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Abstract

Actor-critic methods are widely used in offline reinforcement learning practice but
are understudied theoretically. In this work we show that the pessimism principle
can be naturally incorporated into actor-critic formulations. We create an offline
actor-critic algorithm for a linear MDP model more general than the low-rank
model. The procedure is both minimax optimal and computationally tractable.

1 Introduction

The problem of learning a near-optimal policy is a core challenge in reinforcement learning (RL).
In many settings, it is desired to estimate a good policy using only a pre-collected set of data, and
without the possibility of further interaction with the environment; this problem is known as of-
fline policy learning. The offline setting has unique challenges due to the incomplete information
about the Markov decision process (MDP) encoded in the available dataset. For example, due to
the maximization bias, a naive offline algorithm can settle for a policy with a dangerously high esti-
mated value even if such value is highly uncertain. In order to avoid this phenomenon, researchers
have introduced the idea of pessimism [Liu et al., 2020, Jin et al., 2020b, Buckman et al., 2020,
Kumar et al., 2019, Kidambi et al., 2020, Yu et al., 2020]; see Appendix A for additional discussion
of the related literature.

Incorporating pessimism prevents algorithms from settling down on uncertain policies whose value
might be misleadingly high under the current dataset due to statistical errors. By using pessimism,
uncertain policies are penalized and only those robust to statistical errors are returned. The principle
can be implemented in at least two different ways: (a) by penalizing policies that are far from the
one that generated the dataset; or (b) by penalizing the value functions of policies not well covered
by the dataset. In this work, we take the latter avenue.
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Challenges: Implementing pessimism with function approximation is challenging for several rea-
sons. First, uncertainty must be estimated with particular care, because underestimating it may not
lead to an effective algorithm and overestimating it leads to policies that are too conservative and
thus underperform. Second, the incorporation of pessimism may introduce complex, higher order
perturbations into the value function class handled by the algorithm; this phenomenon is similar
to adding optimistic bonuses in the exploration . I This increased complexity of the function class
often requires additional assumptions on the model, because the new class needs to interact “nicely”
with the Bellman operator. Prior art on pessimism with function approximation has bypassed this
problem by making strong model assumptions, such as low-rank transitions [Jin et al., 2020b] or
algorithm-specific assumptions [Liu et al., 2020].

Actor-critic methods: Most past theoretical work has focused on algorithms that are either
model or value-based [Liu et al., 2020, Jin et al., 2020b, Buckman et al., 2020, Kidambi et al., 2020,
Yu et al., 2020]; howevever, in practice, actor-critic methods are widely used [Levine et al., 2020,
Wu et al., 2019, Wu et al., 2021, Kumar et al., 2019, Kumar et al., 2020]. An actor-critic method
generally consists of an actor that changes the policy in order to maximize its value as estimated by
the critic. Given their popularity, it is natural to ask the following question: do actor-critic methods
provably offer any advantage in offline RL? The main contribution of this paper is to give a positive
answer to this question: by separating the policy optimization from the policy evaluation, both tasks
become simpler to design and the pessimism principle can be incorporated more naturally.

Contributions: In this paper, we focus on the problem using linear function approximation, and
assume that we are given a batch dataset D of states, actions, rewards and successor states. Using
D we can construct the set M of statistically plausible MDPs, i.e., a set that contains with high
probability the MDP that generated the available dataset.

Our objective is then to find the policy that performs the best in the face of uncertainty. For a
statistically plausible MDP M ∈ M and a policy π, let V πM (s1) be the value function of π on M at
the initial state s1. With high probability, infM∈M V πM (s1) is a lower bound on the value of π from
s1 on the ‘real’ MDP that generated the dataset. Thus, the policy with the highest high probability
lower bound on its performance is simply

sup
π

inf
M∈M

V πM (s1). (1)

Actor-critic methods fit naturally in this framework: the actor solves the outer maximization prob-
lem over policies which are evaluated in the inner minimization problem by a pessimistic critic.
This way, each algorithm solves a simple task: 1) the critic provides a pessimistic value function es-
timate for a fixed policy (the one currently examined by the actor) while 2) the actor ensures online
learning-style guarantees with respect to a sequence of pessimistic MDPs implicitly identified by
the critic. This is the first algorithmic idea and leads to a computationally tractable implementation.

The second algorithmic idea is to introduce pessimism without altering the prescribed function class
(see e.g., [Zanette et al., 2020b]). This is achieved by perturbing the value function (in the critic)
within its prescribed functional space without adding pessimistic bonuses or absorbing states. This
has two core advantages. First, there are no additional model assumptions compared to the vanilla
(i.e., without pessimism) version of our actor-critic method; this is because the original value func-
tion class is not modified by the injection of pessimism. Second, the algorithm operates on value
functions with the original statistical complexity, enabling the construction of tight confidence inter-
vals and ultimately minimax statistical rates.

Notation: We let Bd(r) = {x ∈ Rd | ‖x‖2 ≤ r} denote the Euclidean ball of radius r ∈ R
in dimension d; we simply write B when there is no possibility of confusion. We use the standard
O (or Ω) notation to denote an upper (or lower) bound that holds up to a universal constant.in the
upper and We use the Õ to denote an upper bound that holds up to constants and log factors in the
input parameters ( 1

δ , d,H, λ). The notation . means ≤ up to a constant while /,≈,',� are used
to highlight dominant terms in the proof sketch without rigorous mathematical definitions. For a
vector x ∈ Rd we let [x]i denote its i component.
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2 Background

We begin by providing some background on the undiscounted finite-horizon Markov decision pro-
cesses that we study in this paper; see the book [Puterman, 1994] for more detail. A finite-horizon
MDP is specified by a positive integer H , corresponding to the number of stages. The underlying
dynamics involve a state-space S, and are controlled by actions taking place in an action set A.
For every h ∈ [H] = {1, . . . ,H}, there is a reward function rh : S × A →, and for every h and
state-action pair (s, a), there is a transition function Ph(· | s, a). When at horizon h, if the agent
takes action a in state s, it receives a random reward drawn from some distribution Rh(s, a) with
mean rh(s, a), and it then transitions randomly to a next state s+ drawn from the transition kernel
Ph(· | s, a).

For any triple (s, a, h) ∈ S ×A× [H], a non-stationary policy π = (π1, . . . , πH) is defined as

Qπh(s, a) = rh(s, a) + Es`∼π|(s,a)

H∑
`=h+1

r`(s`, π`(s`)), (2)

where the expectation is over the trajectories induced by π upon starting from the pair (s, a).
When we omit the starting state-action pair (s, a), the expectation is intended to start from a
fixed state denoted by s1. The value function associated to π is V πh (s) = Qπh(s, πh(s)). Under
some regularity conditions, e.g., [Shreve and Bertsekas, 1978], there always exists an optimal pol-
icy π? whose value and action-value functions are defined as V ?h (s) = V π

?

h (s) = supπ V
π
h (s) and

Q?h(s, a) = Qπ
?

h (s, a) = supπ Q
π
h(s, a). We define the Bellman evaluation operator

T πh (Qh+1)(s, a) = rh(s, a) + Es′∼Ph(s,a)EA′∼πQh+1(s′, a′)

2.1 Assumptions on data generation

In this paper, we study a model in which we receive Nh samples for every timestep, not nec-
essarily from trajectories. Each sample consists of a state, an action, a reward and a next
state. For the i sample, we let hi be the horizon of the state-action and let ni be the to-
tal number of samples collected at level hi, including sample i. We are given a dataset D =

{(shini , ahini , rhini , s+
hini

)}i=1,2,...,
∑H
h=1Nh

of
∑H
h=1Nh state-action-reward-next states gener-

ated by the underlying MDP, possibly in an adaptive fashion.

Assumption 1 (Data Generation). Assume that for every sample i in D, conditioned on
(shini , ahini), the random reward is drawn from a distribution Rh(shini , ahini) with mean
rh(shini , ahini) that is 1-sub-Gaussian. The dataset D is such that

rhini ∼ R(shini , ahini), s+
hini
∼ Ph(shini , ahini) (3)

where each pair (shini , ahini) is allowed to depend on all previously sampled quadruples
(shjnj , ahjnj , rhjnj , s

+
hjnj

) for j < i.

This allows considerable freedom: (a) the dataset may be generated from (mixture) policies or
by another mechanism that collects information at different state-actions; and (b) the dataset may
be generated by an adversarial procedure that changes the data acquisition strategy as feedback is
received.

2.2 Policy and Value Function Class

Next, we define the policy space Π and the action value function space Q where we seek solu-
tions. For a fixed timestep h (which we omit here for brevity), consider a fixed feature extractor
φ : S ×A 7→ Rd, ‖φ(·, ·)‖2 ≤ 1 and two radii, rw ∈ (0, 1], rθ > 0 for the value function parameter
w and for the policy parameter θ.

Definition 1 (Functional Spaces).

Q(ρw) = {(s, a) 7→ 〈φ(s, a), w〉 | ‖w‖2 ≤ ρw}, Πsoft(ρ
θ)

def
=

{
exp[〈φ(s, a), θ〉]∑
a′ exp[〈φ(s, a′), θ〉]

| ‖θ‖2 ≤ ρθ
}
.
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Algorithmically, the actor starts from ρθ1 = 0 (i.e., θ1 = 0) and implicitly enlarges ρθk in the k
iteration by using the update rule in Line 5 of Algorithm 1. The policy radius can be large ρθ � 1
but we constrain ρw ≤ 1 so that the critic’s estimate Qw(s, a) = 〈φ(s, a), w〉 is bounded by one,
i.e., sup(s,a,w) |Qw(s, a)| ≤ 1. In finite horizon problems one can select different feature extractors
φh in every step h; this generates H functional spaces Q1, . . . ,QH and Π1, . . . ,ΠH . We drop
the dependence on the radii when referring to the functional spaces and implicitly assume that the
terminal value function is zero.

2.3 Assumptions on Function Class

If we seek to find the policy π ∈ Π with the highest value function, it seems reasonable to require
that the following representation condition (approximately) holds. We assume a common feature
extractor φ : S ×A, ‖φ(·, ·)‖2 ≤ 1 throughout this section.
Assumption 2 (Linear Qπ). We say the MDP admits a linear action-value function representation
for all policies in Π if Qπ is linear, i.e., for for each policy π ∈ Π and h ∈ [H], there exists a vector
wπh such that Qπh(s, a) = 〈φh(s, a), wπh〉.

Unfortunately, [Zanette, 2020] establishes that even under such assumption, we might need expo-
nentially many samples to do better than a random policy (see also [Weisz et al., 2020] for a weaker
statement using only realizability). This suggests we need even stronger conditions. One such con-
dition is the assumption we make in this work, which allows a classical temporal-difference critic to
evaluate the policies in Π.
Assumption 3 (Restricted Closedness). The policy and value function spaces (Π,Q) are closed up
to ν ∈ RH error in the sup-norm if there is a sequence {νh}Hh=1 such that for each h ∈ [H], we
have

sup
Qh+1∈Qh+1

πh+1∈Πh+1

inf
Qh∈Qh

‖Qh − T
πh+1

h Qh+1‖∞ ≤ νh. (4)

The restricted closedness assumption measures how well we can fit the action-value function result-
ing from the application of the Bellman evaluation operator to an action value function in Q and
for a policy in Π. It enables the analysis of the classical Least Square Policy Evaluation (LSPE)
[Nedić and Bertsekas, 2003], which will be our starting point when constructing the critic.

A related model assumption is the low-rank or linear MDP model [Jin et al., 2020a,
Yang and Wang, 2020] used by the state of the art for offline RL with pessimismistic guarantees
[Jin et al., 2020b] and much of the online RL literature [Agarwal et al., 2020a, Modi et al., 2021,
Zanette et al., 2020a].
Assumption 4 (Low-Rank MDP). We say that an MDP is low-rank if ∀h ∈ [H] there exist a
reward parameter wRh ∈ Rdh and a component-wise positive mapping ψh : S → Rd+ such that
‖ψh(s)‖1 = 1 for all s ∈ S and

rh(s, a) =
〈
φh(s, a), wRh

〉
, Ph(s′ | s, a) = 〈φh(s, a), ψh(s′)〉 , ∀(s, a, h, s′). (5)

We clarify the relation between these assumptions in the following proposition where we assume
that the value function parameter w ∈ Rd for simplicity; the proof is deferred to Appendix B.
Proposition 1 (Low Rank⊂ Restricted Closedness⊂ Linear Qπ). For any fixed state-action space,
horizon, and feature extractor:

(a) The class of low-rank MDPs is a strict subset of the class of MDPs such that restricted
closedness holds

(b) The class of MDPs such that restricted closedness holds is a subset of the MDP class where
the linear Qπ assumption holds.

Furthermore, all inclusions are strict.

