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Abstract

We propose and analyze a reinforcement learning principle that approximates the Bellman
equations by enforcing their validity only along an user-defined space of test functions. Focusing
on applications to model-free offline RL with function approximation, we exploit this principle
to derive confidence intervals for off-policy evaluation, as well as to optimize over policies within
a prescribed policy class. We prove an oracle inequality on our policy optimization procedure
in terms of a trade-off between the value and uncertainty of an arbitrary comparator policy.
Different choices of test function spaces allow us to tackle different problems within a common
framework. We characterize the loss of efficiency in moving from on-policy to off-policy data
using our procedures, and establish connections to concentrability coefficients studied in past
work. We examine in depth the implementation of our methods with linear function approx-
imation, and provide theoretical guarantees with polynomial-time implementations even when
Bellman closure does not hold.

1 Introduction

Markov decision processes (MDP) provide a general framework for optimal decision-making in
sequential settings (e.g., [Put94, Ber95a, Ber95b]). Reinforcement learning refers to a general
class of procedures for estimating near-optimal policies based on data from an unknown MDP
(e.g., [BT96, SB18]). Different classes of problems can be distinguished depending on our access
to the data-generating mechanism. Many modern applications of RL involve learning based on a
pre-collected or offline dataset. Moreover, the state-action spaces are often sufficiently complex that
it becomes necessary to implement function approximation. In this paper, we focus on model-free
offline reinforcement learning (RL) with function approximation, where prior knowledge about the
MDP is encoded via the value function. In this setting, we focus on two fundamental problems: (1)
offline policy evaluation—namely, the task of accurately predicting the value of a target policy; and
(2) offline policy optimization, which is the task of finding a high-performance policy.

There are various broad classes of approaches to off-policy evaluation, including importance
sampling [Pre00, TB16, JL16, LLTZ18], as well as regression-based methods [LP03, MS08, CJ19].
Many methods for offline policy optimization build on these techniques, with a line of recent pa-
pers including the addition of pessimism [JYW21, XCJ+21, ZWB21]. We provide a more detailed
summary of the literature in Section 6.3.
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In contrast, this work investigates a different model-free principle—different from importance
sampling or regression-based methods—to learn from an offline dataset. It belongs to the class of
weight learning algorithms, which leverage an auxiliary function class to either encode the marginal-
ized importance weights of the target policy [LLTZ18, XJ20b], or estimates of the Bellman er-
rors [ASM08, CJ19, XJ20b]. Some work has considered kernel classes [FRTL20] or other weight
classes to construct off-policy estimators [UHJ20] as well as confidence intervals at the population
level [JH20]. However, these works do not examine in depth the statistical aspects of the problem,
nor elaborate upon the design of the weight function classes.1 The last two considerations are es-
sential to obtaining data-dependent procedures accompanied by rigorous guarantees, and to provide
guidance on the choice of weight class, which are key contributions of this paper.

For space reasons, we motivate our approach in the idealized case where the Bellman operator
is known in Section 6.1, and compare with the weight learning literature at the population level
in Section 6.2. Let us summarize our main contributions in the following three paragraphs.

Conceptual contributions Our paper makes two novel contributions of conceptual nature:

1. We propose a method, based on approximate empirical orthogonalization of the Bellman residual
along test functions, to construct confidence intervals and to perform policy optimization.

2. We propose a sample-based approximation of such principle, based on self-normalization and
regularization, and obtain general guarantees for parametric as well as non-parametric problems.

The construction of the estimator, its statistical analysis, and the concrete consequences (described
in the next paragraph) are the major distinctions with respect to past work on weight learning
methods [UHJ20, JH20]. Our analysis highlights the statistical trade-offs in the choice of the test
functions. (See Section 6.2 for comparison with past work at the population level.)

Domain-specific results In order to illustrate the broad effectiveness and applicability of our
general method and analysis, we consider several domains of interest. We show how to recover
various results from past work—and to obtain novel ones—by making appropriate choices of the
test functions and invoking our main result. Among these consequences, we discuss the following:

1. When marginalized importance weights are available, they can be used as test class. In this case
we recover a similar results as the paper [XJ20b]; however, here we only require concentrability
with respect to a comparator policy instead of over all policies in the class.

2. When some knowledge of the Bellman error class is available, it can be used as test class. Similar
results have appeared previously either with stronger concentrability [CJ19] or in the special case
of Bellman closure [XCJ+21].

3. We provide a test class that projects the Bellman residual along the error space of the Q class.
The resulting procedure is as an extension of the LSTD algorithm [BB96] to non-linear spaces,
which makes it a natural approach if no domain-specific knowledge is available. A related result
is the lower bound by [FKSLX21], which proves that without Bellman closure learning is hard

1For instance, the paper [FRTL20] only shows validity of ther intervals, not a performance bound; on the other
hand, the paper [JH20] gives analyses at the population level, and so does not address the alignment of weight functions
with respect to the dataset in the construction of the empirical estimator, which we do via self-normalization and
regularization. This precludes obtaining the same type of guarantees that we present here.
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even with small density ratios. In contrast, our work shows that learning is still possible even
with large density ratios.

4. Finally, our procedure inherits some form of “multiple robustness”. For example, the two test
classes corresponding to Bellman completeness and marginalized importance weights can be used
together, and guarantees will be obtained if either Bellman completeness holds or the importance
weights are correct. We examine this issue in Section 4.4.

Linear setting We examine in depth an application to the linear setting, where we propose the
first computationally tractable policy optimization procedure without assuming Bellman complete-
ness. The closest result here is given in the paper [ZWB21], which holds under Bellman closure.
Our procedure can be thought of making use of LSTD-type estimates so as to establish confi-
dence intervals for the projected Bellman equations, and then using an iterative scheme for policy
improvement.

2 Background and set-up

We begin with some notation used throughout the paper. For a given probability distribution ρ
over a space X , we define the L2(ρ)-inner product and semi-norm as 〈f1, f2〉ρ = Eρ[f1f2], and
‖f1‖ρ =

√
〈f1, f1〉ρ. The identity function that returns one for every input is denoted by 1. We

frequently use notation such as c, c′, c̃, c1, c2 etc. to denote constants that can take on different
values in different sections of the paper.

2.1 Markov decision processes and Bellman errors

We focus on infinite-horizon discounted Markov decision processes [Put94, BT96, SB18] with dis-
count factor γ ∈ [0, 1), state space S, and an action set A. For each state-action pair (s, a), there
is a reward distribution R(s, a) supported in [0, 1] with mean r(s, a), and a transition P(· | s, a).

A (stationary) stochastic policy π maps states to actions. For a given policy, its Q-function
is the discounted sum of future rewards based on starting from the pair (s, a), and then follow-
ing the policy π in all future time steps Qπ(s, a) = r(s, a) +

∑∞
h=0 γ

h
E[rh(Sh, Ah) | (S0, A0) =

(s, a)], where the expectation is taken over trajectories with Ah ∼ π(· | Sh), and Sh+1 ∼
P(· | Sh, Ah) for h = 1, 2, . . .. We also use Qπ(s, π) = EA∼π(·|s)Q

π(s,A) and define the Bellman
evaluation operator as (T πQ)(s, a) = r(s, a) + ES+∼P(·|s,a)Q(S+, π). The value function satisfies
V π(s) = Qπ(s, π). In our analysis, we assume that policies have action-value functions that sat-
isfy the uniform bound sup(s,a)|Qπ(s, a)| ≤ 1. We are also interested in approximating optimal
policies, whose value and action-value functions are defined as V ⋆(s) = V π⋆

(s) = supπ V
π(s) and

Q⋆(s, a) = Qπ⋆
(s, a) = supπ Q

π(s, a).
We assume that the starting state S0 is drawn according to νstart and study V π = ES0∼νstart [V

π(S0)].
We define the discounted occupancy measure associated with a policy π as the distribution over the
state action space dπ(s, a) = (1 − γ)

∑∞
h=0 γ

h
Ph[(Sh, Ah) = (s, a)]. We adopt the shorthand no-

tation Eπ for expectations over dπ. For any functions f, g : S × A → R, we make frequent use

of the shorthands Eπ[f ]
def
= E(S,A)∼dπ [f(S,A)], and 〈f, g〉π

def
= E(S,A)∼dπ

[
f(S,A) g(S,A)

]
. Note

moreover that we have 〈1, f〉π = Eπ[f ] where 1 denotes the identity function.
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For a given Q-function and policy π, let us define the temporal difference error (or TD error)
associated with the sample z = (s, a, r, s+) and the Bellman error at (s, a)

(δπQ)(z)
def
= Q(s, a)− r − γQ(s+, π), (BπQ)(s, a)

def
= Q(s, a)− r(s, a)− γEs+∼P(s,a)Q(s+, π).

The TD error is a random variable function of z, while the Bellman error is its conditional expecta-
tion with respect to the immediate reward and successor state at (s, a). Many of our bounds involve
the quantity EπBπQ = E(S,A)∼dπ

[
BπQ(S,A)

]
.

2.2 Function Spaces and Weak Representation

Our methods involve three different types of function spaces, corresponding to policies, action-
value functions, and test functions. A test function f is a mapping (s, a, o) 7→ f(s, a, o) such
that sup(s,a,o)|f(s, a, o)| ≤ 1, where o is an optional identifier containing side information. Our
methodology involves the following three function classes:
• a policy class Π that contains all policies π of interest (for evaluation or optimization);
• for each π, the predictor class Qπ of action-value functions Q that we permit; and
• for each π, the test function class F

π that we use to enforce the Bellman residual constraints.
We use the shorthands Q = ∪π∈ΠQπ and F = ∪π∈ΠFπ. We assume weak realizability :

Assumption 1 (Weak Realizability). For a given policy π, the predictor class Qπ is weakly realizable
with respect to the test space F

π and the measure µ if there exists a predictor Qπ
⋆ ∈ Qπ such that

〈f,BπQπ
⋆ 〉µ = 0 for all f ∈ F

π and 〈1,BπQπ
⋆ 〉π = 0. (1)

The first condition requires the predictor to satisfy the Bellman equations on average. The sec-
ond condition amounts to requiring that the predictor returns the value of π at the start distribution:
using Lemma 9 stated in the sequel, we have

ES∼νstartQ
π
⋆ (S, π)− V π = ES∼νstart[Q

π
⋆ −Qπ](S, π) =

1

1− γ
EπBπQπ

⋆ =
1

1− γ
〈1,BπQπ

⋆ 〉π = 0.

This weak notion should be contrasted with strong realizability, which requires a function Qπ ∈ Qπ

that satisfies the Bellman equation in all state-action pairs.
A stronger assumption that we sometime use is Bellman closure, which requires that T π(Q) ∈

Qπ for all Q ∈ Qπ. The corresponding ‘weak’ version is given in Section 6.4.

3 Policy Estimates via the Weak Bellman Equations

In this section, we introduce our high-level approach, first at the population level and then in terms
of regularized/normalized sample-based approximations.

3.1 Weak Bellman equations, empirical approximations and confidence inter-

vals

We begin by noting that the predictor Qπ satisfies the Bellman equations everywhere in the state-
action space, i.e., BπQπ = 0. However, if our dataset is “small” relative to the complexity of
(functions) on the state-action space, then it is unrealistic to enforce such a stringent condition.
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Instead, the idea is to control the Bellman error in a weighted-average sense, where the weights
are given by a set of test functions. At the idealized population level (corresponding to an infinite
sample size), we consider predictors that satisfy the conditions

〈f,BπQ〉µ = 0, for all f ∈ F
π. (2)

where F
π is a user-defined set of test functions. The two main challenges here are how to use

data to enforce an approximate version of such constraints (along with rigorous data-dependent
guarantees), and how to design the test function space. We begin with the former challenge.

Construction of the empirical set Given a dataset D = {(si, ai, ri, s+i , oi)}ni=1, we can approx-
imate the Bellman errors by a linear combination of the temporal difference errors:

∫
f(s, a) [Q(s, a) − (T πQ)(s, a)]︸ ︷︷ ︸

=BπQ(s,a)

dµ ≈ 1

n

n∑

i=1

f(si, ai) [Q(si, ai)− ri − γQ(s+i , π)]︸ ︷︷ ︸
=δπQ(si,ai,ri,s

+

i ,oi)

. (3)

Note that the approximation (3) corresponds to a weighted linear combination of temporal differ-
ences. Written more compactly in inner product notation, equation (3) reads 〈f,BπQ〉µ ≈ 〈f, δπQ〉n,
where 〈f, g〉n = 1

n

∑
(s,a,r,s+,o)∈D(fg)(s, a, r, s

+, o).
In general, the action value function Qπ does not satisfy 〈f, δπQπ〉n = 0 because the empirical

approximation (3) involves sampling error. For these reasons, in order to (approximately) identify
Qπ, we impose only inequalities. Given a class of test functions F

π, a radius parameter ρ ≥ 0 and
regularization parameter λ ≥ 0, we define the set

Ĉ
π
n(ρ, λ;F

π)
def
=

{
Q ∈ Qπ such that

|〈f, δπQ〉n|√
‖f‖2n + λ

≤
√

ρ

n
for all f ∈ F

π

}
. (4)

When the choices of (ρ, λ) are clear from the context, we adopt the shorthand Ĉ
π
n(F

π), or Ĉ
π
n when

the function class F
π is also clear. If Fπ and Qπ have finite cardinality, ρ ≈ ln |Fπ||Qπ| + ln 1/δ,

where δ is a prescribed failure probability.
Our definition of the empirical constraint set (4) has two key components: first, the division

by
√
‖f‖2n + λ corresponds to a form of self-normalization, whereas the addition of λ corresponds

to a form of regularization. Self-normalization is needed so that the constraints remain suitably
scale-invariant. More importantly—in conjunction with the regularization—it ensures that test
functions that have poor coverage under the dataset do not have major effects on the solution.
In particular, the empirical norm ‖f‖2n in the self-normalization measures how well the given test
function is covered by the dataset. Any test function with poor coverage (i.e., ‖f‖2n ≈ 0) will not
yield useful information, and the regularization counteracts its influence. In our guarantees, the
choices of λ and ρ are critical; as shown in our theory, we typically have λ = ρ/n, where ρ scales
with the metric entropy of the predictor, test and policy spaces. Disregarding ρ, the right-hand side
of the constraint decays as 1/

√
n, so that the constraints are enforced more tightly as the sample

size increases.
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Confidence bounds and policy optimization: First, for any fixed policy π, we can use the
feasibility set (4) to compute the lower and upper estimates

V̂ π
min

def
= min

Q∈Ĉπ
n(ρ,λ;F

π)
ES∼νstart

[
Q(S, π)

]
, and V̂ π

max
def
= max

Q∈Ĉπ
n(ρ,λ;F

π)
ES∼νstart

[
Q(S, π)

]
, (5)

corresponding to estimates of the minimum and maximum value that the policy π can take at the
initial distribution. The family of lower estimates can be used to perform policy optimization over
the class Π, in particular by solving the max-min problem

max
π∈Π

[
min
Q∈Ĉπ

n

ES∼νstartQ(S, π)
]
, or equivalently max

π∈Π
V̂ π

min. (6)

Form of guarantees Let us now specify and discuss the types of guarantees that we establish
for our estimators (5) and (6). All of our theoretical guarantees involve a µ-based counterpart C

π
n

of the data-dependent set Ĉ
π
n. More precisely, we define the population set

C
π
n(4ρ, λ;F

π)
def
=

{
Q ∈ Qπ such that

|〈f,BπQ〉µ|√
‖f‖2µ + λ

≤
√

4ρ

n
for all f ∈ F

}
, (7)

where 〈f, g〉µ
def
=

∫
f(s, a)g(s, a)dµ is the inner product induced by a distribution2 µ over (s, a). As

before, we use the shorthand notation C
π
n when the underlying arguments are clear from context.

