ E‖xi‖2(EGi)−1 ≤ 1.

Applying a Bernstein martingale inequality (cf. Theorem 1 from the paper (Beygelzimer et al., 2011)) and combining with

the union bound yields

∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ ≤ 2

√√√√
(

n∑

i=1

E‖xi‖2(EGi)−1

)
log( 8n

2

δ ) + 2 log( 8n
2

δ )

with probability at least 1− δ/2.

It remains to bound the sum of the predictable expectations under square root. Coupling Lemma 11 (Information gain

bounds) with Lemma 11 (Information gain bounds) under the conditions α = 1, L = 2 > e− 1 we obtain

log
det(EGi + Exix

>
i )

detEGi
≤ E‖xi‖2(EGi)−1 ≤ 2 log

det(EGi + Exix
>
i )

detEGi
. (73)

Summing over i ∈ [n], recalling EGi+1 = EGi + Exix
>
i and cancelling the terms in the telescoping sum gives

log
detEGn+1

detG1
≤

n∑

i=1

E‖xi‖2(EGi)−1 ≤ 2 log
detEGn+1

detG1
.

We are now ready to show the upper bound. Removing the absolute value, using Eq. (73) to bound the quadratic sum one

obtains with probability 1− δ

n∑

i=1

‖xi‖2G−1
i

≤ 4 log
det(EGn+1)

detG1
+ 4

√
2 log

det(EGn+1)

detG1
log

8n2

δ
+ 4 log

8n2

δ

≤ 8 log
det(EGn+1)

detG1
+ 8 log

8n2

δ
.
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The last inequality follows from completing the square and using Cauchy-Schwartz to simplify the statement.

We show the lower bound on the similar fashion. By lifting the absolute value one obtains with probability at least 1− δ

n∑

i=1

‖xi‖2G−1
i

≥ 1

2
log

det(EGn+1)

detG1
− 4

√
2 log

det(EGn+1)

detG1
log

8n2

δ
− 4 log

8n2

δ

≥ 1

4
log

det(EGn+1)

detG1
− (8
√
2 + 4) log

8n2

δ
.

D.6. Constrained Loss Lemmas

In this section, let E denote the expectation operator for a pair (X,Y ) ∼ µ, where x ∈ R
d and y ∈ R. Assume that the

second moment matrix E[XX>] is strictly positive definite. Define the loss function L(θ) = E(
〈
X, θ

〉
− Y )2, along with

the unconstrained minimizer θ?
def
= argminθ∈Rd L(θ). Our first result gives an equivalent expression for the excess loss

L(θ)− L(θ?).
Lemma 15 (Excess Loss). The excess loss can be written as

L(θ)− L(θ?) = ‖θ − θ?‖2
E[XX>]. (74)

Proof. Since the loss is a strongly convex quadratic function, the minimizer must satisfy the zero-gradient condition

0 = 1
2∇θL(θ?) = E[X(

〈
X, θ

〉
− Y )]

∣∣
θ=θ? =⇒ E[XX>]θ? = E[XY ]. (75)

We now use this relation to establish the claim. We have

L(θ)− L(θ?) = E(
〈
X, θ

〉
− Y )2 − E(

〈
X, θ?

〉
− Y )2

= E

[
(
〈
X, θ

〉
− Y )− (

〈
X, θ?

〉
− Y )

][
(
〈
X, θ

〉
− Y ) + (

〈
X, θ?

〉
− Y )

]

= E

[
(θ − θ?)>X

][
X>(θ − θ?)− Y + 2

〈
X, θ?

〉
− Y

]

=
[
(θ − θ?)>(EXX>)(θ − θ?)

]
+ 2E

[
(θ − θ?)>

(
XX>θ? −XY

) ]

= ‖θ − θ?‖2
EXX> + 2(θ − θ?)>

[
E(XX>)θ? − E[XY ]

]

︸ ︷︷ ︸
=0 by Eq. (75)

.

Lemma 16 (Excess Risk with Regularization). For a fixed λ > 0, define

L(w) = 1
2E(X,Y )

(〈
X, w

〉
− Y

)2
, and w? ∈ argmin

‖w‖2≤B

L(w).

Then for any scalar M > 0, we have

‖w − w?‖2(MEX [XX>]+λI) ≤ 2M
(
L(w)− L(w?)

)
+ λ‖w − w?‖22. (76)

Proof. We adopt the shorthand E for E(X,Y ). We can write (two times) the excess risk as

2
[
L(w)− L(w?)

]
= E

(〈
X, w

〉
− y
)2 − E

(〈
X, w

〉? − y
)2

= E

[ (〈
X, w

〉
− y
)
−
(〈

X, w
〉? − Y

) ][〈
X, w

〉
− Y +

〈
X, w

〉? − Y
]

= E

[
X> (w − w?)

][〈
X, w

〉
− Y +

〈
X, w

〉? − y
]

= E

[
X> (w − w?)

][
X>(w − w?) +

〈
X, w

〉? − y +
〈
X, w?

〉
− Y

]

= (w − w?)
>
E
(
XX>) (w − w?) + 2E

[
x> (w − w?)

][〈
X, w?

〉
− Y

]
. (77)
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The optimality condition for w? reads

E

[(〈
X, w?

〉
− Y

)
X>
]
(w − w?) ≥ 0 for any feasible w.

Applying this inequality to equation (77) yields

2
[
L(w)− L(w?)

]
≥ (w − w?)

>
E
(
XX>) (w − w?)

= (w − w?)
>
[
EXX> +

λ

M
I
]
(w − w?)− λ

M
‖w − w?‖22,

as claimed.