Operating under assumptions stronger than linear Qπ enables polynomial sample complexity. Our
algorithm can successfully operate in the low-rank framework as a special case.
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3 Intuition and Algorithmic Choices

We next describe in detail the algorithm PACLE (Pessimistic Actor Critic for Learning without Ex-
ploration). It consists of an actor (Algorithm 1) and a critic (Algorithm 2).

Algorithm 1 ACTOR (MIRROR DESCENT)
1: Input: Dataset D, starting state s1

2: Set θ1 = (~0, . . . ,~0)
3: for t = 1, 2, . . . , T do
4: wt ← CRITIC(D, πθt , s1)
5: θt+1 = θt + ηwt
6: end for
7: Mixture policy πθ1 , . . . , πθT

Algorithm 2 CRITIC (PLSPE)
1: Input: Dataset D, target policy π, start-

ing state s1

2: Solve the optimization program (9)
3: Return w

The Critic: Pessimistic Least Square Policy Evaluation The purpose of the critic is to provide
pessimistic value function estimates corresponding to the policy π under consideration by the actor.
Monte Carlo with importance sampling is not appropriate here, as the policy or distribution that
generated the dataset might be unknown. This suggests we use a temporal difference method like
LSPE, perturbed to return pessimistic value function estimates (Algorithm 2); we name this PLSPE.

Our method is based on directly perturbing the regression parameters in the least-square estimate.
In contrast to bonus-based approaches, this method has the important advantage of ensuring that the
action-value function remains linear. The purpose of the perturbations is to compensate for possible
statistical errors in estimating the regression parameter due to poor coverage of the given dataset.

Overall, given a policy π = (π1, . . . , πH), the goal of the critic is to minimize the quantity

EA′∼π1
〈φ(s1, a), w1〉 =

∑
a∈A

π1(a | s1) 〈φ1(s1, a), w1〉 , (6)

which is an estimate of the value function V π(s1) for the policy π at the initial state s1. The
parameter w1 ∈ Rd is a vector to be adjusted, one that is determined by a backwards-running
sequence of regression problems from h = H down to h = 1.

We introduce the pessimistic perturbations directly to the solution of these regression problems.
They involve a norm defined by the cumulative covariance matrix. For each h ∈ [H] and nh ∈ [Nh],
we introduce the shorthand notation φhn = φh(shn, ahn), and define the cumulative covariance
matrix

Σh
def
=

Nh∑
n=1

φhnφ
>
hn + λI for each h ∈ [H]. (7)

Here λ > 0 is a user-defined regularization parameter. Notice that the cumulative covariance strictly
‘grows’ with more samples; we do not normalize it by the number of samples so that Σh effectively
represents the amount of information contained in the batch datset. Since Σh is strictly positive
definite by construction, it defines a pair of norms

‖u‖Σh
def
=
√
u>Σhu, and ‖u‖Σ−1

h

def
=
√
u>(Σh)−1u. (8)

Consider the regression problem that is solved in moving backward from time step h+1 to h. Given
the weight vector wh+1 at time step h+ 1, the regularized least-squares estimate of wh is given by

ŵh
def
= Σ−1

h

N∑
k=1

φhk

[
rhk +

∑
a∈A

πh+1(a | sh+1,k) 〈φh+1(sh+1,k, a), wh+1〉
]
.

We introduce pessimism by directly perturbing the weight vectors themselves—that is, we search
for weight vector wh such that wh = ξh + ŵh, where the pessimism vector ξh ∈ Rd satisfies a
bound of the form ‖ξh‖Σh ≤ αh, for a user-defined parameter αh.
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In detail, the critic takes as input the dataset D, a policy π, a sequence of tolerance param-
eters α = (α1, . . . , αH), weight radii ρw = (ρw1 , . . . , ρ

w
H) with each ρwh ∈ (0, 1], and a reg-

ularization parameter λ > 0. The optimization variables consist of the regression vectors
w = (w1, . . . , wH) ∈ (Rd)H and the pessimism vectors ξ = (ξ1, . . . , ξH) ∈ (Rd)H . The critic then
solves the convex program

(ξπ, wπ)
def
= arg min

ξ∈(Rd)H

w∈(Rd)H

∑
a∈A

π1(a | s1) 〈φ1(s1, a), w1〉 (9a)

with the terminal condition wH+1 = 0, and subject to the constraints

wh = ξh + Σ−1
h

N∑
k=1

φhk

[
rhk +

∑
a∈A

πh+1(a | sh+1,k) 〈φh+1(sh+1,k, a), wh+1〉
]
, and (9b)

‖ξh‖2Σh ≤ αh, ‖wh‖22 ≤ ρwh (9c)

for all h ∈ [H]. Here the matrix Σh ≡ Σh(λ) was previously defined (7).

The convex program (9) consists of a linear objective subject to quadratic constraints; it is a special
case of a second order cone program, and can be efficiently solved with standard convex solvers.

The Actor: Mirror Descent We now turn to the behavior of the actor. It applies the mirror descent
algorithm based on the Kullback Leibler (KL) divergence [Bubeck, 2014]; this combination leads to
the exponentiated gradient update rule in every timestep h ∈ [H]

πt+1,h(a | s) ∝ πt,h(a | s)eηQh(s,a) for each (s, a) ∈ S ×A, (10)

where η > 0 is a stepsize parameter. If the Q-value above from the critic lives in Q, then
it is possible to show that πt+1,h ∈ Πh and the update rule takes a much simpler and com-
putationally more efficient form (cf. Line 5 of Algorithm 1), where wt is the gradient of the
value function on the pessimistic MDP implicitly identified by the critic. In this case, the
spaces (Q,Π) are said to be compatible [Sutton et al., 1999, Kakade, 2001, Agarwal et al., 2020b,
Raskutti and Mukherjee, 2015] and the resulting algorithm is often called the Natural Policy Gradi-
ent (NPG) (see also [Geist et al., 2019, Shani et al., 2020]). By construction, the critic maintains a
linear action value function even after pessimistic perturbations. As a consequence, the actor policy
space is the simple softmax policy class Π and the easier update rule can be used. As we explain in
the analysis, this has important statistical benefits.

After T rounds of updates, the mirror descent algorithm that we use here readily achieves online
regret rates (in the optimization setting with exact feedback) ∼ 1/T or ∼ 1/

√
T depending on the

analysis [Agarwal et al., 2020b] and the learning rate, although we mention that these rates could
potentially be improved [Khodadadian et al., 2021, Lan, 2021, Bhandari and Russo, 2020].

4 Main results

We now turn to the statement of a bound on the performance of the policy πALG returned by PACLE.
This upper bound involves three terms: an optimization error, an uncertainty term, and a model

mis-specification term. The optimization error is given by C(T )
def
= 4H

√
log |A|
T ; it captures the

rate at which the error decreases as a function of the iterations of the actor. The mis-specification

error Emsp(ν)
def
=
∑H
h=1 νh is simply the sum of all the stage-wise mis-specification errors; notice

that the mis-specification error does depend on the choice of the radii for the critic ρw1 , . . . , ρ
w
H

in a problem dependent way (cf. Assumption 3). Finally, for each h, define the vector φ̄πh
def
=

E(Sh,Ah)∼π[φh(Sh, Ah)], where the expectation is over the state-action (Sh, Ah) encountered at
timestep h upon following policy π. In terms of these vectors, the uncertainty error is given by

U(π, α, λ)
def
= 2

H∑
h=1

√
αh‖φ̄πh‖Σ−1

h
= 2

H∑
h=1

√
αh(φ̄πh)>Σ−1

h φ̄πh, (11)

where the cumulative covariance matrix Σh ≡ Σh(λ) was defined in equation (7).
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The amount of information from the datasetD is fully encoded in the uncertainty function U through
the sequence of cumulative covariance matrices {Σh}Hh=1 and parameters {αh}Hh=1. Both Σh and
αh depend on λ in opposite way; to simplify the presentation, we consider the setting λ = 1. The
more data are available, the more positive definite Σh is and the smaller the uncertainty function
U(π) becomes for a fixed policy π. If the sampling distribution that generates the dataset is fixed,
then we can write U(π) / C/

√
n where C does not depend on n and can be interpreted as the

coverage of the sampling distribution with respect to policy π.

4.1 A guarantee for PACLE

Our main result holds under Assumption 1 (Data Generation), when the actor uses the learning
rate η =

√
log |A|/T , the radii ρw1 , . . . , ρ

w
H for the action value function1 parameters are in (0, 1],

the regularization is λ = 1 and the number of iterations is T ≥ log |A|; Πall is the class of all
stochastic policies. We let

√
αh = Õ(

√
dh + dh+1)+νh

√
N +
√
λ, where dh is the dimensionality

of the feature map at timestep h; we also highlight that we obtain a family of results, function of the
critic’s radii ρw1 , . . . , ρ

w
H . The choice of the radii is a modeling choice: increasing the radii increases

both the approximation power of the function class Qh used for regression, but also increases the
complexity of the function class Qh+1 to represent (cf Assumption 3); thus, the choice of the radii
affects the approximation error Emsp(ν) in a problem dependent way.
Theorem 1 (An achievable guarantee). Under assumption Assumption 1 (Data Generation), and
given parameters (T, λ, η, {αh, ρwh }Hh=1) as described above, PACLE returns a policy πALG such
that we have

V π1 (s1)− V πALG

1 (s1) ≤ U(π, α) + Emsp(ν) + C(T ) uniformly over all policies π ∈ Πall
(12)

with probability exceeding 1− δ.

The result provides a family of upper bounds on the sub-optimality of the learned policy πALG,
indexed by the choice of comparator policy π, and embodies a tradeoff between the sub-optimality
of the comparator π and its uncertainty U(π). As a special case, if we set π = π?, then we obtain
that the learned policy satisfies a bound of the form

V
πALG
1 (s1) ≥ V π

?

1 (s1)− U(π?)− C(T ) (13)

with probability at least 1 − δ. Note that the optimization error C(T ) can be reduced arbitrarily,
while α (and thus U) increase only logarithmically with T . Consequently, the guarantees (13) and
(12) are satisfying ones whenever the remaining uncertainty term U(π?) is small.

Ignoring the optimization error, regularization and misspecification and assuming dh = d,∀h ∈ [H]
we obtain with high probability that the sub-optimality gap satisfies

V π1 (s1)− V πALG

1 (s1) �
√
d

H∑
h=1

‖φπh‖Σ−1
h
,

uniformly over all choices of policies π ∈ Πall. Such a guarantee is significantly stronger
as PACLE competes with all comparator policies simultaneously; these policies are not neces-
sarily in the prescribed policy class Π. To highlight the strength of our formulation (see also
[Yu et al., 2020, Liu et al., 2020] for results in a similar form), suppose that the optimal policy
is not well covered, i.e., U(π?) infinite, but there exists a near-optimal policy π+ i.e., such that
V π

+

1 (s1) ≥ V ?1 (s1)− ε for some small ε, which is well covered by the dataset, i.e., U(π+) ≈ 0. In
this case, Theorem 1 ensures with high probability V ALG

1 (s1) ' V ?1 (s1)− ε. In contrast, traditional
analyses that use only π? as comparator cannot return meaningful guarantees.

4.2 A lower bound

The result is complemented by a matching worst-case lower bound on the quality of the returned
policy, excluding constants and log factors. The lower bound already arises in a setting that is easier

1This represents a setting where both the reward and the value function can be as large as 1 in absolute
value. One easily recovers the setting with value functions in [0, H] using a rescaling argument.
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for the learner, as it holds (1) when the MDP is low-rank (thus it applies when Assumption 3 (Re-
stricted Closedness) holds), and (2) when the mechanism that generates the dataset is non-adaptive
(thus it applies when Assumption 1 (Data Generation) holds).

We assume dh = d,∀h ∈ [H] and νh = 0 for simplicity, as well as λ = 1 when referring to the
uncertainty function U ; EM indicates that the expectation is with respect to MDP M .

Theorem 2 (Information-theoretic limit). Fix any choice of horizon H and of dimension d and
choose a large enough number of samples N to collect at each timestep. There exists an MDP class
M function of d,H,N and a universal constant c such that for any estimator π̂ALG, we have

sup
M∈M

{
V π1M (s1)− EM [V π̂ALG

1M (s1)]
}
≥ c

log
(
N
δ

) U(π) uniformly over all π ∈ Πall. (14)

4.3 Comparison to related work

Theorem 1 automatically implies the typical bound P[V πALG

1 (s1) ≥ V ?1 (s1)− U(π?)] ≥ 1− δ when
the comparator policy is the optimal policy π?, e.g., [Jin et al., 2020b, Rashidinejad et al., 2021,
Kidambi et al., 2020, Kumar et al., 2019, Buckman et al., 2020]. The guarantee can be written as
V
πALG
1 (s1) ' V ?1 (s1)− C/

√
n where n is the number of samples and C is the (scaled) condition

number of Σ−1
h . One could interpret C as a concentrability coefficient that expresses the coverage of

dataset — through Σh — with respect to the average direction in feature space E(sh,ah)∼π?hφ(sh, ah)
of the optimal policy π?. As in the paper [Jin et al., 2020b], such factor C can be small even when
traditional concentrability coefficients are large because they depend on state-action visit ratios (see
the literature in Appendix A, e.g., [Chen and Jiang, 2019]).