Moreover, in the sequel, we generally ignore the constant 4 in the definition (7) by assuming that ρ
is rescaled appropriately—e.g., that we use a factor of 1

4 in defining the empirical set.

It should be noted that in contrast to the set Ĉ
π
n, the set C

π
n is non-random and it is defined in

terms of the distribution µ and the input space (Π,F,Q). It relaxes the orthogonality constraints
in the weak Bellman formulation (2). Our guarantees for off-policy confidence intervals take the
following form:

Coverage guarantee:
[
V̂ π

min, V̂
π
max

]
∋ V π. (8a)

Width bound: max
{
|V̂ π

min − V π|, |V̂ π
max − V π|

}
≤ 1

1− γ
max

Q∈Cπ
n(F

π)
|EπBπQ|. (8b)

Turning to policy optimization, let π̃ be a solution to the max-min criterion (6). Then we prove a
result of the following type:

Oracle inequality: V π̃ ≥ max
π∈Π

{
V π

︸︷︷︸
Value

− 1

1− γ
max

Q∈Cπ
n(F)

|EπBπQ|
︸ ︷︷ ︸

Evaluation uncertainty

}
. (9)

Note that this result guarantees that the estimator competes against an oracle that can search
over all policies, and select one based on the optimal trade-off between its value and evaluation
uncertainty.

2See Section 7.2.1 for a precise definition of the relevant µ for a fairly general sampling model.
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3.2 High-probability guarantees

In this section, we present some high-probability guarantees. So as to facilitate understanding under
space constraints, we state here results under simplifying assumptions: (a) the dataset originates
from a fixed distribution, and (b) the classes Π,F and Q have finite cardinality. We emphasize
that Section 7 provides a far more general version of this result, with an extremely flexible sampling
model, and involving metric entropies of parametric or non-parametric function classes.

Assumption 2 (I.i.d. dataset). An i.i.d. dataset is a collection D = {(si, ai, ri, s+i , oi)}ni=1 such
that for each i = 1, . . . , n we have (si, ai, oi) ∼ µ and conditioned on (si, ai, oi), we observe a noisy
reward ri = r(si, ai) + ηi with E[ηi | Fi] = 0, |ri| ≤ 1 and the next state s+i ∼ P(si, ai).

Theorem 1 (Guarantees for finite classes). Consider a triple (Π,F,Q) that is weakly Bellman
realizable (Assumption 1); an i.i.d. dataset (Assumption 2); and the choices ρ = c

{
log(|F||Π||Q|)+

log(1/δ)
}

and λ = c′ρ/n for some constants c, c′. Then w.p. at least 1− δ:

• Policy evaluation: For any π ∈ Π, the estimates (V̂ π
min, V̂

π
max) specify a confidence interval satis-

fying the coverage (8a) and width bounds (8b)
• Policy optimization: Any max-min policy (6) π̃ satisfies the oracle inequality (9).

4 Concentrability Coefficients and Test Spaces

In this section, we develop some connections to concentrability coefficients that have been used in
past work, and discuss various choices of the test class. Like the predictor class Qπ, the test class
F
π encodes domain knowledge, and thus its choice is delicate. Different from the predictor class,

the test class does not require a ‘realizability’ condition. As a general principle, the test functions
should be chosen as orthogonal as possible with respect to the Bellman residual, so as to enable
rapid progress towards the solution; at the same time, they should be sufficiently “aligned” with the
dataset, meaning that ‖f‖µ or its empirical counterpart ‖f‖n should be large. Given a test class,
each additional test function posits a new constraint which helps identify the correct predictor; at the
same time, it increases the metric entropy (parameter ρ), which makes each individual constraints
more loose. In summary, there are trade-offs to be made in the selection of the test class F, much
like Q.

In order to assess the statistical cost that we pay for off-policy data, it is natural to define the
off-policy cost coefficient (OPC) as

Kπ(Cπ
n, ρ, λ)

def
= max

Q∈Cπ
n

|EπBπQ|2
(1 + λ) ρn

= max
Q∈Cπ

n

〈1,BπQ〉2µ
(1 + λ) ρn

, (10)

With this notation, our off-policy width bound (8b) can be re-expressed as

|V̂ π
min − V̂ π

max| ≤ 2

√
1 + λ

1− γ

√
Kπ

ρ

n
, (11a)

while the oracle inequality (9) for policy optimization can be re-expressed in the form

V π̃ ≥ max
π∈Π

{
V π −

√
1 + λ

1− γ

√
Kπ

ρ

n

}
, (11b)

Since λ ∼ ρ/n, the factor
√
1 + λ can be bounded by a constant in the typical case n ≥ ρ. We now

offer concrete examples of the OPC , while deferring further examples to Section 6.5.
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4.1 Likelihood ratios

Our broader goal is to obtain small Bellman error along the distribution induced by π. Assume
that one constructs a test function class F

π of possible likelihood ratios.

Proposition 1 (Likelihood ratio bounds). Assume that for some constant bπ, the test function

defined as f∗(s, a) = 1
bπ

dπ(s,a)
µ(s,a) belongs to F

π and satisfies ‖f∗‖∞ ≤ 1. Then the OPC coefficient
satisfies

Kπ
(i)

≤
Eπ

[
dπ(S,A)
µ(S,A)

]
+ b2πλ

1 + λ

(ii)

≤ bπ
(
1 + bπλ

)

1 + λ
(12)

The proof is in Section 9.1. Since λ = λn → 0 as n increases, the OPC coefficient is bounded

by a multiple of the expected ratio Eπ

[
dπ(S,A)
µ(S,A)

]
. Up to an additive offset, this expectation is

equivalent to the χ2-distribution between the policy-induced occupation measure dπ and data-
generating distribution µ. The concentrability coefficient can be plugged back into Eqs. (11a)
and (11b) to obtain a concrete policy optimization bound. In this case, we recover a result similar to
[XJ20b], but with a much milder concentrability coefficient that involves only the chosen comparator
policy.

4.2 The error test space

We now turn to the discussion of a choice for the test space that extends the LSTD algorithm to
non-linear spaces. A simplification to the linear setting is presented later in Section 5.

As is well known, the LSTD algorithm [BB96] can be seen as minimizing the Bellman er-
ror projected onto the linear prediction space Q. Define the transition operator (PπQ)(s, a) =
Es+∼P(s,a)Q(s+, π), and the prediction error ǫ = Q−Qπ

⋆ , where Qπ
⋆ is a Q-function from the defini-

tion of weak realizability. The Bellman error can be re-written as BπQ = BπQ−BπQπ
⋆ = (I−γP

π)ǫ.
When realizability holds, in the linear setting and at the population level, the LSTD solution seeks
to satisfy the projected Bellman equations

〈f,BπQ〉µ = 0, for all f ∈ Eπ
⋆ . (13)

In the linear case, Eπ
⋆ is the class of linear functions Qπ used as predictors; when Qπ is non-linear,

we can extend the LSTD method by using the (nonlinear) error test space F
π = Eπ

⋆ = {Q −Qπ
⋆}.

Since Eπ
⋆ is unknown (as it depends on the weak solution Qπ

⋆ ), we choose instead the larger class

Eπ = {Q−Q′ | Q,Q′ ∈ Qπ},

which contains Eπ
⋆ . The resulting approach can be seen as performing a projection of the Bellman

operator BπQ into the error space Eπ
⋆ , much like LSTD does in the linear setting. However, different

from LSTD, our procedure returns confidence intervals as opposed to a point estimator. This choice
of the test space is related to the Bubnov-Galerkin method [Rep17] for linear spaces; it selects the
test space F

π to be identical to the trial space Eπ
⋆ that contains all possible solution errors.

Lemma 1 (OPC coefficient from prediction error). For any test function class F
π ⊇ Eπ, we have

Kπ ≤ max
Q∈Qπ

{ ‖ǫ‖2µ + λ

‖1 ‖2π + λ

〈1,BπQ〉2π
〈ǫ,BπQ〉2µ

}
= max

ǫ∈Eπ
⋆

{ ‖ǫ‖2µ + λ

‖1 ‖2π + λ

〈1, (I − γP
π)ǫ〉2π

〈ǫ, (I − γPπ)ǫ〉2µ
}
. (14)
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The above coefficient measures the ratio between the Bellman error along the distribution of the
target policy π and that projected onto the error space Eπ

⋆ defined by Qπ. It is a concentrability
coefficient that always applies, as the choice of the test space does not require domain knowledge.
See Section 9.2 for the proof, and Section 6.6 for further comments and insights, as well as a
simplification in the special case of Bellman closure.

4.3 The Bellman test space

In the prior section we controlled the projected Bellman error. Another longstanding approach in
reinforcement learning is to control the Bellman error itself, for example by minimizing the squared
Bellman residual. In general, this cannot be done if only an offline dataset is available due to the
well known double sampling issue. However, in some cases we can use an helper class to try to
capture the Bellman error. Such class needs to be a superset of the class of Bellman test functions
given by

F
B
π

def
= {BπQ | Q ∈ Qπ}. (15)

Any test class that contains the above allows us to control the Bellman residual, as we show next.

Lemma 2 (Bellman Test Functions). For any test function class F
π that contains F

B
π , we have

‖BπQ‖µ ≤ c1

√
ρ

n
for any Q ∈ C

π
n(F

π). (16a)

Moreover, the off-policy cost coefficient is upper bounded as

Kπ
(i)

≤ c1 sup
Q∈Qπ

〈1,BπQ〉2π
‖BπQ‖2µ

(ii)

≤ c1 sup
Q∈Qπ

‖BπQ‖2π
‖BπQ‖2µ

(iii)

≤ c1 sup
(s,a)

dπ(s, a)

µ(s, a)
. (16b)

See Section 9.4 for the proof of this claim.
Consequently, whenever the test class includes the Bellman test functions, the off-policy cost

coefficient is at most the ratio between the squared Bellman residuals along the data generating
distribution and the target distribution. If Bellman closure holds, then the prediction error space
Eπ introduced in Section 4.2 contains the Bellman test functions: for Q ∈ Qπ, we can write BπQ =
Q− T πQ ∈ Eπ. This fact allows us to recover a result in the recent paper [XCJ+21] in the special
case of Bellman closure, although the approach presented here is more general.

4.4 Combining test spaces

Often, it is natural to construct a test space that is a union of several simpler classes. A simple
but valuable observation is that the resulting procedure inherits the best of the OPC coefficients.
Suppose that we are given a collection {Fπ

m}Mm=1 of M different test function classes, and define
the union F

π =
⋃M

m=1 F
π
m. For each m = 1, . . . ,M , let Kπ

m be the OPC coefficient defined by the
function class Fπ

m and radius ρ, and let Kπ(F) be the OPC coefficient associated with the full class.
Then we have the following guarantee:

Lemma 3 (Multiple test classes). Kπ(F) ≤ minm=1,...,M Kπ
m.
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This guarantee is a straightforward consequence of our construction of the feasibility sets: in partic-
ular, we have C

π
n(F) = ∩M

m=1C
π
n(Fm), and consequently, by the variational definition of the off-policy

cost coefficient Kπ(F) as optimization over C
π
n(F), the bound (3) follows. In words, when multiple

test spaces are combined, then our algorithms inherit the best (smallest) OPC coefficient over all
individual test spaces. While this behavior is attractive, one must note that there is a statistical
cost to using a union of test spaces: the choice of ρ scales as a function of F via its metric entropy.
This increase in ρ must be balanced with the benefits of using multiple test spaces.3

5 Linear Setting

In this section, we turn to a detailed analysis of our estimators using function classes that are linear
in a feature map. Let φ : S × A → R

d be a given feature map, and consider linear expansions

gw(s, a)
def
= 〈w, φ(s, a)〉 =

∑d
j=1wjφj(s, a). The class of linear functions takes the form

L def
= {(s, a) 7→ gw(s, a) | w ∈ R

d, ‖w‖2 ≤ 1}. (17)

Throughout our analysis, we assume that ‖φ(s, a)‖2 ≤ 1 for all state-action pairs.
Following the approach in Section 4.2, which is based on the LSTD method, we should choose

the test function class F
π = L, as in the linear case the prediction error is linear.

In order to obtain a computationally efficient implementation, we need to use a test class that is
a “simpler” subset of L. In particular, for linear functions, it is not hard to show that the estimates
V̂ π

min and V̂ π
max from equation (5) can be computed by solving a quadratic program, with two linear

constraints for each test function. (See Section 6.8 for the details.) Consequently, the computational
complexity scales linearly with the number of test functions. Thus, if we restrict ourselves to a finite
test class contained within L, we will obtain a computationally efficient approach.