Even ignoring the concentrability coefficient, the form of our result is significantly stronger as our
algorithm competes with all comparator policies simultaneously; these policies are not necessarily in
the prescribed policy class Π. To highlight the strength of our formulation (see also [Yu et al., 2020,
Liu et al., 2020] for results in a similar form), suppose that the optimal policy is not well covered,
i.e., U(π?) infinite, but there exists a near-optimal policy π+ i.e., such that V π

+

1 (s1) ≥ V ?1 (s1)− ε
for some small ε, which is well covered by the dataset, i.e., U(π+) ≈ 0. In this case, Theorem 1
ensures with high probability V ALG

1 (s1) ' V ?1 (s1)− ε. In contrast, traditional analyses that use only
π? as comparator cannot return meaningful guarantees.

The work closest to ours is [Jin et al., 2020b]; our work directly improves on theirs by closing the dH
gap between their upper and lower bound while working under the more permissive Assumption 3
(Restricted Closedness) which includes low-rank MDPs. A

√
d-improvement is due to the algorithm

we use and the remaining is due to a more refined analysis and construction to certify optimality in
Theorem 2 (notice that our upper and lower bounds differ from theirs by a factor of H due to a
different normalization in the value function). The result of [Liu et al., 2020] can be specialized to
the low-rank MDP setting but would give a suboptimal bound while additionally requiring density
estimates.

Deriving a computationally tractable model-free algorithm without low-rank dynamics but sub-
ject to value function perturbations (e.g., optimistic or pessimistic perturbations) is an open prob-
lem even in the more heavily studied exploration setting: there the current state of the art
[Zanette et al., 2020b, Jin et al., 2021, Du et al., 2021, Jiang et al., 2017] only present computation-
ally intractable algorithms with the exception of [Zanette et al., 2020c] for a PAC setting with low
inherent Bellman error which however requires an additional “explorability” condition.

5 Proof Sketch

Our analysis has three main ingredients: the online learning guarantees of the actor, the pessimistic
estimates from the critic, and the concept of induced MDP that connects the actor to the critic. The
proof sketch follows a bottom-up approach: (1) starting with the critic, we explain the benefits of
working within the prescribed value function space, (2) we introduce the concept of MDPs induced
by the actor’s policy to interpret the pessimistic value function given by the critic as an exact value
function on an adversarially chosen MDP and (3) we conclude by giving online-style learning guar-
antees for the actor.
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The proof sketch is specialized to the well specified case (ν = 0), it ignores the bias due to regu-
larization (λ = 0) and it assumes we are working in a high probability ‘good event’ to simplify the
analysis.

Additional notation We denote with πt = πθt the policy of the actor at iteration t; we use Mt

to denote the corresponding induced MDP (the definition will be given later). When the critic is
invoked with any actor policy π, it solves the convex program (9), thereby obtaining the solution
(ξπ, wπ) that determines the (action) value functions

(s, a) 7→ Qπ
h
(s, a)

def
= 〈φ(s, a), wπh〉 , and s 7→ V πh(s)

def
= EA′∼πh(·|s)Q

π

h
(s,A′). (15)

Using the policy class Πh and action value function Qh from Definition 1 (Functional Spaces), we
define the induced value function class

Vh
def
=
{
s 7→ EA′∼πh(·|s)Q(s,A′) | Q ∈ Q, π ∈ Π

}
. (16)

5.1 Critic’s Pessimistic Guarantees

We start by analyzing the value function error. For each h ∈ [H] and policy π, we define the
statistical error in parameter space as

επh
def
= Σ−1

h

N∑
k=1

φhk

[
rhk + V πh+1(sh+1,k)− (T πh Q

π

h+1
)(shk, ahk)

]
, (17a)

where the reader should recall the definitions (15) of Q and V . This statistical error interacts with
the pessimism vector ξπ

h
to determine the aggregated perturbation function bπh given by

bπh(s, a)
def
=
〈
φh(s, a), ξπ

h
+ επh

〉
for all (s, a) ∈ S ×A. (17b)

Our first lemma bounds the error in the estimate V π1 (s1) of the value function at the initial state:
Lemma 1 (PLSPE Errors). For any input policy π ∈ Π, the output of the critic (Algorithm 2)
ensures that

(V π1 (s1)− V π1 (s1)︸ ︷︷ ︸
Error at the initial state

=

H∑
h=1

E(Sh,Ah)∼π
[
bπh(Sh, Ah)

]
. (18)

The above statement is stated as Eq. (41) in appendix. The proof of this lemma exploits the least-
squares constraint (9b) along with the Bellman closure condition Assumption 3 (Restricted Closed-
ness). We highlight that such assumption already arises in the analysis of standard LSPE when
ξπ
h

= 0. Allowing ξπ
h
6= 0 is equivalent to experiencing a different noise perturbation, and therefore

no further model assumption is needed. This is a benefit of working in parameter space in terms of
modeling assumptions.

Ideally we would set ξπ
h

= −επh in the program (9) leading to no value function error V π1 = V π1 .
Since επh is unknown, the program finds a pessimistic value by allowing ‖ξπ

h
‖Σh to be of similar size

as the noise error ‖επh‖Σh , which is bounded below.

Let logN (VALG,h+1) be the log covering number of the value function class for V πh+1 in∞ norm
and for some appropriate discretization step (see Lemma 9 in appendix for additional details)
Lemma 2 (Statistical Error). Under Assumption 1, we have

‖επh‖Σh ≤
√
αh

def
= Õ

(√
dh + logN (VALG,h+1) + log

1

δ

)
for all πh ∈ Πh and h ∈ [H]

with probability at least 1− δ.

A computation of the covering number of the next-state value function class gives
logN (VALG,h+1) ≈ dh+1; plugging this into the above expression gives the value for α that we
choose in Theorem 1. The proof of the above lemma can be found in Lemma 8 in appendix.

As ξπh = −επh is now feasible for the program (9), this choice produces no value function error, it
must follow that V π1 (s1) ≤ V π1 (s1). Thus, we have informally established the following gurantee:
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Proposition 2 (Critic’s Pessimistic Guarantees). With high probability, we have the upper bound
V π1 (s1) ≤ V π1 (s1).

It remains to bound
√
αh by computing the log covering number for the action value function class

VALG,h+1 used by the algorithm. Thankfully, our choice of making perturbations within the function
class ensures that VALG,h+1 = Vh+1 (defined in Eq. (16)); this function class is relatively simple as
reflected by its small covering number. This is where we strongly benefit from working in parameter
space in terms of statistical efficiency. In order to cover the value function (15), it sufficies to cover
the action value function class Q and the policy class Π.

First, for a fixed policy π, since the agent’s action value function is enforced to be linear Qπ ∈ Q
even after perturbations, the union bound only needs to be done over the linear classQ; we thus avoid
a potentially more costly union bound over a much larger function class Q′ = [linear functions] +
[complex bonus], e.g. [Jin et al., 2020b].

Second, the union bound needs to be extended to all policies that the actor can use to invoke the
critic. Since the action value function Q that the critic identifies is linear, the update takes a simple
closed-form expression, because the softmax policy class Π and the linear action value function class
Q are compatible [Kakade, 2001, Agarwal et al., 2020b]. Precisely, this gives the simple update rule
in Line 1 of Algorithm 1. If the action value function Q was perturbed by bonuses, linearity of the
critic’s value function would be lost and its functional space 6= Q would not be compatible with the
policy space Π. The more general form of the exponential gradient update in Eq. (10) would need
to be used. However, the resulting policy would no longer live in Π and instead would generate a
more complex (i.e., with a larger covering number) policy class for the actor. The space complexity
would increase too: our update (cf. Line 1 in Algorithm 1) requires a simple vector addition while
the exponential update rule in Eq. (10) should be performed in all (s, a) where the policy is needed.

A simple computation now gives logN (Vh+1) � d and thus
√
α = Õ(

√
d): this means that our

union bounds are small enough that the resulting confidence intervals for the error επh are about the
same size as those arising from linear bandit regression where no union bound is needed. Ultimately,
this is where we can save a

√
d factor compared to [Jin et al., 2020b].

5.2 Induced MDP

At each round t, the critic is given the actor’s policy πt, and is designed to extract pessimistically
biased Qπt values. As we show here, such Q-values can be interpreted as being the exact Q-values
for a perturbed MDP Mt. This connection is useful in relating the bias from the critic to the online
learning guarantees from the actor.

More precisely, recall the aggregated perturbation function bπth (s, a) =
〈
φh(s, a), ξπt

h
+ επth

〉
, as

previously defined in equation (17b). The perturbed MDPMt is equivalent to the originalM , except
that its reward function r̃πt is given by

r̃πt(s, a) = r(s, a) + bπth (s, a) for each h ∈ [H]. (19)

Note that this perturbation, in addition to the statistical error επth , also includes an adversarial com-
ponent, since the vectors ξπt

h
were chosen by the critic to minimize the value of the actor’s policies.

The perturbed reward functions (19) are useful in our analysis because they allow us to evaluate
arbitrary policies in the critic’s pessimistic world.
Proposition 3 (Value of Policies on Induced MDP). Given the actor’s policy πt at round t, we have

QπtMt
= Qπt and V πtMt

= V πt . (20)

I.e., the critic’s pessimistic Qπt function equals the action value function QπtMt
in the induced MDP

Mt. Furthermore, we have the following guarantees on the values of policies on Mt

V πt1,Mt
(s1) ≤ V πt1 (s1) for the actor’s policy πt, and (21a)

V π1,Mt
(s1) ≤ V π1 (s1) + U(π) for any π. (21b)

The statements above follow directly from the definition of induced MDP through the additional re-
ward function bh; please see Eqs. (43a) and (43b) in appendix for additional details. The proposition
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states three important facts: 1) the policy πt that induces the MDP Mt is ‘special’, as its Q function
on Mt equals the critic’s Qπt function (Eq. (20)); 2) as a result, the value of πt on Mt is pessimistic
compared to its value on the original MDP (first equation in Eq. (21)); 3) the value of any other
policy on Mt and M differs by at most the uncertainty function U(·) (second equation in Eq. (21)).

We highlight that the induced MDP Mt is unknown to the learner, because constructing Mt requires
knowledge of the original reward and transition function in addition to the statistical error επth ; the
induced MDP is used only in the analysis.

5.3 Actor’s Analysis

In this section, we present the actor’s guarantees on the sequence of adversarial MDPs Mt iden-
tified by the critic. In order to do so, we modify an analysis of the natural policy gradient al-
gorithm [Agarwal et al., 2020b] to derive online learning-style guarantees. The proposition below
holds under additional preconditions that are satisfied during the execution of the actor; see Propo-
sition 6 in the appendix for details.

We begin by observing that our development thus far ensures that at each round t, the actor receives
a sequence of weight vectors wt = (w1t, . . . , wHt) corresponding to the action value function of πt
on Mt—that is, we have the equality

Qπth,Mt
(s, a) = 〈φh(s, a), wht〉 , for all triples (s, a, h). (22)

This is indeed the case: the critic returns the parameter wt such that

Qπth,Mt
(s, a)

(i)
= Qπt

h
(s, a)

(ii)
= 〈φh(s, a), whk〉 , (23)

where equality (ii) follows from the definition (15) of Qπt
h

; and equation (i) is a consequence of the
Q-value preserving property (20) of the induced MDP (cf. Proposition 3). Given this property, we
have the following guarantee for the actor.
Proposition 4 (Actor’s Analysis). The sequence of actor policies {πt}Tt=1 satisfies the bound

1

T

T∑
t=1

{
V π1,Mt

(s1)− V πt1,Mt
(s1)

}
≤ C(T ) . H

√
log |A|
T

, (24)

valid for any fixed comparator policy π.

To be clear, the fixed comparator policy need not be in Π. This fact is important, as it allows us to
derive bounds relative to an arbitrary comparator.

5.4 Combining the ingredients

We now have all the ingredients to prove the upper bound on V π1 (s1) − V πALG

1 (s1) stated in Theo-
rem 1. The following reasoning holds under a high probability event (event G in appendix, which
arises from Lemma 2) and for any comparator π, not necessarily in Π.

By construction, the actor’s final policy πALG is a weighted mixture of the collection {πt}Tt=1, so
that by definition, we have

V π1 (s1)− V πALG

1 (s1) =
1

T

T∑
t=1

{
V π1 (s1)− V πt1 (s1)

}
.

From the bound (68b) in Proposition 4, the actor provides control on the sub-optimality gaps of
the policies {πt}Tt=1 relative to the value functions of the perturbed MDPs {Mt}Tt=1. But from the
bounds Eq. (21) in Proposition 3, these original value functions can be bounded by these perturbed
value functions, plus the uncertainty term, which yields the bound

1

T

T∑
t=1

{
V π1 (s1)− V πt1 (s1)

}
≤ 1

T

T∑
t=1

{
V π1,Mt

(s1)− V πt1,Mt
(s1)

}
+ U(π).

Finally, applying the on-line regret bound (68b) and putting together the pieces, we obtain
V π1 (s1)− V πALG

1 (s1) ≤ U(π) + C(T ),

as claimed.
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6 Discussion

A key idea of this paper is to introduce pessimism while remaining in the prescribed function class.
Doing so allows us to avoid making additional model assumptions, and achieves minimax opti-
mality. Similar ideas have appeared before in the exploration setting (e.g., [Zanette et al., 2020b,
Jin et al., 2021, Du et al., 2021]) with similar advantages (batch-style assumptions + minimax re-
gret) but at the expense of computational tractability.

Fortunately, the offline RL setting differs from the online setting and we are able to maintain com-
putational tractability by clearly separating the actor’s update from the critic evaluation. In this way,
each algorithm solves a simpler task, and computational tractability is retained.

The numerical evaluation of PACLE and the extension to more general function classes are impor-
tant next steps, and it will be interesting to see if any of these ideas can be translated to the more
challenging exploration setting.
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B Proof of Proposition 1

First, let us define an MDP class indexed by N ; we will use this MDP class to show that each
inclusion is strict. At a high level, this MDP class has a starting state 0 where the agent can choose
to go left (action−1) or right (action +1); after that, it will keep going left or right until the leftmost
or rightmost terminal state is reached. The reward is non-zero only at the terminal states.

For a fixed N , let the horizon be H = N + 1 and consider the following chain MDP, where the state
space is

S = {N,−(N − 1), . . . ,−1, 0,+1, . . . , N − 1, N}.
The starting state is 0, and there the agent can choose among two actions (−1 and +1). In states
s 6= 0 only one action is available. Formally

As =


{−1} if s < 0

{−1,+1} if s = 0

{+1} if s > 0.

(25)

The reward is everywhere zero except in the terminal states −N,+N where it is −1,+1, respec-
tively, for the only action available there. The transition function is deterministic, and the successor
state is always s′ = s+ a (e.g., action +1 in state +2 leads to state +3). In other words, if the agent
is a state s with positive value, it will move to s+1, and if s has negative value it will move to s−1.

Low Rank ⊆ Restricted Closedness

We first prove that a low-rank MDP must satisfy the restricted closedness assumption. Assume the
MDP is low rank. Then for any Qh+1 ∈ Qh+1 and π ∈ Π, we have

T πh Qh+1 =
〈
φh(s, a), wRh

〉
+

〈
φh(s, a),

∫
s′
Ea′∼πQh+1(s′, a′)dψ(s′)

〉
=

〈
φh(s, a), wRh +

∫
s′
Ea′∼πQh+1(s′, a′)dψ(s′)

〉
= 〈φh(s, a), w〉

for some w ∈ Rd. Thus, we have (T πh Qh+1) ∈ Qh for all Qh+1 ∈ Qh+1 and π ∈ Π—i.e., if the
MDP is low rank then it satisfies the restricted closedness condition.

To show the strict inclusion, consider the MDP described at the beginning of the proof with the
following feature extractor:

φ(s, a) =

{
+1 if a = +1

−1 if a = −1.
(26)

The MDP with this feature map is not low rank. For example, we must have

1 = P(N | N − 1,+1) = φ(N − 1,+1)>ψ(N) = ψ(N)

which implies ψ(−N) = 0 for ψ to be a measure. However, this means we won’t be able to represent
all transitions correctly, as we would need to have

1 = P(−N | −(N − 1),−1) = φ(−(N − 1),−1)>ψ(−N) = −ψ(−N) = 0.

This means the MDP is not low rank. However, we show that it still satisfies the restricted closedness
assumption. Notice that it is enough to verify the condition in the reachable space, which is |s|+1 =
h at timestep h. If the reward is zero it suffices to verify that for all choices of θh+1 we can find θh
such that

〈φ(h− 1,+1), θh〉 = 〈φ(h,+1), θh+1〉 (27)
〈φ(−(h− 1),−1), θh〉 = 〈φ(−h,−1), θh+1〉 . (28)

Notice that in all cases there is only one policy available at the successor states; for any choice of
θh+1, just set θh = θh+1. It is easy to verify that at the last step h = H = N+1 the reward function
is either +1 or −1, depending on the state, and can be represented by θh = +1:

〈φ(H − 1,+1), θH〉 = +1 (29)
〈φ(−(H − 1),−1), θH〉 = −1. (30)
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Restricted Closedness ⊆ Linear Qπ . We first show that every MDP that satisfies restricted closed-
ness satisfies the linear Qπ assumption. For any timestep h ∈ H , and for a given policy π ∈ Π, if
restricted closedness holds, choose Qh+1 = Qπh+1 in the definition of restricted closedness and use
the Bellman equations to obtain

Qπh
def
= T πh Qπh+1 ∈ Qh. (31)

Thus, the linear Qπ assumption is automatically satisfied.

In order to show the strict inclusion, consider again the MDP described at the beginning of the proof,
but with a different feature map. The map reads

φ(s, a) =

{
[+1, 0] if a = +1, s 6= 0

[0,+1] if a = −1, s 6= 0,
(32)

and at the start state

φ(0, a) =

{
+1 if a = +1

−1 if a = −1.
(33)

Notice that we only need to verify that restricted closedness does not hold at some timestep. When
θ2 = [+1,+1], there is no θ1 such that

+θ1 = 〈φ(0,+1), θ1〉 = 〈φ(1, 1), θ2〉 = 1 (34)
−θ1 = 〈φ(0,−1), θ1〉 = 〈φ(−1,−1), θ2〉 = 1. (35)

The MDP however satisfies the linear Qπ assumption with θ1 = 1 and θh = [+1,−1] for h ≥ 2.
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C Proof of Theorem 1

For each iteration t ∈ [T ], let πt
def
= πθt be the policy chosen by the actor, and let Mt = Mπt be the

corresponding induced MDP.

Given the “good” event G defined in equation (47), Lemma 5 guarantees that it occurs with proba-
bility at least 1− δ. Conditioned on the occurrence of G, the bounds (43a) and (43b) ensure that for
any comparator π̃, we have

V π̃1 (s1)− V πt1 (s1) ≤ V π̃1,Mt
(s1)− V πt1,Mt

(s1) + 2

H∑
h=1

[
νh +

√
αh‖E(Sh,Ah)∼π̃φ(Sh, Ah)‖Σ−1

h

]
= V π̃1,Mt

(s1)− V πt1,Mt
(s1) + Emsp(ν) + U(π̃).

Now average over the iterations t ∈ [T ]; Lemma 3 ensures that the actor in every iteration k receives
a vector wt which identifies the action value function for πt on the MDP Mt it induces, i.e., such
that

Qπth,Mt
(s, a)

Lem.3
= Qπt

h
(s, a) = 〈φh(s, a), whk〉 . (36)

In other words, the action value function Qπt that the actor implicitly receives through wt is the
action value function of πt on its induced MDPMt, i.e.,QπtMt

. Then Proposition 6 (Actor’s Analysis)
gives

1

T

T∑
t=1

[
V π̃1,Mt

(s1)− V πt1,Mt
(s1)

]
≤ C(T ).

Combining with the prior display yields

V π̃1 (s1)− 1

T

T∑
t=1

V πt1 (s1) ≤ C(T ) + Emsp(ν) + U(π̃).

Notice that the policy returned by the agent πALG is the mixture policy of the policies π1, . . . , πT
and its value function is V πALG = 1

T

∑T
t=1 V

πt .

Since the above statement holds under the good event G for any comparator policy π̃, rearranging
and taking sup over all comparator policies (not necessarily in Π) concludes the proof.
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D Critic’s Analysis

Given a policy π, the critic returns the pair (ξπ, wπ) = {(ξπ
h
, wπh)}Hh=1 if a feasible solution is found.

The weight vectors induce the estimated value functions

Qπ
h
(s, a)

def
= 〈φ(s, a), wπh〉 , and V πh(s)

def
= EA′∼πh(·|s)Q

π

h
(s,A′). (37)

Our ultimate goal is to relate the critic-estimated value functions to the true value functions
{Qπh}Hh=1.

D.1 Induced MDP and critic’s guarantee

Essential to our analysis is an object that provides the essential link between the critic’s output and
the actor’s input. In particular, it is helpful to understand the critic in the following way: when given
a policy π as input, the critic computes the estimates {Qπ

h
}Hh=1, and uses them form a new MDP

M̂(π), which we refer to as the induced MDP. This new MDP shares the same state/action space
and transition dynamics with the original MDP M , differing only in the perturbation of the reward
function. In particular, for each h ∈ [H], we define the perturbed reward function

r̂πh(s, a)
def
= rh(s, a) +Qπ

h
(s, a)− T πh (Qπ

h+1
)(s, a). (38)

The induced MDP M̂(π) is simply the original MDP that uses this perturbed reward function.

The key property of the induced MDP—which motivates the definition (38)—is that the esti-
mates (37) returned by the critic correspond to the exact value functions of policy π in the induced
MDP:
Lemma 3 (Critic exactness in induced MDP). Given a policy π as input, the critic returns a se-
quence {V πh}Hh=1 such that

Qπ
h

= Qπ
h,M̂(π)

(39)

V πh = V π
h,M̂(π)

for all h ∈ [H], (40)

where V π
h,M̂(π)

is the exact value function of policy π in the induced MDP M̂(π).

See Section D.2 for the proof of this claim.

Moreover, since the induced MDP differs from the original MDP only in terms of the reward pertur-
bation (38), we have the following convenient property: for any policy π̃—which need not be of the
soft-max form—the definition of value functions ensures that

V π̃
1,M̂(π)

(s1)− V π̃1 (s1) =

H∑
h=1

E(Sh,Ah)∼π̃

[
r̂πh(Sh, Ah)− rh(Sh, Ah)

]
, (41)

where V π̃
1,M̂(π)

is the value function of π̃ in the induced MDP. This simple relation will allow us to
use the induced MDP to relate arbitrary policies to their exact value functions.

With these two properties in mind, let us state our main guarantee for the critic. In the following
proposition, R > 0 is an upper bound on the `2-radius of the actor parameter. When the number of
actor iterations N is fixed, the maximum `2-norm of the actor’s parameter θ (i.e., the value of R) is
also fixed (since the learning rate η is fixed and ‖wh‖2 ≤ 1, ∀h ∈ [H]). If N is not know, one can
easily perform an additional union bound in the proposition below.
Proposition 5. For any fixed R > 0, given a failure probability δ ∈ (0, 1), suppose that we set√

αh(δ)
def
=
√
λ+
√
Nνh

+ c

{
1 + dh log

(
1 + N

dhλ

)
+ log

(
1 + 8

√
N
)

+ d log
(
1 + 16R

ε

)
+ log

H

δ

}1/2

(42)

for a suitably large universal constant c. Then with probability at least 1 − δ, uniformly for any
policy π in the soft-max class Πsoft(R), the critic returns an induced MDP M̂(π) such that:
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(a) For the given policy π, we have

V π
1,M̂(π)

(s1) ≤ V π1 (s1) +

H∑
h=1

νh. (43a)

(b) For any policy π̃, not necessarily in the soft-max class Π, we have∣∣∣V π̃
1,M̂(π)

(s1)− V π̃1 (s1)
∣∣∣ ≤ 2

H∑
h=1

√
αh(δ) ‖φ̄π̃h‖Σ−1

h
+

H∑
h=1

νh, (43b)

where φ̄π̃h
def
= E(Sh,Ah)∼π̃[φh(Sh, Ah)].

The remainder of this section is devoted to the proof of these two claims.