5.1 A computationally friendly test class and OPC coefficients

Define the empirical covariance matrix Σ̂ = 1
n

∑n
i=1 φiφ

T
i where φi

def
= φ(si, ai). Let {ûj}dj=1 be the

eigenvectors of empirical covariance matrix Σ̂, and suppose that they are normalized to have unit
ℓ2-norm. We use these normalized eigenvectors to define the finite test class

F̃
π def

= {fj , j = 1, . . . , d} where fj(s, a)
def
= 〈ûj, φ(s, a)〉 (18)

A few observations are in order:
• This test class has only d functions, so that our QP implementation has 2d constraints, and can

be solved in polynomial time. (Again, see Section 6.8 for details.)
• Since F̃

π is a subset of L the choice of radius ρ = c( dn + log 1/δ) is valid for some constant c.

3For space reasons, we defer to Section 6.7 an application in which we construct a test function space as a union
of subclasses, and thereby obtain a method that automatically leverages Bellman closure when it holds, falls back to
importance sampling if closure fails, and falls back to a worst-case bound in general.
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Concentrability When weak Bellman closure does not hold, then our analysis needs to take
into account how errors propagate via the dynamics. In particular, we define the next-state fea-

ture extractor φ+π(s, a)
def
= Es+∼P(s,a)φ(s

+, π), along with the population covariance matrix Σ
def
=

Eµ

[
φ(s, a)φ⊤(s, a)

]
, and its λ-regularized version Σλ

def
= Σ+ λI. We also define the matrices

Σ+π def
= Eµ[φ(φ

+π)⊤], Σ+π
λ,Boot

def
= (Σ

1

2

λ − γΣ
− 1

2

λ Σ+π)⊤(Σ
1

2

λ − γΣ
− 1

2

λ Σ+π).

The matrix Σ+π is the cross-covariance between successive states, whereas the matrix Σ+π
λ,Boot is a

suitably renormalized and symmetrized version of the matrix Σ
1

2 −γΣ− 1

2Σ+π, which arises naturally
from the policy evaluation equation. We refer to quantities that contain evaluations at the next-
state (e.g., φ+π) as bootstrapping terms, and now bound the OPC coefficient in the presence of
such terms:

Proposition 2 (OPC bounds with bootstrapping). Under weak realizability, we have

Kπ(F̃π) ≤ c d‖Eπ[φ− γφ+π]‖2
(Σ+π

λ,Boot
)−1 with probability at least 1− δ. (19)

See Section 10.1 for the proof. The bound (19) takes a familiar form, as it involves the same matrices
used to define the LSTD solution. This is expected, as our approach here is essentially equivalent
to the LSTD method; the difference is that LSTD only gives a point estimate as opposed to the
confidence intervals that we present here; however, they are both derived from the same principle,
namely from the Bellman equations projected along the predictor (error) space.

The bound quantifies how the feature extractor φ together with the bootstrapping term φ+π,
averaged along the target policy π, interact with the covariance matrix with bootstrapping Σ+π

λ,Boot.
It is an approximation to the OPC coefficient bound derived in Lemma 1. The bootstrapping terms
capture the temporal difference correlations that can arise in reinforcement learning when strong
assumptions like Bellman closure do not hold. As a consequence, such an OPC coefficient being
small is a sufficient condition for reliable off-policy prediction. This bound on the OPC coefficient
always applies, and it reduces to the simpler one (20) when weak Bellman closure holds, with no
need to inform the algorithm of the simplified setting; see Section 10.3 for the proof.

Proposition 3 (OPC bounds under weak Bellman Closure). Under Bellman closure, we have

Kπ(F̃π) ≤ c d‖Eπφ‖2Σ−1

λ

with probability at least 1− δ. (20)

5.2 Actor-critic scheme for policy optimization

Having described a practical procedure to compute V̂ π
min, we now turn to the computation of the

max-min estimator for policy optimization. We define the soft-max policy class

Πlin
def
=

{
(s, a) 7→ e〈φ(s,a),θ〉∑

a+∈A e〈φ(s,a+),θ〉 | ‖θ‖2 ≤ T, θ ∈ R
d
}
. (21)

In order to compute the max-min solution (6) over this policy class, we implement an actor-critic
method, in which the actor performs a variant of mirror descent.4

4Strictly speaking, it is mirror ascent, but we use the conventional terminology.
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• At each iteration t = 1, . . . , T , the policy πt ∈ Πlin can be identified with a parameter θt ∈ R
d.

The sequence is initialized with θ1 = 0.
• Using the finite test function class (18) based on normalized eigenvectors, the pessimistic value

estimate V̂ πt

min is computed by solving a quadratic program, as previously described. This com-
putation returns the weight vector wt of the associated optimal action-value function.

• Using the action-value vector wt, we update the actor’s parameter as

θt+1 = θt + ηwt where η =

√
log|A|
2T is a stepsize parameter. (22)

We now state a guarantee on the behavior of this procedure, based on two OPC coefficients:

K π̃
(1) = d‖Eπ̃φ‖2Σ−1

λ

, and K π̃
(2) = d sup

π∈Π

{
‖Eπ̃[φ− γφ+π]‖2

(Σ+π
λ,Boot

)−1

}
. (23)

Moreover, in making the following assertion, we assume that every weak solution Qπ
⋆ can be evaluated

against the distribution of a comparator policy π̃ ∈ Π, i.e., 〈1,BπQπ
⋆ 〉π̃ = 0 for all π ∈ Π. (This

assumption is still weaker than strong realizability).

Theorem 2 (Approximate Guarantees for Linear Soft-Max Optimization). Under the above con-
ditions, running the procedure for T rounds returns a policy sequence {πt}Tt=1 such that, for any
comparator policy π̃ ∈ Π,

1

T

T∑

t=1

{
V π̃ − V πt

}
≤ c1

1− γ

{ √
log|A|
T︸ ︷︷ ︸

Optimization error

+

√

K π̃
(·)
d log(nT ) + log

(
n
δ

)

n︸ ︷︷ ︸
Statistical error

}
, (24)

with probability at least 1 − δ. This bound always holds with K π̃
(·) = K π̃

(2), and moreover, it holds

with K π̃
(·) = K π̃

(1) when weak Bellman closure is in force.

See Section 11 for the proof. Whenever Bellman closure holds, the result automatically inherits the
more favorable concentrability coefficient K π̃

(2), as originally derived in Proposition 3. The resulting

bound is only
√
d worse than the lower bound recently established in the paper [ZWB21]. However,

the method proposed here is robust, in that it provides guarantees even when Bellman closure does
not hold. In this case, we have a guarantee in terms of the OPC coefficient K π̃

(1). Note that it
is a uniform version of the one derived previously in Proposition 2, in that there is an additional
supremum over the policy class. This supremum arises due to the use of gradient-based method,
which implicitly searches over policies in bootstrapping terms; see Section 6.9 for a more detailed
discussion of this issue.
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6 Additional Discussion and Results

6.1 Bellman Residual Orthogonalization

Suppose that our goal is to estimate the action-value function Qπ of a given policy π. This function
is known to be a fixed point of the Bellman evaluation operator T π associated with the policy
π. Thus, when the MDP is known, one option is to (approximately) solve the Bellman evaluation
equations Q(s, a) = (T πQ)(s, a) for all state-action pairs. However, even if function approximation
for Q is implemented, it is still difficult to directly solve these equations if the state-action space is
sufficiently complex.

This observation motivates the strategy taken in this paper: instead of enforcing the Bellman
equations for all state-action pairs, suppose that we do so only in an average sense, and with respect
to a certain set of functions. More formally, a test function is a mapping from the state-action space
to the real line; any such function serves to enforce the Bellman equations in an average sense in the
following way. Let F

π denote some user-prescribed class of test functions, which we refer to as the
test space. Then for a given measure µ, we require only that the action-value function Qπ satisfy
the integral constraints

〈f, Q− T π(Q)〉µ def
=

∫
f(s, a)[Q(s, a) − (T πQ)(s, a)]dµ = 0, for all f ∈ F

π. (25)

We refer to this design principle as Bellman residual orthogonalization, because it requires the
Bellman error function to be orthogonal to a set of test functions, as measured under the L2(µ)
inner product. Of course, by enlarging the test space F

π, the Bellman error is required to be
orthogonal to more test functions, and it will ultimately be zero if enough test functions are added
as constraints. But at the same time, as shown by our analysis, any such enlargement has both
computational and statistical costs, so there are tradeoffs to be understood.

In numerical analysis, especially in solving partial differential equations, the design principle (25)
is called the weak or variational formulation (e.g., [Eva10]), and its solutions are referred to as weak
solutions. Here we are advocating a weak formulation of the Bellman equations. Of course, the
constraints (25) are necessary but not sufficient: the weak (Bellman) solutions need not solve
the Bellman equations. However, whenever we need to learn based on a limited dataset, it is
unreasonable to satisfy the Bellman equations everywhere; instead, by choosing the test space
appropriately, we can seek to satisfy the Bellman equations over regions of the state-action space
that are most important. In some cases, the formulation (25) can be fruitfully viewed as a type of
Galerkin approximation (e.g., [Gal15, Fle84]) to the Bellman equations. For example, when both the
test functions and Q-value functions belong to some linear space (and the empirical constraints are
enforced exactly), then the weak formulation and Galerkin approximation lead to the least-squares
temporal difference (LSTD) estimator; this connection between Galerkin methods and LSTD has
been noted in past work by Yu and Bertsekas [YB10]. In this paper, our goal is to understand the
weak formulation (25) in a broader sense for general test and predictor classes.

6.2 Comparison with Weight Learning Methods

The work closest to ours is [JH20]. They also use an auxiliary weight function class, which is
comparable to our test class. However, the test class is used in different ways; we compare them
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in this section at the population level.5 Let us assume that weak realizability holds and that F is
symmetric, i.e., if f ∈ F then −f ∈ F as well. At the population level, our program seeks to solve

sup
Q∈Qπ

Es∼νstartQ(s, π) s.t. sup
f∈F

〈f,BπQ〉µ = 0, (26)

which is equivalent for any w ∈ F to

sup
Q∈Qπ

Es∼νstartQ(s, π)− 1

1− γ
〈w,BπQ〉µ s.t. sup

f∈F
〈f,BπQ〉µ = 0.

Removing the constraints leads to the upper bound

sup
Q∈Qπ

Es∼νstartQ(s, π)− 1

1− γ
〈w,BπQ〉µ.

Since this is a valid upper bound for any w ∈ F, minimizing over w must still yield an upper bound,
which reads

inf
w∈F

sup
Q∈Qπ

Es∼νstartQ(s, π)− 1

1− γ
〈w,BπQ〉µ.

This is the population program for “weight learning”, as described in [JH20]. It follows that Bellman
residual orthogonalization always produces tighter confidence intervals than “weight learning” at the
population level.

Another interesting comparison is with “value learning”, also described in [JH20]. In this case,
assuming symmetric F, we can equivalently express the population program (26) using a Lagrange
multiplier as follows

sup
Q∈Qπ

Es∼νstartQ(s, π)− sup
λ≥0,f∈F

λ〈f,BπQ〉µ. (27)

Rearranging we obtain

sup
Q∈Qπ

inf
λ≥0,f∈F

Es∼νstartQ(s, π)− λ〈f,BπQ〉µ.

The “value learning” program proposed in [JH20] has a similar formulation to ours but differs in
two key aspects. The first—and most important—is that [JH20] ignores the Lagrange multiplier;
this means “value learning” is not longer associated to a constrained program. While the Lagrange
multiplier could be “incorporated” into the test class F, doing so would cause the entropy of F to
be unbounded. Another point of difference is that “value learning” uses such expression with λ = 1
to derive the confidence interval lower bound, while we use it to construct the confidence interval
upper bound. While this may seem like a contradiction, we notice that the expression is derived
using different assumptions: we assume weak realizability of Q, while [JH20] assumes realizability
of the density ratios between µ and the discounted occupancy measure π.

5The empirical estimator in [JH20] does not take into account the ‘alignment’ of each weight function with
respect to the dataset, which we do through self-normalization and regularization in the construction of the empirical
estimator. This precludes obtaining the same type of strong finite time guarantees that we are able to derive here.
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6.3 Additional Literature

Here we summarize some additional literature. The efficiency of off-policy tabular RL has been in-
vestigated in the papers [YBW20, YW20, YW21]. For empirical studies on offline RL, see the
papers [LTDC19, JGS+19, WTN19, ASN20, WNŻ+20, SSB+20, NDGL20, YQCC21, KHSL21,
BGB20, KFTL19, KRNJ20, YTY+20].

Some of the classical RL algorithm are presented in the papers [Mun03, Mun05, AMS07, ASM08,
FSM10, FGSM16]. For a more modern analysis, see [CJ19]. These works generally make additionally
assumptions on top of realizability. Alternatively, one can use importance sampling [Pre00, TB16,
JL16, FCG18]. A more recent idea is to look at the distributions themselves [LLTZ18, NDK+19,
XMW19, ZDLS20, ZLW20, YND+20, KU19].

Offline policy optimization with pessimism has been studied in the papers [LSAB20, RZM+21,
JYW21, XCJ+21, ZWB21, YWDW, US21]. There exists a fairly extensive literature on lower bounds
with linear representations, including the two papers [Zan20, WFK20] that concurrently derived the
first exponential lower bounds for the offline setting, and [FKSLX21] proves that realizability and
coverage alone are insufficient.

In the context of off-policy optimization several works have investigated methods that as-
sume only realizability of the optimal policy [XJ20a, XJ20b]. Related work includes the pa-
pers [DW20, DJL21, JH20, UHJ20, TFL+19, ND20, VJY21, HJD+21, ZSU+22, UIJ+21, CQ22,
LTND21]. Among concurrent works, we note [ZHH+22].