D.2 Proof of Lemma 3

Before proving Proposition 5, let us quickly prove Lemma 3. By definition, the induced MDP differs
from the original MDP only by the perturbation of the reward function. Thus, by definition of value
functions, we can write

Qπ
h,M̂(π)

(s, a)−Qπh(s, a) =

H∑
`=h

E(S`,A`)∼π|(s,a) [r̂πh(S`, A`)− rh(S`, A`)] . (44a)

On the other hand, using the definition of Qπ
h

and the Bellman conditions, we have

Qπ
h
(s, a)−Qπh(s, a) = 〈φ(s, a), wπh〉 − T πh (Qπh+1)(s, a)

=
{
〈φ(s, a), wπh〉 − T πh (Qπ

h+1
)(s, a)

}
+
{
T πh (Qπ

h+1
)(s, a) + T πh (Qπh+1)(s, a)

}
= r̂πh(s, a)− rh(s, a) + ES′∼Ph(s,a)EA′∼π(·|S′)(Q

π

h+1
−Qπh+1)(S′, A′)

Applying this argument recursively to ` = h+ 1, . . . ,H , we find that

Qπ
h
(s, a)−Qπh(s, a) =

H∑
`=h

E(S`,A`)∼π|(s,a)

[
r̂πh(S`, A`)− rh(S`, A`)

]
(44b)

Subtracting equation (44b) from equation (44a) yields the claim.

D.3 Proof of Proposition 5

Letα = (α1, . . . , αH) denote an arbitrary vector of non-negative pessimism parameters. Underlying
Proposition 5 is a “good” event G(α) to be defined momentarily. Our proof consists of two parts:

(i) First, we show that conditionally on G(α), the two bounds in Proposition 5 hold.
(ii) Second, we show that with the choice of α(δ) given in equation (42), the event G(α) holds

with probability at least 1− δ.

We now define the good event G(α). In order to do so, we need to introduce some auxiliary operators
that play a key role in our analysis. Let F denote the space of all real-valued functions on S × A.
For an arbitrary F ∈ F , we define the sup-norm projection operator

Pπh(F )
def
= arg min

wh∈B(ρwh )
sup
(s,a)

∣∣∣ 〈φ(s, a), wh〉 − (T πh F ) (s, a)
∣∣∣. (45a)

Note that Pπh is a mapping fromF to Rd; it returns the weight vector of the best-fitting linear function
to the Bellman update T πh (F ). Associated with this projection operator is the approximation error
operator

Aπh(F )(s, a)
def
= 〈φ(s, a), Pπh(F )〉 − (T πh F ) (s, a), (45b)
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which is a mapping from F to itself. We also define the regression operator

Rπh(F )
def
= Σ−1

h

N∑
k=1

φhk
{
rhk + EA′∼π(·|shk)F (sh+1,k, A

′)
}
, (45c)

which is another mapping from F to Rd. To appreciate the relevance of the regression operator, note
that we have wπh = ξπ

h
+ Rπh(Qπ

h+1
), by definition of the critic.

Our good event is defined in terms of the parameter error operators Eπh : F → Rd given by

Eπh(F )
def
= Rπh(F )− Pπh(F ). (46)

With this set-up, we have the following:

Definition 2 (A “good” event). Given a sequence α = (α1, . . . , αH) of pessimism parameters,
define

G(α)
def
=
{

sup
Qh+1∈Qh+1

πh+1∈Πh+1

‖Eπh+1

h (Qh+1)‖Σh ≤
√
αh, for all h ∈ [H]

}
. (47)

Given this event, the proof of Proposition 5 can be reduced to proving the following two lemmas.

Lemma 4. For any vector α ∈ RH of non-negative weights, conditionally on the event G(α), the
bounds (43a) and (43b) hold.

Lemma 5. For any δ ∈ (0, 1), given the choice of pessimism vector α(δ) in equation (42), we have

P
[
G(α(δ))

]
≥ 1− δ. (48)

Note that the result of Proposition 5 follows as a direct consequence of these two claims. Thus, the
remainder of our effort is devoted to prove these auxiliary results, with Sections D.4 and D.5 devoted
to the proofs of Lemmas 4 and 5, respectively.

D.4 Proof of Lemma 4

We split the proof into two parts, corresponding to the two bounds.

D.4.1 Proof of Lemma 4(a)

We first prove the bound (43a) stated in part (a).

High-level roadmap: We begin by outlining the main steps in the proof. Our first step is to define

a sequence of weight vectors ŵ
def
= {ŵπh}Hh=1 such that

∣∣∣ ∑
a1∈A

π(a1 | s1) 〈φ1(s1, a1), ŵπ1 〉 − V π1 (s1)
∣∣∣ ≤ H∑

h=1

νh. (49a)

Our second step is to show that conditioned on G(α), the sequence ŵ is feasible for the critic’s
convex program; this feasibility, combined with the optimality of w, implies that

V π
1,M̂(π)

(s1)
(i)
=
∑
a1∈A

π(a1 | s1) 〈φ1(s1, a1), wπ1 〉 ≤
∑
a1∈A

π(a1 | s1) 〈φ1(s1, a1), ŵπ1 〉 . (49b)

Here step (i) follows from Lemma 3, which guarantees that the estimated value functions V πh
of the critic are exact in the induced MDP. Combining the two bounds (49a) and (49b) yields
V π

1,M̂(π)
(s1) ≤ V π1 (s1) +

∑H
h=1 νh, as claimed in equation (43a).

It remains to prove our two auxiliary claims (49a) and (49b).
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Proof of claim (49a): Given a policy π, we use backwards induction to define the sequence
{ŵπ}Hh=1 by first setting ŵπH+1 = 0, and then defining

ŵπh
def
= Pπh(Q̂πh+1) for h = H,H − 1, . . . , 1, (50)

where Q̂πh+1(s, a)
def
=

〈
φh+1(s, a), ŵπh+1

〉
. Notice that by construction, we have the bound

‖ŵπh‖2 ≤ ρwh for all h ∈ [H]. The following lemma bounds the sup-norm distance between the in-
duced linear Q-value function estimate, and the actual Qπ-value function.

Lemma 6 (Accuracy of Best Predictor). The functions {Q̂πh}Hh=1 defined by the best-predictor se-
quence {ŵπh}Hh=1 from equation (50) satisfy the bound

∣∣Q̂πh(s, a)−Qπh(s, a)
∣∣ ≤ H∑

`=h

ν` for all h ∈ [H]. (51)

Proof. Introduce the shorthand ∆h(s, a)
def
= Q̂πh(s, a)−Qπh(s, a) for the error at stage h to be

bounded. Since Qπh = T πh (Qπh+1), we can write

∆h(s, a) = Q̂πh(s, a)−Qπh(s, a)

= Q̂πh(s, a)− (T πh Q̂πh+1)(s, a) + (T πh Q̂πh+1)(s, a)− T πh (Qπh+1)(s, a)

= Q̂πh(s, a)− (T πh Q̂πh+1)(s, a) + ES′∼Ph(s,a)EA′∼π(·|S′)

[
Q̂πh+1(S′, A′)−Qπh+1(S′, A′)

]
=

H∑
`=h

E(S`,A`)∼π|(s,a)

[
Q̂π` (S`, A`)− T π` (Q̂π`+1)(S`, A`)

]
,

where the final equality follows by induction.

From the definition (50) of ŵ and the function estimate Q̂π` (s, a) = 〈φ`(s, a), ŵπ` 〉, combined with
the Bellman approximation condition, we have∣∣∣Q̂π` (s, a)− (T π` Q̂π`+1)(s, a)

∣∣∣ ≤ Aπ` (Q̂π`+1) ≤ ν`,

uniformly over all `, and over all state-action pairs (s, a). Summing these bounds completes the
proof.

Proof of claim (49b): In order to prove this claim, we need to exhibit a sequence ξ = (ξ̂1, . . . , ξ̂H)

such that the pair (ξ̂, ŵ) are feasible for the critic’s convex program (9). In particular, we need to
ensure the following three conditions:

(a) ‖ŵπh‖2 ≤ ρwh for all h ∈ [H]

(b) ‖ξ̂h‖Σh ≤
√
αh for all h ∈ [H].

(c) We have ŵπh = ξ̂πh + Rπh(Q̂πh+1) for all h ∈ [h].

Note that condition (a) is automatically satisfied by the definition (50) of ŵ, since the projection Pπh
imposes this Euclidean norm bound.

It remains to exhibit a choice of ξ̂ such that conditions (b) and (c) hold. Since ŵπh = Pπh(Q̂πh) by
definition, condition (c) forces us to set

ξ̂πh = Pπh(Q̂πh+1)− Rπh(Q̂πh+1) = −Eπh(Q̂πh+1).

But since the event G(α) holds by assumption, we have

‖ξ̂πh‖Σh = ‖Eπh(Q̂πh+1)‖Σh ≤
√
αh,

showing that this choice of ξ̂ satisfies condition (b).
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D.4.2 Proof of Lemma 4(b)

Here we prove the bound (43b) stated in part (b) of the lemma.

Our proof is based on establishing an auxiliary result that implies the claim. In particular, we first
show that for any policy π̃, we have∣∣∣V π̃

1,M̂(π)
(s1)− V π̃1 (s1)

∣∣∣ ≤ H∑
h=1

‖φ̄π̃h‖Σ−1
h

{√
αh + ‖Eπh(Qπ

h+1
)‖Σh

}
+

H∑
h=1

νh, (52)

where φ̄π̃h
def
= E(Sh,Ah)∼π̃[φ(Sh, Ah)]. Since ‖Eπh(Qπ

h+1
)‖Σh ≤

√
αh conditioned on G(α), this

implies the claim.

Let us now prove the auxiliary claim (52). First, we observe that by definition, the perturbation in
the reward can be written as

r̂πh(s, a)− rh(s, a)
(i)
= 〈φh(s, a), wπh〉 − T πh (Qπ

h+1
)(s, a)

(ii)
=
〈
φh(s, a), ξπ

h

〉
+
〈
φh(s, a), Rπh(Qπ

h+1
)
〉
− T πh (Qπ

h+1
)(s, a)

(iii)
=
〈
φh(s, a), ξπ

h

〉
+
〈
φh(s, a), Eπh(Qπ

h+1
)
〉

+ Aπh(Qπ
h+1

)(s, a),

where step (i) uses the definition Qπ
h
(s, a) = 〈φh(s, a), wπh〉; step (ii) uses the relation

wπh = ξπ
h

+ Rπh(Qπ
h+1

); and step (iii) involves adding and subtracting
〈
φh(s, a), Pπh(Qπ

h+1
)
〉

, and
using the definitions of the approximation error (45b) and the error operator (46).

Since the induced MDP differs from the original only by the reward perturbation, we have∣∣∣V π̃
1,M̂(π)

(s1)− V π̃1 (s1)
∣∣∣ =

∣∣∣ H∑
h=1

E(Sh,Ah)∼π̃

[
r̂πh(Sh, Ah)− rh(Sh, Ah)

]∣∣∣
=
∣∣∣ H∑
h=1

E(Sh,Ah)∼π̃

[ 〈
φh(Sh, Ah), ξπ

h
+ Eπh(Qπ

h+1
)
〉

+ Aπh(Qπ
h+1

)(Sh, Ah)
]∣∣∣.

We now observe that |Aπh(Qπ
h+1

)(Sh, Ah)| ≤ νh by the Bellman closure assumption. As for the

first term, introducing the shorthand φ̄π̃h
def
= E(Sh,Ah)∼π̃

[
φh(Sh, Ah)

]
, we have

E(Sh,Ah)∼π̃

[ 〈
φh(Sh, Ah), ξπ

h
+ Eπh(Qπ

h+1
)
〉 ]
≤ ‖φ̄π̃h‖Σ−1

h
‖ξπ
h

+ Eπh(Qπ
h+1

)‖Σh

≤ ‖φ̄π̃h‖Σ−1
h

{√
αh + ‖Eπh(Qπ

h+1
)‖Σh

}
,

where the final step combines the triangle inequality, with the fact that ‖ξπ
h
‖Σh ≤

√
αh, since ξπ

h
must be feasible for the critic’s convex program (9). Putting together the pieces yields the claim (52).

D.5 Proof of Lemma 5

Recall from equation (46) that for any pair (Q, π), the parameter error is given by Eπh(Q) = Rπh(Q)−
Pπh(Q). We begin with a simple lemma that decomposes this error into three terms. In order to state
the lemma, we introduce two forms of error variables: statistical and approximation-theoretic. The
first noise variables take the form

ηhk(Q, π)
def
= rhk + EA′∼π(·|shk)Q(sh+1,k, A

′)− (T πh Q)(shk, ahk), (53a)

defined for each h ∈ [H] and k ∈ [N ]. Note that conditionally on the pair (shk, ahk), our sampling
model and the definition of the Bellman operator T πh ensures that each ηhk is zero-mean random
variable, corresponding to a form of statistical error. Our analysis also involves some approximation
error terms, in particular via the quantities

∆hk(Q, π)
def
= −Aπh(Q)(shk, ahk) = (T πh Q)(shk, ahk)− 〈φh(shk, ahk), Pπh(Q)〉 (53b)

With these definitions, we have the following guarantee:
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Lemma 7 (Decomposition of Eπh(Q)). For any pair (Q, π), we have the decomposition

Eπh(Q) = eηh(Q, π) + eλh(Q, π) + e∆
h (Q, π), (54)

where the three error terms are given by

eηh(Q, π)
def
= Σ−1

h

N∑
k=1

φhkηhk(Q, π), (Statistical estimation error) (55a)

eλh(Q, π)
def
= −λΣ−1

h Pπh(Q), (Regularization error), and (55b)

e∆
h (Q, π)

def
= Σ−1

h

N∑
k=1

φhk∆hk(Q;π) (Approximation error). (55c)

See Section D.5.1 for the proof of this claim.