6.4 Definition of Weak Bellman Closure

Definition 1 (Weak Bellman Closure). The Bellman operator T π is weakly closed with respect to
the triple

(
Qπ,Fπ, µ

)
if for any Q ∈ Qπ, there exists a predictor P

π(Q) ∈ Qπ such that

〈f,Pπ(Q)〉µ = 〈f,T π(Q)〉µ. (28)
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6.5 Additional results on the concentrability coefficients

6.5.1 Testing with the identity function

Suppose that the identity function 1 belongs to the test class. Doing so amounts to requiring that
the Bellman error is controlled in an average sense over all the data. When this choice is made, we
can derive some generic upper bounds on Kπ, which we state and prove here:

Lemma 4. If 1 ∈ F
π, then we have the upper bounds

Kπ
(i)

≤ maxQ∈Cπ
n
|EπBπQ|2

maxQ∈Cπ
n
|EµBπQ|2

(ii)

≤ Kπ
∗

def
= max

Q∈Cπ
n

|EπBπQ|2
|EµBπQ|2 . (29)

Proof. Since 1 ∈ F, the definition of Cπ
n implies that

max
Q∈Cπ

n

|EµBπQ|2 ≤
(
‖1 ‖2µ + λ

)ρ
n
=

(
1 + λ

)ρ
n
.

The upper bound (i) then follows from the definition of Kπ. The upper bound (ii) follows since the
right hand side is the maximum ratio.

Note that large values of Kπ
∗ can arise when there exist Q-functions in the set Cπ

n that have low
average Bellman error under the data-generating distribution µ, but relatively large values under
π. Of course, the likelihood of such unfavorable choices of Q is reduced when we use a larger test
function class, which then reduces the size of C

π
n. However, we pay a price in choosing a larger

test function class, since the choice (40b) of the radius ρ needed for Theorem 3 depends on its
complexity.

6.5.2 Mixture distributions

Now suppose that the dataset consists of a collection of trajectories collected by different protocols.
More precisely, for each j = 1, . . . ,m, let µj be a particular protocol for generating a trajectory.
Suppose that we generate data by first sampling a random index J ∈ [m] according to a probability
distribution {pj}mj=1, and conditioned J = j, we sample (s, a, o) according to µj. The resulting data
follows a mixture distribution, where we set o = j to tag the protocol used to generate the data.
To be clear, for each sample i = 1, . . . , n, we sample J as described, and then draw a single sample
(s, a, o) ∼ µj .

Following the intuition given in the previous section, it is natural to include test functions that
code for the protocol—that is, the binary-indicator functions

fj(s, a, o) =

{
1 if o = j

0 otherwise.
(30)

This test function, when included in the weak formulation, enforces the Bellman evaluation equations
for the policy π ∈ Π under consideration along the distribution induced by each data-generating
policy µj.

Lemma 5 (Mixture Policy Concentrability). Suppose that µ is an m-component mixture, and that
the indicator functions {fj}mj=1 are included in the test class. Then we have the upper bounds

Kπ
(i)

≤ 1 +mλ

1 + λ

max
Q∈Cπ

n

[EπBπQ]2

max
Q∈Cπ

n

∑m
j=1 p

2
j [Eµj

BπQ]2

(ii)

≤ 1 +mλ

1 + λ
max
Q∈Cπ

n

{
[EπBπQ]2∑m

j=1 p
2
j [Eµj

BπQ]2

}
. (31)

23



Proof. From the definition of Kπ, it suffices to show that

max
Q∈Cπ

n

m∑

j=1

p2j [Eµj
BπQ]2 ≤ ρ

n

(
1 +mλ

)
.

A direct calculation yields 〈fj,BπQ〉µ = EµI{o = j}BπQ = pjEµj
BπQ. Moreover, since each fj

belongs to the test class by assumption, we have the upper bound
∣∣∣pjEµj

BπQ
∣∣∣ ≤

√
ρ
n

√
‖fj‖2µ + λ.

Squaring each term and summing over the constraints yields

m∑

j=1

p2j [Eµj
BπQ]2 ≤ ρ

n

m∑

j=1

(
‖fj‖2µ + λ

)
=

ρ

n

(
1 +mλ

)
,

where the final equality follows since
∑m

j=1 ‖fj‖2µ = 1.

As shown by the upper bound, the off-policy coefficient Kπ provides a measure of how the
squared-averaged Bellman errors along the policies {µj}mj=1, weighted by their probabilities {pj}mj=1,
transfers to the evaluation policy π. Note that the regularization parameter λ decays as a function
of the sample size—e.g., as 1/n in Theorem 3—the factor (1 + mλ)/(1 + λ) approaches one as n
increases (for a fixed number m of mixture components).

6.5.3 Bellman Rank for off-policy evaluation

In this section, we show how more refined bounds can be obtained when—in addition to a mixture
condition—additional structure is imposed on the problem. In particular, we consider a notion
similar to that of Bellman rank [JKA+17], but suitably adapted6 to the off-policy setting.

Given a policy class Π̃ and a predictor class Q̃, we say that it has Bellman rank is d if there
exist two maps ν : Π̃ → R

d and ξ : Q̃ → R
d such that

EπBπQ = 〈νπ, ξQ〉Rd , for all π ∈ Π̃ and Q ∈ Q̃. (32)

In words, the average Bellman error of any predictor Q along any given policy π can be expressed
as the Euclidean inner product between two d-dimensional vectors, one for the policy and one for
the predictor. As in the previous section, we assume that the data is generated by a mixture of m
different distributions (or equivalently policies) {µj}mj=1. In the off-policy setting, we require that

the policy class Π̃ contains all of these policies as well as the target policy—viz. {µj} ∪ {π} ⊆ Π̃.
Moreover, the predictor class Q̃ should contain the predictor class for the target policy, i.e., Qπ ⊆ Q̃.
We also assume weak realizability for this discussion.

Our result depends on a positive semidefinite matrix determined by the mixture weights {pj}mj=1

along with the embeddings {νµj
}mj=1 of the associated policies that generated the data. In particular,

we define

Σν =
m∑

j=1

p2jνµj
ν⊤µj

.

6The original definition essentially takes Π̃ as the set of all greedy policies with respect to Q̃. Since a dataset need
not originate from greedy policies, the definition of Bellman rank is adapted in a natural way.
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Assuming that this is matrix is positive definite,7 we define the norm ‖u‖Σ−1
ν

=
√

uT (Σν)−1u. With
this notation, we have the following bound.

Lemma 6 (Concentrability with Bellman Rank). For a mixture data-generation process and under
the Bellman rank condition (32), we have the upper bound

Kπ ≤ 1 +mλ

1 + λ
‖νπ‖2Σ−1

ν
, (33)

Proof. Our proof exploits the upper bound (ii) from the claim (31) in Lemma 5. We first evaluate
and redefine the ratio in this upper bound. Weak realizability coupled with the Bellman rank
condition (32) implies that there exists some Qπ

⋆ such that

0 = 〈fj,BπQπ
⋆ 〉µ = pjEµj

BπQπ
⋆ = pj

〈
νµj

, ξQπ
⋆

〉
, for all j = 1, . . . ,m, and

0 = 〈1,BπQπ
⋆ 〉π = EπBπQπ

⋆ =
〈
νπ, ξQπ

⋆

〉
.

Therefore, we have the equivalences Eµj
BπQ =

〈
νµj

, (ξQ − ξQπ
⋆
)
〉

for all j = 1, . . . ,m, as well as
EπBπQ =

〈
νπ, (ξQ − ξQπ

⋆
)
〉
. Introducing the shorthand ∆Q = ξQ − ξQπ

⋆
, we can bound the ratio as

follows

sup
Q∈Cπ

n

{ (〈νπ, ∆Q〉)2∑m
j=1 p

2
j(
〈
νµj

, ∆Q

〉
)2

}
= sup

Q∈Cπ
n

{ (〈νπ, ∆Q〉)2

∆⊤
Q

(∑m
j=1 p

2
jνµj

ν⊤µj

)
∆Q

}

= sup
Q∈Cπ

n

{(〈νπ, Σ
− 1

2
ν ∆̃Q〉)2

‖∆̃Q‖22

}
where ∆̃Q = Σ

1

2
ν∆Q

≤ ‖νπ‖2Σ−1
ν
,

where the final step follows from the Cauchy–Schwarz inequality.

Thus, when performing off-policy evaluation with a mixture distribution under the Bellman
rank condition, the coefficient Kπ is bounded by the alignment between the target policy π and the
data-generating distribution µ, as measured in the the embedded space guaranteed by the Bellman
rank condition. The structure of this upper bound is similar to a result that we derive in the sequel
for linear approximation under Bellman closure (see Proposition 3).

6.6 Further comments on the prediction error test space

A few comments on the bound in Lemma 1: as in our previous results, the pre-factor
‖ǫ‖2µ+λ

‖1 ‖2π+λ

serves as a normalization factor. Disregarding this leading term, the second ratio measures how the
prediction error ǫ = Q − Qπ

⋆ along µ transfers to π, as measured via the operator I − γP
π. This

interaction is complex, since it includes the bootstrapping term −γP
π. (Notably, such a term is not

present for standard prediction or bandit problems, in which case γ = 0.) This term reflects the
dynamics intrinsic to reinforcement learning, and plays a key role in proving “hard” lower bounds
for offline RL (e.g., see the work [Zan20]).

Observe that the bound in Lemma 1 requires only weak realizability, and thus it always applies.
This fact is significant in light of a recent lower bound [FKSLX21], showing that without Bellman

7If not, one can prove a result for a suitably regularized version.
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closure, off-policy learning is challenging even under strong concentrability assumption (such as
bounds on density ratios). Lemma 1 gives a sufficient condition without Bellman closure, but with
a different measure that accounts for bootstrapping.

If, in fact, (weak) Bellman closure holds, then Lemma 1 takes the following simplified form:

Lemma 7 (OPC coefficient under Bellman closure). If Eπ ⊆ F
π and weak Bellman closure holds,

then

Kπ ≤ max
ǫ∈Eπ

{‖ǫ‖2µ + λ

1 + λ
· 〈1, ǫ〉2π
〈ǫ, ǫ〉2µ

}
≤ max

ǫ∈Eπ

{‖ǫ‖2π
‖ǫ‖2µ

}
.

See Section 9.3 for the proof.

In such case, the concentrability measures the increase in the discrepancy Q−Q′ of the feasible
predictors when moving from the dataset distribution µ to the distribution of the target policy π. In
Section 4.3, we give another bound under weak Bellman closure, and thereby recover a recent result
due to Xie et al. [XCJ+21]. Finally, in Section 5, we provide some applications of this concentrability
factor to the linear setting.

6.7 From Importance Sampling to Bellman Closure

Let us show an application of Lemma 3 on an example with just two test spaces. Suppose that we
suspect that Bellman closure holds, but rather than committing to such assumption, we wish to fall
back to an importance sampling estimator if Bellman closure does not hold.

In order to streamline the presentation of the idea, let us introduce the following setup. Let
πb be a behavioral policy that generates the dataset, i.e., such that each state-action (s, a) in the
dataset is sampled from its discounted state distribution dπb . Next, let the identifier o contain the
trajectory from νstart up to the state-action pair (s, a) recorded in the dataset. That is, each tuple
(s, a, r, s+, o) in the dataset D is such that (s, a) ∼ dπb and o contains the trajectory up to (s, a).

We now define the test spaces. The first one is denoted with F
IS
π and leverages importance

sampling. It contains a single test function defined as the importance sampling estimator

F
IS
π = {fπ}, where fπ(s, a, o) =

1

bπ

∏

(sh,ah)∈o

π(ah | sh)
πb(ah | sh)

. (34)

The above product is over the random trajectory contained in the identifier o. The normalization
factor bπ ∈ R is connected to the maximum range of the importance sampling estimator, and ensures
that sup(s,a,o) fπ(s, a, o) ≤ 1. The second test space is the prediction error test space Eπ defined in
Section 4.2.

With this choice, let us define three concentrability coefficients. Kπ
(1) arises from importance

sampling, Kπ
(2) from the prediction error test space when Bellman closure holds and Kπ

(3) from the
prediction error test space when just weak realizability holds. They are defined as

Kπ
(1) ≤

√
bπ

(1 + λbπ)

1 + λ
Kπ

(2) ≤ max
ǫ∈Eπ

⋆

〈1, (I − γP
π)ǫ〉2π

〈ǫ, (I − γPπ)ǫ〉2µ
×

‖ǫ‖2µ + λ

‖1 ‖2π + λ
, Kπ

(3) ≤ c1
‖BπQ‖2π
‖BπQ‖2µ

.
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Lemma 8 (From Importance Sampling to Bellman Closure). The choice F
π = F

IS
π ∪Eπ for all π ∈ Π

ensures that with probability at least 1−δ, the oracle inequality (9) holds with Kπ ≤ min{Kπ
(1),K

π
(2),K

π
(3)}

if weak Bellman closure holds and Kπ ≤ min{Kπ
(1),K

π
(2)} otherwise.

Proof. Let us calculate the off-policy cost coefficient associated with F
IS
π . The unbiasedness of the

importance sampling estimator gives us the following population constraint (here µ = dπb)

|〈fπ,BπQ〉µ| = |EµfπBπQ| = 1

bπ
|EπBπQ| = 1

bπ
|〈1,BπQ〉π| ≤

L√
n

√
‖fπ‖22 + λ

The norm of the test function reads (notice that µ generates (s, a, o) here)

‖fπ‖2µ = Eµf
2
π =

1

b2π
Eµ

[
∏

(sh,ah)∈o

π(ah | sh)
πb(ah | sh)

]2

=
1

b2π
Eπ

[
∏

(sh,ah)∈o

π(ah | sh)
πb(ah | sh)

]
≤ 1

bπ
.

Together with the prior display, we obtain

〈1,BπQ〉2π
b2π(‖fπ‖22 + λ)

≤ ρ

n
.

The resulting concentrability coefficient is therefore

Kπ ≤ max
Q∈Cπ

n

〈1,BπQ〉2π
1 + λ

× n

ρ
≤ max

Q∈Cπ
n

〈1,BπQ〉2π
1 + λ

× b2π(‖fπ‖22 + λ)

〈1,BπQ〉2π
≤ bπ

(1 + λbπ)

1 + λ
.

Chaining the above result with Lemmas 1 and 2, using Lemma 3 and plugging back into Theorem 3
yields the thesis.

6.8 Implementation for Off-Policy Predictions

In this section, we describe a computationally efficient way in which to compute the upper/lower
estimates (5). Given a finite set of nF test functions, it involves solving a quadratic program with
2nF + 1 constraints.

Let us first work out a concise description of the constraints defining membership in Ĉ
π
n. Intro-

duce the shorthand nf
def
= ‖fj‖2n + λ. We then define the empirical average feature vector φ̂f , the

empirical average reward r̂f , and the average next-state feature vector φ̂+π
f as

φ̂f =
1

√
nf

∑

(s,a,r,s+)∈D
f(s, a)φ(s, a), r̂f =

1
√
nf

∑

(s,a,r,s+)∈D
f(s, a)r,

φ̂+π
f =

1
√
nf

∑

(s,a,r,s+)∈D
f(s, a)φ(s+, π).

In terms of this notation, each empirical constraint defining Ĉ
π
n can be written in the more

compact form

|〈f, δπQ〉n|√
nf

=
∣∣∣〈φ̂f − γφ̂+π

f , w〉 − r̂f

∣∣∣ ≤
√

ρ

n
.
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Then the set of empirical constraints can be written as a set of constraints linear in the critic
parameter w coupled with the assumed regularity bound on w

Ĉ
π
n =

{
w ∈ R

d | ‖w‖2 ≤ 1, and −
√

ρ

n
≤ 〈φ̂f − γφ̂+π

f , w〉 − r̂f ≤
√

ρ

n
for all f ∈ F

π
}
. (35)

Thus, the estimates V̂ π
min (respectively V̂ π

max) acan be computed by minimizing (respectively max-
imizing) the linear objective function w 7→ 〈[Es∼νstartEa∼πφ(s, a)], w〉 subject to the 2nF + 1 con-
straints in equation (35). Therefore, the estimates can be computed in polynomial time for any test
function with a cardinality that grows polynomially in the problem parameters.

6.9 Discussion of Linear Approximate Optimization

Here we discuss the presence of the supremum over policies in the coefficient K π̃
(1) from equation (23).

In particular, it arises because our actor-critic method iteratively approximates the maximum in
the max-min estimate (6) using a gradient-based scheme. The ability of a gradient-based method
to make progress is related to the estimation accuracy of the gradient, which is the Q estimates
of the actor’s current policy πt; more specifically, the gradient is the Q function parameter wt. In
the general case, the estimation error of the gradient wt depends on the policy under consideration
through the matrix Σ+πt

λ,Boot, while it is independent in the special case of Bellman closure (as it
depends on just Σ). As the actor’s policies are random, this yields the introduction of a supπ∈Π
in the general bound. Notice the method still competes with the best comparator π̃ by measuring
the errors along the distribution of the comparator (through the operator Eπ̃). To be clear, supπ∈Π
may not arise with approximate solution methods that do not rely only on the gradient to make
progress (such as second-order methods); we leave this for future research. Reassuringly, when
Bellman closure, the approximate solution method recovers the standard guarantees established in
the paper [ZWB21].
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7 General Guarantees

7.1 A deterministic guarantee

We begin our analysis stating a deterministic set of sufficient conditions for our estimators to satisfy
the guarantees (8) and (9). This formulation is useful, because it reveals the structural conditions
that underlie success of our estimators, and in particular the connection to weak realizability. In
Section 7.2, we exploit this deterministic result to show that, under a fairly general sampling model,
our estimators enjoy these guarantees with high probability.

In the previous section, we introduced the population level set Cπ
n that arises in the statement of

our guarantees. Also central in our analysis is the infinite data limit of this set. More specifically,
for any fixed (ρ, λ), if we take the limit n → ∞, then C

π
n reduces to the set of all solutions to the

weak formulation (25)—that is

C
π
∞(Fπ) = {Q ∈ Qπ | 〈f,BπQ〉µ = 0 for all f ∈ F

π}. (36)

As before, we omit the dependence on the test function class F
π when it is clear from context. By

construction, we have the inclusion C
π
∞(Fπ) ⊆ C

π
n(4ρ, λ;F

π) for any non-negative pair (ρ, λ).
Our first set of guarantees hold when the random set Ĉ

π
n satisfies the sandwich relation

C
π
∞(Fπ) ⊆ Ĉ

π
n(ρ, λ;F

π) ⊆ C
π
n(4ρ, λ;F

π) (37)

To provide intuition as to why this sandwich condition is natural, observe that it has two important
implications:

(a) Recalling the definition of weak realizability (1), the weak solution Qπ
⋆ belongs to the empirical

constraint set Ĉπ
n for any choice of test function space. This important property follows because

Qπ
⋆ must satisfy the constraints (25), and thus it belongs to C

π
∞ ⊆ Ĉ

π
n.

(b) All solutions in Ĉ
π
n also belong to C

π
n, which means they approximately satisfy the weak

Bellman equations in a way quantified by C
π
n.

By leveraging these facts in the appropriate way, we can establish the following guarantee:

Proposition 4. The following two statements hold.

(a) Policy evaluation: If the set Ĉπ
n satisfies the sandwich relation (37), then the estimates (V̂ π

min, V̂
π
max)

satisfy the width bound (8b). If, in addition, weak Bellman realizability for π is assumed, then
the coverage (8a) condition holds.

(b) Policy optimization: If the sandwich relation (37) and weak Bellman realizability hold for all
π ∈ Π, then any max-min (6) optimal policy π̃ satisfies the oracle inequality (9).

See Section 8.1 for the proof of this claim.

In summary, Proposition 4 ensures that when weak realizability is in force, then the sandwich
relation (37) is a sufficient condition for both the policy evaluation (8) and optimization (9) guar-
antees to hold. Accordingly, the next phase of our analysis focuses on deriving sufficient conditions
for the sandwich relation to hold with high probabability.
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7.2 Some high-probability guarantees

As stated, Proposition 4 is a “meta-result”, in that it applies to any choice of set Ĉ
π
n ≡ Ĉ

π
n(ρ, λ;F

π)
for which the sandwich relation (37) holds. In order to obtain a more concrete guarantee, we need
to impose assumptions on the way in which the dataset was generated, and concrete choices of (ρ, λ)
that suffice to ensure that the associated sandwich relation (37) holds with high probability. These
tasks are the focus of this section.

7.2.1 A model for data generation

Let us begin by describing a fairly general model for data-generation. Any sample takes the form

z
def
= (s, a, r, s+, o), where the five components are defined as follows:

• the pair (s, a) index the current state and action.
• the random variable r is a noisy observation of the mean reward.
• the random state s+ is the next-state sample, drawn according to the transition P(s, a).
• the variable o is an optional identifier.
As one example of the use of an identifier variable, if samples might be generated by one of two
possible policies—say π1 and π2—the identifier can take values in the set {1, 2} to indicate which
policy was used for a particular sample.

Overall, we observe a dataset D = {zi}ni=1 of n such quintuples. In the simplest of possible
settings, each triple (s, a, o) is drawn i.i.d. from some fixed distribution µ, and the noisy reward ri
is an unbiased estimate of the mean reward function R(si, ai). In this case, our dataset consists of
n i.i.d. quintuples. More generally, we would like to accommodate richer sampling models in which
the sample zi = (si, ai, oi, ri, s

+
i ) at a given time i is allowed to depend on past samples. In order

to specify such dependence in a precise way, define the nested sequence of sigma-fields

F1 = ∅, and Fi
def
= σ

(
{zj}i−1

j=1

)
for i = 2, . . . , n. (38)

In terms of this filtration, we make the following definition:

Assumption 3 (Adapted dataset). An adapted dataset is a collection D = {zi}ni=1 such that for
each i = 1, . . . , n:
• There is a conditional distribution µi such that (si, ai, oi) ∼ µi(· | Fi).
• Conditioned on (si, ai, oi), we observe a noisy reward ri = r(si, ai) + ηi with E[ηi | Fi] = 0, and

|ri| ≤ 1.
• Conditioned on (si, ai, oi), the next state s+i is generated according to P(si, ai).

Under this assumption, we can define the (possibly) random reference measure

µ(s, a, o)
def
=

1

n

n∑

i=1

µi

(
s, a, o | Fi

)
. (39)

In words, it corresponds to the distribution induced by first drawing a time index i ∈ {1, . . . , n}
uniformly at random, and then sampling a triple (s, a, o) from the conditional distribution µi

(
· | Fi

)
.
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7.2.2 A general guarantee

Recall that there are three function classes that underlie our method: the test function class F,
the policy class Π, and the Q-function class Q. In this section, we state a general guarantee
(Theorem 3) that involves the metric entropies of these sets. In Section 7.2.3, we provide corollaries
of this guarantee for specific function classes.

In more detail, we equip the test function class and the Q-function class with the usual sup-norm

‖f − f̃‖∞ def
= sup

(s,a,o)
|f(s, a, o)− f̃(s, a, o)|, and ‖Q− Q̃‖∞ def

= sup
(s,a)

|Q(s, a)− Q̃(s, a)|,

and the policy class with the sup-TV norm

‖π − π̃‖∞,1
def
= sup

s
‖π(· | s)− π̃(· | s)‖1 = sup

s

∑

a

|π(a | s)− π̃(a | s)|.

For a given ǫ > 0, we let Nǫ(F), Nǫ(Q), and Nǫ(Π) denote the ǫ-covering numbers of each of these
function classes in the given norms. Given these covering numbers, a tolerance parameter δ ∈ (0, 1)
and the shorthand φ(t) = max{t,

√
t}, define the radius function

ρ(ǫ, δ)
def
= n

{∫ ǫ

ǫ2
φ
( logNu(F)

n

)
du+

logNǫ(Q)

n
+

logNǫ(Π)

n
+

log(n/δ)

n

}
. (40a)

In our theorem, we implement the estimator using a radius ρ = ρ(ǫ, δ), where ǫ > 0 is any parameter
that satisfies the bound

ǫ2
(i)

≤ c̄
ρ(ǫ, δ)

n
, and λ

(i)
= 4

ρ(ǫ, δ)

n
. (40b)

Here c̄ > 0 is a suitably chosen but universal constant (whose value is determined in the proof),
and we adopt the shorthand ρ = ρ(ǫ, δ) in our statement below.

Theorem 3 (High-probability guarantees). Consider the estimates implemented using triple (Π,F,Q)
that is weakly Bellman realizable (Assumption 1); an adapted dataset (Assumption 3); and with the
choices (40) for (ǫ, ρ, λ). Then with probability at least 1− δ:

Policy evaluation: For any π ∈ Π, the estimates (V̂ π
min, V̂

π
max) specify a confidence interval satisfying

the coverage (8a) and width bounds (8b).

Policy optimization: Any max-min policy (6) π̃ satisfies the oracle inequality (9).

See Section 8.3 for the proof of the claim.

Choices of (ρ, ǫ, λ): Let us provide a few comments about the choices of (ρ, ǫ, λ) from equa-
tions (40a) and (40b). The quality of our bounds depends on the size of the constraint set Cπ

n, which

is controlled by the constraint level
√

ρ
n . Consequently, our results are tightest when ρ = ρ(ǫ, δ)

is as small as possible. Note that ρ is an decreasing function of ǫ, so that in order to minimize
it, we would like to choose ǫ as large as possible subject to the constraint (40b)(i). Ignoring the
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entropy integral term in equation (40b) for the moment—see below for some comments on it—these
considerations lead to

nǫ2 ≍ logNǫ(F) + logNǫ(Q) + logNǫ(Π). (41)

This type of relation for the choice of ǫ in non-parametric statistics is well-known (e.g., see Chapters
13–15 in the book [Wai19] and references therein). Moreover, setting λ ≍ ǫ2 as in equation (40b)(ii)
is often the correct scale of regularization.

Key technical steps in proof: It is worthwhile making a few comments about the structure of
the proof so as to clarify the connections to Proposition 4 along with the weak formulation that
underlies our methods. Recall that Proposition 4 requires the empirical Ĉ

π
n and population sets

C
π
n to satisfy the sandwich relation (37). In order to prove that this condition holds with high

probability, we need to establish uniform control over the family of random variables
∣∣ 〈f, δπ(Q)〉n − 〈f, Bπ(Q)〉µ

∣∣
√
‖f‖2n + λ

, as indexed by the triple (f,Q, π). (42)

Note that the differences in the numerator of these variables correspond to moving from the empirical
constraints on Q-functions that are enforced using the TD errors, to the population constraints that
involve the Bellman error function.

Uniform control of the family (42), along with the differences ‖f‖n − ‖f‖µ uniformly over f ,
allows us to relate the empirical and population sets, since the associated constraints are obtained
by shifting between the empirical inner products 〈·, ·〉n to the reference inner products 〈·, ·〉µ. A
simple discretization argument allows us to control the differences uniformly in (Q,π), as reflected
by the metric entropies appearing in our definition (40). Deriving uniform bounds over test functions
f—due to the self-normalizing nature of the constraints—requires a more delicate argument. More
precisely, in order to obtain optimal results for non-parametric problems (see Corollary 2 to follow),
we need to localize the empirical process at a scale ǫ, and derive bounds on the localized increments.
This portion of the argument leads to the entropy integral—which is localized to the interval [ǫ2, ǫ]—
in our definition (40a) of the radius function.

Intuition from the on-policy setting: In order to gain intuition for the statistical meaning of
the guarantees in Theorem 3, it is worthwhile understanding the implications in a rather special
case—namely, the simpler on-policy setting, where the discounted occupation measure induced by
the target policy π coincides with the dataset distribution µ. Let us consider the case in which the
identity function 1 belongs to the test class F

π. Under these conditions, for any Q ∈ C
π
n, we can

write

max
Q∈Cπ

n

|EπBπQ| (i)= max
Q∈Cπ

n

|EµBπQ|
(ii)

≤
√
1 + λ

√
ρ

n
,

where equality (i) follows from the on-policy assumption, and step (ii) follows from the definition of
the set Cπ

n, along with the condition that 1 ∈ F
π. Consequently, in the on-policy setting, the width

bound (8b) ensures that

|V̂ π
min − V̂ π

max| ≤ 2

√
1 + λ

1− γ

√
ρ

n
. (43)
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In this simple case, we see that the confidence interval scales as
√

ρ/n, where the quantity ρ is
related to the metric entropy via equation (40b). In the more general off-policy setting, the bound
involves this term, along with additional terms that reflect the cost of off-policy data. We discuss
these issues in more detail in Section 4. Before doing so, however, it is useful derive some specific
corollaries that show the form of ρ under particular assumptions on the underlying function classes,
which we now do.