The remainder of our analysis is focused on bounding these three terms. Analysis of the regu-
larization error and approximation error terms is straightforward, whereas bounding the statistical
estimation error requires more technical effort. We begin with the two easy terms.

Regularization error: Beginning with the definition (55b), we have

‖eλh(Q, π)‖Σh = λ‖Pπh(Q)‖Σ−1
h

(i)

≤
√
λ‖Pπh(Q)‖2

(ii)

≤
√
λ, (56)

where step (i) follows since Σh � λI; and inequality (ii) follows from the bound
‖Pπh(Q)‖2 ≤ ρwh ≤ 1, guaranteed by the definition of Pπh.

Approximation error: By definition, we have ‖e∆
h (Q, π)‖Σh = ‖

∑N
k=1 φhk∆hk(Q, π)‖Σ−1

h
.

By the Bellman approximation condition, we have |∆hk(Q, π)| ≤ νh uniformly over all k. Con-
sequently, applying Lemma 8 (Projection Bound) from the paper [Zanette et al., 2020b] guarantees
that

‖e∆
h (Q, π)‖Σh ≤

√
Nνh. (57)

Statistical estimation error: Lastly, we turn to the analysis of the statistical estimation error. In
particular, we prove the following guarantee:

Lemma 8. There is a universal constant c > 0 such that

‖eηh(Q, π)‖2Σh ≤ c
{

1 + dh log
(
1 + N

dhλ

)
+ log

(
1 + 8

√
N
)

+ d log
(
1 + 16R

ε

)
+ log

H

δ

}
(58)

uniformly over all Q ∈ Qh, π ∈ Πsoft(R) and h ∈ [H] with probability at least 1− δ.

See Section D.5.2 for the proof of this claim.

Putting together the pieces: By combining our three bounds—namely, equations (56), (57)
and (58), we conclude that with the choice√

αh(δ)
def
=
√
λ+
√
Nνh+

c

{
1 + dh log

(
1 + N

dhλ

)
+ log

(
1 + 8

√
N
)

+ d log
(
1 + 16R

ε

)
+ log

H

δ

}1/2

,

the good event G(δ) holds with probability at least 1− δ. This completes the proof of Lemma 5.

It remains to prove the two auxiliary lemmas that we stated: namely, Lemma 7 that gave a de-
composition of the parameter error, and Lemma 8 that bounded the statistical error. We do so in
Sections D.5.1 and D.5.2, respectively.
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D.5.1 Proof of Lemma 7

Starting with the definition (45c) of the regression operator Rπh, we have

Rπh(Q)
def
= Σ−1

h

N∑
k=1

φhk[rhk + EA′∼π(·|shk)Q(sh+1,k, A
′)]

(i)
= Σ−1

h

N∑
k=1

φhk[(T πh Q)(shk, ahk)] + Σ−1
h

N∑
k=1

φhkηhk(Q, π)︸ ︷︷ ︸
=eηh(Q,π)

where equality (i) follows by adding and subtracting terms, and using the definition (53a) of ηhk.

Next we use the definition (53b) of the approximation error terms ∆hk to find that

Rπh(Q) = ξh + Σ−1
h

(
N∑
k=1

φhk
[
〈φhk, Pπh(Q)〉+ ∆hk(Q, π)

])
+ eηh(Q, π)

Since Σh =
∑N
k=1 φhkφ

>
hk + λI , we can write

wh(Q, π, ξh) = ξh + Σ−1
h

{
Σhw

?
h(Q, π) +

N∑
k=1

φhk∆hk(Q, π)− λw?h(Q, π)
}

+ eηh

= ξh + w?h(Q, π) + Σ−1
h

(
N∑
k=1

φhk∆hk(Q, π)− λw?h(Q, π)

)
+ eηh

= ξh + w?h(Q, π) + eηh + eλh + e∆
h ,

which completes the proof.

D.5.2 Proof of Lemma 8

Recall the definition Q in Definition 1 for the linear action value function with a prescribed choice
for the radii {ρwh }Hh=1 such that ρwh ∈ [0, 1] ∀h ∈ [H]. In this section, the policy functional space
Πsoft in Definition 1 (Functional Spaces) is identified by a fixed sequence of radii {ρθ}Hh=1 for
the `2-norm of the actor parameter θ. The upper bound on ρθh only depends on the number of
actor iteration T selected by the user and the learning rate η, according to the relation ‖θt,h‖2 =

‖
∑T
t=1 ηwt,h‖2 ≤ η

∑T
t=1 ‖wt,h‖2 ≤ ηTρwh ≤ ηT .

We make use of a discretization argument to control the associated empirical process. Let
N∞(ε;Q) denote the cardinality of the smallest ε-covering of Q in the sup-norm—that is,
a collection {Qi}Ni=1 such that for all Q ∈ Q, we can find some i ∈ [N ] such that
‖Q−Qi‖∞ = sup(s,a) |Q(s, a)−Qi(s, a)| ≤ ε. Similarly, we let N∞,1(ε; Π(R)) denote an
ε-cover of Π(R) when measuring distances with the norm

‖π − π′‖∞,1
def
= sup

s

∑
a∈A

∣∣π(a | s)− π′(a | s)
∣∣. (59)

We have the following bounds on these covering numbers:
Lemma 9 (Covering number bounds). For any ε ∈ (0, 1), we have

logN∞(ε;Q) ≤ d log
(
1 + 2

ε

)
and (60a)

logN∞,1 (ε; Π(R)) ≤ d log
(
1 + 16R

ε

)
. (60b)

See Section D.5.3 for the proofs of these claims.

For any ε ∈ (0, 1), we define

β(ε)
def
= dh log

(
1 + N

dhλ

)
+ logN∞(ε;Q) + logN∞,1(ε; Πsoft) + log

H

δ
(61)
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Given this definition and the bounds from Lemma 9, the proof of Lemma 8 is reduced to showing
that for any ε ∈ (0, 1), there is a universal constant c such that

max
h∈[H]

sup
Q∈Qh
π∈Πsoft

‖eηh(Q, π)‖Σh ≤ c
√
β(ε) + 4

√
Nε (62)

with probability at least 1− δ. The claim stated in Lemma 8 follows from the choice ε = 1
4
√
N

. The
remainder of our proof is devoted to the proof of this claim.

Proof of the claim (62): Let us recall the definition

ηhk(Q, π) = rhk + EA′∼πh(·|shk)Q(sh+1,k, A
′)− (T πh Q)(shk, ahk).

Consequently, by starting with the definition of eηh and applying the triangle inequality, we obtain
the upper bound ‖eηh(Q, π)‖Σh = ‖

∑N
k=1 φhkηhk(Q, π)‖Σ−1

h
≤ Z1 + Z2(Q, π), where

Z1
def
= ‖

N∑
k=1

φhk[rhk − r(shk, ahk)︸ ︷︷ ︸
def
= Yhk

]‖Σ−1
h

and

Z2(Q, π)
def
=
∥∥∥ N∑
k=1

φhk[Q(sh+1,k, π)− ES′∼P(·|shk,ahk)Q(S′, π)]
∥∥∥

Σ−1
h

For a fixed (π,Q) and conditioned on the sampling history, both Z1 and Z2 are mean zero. Note that
Z1 is independent of the pair (Q, π), so that its analysis does not require discretization techniques.
On the other hand, analyzing Z2(Q, π) does require a reduction step via discretization, with which
we begin.

Introducing the shorthand N = N(ε,Q), let {Qi}Ni=1 be an ε-cover of the set Q in the sup-norm.
Similarly, with the shorthand J = N(ε,Π), let {πj}Jj=1 be an ε-cover of Π in the norm (59). For
a given Q, let Qi denote the member of the cover such that ‖Q − Qi‖∞ ≤ ε. With this choice, we
have

Z2(Q, π) = Z2(Qi, π) + {Z2(Q, π)− Z2(Qi, π)}.

Similarly, let πm be a member of the cover such that ‖π(· | s)− πm(· | s)‖1 ≤ ε for all s. With this
choice, we have

Z2(Q, π) ≤ Z2(Qi, πm) + {Z2(Qi, π)− Z2(Qi, πm)}︸ ︷︷ ︸
Dπ

+ {Z2(Q, π)− Z2(Qi, π)}︸ ︷︷ ︸
DQ

.

We begin by bounding the two discretization errors. By the triangle inequality, we have

DQ ≤
∥∥∥ N∑
k=1

φhk[Q(sh+1,k, π)−Qi(sh+1,k, π) + ES′∼p(shk,ahk)(Q(S′, π)−Qi(S′, π))︸ ︷︷ ︸
def
= Eihk(Q,π)

]
∥∥∥

Σ−1
h

.

Our choice of discretization ensures that |Eihk(Q, π)| ≤ 2ε uniformly for all (h, k) and
(Q, π). Applying Lemma 8 (Projection Bound) from the paper [Zanette et al., 2020b] ensures that
DQ ≤ 2ε

√
N . To be clear, this is a deterministic claim; it holds uniformly over the choices of Q,

Qi, and π. A similar argument yields that Dπ ≤ 2ε
√
N .

Putting togther the pieces yields that for any (Q, π), we have the bound

Z2(Q, π) ≤ max
i∈[N ]
j∈[M ]

Z2(Qi, πj) + 4
√
Nε. (63)

We now need to bound Z1 along with Z2(Qi, πj) for a fixed pair (Qi, πj). In order to do so, we
apply known self-normalized tail bounds [de la Pena et al., 2009], which apply to sums of the form
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‖
∑N
k=1 φhkVhk‖Σ−1

h
, where the Vhk form a martingale difference sequence with conditionally sub-

Gaussian tails. Note that Z1 is of this general form with Vhk = Yhk, which is a 1-sub-Gaussian
variable by assumption. On the other hand, the variable Z2(Qi, πj) is of this form with

Vhk = Qi(sh+1,k, π
j)− ES′∼p(shk,ahk)Q

i(S′, πj).

Since |Vhk| ≤ 1 due to the uniform boundedness of Qi, this is a 1-sub-Gaussian variable as well.

Consequently, Theorem 1 from the paper [Abbasi-Yadkori et al., 2011] ensures that

P
(

max{Z1, Z2(Qi, πj)} ≥ log
det Σh
detλI

+ 2 log
1

δ

)
≤ δ.

Note that detλI = λdh . Moreover, Lemma 10 (Determinant-Trace Inequality) in
[Abbasi-Yadkori et al., 2011] yields log det Σh ≤ dh log

(
λ+ N

dh

)
.

Putting together the pieces, taking a union bound over the two covers yields that, for each fixed
h ∈ [H], we have

‖eηh(Q, π)‖Σ−1
h
≤ dh log

(
1 + N

dhλ

)
+ logN∞(ε;Q) + logN∞,1(ε; Π) + log

(
1
δ

)
+ 4
√
Nε

with probability at least 1 − δ. Finally, we take a union bound over all h ∈ [H], which forces us to
redefine δ to δ

H in the above bound. This completes the proof of the uniform bound (62).

D.5.3 Proof of Lemma 9

Since ‖φ(s, a)‖2 ≤ 1, for any pair of weight vectors w,w′ ∈ Rd, we have
sup(s,a) | 〈φ(s, a), w − w′〉 ‖2 ≤ ‖w − w′‖2. Thus, the bound (60a) follows from standard results
on coverings of Euclidean balls (cf. Example 5.8 in the book [Wainwright, 2019]).

As for the bound (60b), we claim that∑
a∈A

∣∣πθ′(a | s)− πθ(a | s)| ≤ 8‖θ − θ′‖2, for all s ∈ S. (64)

Taking this claim as given for the moment, it suffices to obtain an ε/8-cover of the ball B(R) in the
`2-norm, and applying the same standard results yields the claimed bound (60b).

It remains to prove the claim (64).

Proof of the claim (64): Let us state and prove the claim (64) more formally as a lemma. It applies
to the softmax policy πθ(a | s) = exp{〈φ(s,a), θ〉}∑

a′∈A exp(〈φ(s,a′), θ〉) .

Lemma 10 (Nearby Policies). Consider a feature mapping φ : S × A → Rd such that
‖φ(s, a)‖2 ≤ 1 uniformly for all pairs (s, a). Then for all s ∈ S, we have∑

a∈A

∣∣πθ′(a | s)− πθ(a | s)| ≤ 8‖θ − θ′‖2, (65)

valid for any pair θ, θ′ ∈ Rd such that ‖θ − θ′‖2 ≤ 1
2 .

Proof. Dividing πθ′(s, a) by πθ(s, a) yields

T
def
=

πθ′(a | s)
πθ(a | s)

=
e〈φ(s,a), θ′〉

e〈φ(s,a), θ〉 ×
∑
a′′ e
〈φ(s,a′′), θ〉∑

ã e
〈φ(s,ã), θ′〉

= e〈φ(s,a), θ′−θ〉 ×
∑
a′′

(
e〈φ(s,a′′), θ−θ′〉 × e〈φ(s,a′′), θ′〉∑

ã e
〈φ(s,ã), θ′〉

)
= e〈φ(s,a), θ′−θ〉 ×

∑
a′′

πθ′(a
′′ | s)e〈φ(s,a′′), θ−θ′〉.
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By Cauchy-Schwarz and the assumption on φ, we have the bound | 〈θ(s, a), γ〉 | ≤ ‖γ‖2, valid for
any vector γ. Monotonicity of the exponential allows us to exponentiate this inequality. Combined
with the fact that πθ′(a′′ | s) ≥ 0, we find that

T ≤ e‖θ
′−θ‖2

∑
a′′∈A

πθ′(a
′′ | s)e‖θ−θ

′‖2 (i)
= e2‖θ−θ′‖2

(ii)

≤ 1 + 4‖θ − θ′‖2, (66)

where step (i) uses the fact that πθ is a probability distribution over the action space; and step (ii)
follows by combining the elementary inequality ex ≤ 1 + 2x, valid for all x ∈ [0, 1], with our
assumption that ‖θ − θ′‖2 ≤ 1/2.

Recalling that T = πθ′ (a|s)
πθ(a|s) , re-arranging the inequality (66) yields the bound

πθ′(a | s)− πθ(a | s) ≤ 4πθ(a | s) ‖θ − θ′‖2,

valid uniformly over all pairs (s, a). We can apply the same argument with the roles of θ and θ′
reversed, and combining the two bounds yields

|πθ′(a | s)− πθ(a | s)| ≤ 4‖θ − θ′‖2 max{πθ(a | s), πθ′(a | s)},

again uniformly over all pairs (s, a). Now summing over the actions a, we find that∑
a∈A

∣∣πθ′(a | s)− πθ(a | s)∣∣ ≤ 4
∑
a∈A

max
{
πθ(a | s), πθ′(a | s)

}
‖θ − θ′‖2

≤ 4
∑
a∈A

{
πθ(a | s) + πθ′(a | s)

}
‖θ − θ′‖2

= 8‖θ − θ′‖2,

where the last step uses the fact that πθ and πθ′ are probability distributions over the action space.
Note that this inequality holds for all states s, as claimed.
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E Actor’s Analysis

In this section, we analyze the mirror descent algorithm—that is, the actor in Algorithm 1. Our anal-
ysis exploits the methods in the paper [Agarwal et al., 2020b], with some small changes to accom-
modate our framework; in particular, while our analysis assumes no error in the critic’s evaluation,
it does involve a sequence of time-varying MDPs.

Given a sequence of MDPs {Mt}Tt=1, let V πt be the value function associated with policy π on
MDP Mt. Given the initialization θ1 = 0, let {θt}Tt=1 be parameter sequence generated by the
actor, and let πt = πθt be the policy associated with parameter θt. For each t, there is a sequence
wt = {wht}Hh=1 such that ‖wht‖2 ≤ ρwh for all h ∈ [H], and

Qπth,Mt
(s, a)

def
= 〈φh(s, a), wht〉 , for all (s, a) and h ∈ [H]. (67a)

In particular, the value of wht is the value wht identified by the critic (see Eq. (37)) corresponding to
policy πt, so that QπtMt

= Qπt . Define the value function V πth,Mt
(s) = EA′∼πt

[
Qπth,Mt

(s,A′)
]

along
with the advantage function

Gπth,Mt
(s, a)

def
= Qπth,Mt

(s, a)− V πth,Mt
(s). (67b)

Proposition 6 (Actor’s Analysis). Suppose that the actor takes T ≥ log |A| steps using a stepsize
η . 1, and the advantage function at each iteration t is uniformly bounded as |Gπth,Mt

(s, a)| ≤ 2 for
all (s, a). Then for any fixed policy π, we have

1

T

T∑
t=1

{
V π1,Mt

(s1)− V πt1,Mt
(s1)

}
≤ H

[
log |A|
ηT

+ η

]
. (68a)

In particular, setting η '
√

log |A|
T yields the bound

1

T

T∑
t=1

{
V π1,Mt

(s1)− V πt1,Mt
(s1)

}
≤ 2H

√
log |A|
T︸ ︷︷ ︸

=C(T )

. (68b)

E.1 Proof of Proposition 6

In order to prove this claim, we require an auxiliary result that re-expresses the mirror update rule.

Given the Q-value function Q(s, a)
def
= 〈φ(s, a), w〉, consider the linear update θ+ def

= θ+ ηw, and
the induced soft-max policy πθ+ . The following auxiliary result extracts a useful property of this
update:

Lemma 11 (Update in Natural Policy Gradient). For any function F : S → R, we have

Q(s, a)− F (s) =
1

η

[
log

πθ+(s, a)

πθ(s, a)
+ log

(∑
a′∈A

πθ(s, a
′)eη(Q(s,a′)−F (s))

)]
, (69)

valid for all pairs (s, a).

See Section E.2 for the proof of this claim.

Turning to the proof of the proposition, we have

V π1,Mt
(s1)− V πt1,Mt

(s1)
(i)
=

H∑
h=1

E(Sh,Ah)∼π

[
Gπth,Mt

(Sh, Ah)
]

(ii)
=

1

η

H∑
h=1

Xh,t (70a)

where we have introduced the shorthand

Xh,t
def
= E(Sh,Ah)∼π

[
log

πθt+1
(Sh, Ah)

πθt(Sh, Ah)
+ log

(
EA′h∼πt(·|Sh)

[
eηG

πt
h,Mt

(Sh,A
′
h)
])]

. (70b)
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Here step (i) follows from the simulation lemma (e.g., [Kakade et al., 2003]), and step (ii) makes use
of Lemma 11 with F (s) = V πth,Mt

(s), along with the definition of the advantage function—namely,
Gπth,Mt

(s, a) = Qπth,Mt
(s, a)− V πth,Mt

(s).

For each h ∈ [H] and t ∈ [T ], we now bound the two terms within the definition (70b) of Xh,t

separately. In particular, we derive a telescoping relationship for the first term, and a uniform bound
on the second term.

First term: For any pair of policies π, π̃ and s, we introduce the shorthand

Ds(π; π̃)
def
= KL (π(· | s)‖π̃(· | s)) .

From the definition of KL divergence, for each sh, we have

∑
ah∈A

π(ah | sh) log
πt+1(sh, ah)

πt(sh, ah)
=
∑
ah

π(ah | sh)
[

log
πt+1(sh, ah)

π(sh, ah)
− log

πt(sh, ah)

π(sh, ah)

]
= −Dsh(π;πt+1) +Dsh(π;πt). (71a)

Second term: We begin with the elementary inequality ex ≤ 1 + x + x2 valid for all x ∈ [0, 1].
By assumption, we have |ηGπth,Mt

(s, a)| ≤ 2η ≤ 1 for any pair (s, a), and hence

eηG
πt
h,Mt

(s,a) ≤ 1 +
(
ηGπth,Mt

(s, a)
)

+
(
ηGπth,Mt

(s, a)
)2

≤ 1 +
(
ηGπth,Mt

(s, a)
)

+ 4η2.

By definition of the advantage function, we have EA′h∼πt
[
Gπth,Mt

(sh, A
′
h)
]

= 0, so that we have

log
(
EA′h∼πte

ηG
πt
h,Mt

(sh,A
′
h)
)
≤ log

(
1 + 4η2

)
≤ 4η2. (71b)

Combining the pieces: Combining the bounds (71a) and (71b) yields

1

η
Xh,t ≤

1

η
E(Sh)∼π [−DSh(π;πt+1) +DSh(π;πt)] + 4η.

Averaging this bound over all t ∈ [T ] and exploiting the telescoping of the terms yields

1

ηT

T∑
t=1

Xh,t ≤
1

ηT
ESh∼π [−DSh(π;πt+1) +DSh(π;π1)] + 4η

(i)

≤ 1

ηT
E(Sh)∼πDSh(π;π1) + 4η

(ii)

≤ 1

ηT
log(|A|) + 4η,

where step (i) follows by non-negativity of the KL divergence; and step (ii) uses the fact that the KL
divergence is at most log(|A|). Summing these bounds over h ∈ [H] yields

1

T

T∑
t=1

{
V π1,Mt

(s1)− V πt1,Mt
(s1)

}
=

1

ηT

T∑
t=1

H∑
h=1

Xh,t ≤ H

{
1

ηT
log(|A|) + 4η

}
,

thereby establishing the claim (68a).

Finally, the bound (68b) follows by making the particular stepsize choice η '
√

log |A|
T . Note that

the assumed lower bound T ≥ log |A| ensures that η . 1, as required to apply the bound (68a).
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E.2 Proof of Lemma 11

By definition of the soft-max policy, we have πθ+(s, a) =
exp(〈φ(s,a), θ+〉)∑
a′∈A e

〈φ(s,a′), θ+〉 . Since θ+ = θ + ηw,

we can write

πθ+(s, a) =
e〈φ(s,a), θ+ηw〉∑

a′∈A e
〈φ(s,a′), θ+ηw〉 =

e〈φ(s,a), θ〉eη〈φ(s,a), w〉∑
a′∈A e

〈φ(s,a′), θ〉eη〈φ(s,a′), w〉

=
e〈φ(s,a), θ〉∑
ã∈A e

〈φ(s,ã), θ〉 ×
eη〈φ(s,a), w〉∑

a′∈A
e〈φ(s,a′), θ〉∑
ã∈A e

〈φ(s,ã), θ〉 eη〈φ(s,a′), w〉

= πθ(s, a)× eη〈φ(s,a), w〉∑
a′∈A πθ(s, a

′)eη〈φ(s,a′), w〉

= πθ(s, a)× eηQ(s,a)∑
a′∈A πθ(s, a

′)eηQ(s,a′)

where the last step uses the definition of Q. Multiplying both sides by e−F (s) and re-arranging
yields

πθ+(s, a)

πθ(s, a)

∑
a′∈A

πθ(s, a
′)eη[Q(s,a′)−F (s)] = eη[Q(s,a)−F (s)],

which is equivalent to the claim.
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F Lower Bound

In this section, we prove the lower bound stated in Theorem 2. We first describe the MDP class in
Appendix F.1 (MDP Class) which consists of a sequence of linear bandits. Then in Appendix F.2
(Policy disagreement and suboptimality gap) we derive a useful result on the distance of policies;
this will be useful for the applications of Assouad’s method to derive the lower bound. We describe
the interaction process in Appendix F.3 (Interaction Process) and finally we provide the proof for
the lower bound in Appendix F.4 (Proof of Theorem 2).

F.1 MDP Class

Fix the horizon H and the total dimension dtot =
∑H
h=1 dh across all time steps. While our re-

sult will be presented for d = d1 = · · · = dh, we conduct the analysis with different feature
dimension d1, . . . , dh. The MDP class that we introduce is parameterized by Boolean vectors
u ∈ {−1,+1}dtot .

We describe the MDP class M = {Mu | u ∈ {−1,+1}} by describing each MDP Mu. For
notational convenience we identify an index of the vector by hi, i.e., entry [u]hi ∈ {−1,+1} where
the first index h ∈ [H] represents the horizon and for a fixed h the second index i ∈ [dh] represents
a direction in Rdh .

State space: There is only one state—viz. S = {s}.

Action space: For every time step h and state s, we have the action space A = {−1, 0,+1}dh .
Note that the action space has cardinaltiy 3dh .

Feature extractor: The feature map simply returns the action selected (with a rescaling factor)
chained with a bias term at the end, i.e.,

φh(s, a) =
[

a√
2dh

, 1√
2

]
∈ Rdh+1, for all triples (s, a, h). (72)

Notice that by construction, for any pair (s, a), we have ‖φ(s, a)‖2 =
√
‖a‖22
2dh

+ 1
2 ≤ 1.

Transition function: Since there is a single state, the transition is deterministic into the same state.