7.2.3 Some corollaries

Theorem 3 applies generally to triples of function classes (Π,F,Q), and the statistical error
√

ρ(ǫ,δ)
n

depends on the metric entropies of these function classes via the definition (40a) of ρ(ǫ, δ), and
the choices (40b). As shown in this section, if we make particular assumptions about the metric
entropies, then we can derive more concrete guarantees.

Parametric and finite VC classes: One form of metric entropy, typical for a relatively simple
function class G (such as those with finite VC dimension) scales as

logNǫ(G) ≍ d log
(1
ǫ

)
, (44)

for some dimensionality parameter d. For instance, bounds of this type hold for linear function
classes with d parameters, and for finite VC classes (with d proportional to the VC dimension); see
Chapter 5 of the book [Wai19] for more details.

Corollary 1. Suppose each class of the triple (Π,F,Q) has metric entropy that is at most polyno-
mial (44) of order d. Then for a sample size n ≥ 2d, the claims of Theorem 3 hold with ǫ2 = d/n
and

ρ̃
(
√

d

n
, δ
) def
= c

{
d log

(n
d

)
+ log

(n
δ

)}
, (45)

where c is a universal constant.

Proof. Our strategy is to upper bound the radius ρ from equation (40a), and then show that this
upper bound ρ̃ satisfies the conditions (40b) for the specified choice of ǫ2. We first control the term
logNǫ(F). We have

1√
n

∫ ǫ

ǫ2

√
logNu(F)du ≤

√
d

n

∫ ǫ

0

√
log(1/u)du = ǫ

√
d

n

∫ 1

0

√
log(1/(ǫt))dt = cǫ log(1/ǫ)

√
d

n
.

Similarly, we have

1

n

∫ ǫ

ǫ2
logNu(F)du ≤ ǫ

d

n

{∫ 1

ǫ
log(1/t)dt + log(1/ǫ)

}
≤ c ǫ log(1/ǫ)

d

n
.

Finally, for terms not involving entropy integrals, we have

max
{ logNǫ(Q)

n
,
logNǫ(Π)

n

}
≤ c

d

n
log(1/ǫ).

Setting ǫ2 = d/n, we see that the required conditions (40b) hold with the specified choice (45) of
ρ̃.
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Richer function classes: In the previous section, the metric entropy scaled logarithmically in the
inverse precision 1/ǫ. For other (richer) function classes, the metric entropy exhibits a polynomial
scaling in the inverse precision, with an exponent α > 0 that controls the complexity. More precisely,
we consider classes of the form

logNǫ(G) ≍
(1
ǫ

)α
. (46)

For example, the class of Lipschitz functions in dimension d has this type of metric entropy with
α = d. More generally, for Sobolev spaces of functions that have s derivatives (and the sth-
derivative is Lipschitz), we encounter metric entropies of this type with α = d/s. See Chapter 5 of
the book [Wai19] for further background.

Corollary 2. Suppose that each function class (Π,F,Q) has metric entropy with at most α-scaling (46)

for some α ∈ (0, 2). Then the claims of Theorem 3 hold with ǫ2 = (1/n)
2

2+α , and

ρ̃
(
(1/n)

1

2+α , δ
)
= c

{
n

α
2+α + log(n/δ)

}
. (47)

where c is a universal constant.

We note that for standard regression problems over classes with α-metric entropy, the rate (1/n)
2

2+α

is well-known to be minimax optimal (e.g., see Chapter 15 in the book [Wai19], as well as references
therein).

Proof. We start by controlling the terms involving entropy integrals. In particular, we have

1√
n

∫ ǫ

ǫ2

√
logNu(F)du ≤ c√

n
u1−

α
2

∣∣∣
ǫ

0
=

c√
n
ǫ1−

α
2 .

Requiring that this term is of order ǫ2 amounts to enforcing that ǫ1+
α
2 ≍ (1/

√
n), or equivalently

that ǫ2 ≍ (1/n)
2

2+α .
If α ∈ (0, 1], then the second entropy integral converges and is of lower order. Otherwise, if

α ∈ (1, 2), then we have

1

n

∫ ǫ

ǫ2
logNu(F)du ≤ c

n

∫ ǫ

ǫ2
(1/u)αdu ≤ c

n
(ǫ2)1−α.

Hence the requirement that this term is bounded by ǫ2 is equivalent to ǫ2α % (1/n), or ǫ2 % (1/n)1/α.
When α ∈ (1, 2), we have 1

α > 2
2+α , so that this condition is milder than our first condition.

Finally, we have max
{ logNǫ(Q)

n , logNǫ(Π)
n

}
≤ c

n

(
1/ǫ)α, and requiring that this term scales as ǫ2

amounts to requiring that ǫ2+α ≍ (1/n), or equivalently ǫ2 ≍ (1/n)
2

2+α , as before.
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8 Main Proofs

This section is devoted to the proofs of our guarantees for general function classes—namely, Propo-
sition 4 that holds in a deterministic manner, and Theorem 3 that gives high probability bounds
under a particular sampling model.

8.1 Proof of Proposition 4

Our proof makes use of an elementary simulation lemma, which we state here:

Lemma 9 (Simulation lemma). For any policy π and function Q, we have

ES∼νstart(Q−Qπ)(S, π) =
EπBπQ

1− γ
(48)

See Section 8.2 for the proof of this claim.

8.1.1 Proof of policy evaluation claims

First of all, we have the elementary bounds

|V̂ π
min − V π| = |min

Q∈Ĉπ
n

ES∼νstartQ(S, π)− V π| ≤ max
Q∈Ĉπ

n

|ES∼νstartQ(S, π)− V π|, and

|V̂ π
max − V π| = |max

Q∈Ĉπ
n

ES∼νstartQ(S, π)− V π| ≤ max
Q∈Ĉπ

n

|ES∼νstartQ(S, π)− V π|.

Consequently, in order to prove the bound (8b) it suffices to upper bound the right-hand side
common in the two above displays. Since Ĉ

π
n ⊆ C

π
n, we have the upper bound

max
Q∈Ĉπ

n

|ES∼νstartQ(S, π)− V π| ≤ max
Q∈Cπ

n

|ES∼νstartQ(S, π)− V π|

= max
Q∈Cπ

n

|ES∼νstart [Q(S, π)−Qπ(S, π)]|

(i)
=

1

1− γ
max
Q∈Cπ

n

EπBπQ

1− γ

where step (i) follows from Lemma 9. Combined with the earlier displays, this completes the proof
of the bound (8b).

We now show the inclusion [V̂ π
min, V̂

π
max] ∋ V π when weak realizability holds. By definition of

weak realizability, there exists some Qπ
⋆ ∈ C

π
∞. In conjunction with our sandwich assumption, we

are guaranteed that Qπ
⋆ ∈ C

π
∞ ⊆ Ĉ

π
n, and consequently

V̂ π
min = min

Q∈Ĉπ
n

ES∼νstartQ(S, π) ≤ min
Q∈Cπ

∞

ES∼νstartQ(S, π) ≤ ES∼νstartQ
π
⋆ (S, π) = V π, and

V̂ π
max = max

Q∈Ĉπ
n

ES∼νstartQ(S, π) ≥ max
Q∈Cπ

∞

ES∼νstartQ(S, π) ≥ ES∼νstartQ
π
⋆ (S, π) = V π.
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8.1.2 Proof of policy optimization claims

We now prove the oracle inequality (9) on the value V π̃ of a policy π̃ that optimizes the max-min
criterion. Fix an arbitrary comparator policy π. Starting with the inclusion [V̂ π̃

min, V̂
π̃
max] ∋ V π̃, we

have

V π̃
(i)

≥ V̂ π̃
min

(ii)

≥ V̂ π
min = V π −

(
V π − V̂ π

min

) (iii)

≥ V π − 1

1− γ
max
Q∈Cπ

n

|EπBπQ|
1− γ

,

where step (i) follows from the stated inclusion at the start of the argument; step (ii) follows since π̃
solves the max-min program; and step (iii) follows from the bound |V π−V̂ π

min| ≤ 1
1−γ maxQ∈Cπ

n

EπBπQ
1−γ ,

as proved in the preceding section. This lower bound holds uniformly for all comparators π, from
which the stated claim follows.

8.2 Proof of Lemma 9

For each t = 1, 2, . . ., let Et be the expectation over the state-action pair at timestep t upon starting
from νstart, so that we have ES∼νstart(Q−Qπ)(S, π) = E0[Q−Qπ] by definition. We claim that

E0[Q−Qπ] =

t∑

τ=1

γτ−1
Eτ−1BπQ+ γtEt[Q−Qπ] for all t = 1, 2, . . .. (49)

For the base case t = 1, we have

E0[Q−Qπ] = E0[Q− T πQ] + E0[T πQ− T πQπ] = E0[Q− T πQ] + γE1[Q−Qπ], (50)

where we have used the definition of the Bellman evaluation operator to assert that E0[T πQ− T πQπ] =
γE1[Q−Qπ]. Since Q− T πQ = BπQ, the equality (50) is equivalent to the claim (49) with t = 1.

Turning to the induction step, we now assume that the claim (49) holds for some t ≥ 1, and
show that it holds at step t+ 1. By a similar argument, we can write

γtEt[Q−Qπ] = γtEt[Q− T πQ+ T πQ− T πQπ] = γtEt[Q− T πQ] + γt+1
Et+1[Q−Qπ]

= γtEtBπQ+ γt+1
Et+1[Q−Qπ].

By the induction hypothesis, equality (49) holds for t, and substituting the above equality shows
that it also holds at time t+ 1.

Since the equivalence (49) holds for all t, we can take the limit as t → ∞, and doing so yields
the claim.

8.3 Proof of Theorem 3

In the statement of the theorem, we require choosing ǫ > 0 to satisfy the upper bound ǫ2 -
ρ(ǫ,δ)
n ,

and then provide an upper bound in terms of
√

ρ(ǫ, δ)/n. It is equivalent to instead choose ǫ to

satisfy the lower bound ǫ2 %
ρ(ǫ,δ)
n , and then provide upper bounds proportional to ǫ. For the

purposes of the proof, the latter formulation turns out to be more convenient and we pursue it here.
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To streamline notation, let us introduce the shorthand 〈f, Dπ(Q)〉 def
= 〈f, δπ(Q)〉n−〈f, Bπ(Q)〉µ.

For each pair (Q,π), we then define the random variable

Zn(Q,π)
def
= sup

f∈Fπ

∣∣〈f,Dπ(Q)〉
∣∣

√
‖f‖2n + λ

.

Central to our proof of the theorem is a uniform bound on this random variable, one that holds for
all pairs (Q,π). In particular, our strategy is to exhibit some ǫ > 0 for which, upon setting λ = 4ǫ2,
we have the guarantees

1

4
≤

√
‖f‖2n + λ√
‖f‖2µ + λ

≤ 2 uniformly for all f ∈ F, and (51a)

Zn(Q,π) ≤ ǫ uniformly for all (Q,π), (51b)

both with probability at least 1− δ. In particular, consistent with the theorem statement, we show
that this claim holds if we choose ǫ > 0 to satisfy the inequality

ǫ2 ≥ c̄
ρ(ǫ, δ)

n
(52)

where c̄ > 0 is a sufficiently large (but universal) constant.
Supposing that the bounds (51a) and (51b) hold, let us now establish the set inclusions claimed

in the theorem.

Inclusion C
π
∞ ⊆ Ĉ

π
n(ǫ): Define the random variable Mn(Q,π)

def
= sup

f∈Fπ

|〈f,Bπ(Q)〉µ|√
‖f‖2n+λ

, and observe

that Q ∈ C
π
∞ implies that Mn(Q,π) = 0. With this definition, we have

sup
f∈Fπ

∣∣〈f, δπ(Q)〉n
∣∣

√
‖f‖2n + λ

(i)

≤ Mn(Q,π) + Zn(Q,π)
(ii)

≤ ǫ

where step (i) follows from the triangle inequality; and step (ii) follows since Mn(Q,π) = 0, and
Zn(Q,π) ≤ ǫ from the bound (51b).

Inclusion Ĉ
π
n(ǫ) ⊆ C

π
n(4ǫ) By the definition of Cπ

n(4ǫ), we need to show that

M̄(Q,π)
def
= sup

f∈Fπ

∣∣〈f,Bπ(Q)〉µ
∣∣

√
‖f‖2µ + λ

≤ 4ǫ for any Q ∈ Ĉ
π
n(ǫ).

Now we have

M̄(Q,π)
(i)

≤ 2Mn(Q,π)
(ii)

≤ 2

{
sup
f∈Fπ

∣∣〈f, δπ(Q)〉n
∣∣

√
‖f‖2n + λ

+ Zn(Q,π)

}
(iii)

≤ 2
{
ǫ+ ǫ} = 4ǫ,

where step (i) follows from the sandwich relation (51a); step (ii) follows from the triangle inequality
and the definition of Zn(Q,π); and step (iii) follows since Zn(Q,π) ≤ ǫ from the bound (51b), and

sup
f∈Fπ

∣∣〈f, δπ(Q)〉n
∣∣

√
‖f‖2n + λ

≤ ǫ, using the inclusion Q ∈ Ĉ
π
n(ǫ).
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Consequently, the remainder of our proof is devoted to establishing the claims (51a) and (51b).
In doing so, we make repeated use of some Bernstein bounds, stated in terms of the shorthand
Ψn(δ) =

log(n/δ)
n .

Lemma 10. There is a universal constant c such each the following statements holds with probability
at least 1− δ. For any f , we have

∣∣∣‖f‖2n − ‖f‖2µ
∣∣∣ ≤ c

{
‖f‖µ

√
Ψn(δ) + Ψn(δ)

}
, (53a)

and for any (Q,π) and any function f , we have

∣∣ 〈f, δπ(Q)〉n − 〈f, Bπ(Q)〉µ
∣∣ ≤ c

{
‖f‖µ

√
Ψn(δ) + ‖f‖∞Ψn(δ)

}
. (53b)

These bounds follow by identifying a martingale difference sequence, and applying a form of Bern-
stein’s inequality tailored to the martingale setting. See Section 8.6.3 for the details.