Reward function: The reward function is linear with additive Gaussian noise, and it distinguishes
different MDPs. It depends on vector uh (a subset of the entries of u) through a scaling factor δh to
be determined later.

Rh(s, a) =
a>√
2dh

(δuh) +N (0, 1), uh = [uh1, . . . , uhdh ] ∈ Rdh . (73)

Verifying the Low-Rank Assumption It is easy to see that the MDP satisfies Assumption 4 (Low-
Rank MDP). The transition matrix is the 1×1 identity and the reward function is by definition linear:

∀(s, a, h, s′) : rh(s, a) =

〈
φh(s, a), [δuh, 0]︸ ︷︷ ︸

wRh

〉

Ph(s, a) = 〈φh(s, a), ψh〉 = [1], where ψh
def
=
[
0 0 · · ·

√
2
]
.

We will later set δ / 1/
√
nh; therefore, for nh large enough the regularity condition on the reward

parameter and on the action value function boundness are satisfied.
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F.2 Policy disagreement and suboptimality gap

In order to evaluate the agent’s performance, we first need to find a way to measure the distance
between policies. Doing so will be useful to reduce the policy learning problem to hypothesis
testing where standard statistical methods can be applied.

Let π?u be the optimal policy on Mu and let V ?u the optimal value function. We assess the quality of
the learned policy via the cumulative sign disagreement

ρ(π, π′)
def
=

H∑
h=1

dh∑
i=1

1{sign[EA∼πh 〈A, ei〉] 6= sign[EA∼π′h 〈A, ei〉]}. (74)

Clearly, for any π, π′ we have ρ(π, π) = 0, ρ(π, π′) ≥ 0 and ρ(π, π′) = ρ(π′, π), so ρ is at least a
seminorm.

Suboptimality gap as function of policy disagreement: Let u ∈ U and consider the MDPMu as
described before. Since the optimal action at timestep h on Mu is uh, by inspection, the associated
suboptimality of π on Mu compared to the optimal policy on Mu is

V ?u − V πu =

H∑
h=1

1√
2dh

[
u>h (δhuh)− Ea∼πha> (δhuh)

]

=

H∑
h=1

dh∑
i=1

δh√
2dh

[
[u]hi[u]hi − [Ea∼πha]i[u]hi

]

=

H∑
h=1

dh∑
i=1

δh√
2dh

(
[u]hi − [Ea∼πha]i

)
[u]hi

=

H∑
h=1

dh∑
i=1

δh√
2dh

∣∣∣[u]hi − [Ea∼πha]i

∣∣∣
≥

H∑
h=1

dh∑
i=1

δh√
2dh

∣∣∣[u]hi − [Ea∼πha]i

∣∣∣1{sign(Ea∼πha>ei) 6= [u]hi}

≥
H∑
h=1

dh∑
i=1

δh√
2dh

1{sign(Ea∼πha>ei) 6= [u]hi}. (75)

This is useful as it will allow use to satisfy the assumptions of Assouad’s method.

F.3 Interaction Process

MJW COMMENT: Please see my concern in the Slack channel about this restriction of the data
collection process in step (c), which is really something that should be under control of the estimator.

Consider the following process:

(a) An algorithm π is selected together with a sampling budget n1, . . . , nh where in particular
nh is the number of samples to be allocated to timestep h. For simplicity, let nh be a
multiple of dh.

(b) The environment selects vector u ∈ U (and thus the MDP Mu)

(c) The datasetD is generated by playing each action in {e1, . . . , edh ,~0} exactly nh/dh times.
(Note that playing the null action does affect the covariance matrix because of the bias term
and simplifies the computations later).

(d) The algorithm is required to return a time-dependent stochastic policy using the dataset D.

In particular, D = (D1, . . . ,Dh) where Dh contains all the information pertaining to timestep h:
Dh = {(s, , rhk, s)}k=1, where rhk are the sampled rewards with distribution indicated in Eq. (73)
and the action follows the process just described.
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F.4 Proof of Theorem 2

For this proof, we consider the MDP class described in Appendix F.1 (MDP Class) along with the
interaction process described in Appendix F.3 (Interaction Process). We make use of Appendix F.2
(Policy disagreement and suboptimality gap) when applying Assouad’s method.

Let Qu denote the distribution of the data when the sampling process is applied to the MDP Mu,
and let Eu denote expectations under this distribution.

If we define [uALG]hi = sign(EA∼πALG,h
〈A, ei〉) and let d1 = · · · = dh

def
= d, then equation (75)

ensures that

inf
ALG

sup
u∈U

Eu[V ?u − V πALG
u ] ≥ δ√

2d
inf
ALG

sup
u∈U

Eu
H∑
h=1

d∑
i=1

1{sign(EA∼πALG,h
〈A, ei〉) 6= [u]hi}︸ ︷︷ ︸

(uALG,u)

MJW COMMENT: There was a very unfortunate notation class between H for horizon and H
for Hamming distance. Another reason for macros...fixed now where (v, u) is the Hamming dis-
tance between the binary sequences v and u. Using Assouad’s method (cf. Lemma 2.12 in the
book [Tsybakov, 2009]), we continue the lower bound above to obtain

≥ δ√
2d

dH

2
nu,u′:(u,u′)=1 inf

ψ

[
Pu(ψ 6= 0) + Pu′(ψ 6= 1)

]
(76)

where infψ denotes the minimum over all test functions taking values in {−1,+1}. A further lower
bound that uses the KL divergence is given by Theorem 2.12 in [Tsybakov, 2009]

It remains to bound the the Kullback-Leibler divergence of the distributions Qu and Qu′ that gener-
ate the samples in the dataset where u and u′ only differ in one coordinate.

Note that the only stochasticity in the dataset lies in the rewards. For any given u, equation (73)
implies that the distribution over rewards has the product form

Qu =

H∏
h=1

d∏
i=1

nh
d∏
j=1

N
(

e>i√
2dh

(δuh), 1

)
. (77)

Notice that each normal distribution in the above display for Qu is identical to the corresponding
factor in Qu′ except for the single index in which the vectors u and u′ differ. Thus, applying the
chain rule for KL divergence yields

DKL(Qu‖Qu′) =

nh
d∑

k=1

DKL(N
(

δ√
2d
, 1

)
‖N

(
−δ√
2d
, 1

)
)

=
nh
2d

(
2

δ√
2d

)2

=
nhδ

2

d2
,

valid for any pair u, u′ differing in a single coordinate.

Plugging back, we obtain

inf
ALG

sup
u∈U

Eu[V ?u − V πALG
u ] ≥ δ√

2d

dH

2

(
1−

√
1

2

nhδ2

d2

)
.
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If we set δ = d√
2nh

the bound becomes

inf
ALG

sup
u∈U

Eu[V ?u − V πALG
u ] ≥ δ√

2d

dH

2

(
1− 1

2

)
=

√
dHδ

4
√

2

=
dH

8

√
d

nh
.

We can recast this as

sup
ALG

inf
u∈U

Eu[V πALG
u − V ?u ] = − inf

ALG
sup
u∈U

Eu[V ?u − V πALG
u ] ≤ −dH

8

√
d

nh

and so

sup
ALG

inf
u∈U

Eu[V πALG
u ] ≤ V ?u −

dH

8

√
d

nh

where the u on the right hand side is intended to be the same u that appears on the left hand side.
This is the first part of the statement in Theorem 2 (Information-theoretic limit).

To prove the second part of the statement, we start from the right hand side in the theorem’s statement
and lower bound it to obtain the middle term. Consider any u ∈ U ; the idea is to start from

sup
π

[
V π1u(s1)− Ω(1)

log
(

1
δ ,K, λ

) × U(π)
]
≥ V ?1u(s1)− Ω(1)

log
(

1
δ ,K, λ

) × U(π?)

where the uncertainty function U was defined in Eq. (11). As mentioned previously, here we use
λ = 1. For the rest of the proof, we upper bound the uncertainty function:

U(π?) ≤ sup
π
U(π) =

√
α

H∑
h=1

sup
π
‖φπh‖Σ−1

h
.

Now denote with [x]1:p the first p components of the vector x. Using the triangle inequality we can
write

‖φπh‖Σ−1
h
≤ ‖
[
[φπh]1:d, 0

]
‖Σ−1

h
+ ‖
[
0, [φπh]d+1

]
‖Σ−1

h
.

Next, we use a technical lemma to compute the inverse of Σh. By construction Σh is an arrowhead
matrix, i.e., can be written as

Σh =

[
D v
v> b

]
where we let the normalization constants inside of φ in Eq. (72) to be

γ =
1√
2dh

, c =
1√
2

to define D ∈ Rd×d as a diagonal matrix with entries

[D]ii = γ2nh
d

+ λ

and v ∈ Rd is a vector with entries

[v]i = γc
nh
d

and b ∈ R is a scalar

b = c2
(
nh +

nh
d

)
+ λ.
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The inverse of Σh can then be computed explicitly using known formulas for block matrices or
arrowhead matrices. We arrive to

Σ−1
h =

[
D′ v′

v′> b′

]
where we define the entries in a second. First, the inverse of the Schur complement is

b′
def
= (b− v>D−1v)−1 =

(
c2
(
nh +

nh
d

)
+ λ−

d∑
i=1

(
γcnhd

)2
γ2 nh

d + λ

)−1

.

Our goal is to show that this is positive, which helps in simplifying the final expression. Notice that
d∑
i=1

(
γcnhd

)2
γ2 nh

d + λ
<

d∑
i=1

(
γcnhd

)2
γ2 nh

d

= dc2
nh
d

= c2nh.

Thus

(b′)−1 =

(
c2
(
nh +

nh
d

)
+ λ−

d∑
i=1

(
γcnhd

)2
γ2 nh

d + λ

)
> c2

nh
d

+ λ > 0.

These facts imply that the inverse of the above quantity is bounded as

b′ <
d

c2nh + dλ
<

d

c2nh
.

Continuing the construction of the inverse, we obtain

D′ = D−1︸︷︷︸
def
= D′1

+D−1vb′v>D−1︸ ︷︷ ︸
def
= D′2

Noice that D′1 is symmetric positive definite with positive diagonal elements and D′2 is also sym-
metric positive semidefinite:

0 ≺ D′1 = D−1 =
(
γ2nh

d
+ λ
)−1

I ≺ d

γ2nh
I

D′2 = b′︸︷︷︸
≥0

D−1v︸ ︷︷ ︸
y

v>D−1︸ ︷︷ ︸
y>

= b′yy> < 0.

We now use the above block expressions for Σ−1
h to bound

‖φπh‖Σ−1
h
≤ ‖
[
[φπh]1:d, 0

]
‖Σ−1

h
+ ‖
[
~0, [φπh]d+1

]
‖Σ−1

h
.

By construction, [φπh]1:d only interacts with the D′ block in Σ−1
h ; using this and

‖x‖2D′ = x>(D′1 +D′2)x ≤ ‖x‖2 (‖D′1‖2 + ‖D′2‖2) ‖x‖2
we can write

‖
[
[φπh]1:d, 0

]
‖Σ−1

h
= ‖[φπh]1:d‖D′ ≤ ‖[φπh]1:d‖2

√
‖D′1‖2 + ‖D′2‖2

Likewise,

‖
[
0, [φπh]d+1

]
‖Σ−1

h
= ‖[φπh]d+1‖b′ .

We now bound all norms:

‖[φπh]1:d‖2 ≤
‖1 ‖2√

2d
≤ 1√

2

‖D′1‖2 = ‖D−1‖2 .
2d2

nh

‖D′2‖2 ≤ b′‖D−1‖2‖v‖2‖v‖2‖D−1‖2 .
d

nh︸︷︷︸
b′

(
γ
nh
d

)2

‖1 ‖22︸ ︷︷ ︸
‖v‖22

d4

n2
h︸︷︷︸

‖D−1‖22

.
d2

nh
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Plugging back we conclude

‖
[
[φπh]1:d, 0

]
‖Σ−1

h
.

d
√
nh

Similarly

‖[φπh]d+1‖b′ =

√
1√
2
b′

1√
2
≤
√

1

2

d

c2nh
.

√
d

√
nh
.

Plugging back, we obtain with ν = 0, λ = 1:

sup
π
U(π) .

√
α

H∑
h=1

sup
π
‖φπh‖Σ−1

h
.
√
α
dH
√
nh

. dH

√
d

nh
×

log
(

1
δ ,K, λ

)
Ω(1)

.

In summary, we have shown that

sup
π

[
V π1u(s1)− Ω(1)

log
(

1
δ ,K, λ

) × U(π)
]
≥ V ?1u(s1)− Ω(1)

log
(

1
δ ,K, λ

) × U(π?)

≥ V ?1u(s1)− Ω(1)× dH
√

d

nh
.

i.e., we have proved the right inequality in Theorem 2 (Information-theoretic limit).
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