8.4 Proof of the sandwich relation (51a)

We claim that (modulo the choice of constants) it suffices to show that
∣∣∣‖f‖n − ‖f‖µ

∣∣∣ ≤ ǫ uniformly for all f ∈ F (54)

for some universal constant c′. Indeed, when this bound holds, we have

‖f‖n + 2ǫ ≤ ‖f‖µ + 3ǫ ≤ 3

2
{‖f‖µ + 2ǫ}, and ‖f‖n + 2ǫ ≥ ‖f‖µ + ǫ ≥ 1

2

{
‖f‖µ + 2ǫ},

so that ‖f‖µ+2ǫ
‖f‖n+2ǫ ∈

[
1
2 ,

3
2

]
. To relate this statement to the claimed sandwich, observe the inclusion

‖f‖+
√
2ǫ√

‖f‖2+4ǫ2
∈ [1,

√
2], where ‖f‖ can be either ‖f‖n or ‖f‖µ. Combining this fact with our previous

bound, we see that
√

‖f‖2n+4ǫ2√
‖f‖2µ+4ǫ2

∈
[

1√
2
1
2 ,

3
√
2

2

]
⊂

[
1
4 , 3

]
, as claimed.

The remainder of our analysis is focused on proving the bound (54). Defining the random
variable Yn(f) =

∣∣‖f‖n − ‖f‖µ
∣∣, we need to establish a high probability bound on supf∈F Yn(f).

Let {f1, . . . , fN} be an ǫ-cover of F in the sup-norm. For any f ∈ F, we can find some f j such that
‖f − f j‖∞ ≤ ǫ, whence

Yn(f) ≤ Yn(f
j) +

∣∣Yn(f
j)− Yn(f)

∣∣ (i)

≤ Yn(f
j) +

∣∣‖f j‖n − ‖f‖n
∣∣+

∣∣‖f j‖µ − ‖f‖µ
∣∣

(ii)

≤ Yn(f
j) + ‖f j − f‖n + ‖f j − f‖µ

(iii)

≤ Yn(f
j) + 2ǫ,

where steps (i) and (ii) follow from the triangle inequality; and step (iii) follows from the inequality
max{‖f j − f‖n, ‖f j − f‖µ} ≤ ‖f j − f‖∞ ≤ ǫ. Thus, we have reduced the problem to bounding a
finite maximum.
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Note that if max{‖f j‖n, ‖f j‖µ} ≤ ǫ, then we have Yn(f
j) ≤ 2ǫ by the triangle inequality.

Otherwise, we may assume that ‖f j‖n + ‖f j‖n ≥ ǫ. With probability at least 1− δ, we have

∣∣∣‖f j‖n − ‖f‖µ
∣∣∣ =

∣∣∣‖f j‖2n − ‖f‖2µ
∣∣∣

‖f j‖n + ‖f j‖µ
(i)

≤ c
{
‖f j‖µ

√
Ψn(δ) + Ψn(δ)

}

‖f j‖µ + ‖f j‖n
(ii)

≤ c
{√

Ψn(δ) +
Ψn(δ)

ǫ

}
,

where step (i) follows from the Bernstein bound (53a) from Lemma 10, and step (ii) uses the fact
that ‖f j‖n + ‖f j‖n ≥ ǫ.

Taking union bound over all N elements in the cover and replacing δ with δ/N , we have

max
j∈[N ]

Yn(f
j) ≤ c

{√
Ψn(δ/N) +

Ψn(δ/N)

ǫ

}

with probability at least 1 − δ. Recalling that N = Nǫ(F), our choice (52) of ǫ ensures that√
Ψn(δ/N) ≤ c ǫ for some universal constant c. Putting together the pieces (and increasing the

constant c̄ in the choice (52) of ǫ as needed) yields the claim.

8.5 Proof of the uniform upper bound (51b)

We need to establish an upper bound on Zn(Q,π) that that holds uniformly for all (Q,π). Our first
step is to prove a high probability bound for a fixed pair. We then apply a standard discretization
argument to make it uniform in the pair.

Note that we can write Zn(Q,π) = supf∈F
Vn(f)√
‖f‖2n+λ

, where we have defined Vn(f)
def
= | 〈f, Dπ(Q)〉 |.

Our first lemma provides a uniform bound on the latter random variables:

Lemma 11. Suppose that ǫ2 ≥ Ψn

(
δ/Nǫ(F)

)
. Then we have

Vn(f) ≤ c
{
‖f‖µǫ+ ǫ2

}
for all f ∈ F (55)

with probability at least 1− δ.

See Section 8.6.1 for the proof of this claim.

We claim that the bound (55) implies that, for any fixed pair (Q,π), we have

Yn(Q,π) ≤ c′ǫ with probability at least 1− δ.

Indeed, when Lemma 11 holds, for any f ∈ F, we can write

Vn(f)√
‖f‖2n + λ

=

√
‖f‖2µ + λ

√
‖f‖2n + λ

Vn(f)√
‖f‖2µ + λ

(i)

≤ 3
c
{
‖f‖µǫ+ ǫ2

}
√

‖f‖2µ + λ

(ii)

≤ c′ǫ,

where step (i) uses the sandwich relation (51a), along with the bound (55); and step (ii) follows
given the choice λ = 4ǫ2. We have thus proved that for any fixed (Q,π) and ǫ ≥ Ψn

(
δ/Nǫ(F)

)
, we

have

Zn(Q,π) ≤ c′ǫ with probability at least 1− δ. (56)

Our next step is to upgrade this bound to one that is uniform over all pairs (Q,π). We do so
via a discretization argument: let {Qj}Jj=1 and {πk}Kk=1 be ǫ-coverings of Q and Π, respectively.
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Lemma 12. We have the upper bound

sup
Q,π

Zn(Q,π) ≤ max
(j,k)∈[J ]×[K]

Zn(Q
j, πk) + 4ǫ. (57)

See Section 8.6.2 for the proof of this claim.
If we replace δ with δ/(JK), then we are guaranteed that the bound (56) holds uniformly over

the family {Qj}Jj=1 × {πk}Kk=1. Recalling that J = Nǫ(Q) and K = Nǫ(Π), we conclude that for
any ǫ satisfying the inequality (52), we have supQ,π Zn(Q,π) ≤ c̃ǫ with probability at least 1 − δ.
(Note that by suitably scaling up ǫ via the choice of constant c̄ in the bound (52), we can arrange
for c̃ = 1, as in the stated claim.)

8.6 Proofs of supporting lemmas

In this section, we collect together the proofs of Lemmas 11 and 12, which were stated and used
in Section 8.5.

8.6.1 Proof of Lemma 11

We first localize the problem to the class F(ǫ) = {f ∈ F | ‖f‖µ ≤ ǫ}. In particular, if there exists
some f̃ ∈ F that violates (55), then the rescaled function f = ǫf̃/‖f̃‖µ belongs to F(ǫ), and satisfies
Vn(f) ≥ cǫ2. Consequently, it suffices to show that Vn(f) ≤ cǫ2 for all f ∈ F(ǫ).

Choose an ǫ-cover of F in the sup-norm with N = Nǫ(F) elements. Using this cover, for any
f ∈ F(ǫ), we can find some f j such that ‖f − f j‖∞ ≤ ǫ. Thus, for any f ∈ F(ǫ), we can write

Vn(f) ≤ Vn(f
j) + Vn(f − f j) ≤ Vn(f

j)︸ ︷︷ ︸
T1

+ sup
g∈G(ǫ)

Vn(g)

︸ ︷︷ ︸
T2

, (58)

where G(ǫ) def
= {f1 − f2 | f1, f2 ∈ F, ‖f1 − f2‖∞ ≤ ǫ}. We bound each of these two terms in turn.

In particular, we show that each of T1 and T2 are upper bounded by cǫ2 with high probability.

Bounding T1: From the Bernstein bound (53b), we have

Vn(f
k) ≤ c

{
‖fk‖µ

√
Ψn(δ/N) + ‖fk‖∞Ψn(δ/N)

}
for all k ∈ [N ]

with probability at least 1− δ. Now for the particular f j chosen to approximate f ∈ F(ǫ), we have

‖f j‖µ ≤ ‖f j − f‖µ + ‖f‖µ ≤ 2ǫ,

where the inequality follows since ‖f j − f‖µ ≤ ‖f j − f‖∞ ≤ ǫ, and ‖f‖µ ≤ ǫ. Consequently, we
conclude that

T1 ≤ c
{
2ǫ
√

Ψn(δ/N) + Ψn(δ/N)
}

≤ c′ǫ2 with probability at least 1− δ.

where the final inequality follows from our choice of ǫ.
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Bounding T2: Define G def
= {f1 − f2 | f1, f2 ∈ F}. We need to bound a supremum of the process

{Vn(g), g ∈ G} over the subset G(ǫ). From the Bernstein bound (53b), the increments Vn(g1)−Vn(g2)
of this process are sub-Gaussian with parameter ‖g1−g2‖µ ≤ ‖g1−g2‖∞, and sub-exponential with
parameter ‖g1 − g2‖∞. Therefore, we can apply a chaining argument that uses the metric entropy
logNt(G) in the supremum norm. Moreover, we can terminate the chaining at 2ǫ, because we are
taking the supremum over the subset G(ǫ), and it has sup-norm diameter at most 2ǫ. Moreover,
the lower interval of the chain can terminate at 2ǫ2, since our goal is to prove an upper bound of
this order. Then, by using high probability bounds for the suprema of empirical processes (e.g.,
Theorem 5.36 in the book [Wai19]), we have

T2 ≤ c1

∫ 2ǫ

2ǫ2
φ
( logNt(G)

n

)
dt+ c2

{
ǫ
√

Ψn(δ) + ǫΨn(δ)
}
+ 2ǫ2

with probability at least 1− δ. (Here the reader should recall our shorthand φ(s) = max{s,√s}.)
Since G consists of differences from F, we have the upper bound logNt(G) ≤ 2 logNt/2(F), and

hence (after making the change of variable u = t/2 in the integrals)

T2 ≤ c′1

∫ ǫ

ǫ2
φ
( logNu(F)

n

)
du+ c2

{
ǫ
√
Ψn(δ) + ǫΨn(δ)

}
≤ c̃ǫ2,

where the last inequality follows from our choice of ǫ.

8.6.2 Proof of Lemma 12

By our choice of the ǫ-covers, for any (Q,π), there is a pair (Qj, πk) such that

‖Qj −Q‖∞ ≤ ǫ, and ‖πk − π‖∞,1 = sup
s

‖πk(· | s)− π(· | s)‖1 ≤ ǫ.

Using this pair, an application of the triangle inequality yields
∣∣Zn(Q,π)− Zn(Q

j, πk)
∣∣ ≤

∣∣Zn(Q,π)− Zn(Q,πk)
∣∣

︸ ︷︷ ︸
T1

+
∣∣Zn(Q,πk)− Zn(Q

j , πk)
∣∣

︸ ︷︷ ︸
T2

We bound each of these terms in turn, in particular proving that T1 + T2 ≤ 24ǫ. Putting together
the pieces yields the bound stated in the lemma.

Bounding T2: From the definition of Zn, we have

T2 =
∣∣Zn(Q,πk)− Zn(Q

j , πk)
∣∣ ≤ sup

f∈F

∣∣〈f, Dπk
(Q−Qj)〉|√

‖f‖2n + λ
.

Now another application of the triangle inequality yields

|〈f, Dπk

(Q−Qj)〉| ≤ |〈f, δπk

(Q−Qj)〉n|+ ||〈f, Bπk

(Q−Qj)〉|µ
≤ ‖f‖n‖δπ

k

(Q−Qj)‖n + ‖f‖µ‖Bπk

(Q−Qj)‖µ
≤ max{‖f‖n, ‖f‖µ}

{
‖δπk

(Q−Qj)‖∞ + ‖Bπk

(Q−Qj)‖∞
}
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where step (i) follows from the Cauchy–Schwarz inequality. Now in terms of the shorthand ∆
def
= Q−Qj,

we have

‖Bπk

(Q−Qj)‖∞ = sup
(s,a)

∣∣∣∆(s, a)− γEs+∼P(s,a)

[
∆(s+, π)

]∣∣∣ ≤ 2‖∆‖∞ ≤ 2ǫ. (59a)

An entirely analogous argument yields

‖δπk

(Q−Qj)‖∞ ≤ 2ǫ (59b)

Conditioned on the sandwich relation (51a), we have supf∈F
max{‖f‖n,‖f‖µ}√

‖f‖2n+λ
≤ 4. Combining this

bound with inequalities (59a) and (59b), we have shown that T2 ≤ 4
{
2ǫ+ 2ǫ} = 16ǫ.

Bounding T1: In this case, a similar argument yields

|〈f, (Dπ −Dπk

)(Q)〉| ≤ max{‖f‖n, ‖f‖µ}
{
‖(δπ − δπ

k

)(Q)‖n + ‖(Bπ − Bπk

)(Q)‖µ}.

Now we have

‖(δπ − δπ
k

)(Q)‖n ≤ max
i=1,...,n

∣∣∣
∑

a′

(
π(a′ | si)− πk(a′ | si)

)
Q(s+i , a

′)
∣∣∣

≤ max
s

∑

a′

|π(a′ | s)− πk(a | s)| ‖Q‖∞

≤ ǫ.

A similar argument yields that ‖(Bπ − Bπk
)(Q)‖µ| ≤ ǫ, and arguing as before, we conclude that

T1 ≤ 4{ǫ+ ǫ} = 8ǫ.

8.6.3 Proof of Lemma 10

Our proof of this claim makes use of the following known Bernstein bound for martingale differences
(cf. Theorem 1 in the paper [BLL+11]). Recall the shorthand notation Ψn(δ) =

log(n/δ)
n .

Lemma 13 (Bernstein’s Inequality for Martingales). Let {Xt}t≥1 be a martingale difference se-
quence with respect to the filtration {Ft}t≥1. Suppose that |Xt| ≤ 1 almost surely, and let Et denote
expectation conditional on Ft. Then for all δ ∈ (0, 1), we have

∣∣∣ 1
n

n∑

t=1

Xt

∣∣∣ ≤ 2
[( 1

n

n∑

t=1

EtX
2
t

)
Ψn(2δ)

]1/2
+ 2Ψn(2δ) (60)

with probability at least 1− δ.

With this result in place, we divide our proof into two parts, corresponding to the two claims (53b)
and (53a) stated in Lemma 10.
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Proof of the bound (53b): Recall that at step i, the triple (s, a, o) is drawn according to a
conditional distribution µi(· | Fi). Similarly, we let di denote the distribution of (s, a, r, s+, o)
conditioned on the filtration Fi. Note that µi is obtained from di by marginalizing out the pair
(r, s+). Moreover, by the tower property of expectation, the Bellman error is equivalent to the
average TD error.

Using these facts, we have the equivalence

〈f, δπQ〉di = Edi

{
f(s, a, o)[Q(s, a) − r − γQ(s+, π)]

}

= E(s,a,o)∼µi

{
f(s, a, o)Er∼R(s,a),s+∼P(s,a)[Q(s, a)− r − γQ(s+, π)]

}

= E(s,a,o)∼µi

{
f(s, a, o)[Q(s, a) − (T πQ)(s, a)]

}

= 〈f,BπQ〉µi
.

As a consequence, we can write 〈f, δπ(Q)〉n − 〈f, Bπ(Q)〉µ = 1
n

∑n
i=1Wi where

Wi
def
= f(si, ai, oi)[Q(si, ai)− ri − γQ(s+i , π)]− Edi

{
f(s, a, o)[Q(s, a) − r − γQ(s+, π)]

}

defines a martingale difference sequence (MDS). Thus, we can prove the claim by applying a Bern-
stein martingale inequality.

Since ‖r‖∞ ≤ 1 and ‖Q‖∞ ≤ 1 by assumption, we have ‖Wi‖∞ ≤ 3‖f‖∞, and

1

n

n∑

i=1

Edi [W
2
i ] ≤ 9

1

n

n∑

i=1

Eµi
[f2(si, ai, oi)] = 9‖f‖2µ.

Consequently, the claimed bound (53b) follows by applying the Bernstein bound stated in Lemma 13.

Proof of the bound (53a): In this case, we have the additive decomposition

‖f‖2n − ‖f‖2µ =
1

n

n∑

i=1

{
f2(si, ai, oi)− Eµi

[f2(s, a, o)]︸ ︷︷ ︸
W ′

i

}
,

where {W ′
i}ni=1 again defines a martingale difference sequence. Note that ‖W ′

i‖∞ ≤ 2‖f‖2∞ ≤ 2,
and

1

n

n∑

i=1

Eµi
[(W ′

i )
2]

(i)

≤ 1

n

n∑

i=1

Eµi

[
f4(S,A,O)

]
≤ ‖f‖2∞

1

n

n∑

i=1

Eµi

[
f2(S,A,O)

] (ii)

≤ ‖f‖2µ,

where step (i) uses the fact that the variance of f2 is at most the fourth moment, and step (ii) uses
the bound ‖f‖∞ ≤ 1. Consequently, the claimed bound (53a) follows by applying the Bernstein
bound stated in Lemma 13.
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9 Proofs for Section 4 and Section 6.5

In this section, we collect together the proofs of results stated without proof in Section 4 and
Section 6.5.

9.1 Proof of Proposition 1

Proof. Since f∗ ∈ F
π, we are guaranteed that the corresponding constraint must hold. It reads as

|Eµ
1

bπ

dπ
µ
BπQ|2 = 1

b2π
|EπBπQ|2

(iii)

≤
( 1

b2π
‖dπ
µ
‖2µ + λ

) ρ
n
.

where step (iii) follows from the definition of population constraint. Re-arranging yields the upper
bound

|Eµ
dπ
µ BπQ|2

(1 + λ) ρn
≤

(
‖dπ

µ ‖2µ + b2πλ
) ρ
n

(1 + λ) ρn
=

Eπ

[
dπ(S,A)
µ(S,A)

]
+ b2πλ

1 + λ
,

where the final step uses the fact that

‖dπ
µ
‖2µ = Eµ

d2π(S,A)

µ2(S,A)
= Eπ

dπ(S,A)

µ(S,A)

Thus, we have established the bound (i) in our claim (12).
The upper bound (ii) follows immediately since Eπ

dπ(s,a)
µ(s,a) ≤ sup(s,a)

dπ(s,a)
µ(s,a) ≤ bπ.

9.2 Proof of Lemma 1

Some simple algebra yields

BπQ− BπQπ
⋆ = [Q− T πQ]− [Qπ

⋆ − T πQπ
⋆ ] = (I − γP

π)(Q−Qπ
⋆ ) = (I − γP

π)ǫ.

Taking expectations under π and recalling that 〈f,BπQπ
⋆ 〉π = 0 for all f ∈ F

π yields

〈f,BπQ〉π = 〈f, (I − γP
π)ǫ〉π.

Notice that for any Q ∈ Qπ there exists a test function ǫ = Q − Qπ
⋆ ∈ Eπ, and the associated

population constraint reads
∣∣〈ǫ, (I − γP

π)ǫ〉µ
∣∣

√
‖ǫ‖2µ + λ

≤
√

ρ

n
.

Consequently, the off-policy cost coefficient can be upper bounded as

Kπ ≤ max
ǫ∈Eπ

⋆

{ρ

n

〈1, (I − γP
π)ǫ〉2π

1 + λ

}
≤ max

ǫ∈Eπ
⋆

{ ‖ǫ‖2µ + λ

‖1 ‖2π + λ

〈1, (I − γP
π)ǫ〉2π

〈ǫ, (I − γPπ)ǫ〉2µ

}
,

as claimed in the bound (14).

44



9.3 Proof of Lemma 7

If weak Bellman closure holds, then we can write

BπQ = Q− T πQ = Q− P
π(Q) ∈ Eπ.

For any Q ∈ Qπ, the function ǫ = Q−P
π(Q) belongs to Eπ, and the associated population constraint

reads |〈ǫ,ǫ〉µ|√
‖ǫ‖2µ+λ

≤
√

ρ
n . Consequently, the off-policy cost coefficient is upper bounded as

Kπ ≤ max
ǫ∈Eπ

{n

ρ

v〈1, ǫ〉2π
1 + λ

}
≤ max

ǫ∈Eπ

{‖ǫ‖2µ + λ

1 + λ

〈1, ǫ〉2π
〈ǫ, ǫ〉2µ

}
≤ max

ǫ∈Eπ

{〈1, ǫ〉2π
〈ǫ, ǫ〉2µ

}
,

where the final inequality follows from the fact that ‖ǫ‖µ ≤ 1.

9.4 Proof of Lemma 2

We split our proof into the two separate claims.

Proof of the bound (16a): When the test function class includes F
B
π , then any Q feasible must

satisfy the population constraints

〈BπQ′,BπQ〉µ√
‖BπQ′‖2µ + λ

≤
√

ρ

n
, for all Q′ ∈ Qπ.

Setting Q′ = Q yields
‖BπQ‖2µ√
‖BπQ‖2µ+λ

≤
√

ρ
n . If ‖BπQ‖2µ ≥ λ, then the claim holds, given our choice

λ = c ρn for some constant c. Otherwise, the constraint can be weakened to
‖BπQ‖2µ√
2‖BπQ‖2µ

≤
√

ρ
n , which

yields the bound (16a).

Proof of the bound (16b): We now prove the sequence of inequalities stated in equation (16b).
Inequality (i) follows directly from the definition of Kπ and Lemma 2. Turning to inequality (ii),
an application of Jensen’s inequality yields

〈1,BπQ〉2π = [EπBπQ]2 ≤ Eπ[BπQ]2 = ‖BπQ‖2π.

Finally, inequality (iii) follows by observing that

sup
Q∈Qπ

‖BπQ‖2π
‖BπQ‖2µ

= sup
Q∈Qπ

Eπ[(BπQ)(s, a)]2

Eµ[(BπQ)(s, a)]2
= sup

Q∈Qπ

Eµ

[
dπ(s,a)
µ(s,a)

]
[(BπQ)(s, a)]2

Eµ[(BπQ)(s, a)]2
≤ sup

(s,a)

dπ(s, a)

µ(s, a)
.
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10 Proofs for the Linear Setting

We now prove the results stated in Section 5. Throughout this section, the reader should recall
that Q takes the linear function Q(s, a) = 〈w, φ(s, a)〉, so that the bulk of our arguments operate
directly on the weight vector w ∈ R

d.
Given the linear structure, the population and empirical covariance matrices of the feature

vectors play a central role. We make use of the following known result (cf. Lemma 1 in the
paper [ZJZ21]) that relates these objects:

Lemma 14 (Covariance Concentration). There are universal constants (c1, c2, c3) such that for any
δ ∈ (0, 1), we have

c1Eµφφ
⊤ � 1

n

n∑

i=1

φiφ
⊤
i +

c2
n

log
nd

δ
I � c3Eµφφ

⊤ +
c4
n

log
nd

δ
I. (61)

with probability at least 1− δ.

10.1 Proof of Proposition 2

Under weak realizability, we have

〈fj,BπQπ
⋆ 〉µ = 0 for all j = 1, . . . , d. (62)

Thus, at (s, a) the Bellman error difference reads

BπQ(s, a)− BπQπ
⋆ (s, a) = [Q− T πQ](s, a)− [Qπ

⋆ − T πQπ
⋆ ](s, a)

= [Q−Qπ
⋆ ](s, a) − γEs+∼P(s,a)[Q−Qπ

⋆ ](s
+, π)

=
〈
w −wπ

⋆ , φ(s, a)− γφ+π(s, a)
〉

(63)

To proceed we need the following auxiliary result:

Lemma 15 (Linear Parameter Constraints). With probability at least 1− δ, there exists a universal
constant c1 > 0 such that if Q ∈ Cπ

n then ‖w − wπ
⋆ ‖2Σ+π

λ,Boot

≤ c1
dρ
n .

See Section 10.2 for the proof.
Using this lemma, we can bound the OPC coefficient as follows

Kπ
(i)

≤ n

ρ
max
Q∈Cπ

n

〈1,BπQ− BπQπ
⋆ 〉2π

(ii)

≤ n

ρ
[Eπ(φ− γφ+π)⊤(w − wπ

⋆ )]
2

(iii)

≤ n

ρ
‖Eπφ− γφ+π‖2

(Σ+π
λ,Boot

)−1‖w − wπ
⋆ ‖2Σ+π

λ,Boot

≤ c1d‖Eπφ− γφ+π‖2
(Σ+π

λ,Boot
)−1 .

Here step (i) follows from the definition of off-policy cost coefficient, (ii) leverages the linear structure
and (iii) is Cauchy-Schwartz.
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10.2 Proof of Lemma 15

Under the event of Theorem 3, the statement of Eq. (51a) holds, and in particular

1

c1(
√

‖f‖2µ + λ)
≥ 1√

‖f‖2n + λ
≥ 1

c2(
√

‖f‖2µ + λ)
.

Thus, the j constraint reads

L√
n
&

〈fj,BπQ〉µ√
‖f‖2n + λ

=
〈fj,BπQ〉µ√

λ̂j + λ

where the last step follows from

‖fj‖2D =
1

n

∑

(s,a,r,s+)∈D
(fj(s, a))

2 =
1

n

n∑

i=1

(û⊤j φi)
2 = û⊤j Σ̂ûj = λ̂j .

Now, squaring and summing over the constraints and using Eq. (63) yields

d
L2

n
&

m∑

j=1

〈
û⊤j φ√
λ̂j + λ

, (φ− γφ+π)⊤(w − wπ
⋆ )〉2µ

=
m∑

j=1

[ û⊤j√
λ̂j + λ

Eµφ(φ− γφ+π)⊤(w − wπ
⋆ )
]2

=

m∑

j=1

[ û⊤j√
λ̂j + λ

(Σ− γΣ+π)(w − wπ
⋆ )︸ ︷︷ ︸

def
= y

]2

= y⊤
( m∑

j=1

ûjû
⊤
j

λ̂j + λ

)
y

= y⊤
(
Σ̂ + λI

)−1
y

& y⊤Σ−1
λ y.

The last inequality holds via Lemma 14 (Covariance Concentration) with probability at least 1− δ
since λ is a large enough regularizer. Let us complete the quadratic form:

‖y + λ(w −wπ
⋆ )‖2Σ−1

λ

≤ (‖y‖Σ−1

λ
+ λ‖(w − wπ

⋆ )‖Σ−1

λ
)2 . ‖y‖2

Σ−1

λ

+ λ.

Therefore, adding λ to both sides of the prior display and noticing that λ . L2

n gives

d
L2

n
& ‖y + λ(w − wπ

⋆ )‖2Σ−1

λ

= (w − wπ
⋆ )(Σλ − γΣ+π)⊤

(
Σ−1
λ

)
(Σλ − γΣ+π)(w − wπ

⋆ )

= (w − wπ
⋆ )(Σ

+π
λ,Boot)(w −wπ

⋆ )

= ‖(w − wπ
⋆ )‖2Σ+π

λ,Boot

.
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10.3 Proof of Proposition 3

Under weak Bellman closure, we have

BπQ = Q− T πQ = φ⊤(w − P
π(w)). (64)

With a slight abuse of notation, let P
π(w) denote the weight vector that defines the action-value

function P
π(Q). We introduce the following auxiliary lemma:

Lemma 16 (Linear Parameter Constraints with Bellman Closure). With probability at least 1− δ,
if Q ∈ C

π
n then ‖w − P

π(w)‖2Σλ
≤ c1

dρ
n .

See Section 10.4 for the proof. Using this lemma, we can bound the OPC coefficient as follows

Kπ
(i)

≤ n

ρ
max
Q∈Cπ

n

〈1,BπQ〉2π
(ii)

≤ n

ρ
[Eπ(φ)

⊤(w − P
π(w))]2

(iii)

≤ n

ρ
‖Eπφ‖2(Σλ)−1‖w − P

π(w)‖2Σλ

≤ c1d‖Eπφ‖2(Σλ)−1 .

Here step (i) follows from the definition of off-policy cost coefficient, (ii) leverages the linear structure
and (iii) is Cauchy-Schwartz.

10.4 Proof of Section 10.4

Under the event of Theorem 3, the statement of Eq. (51a) holds, and in particular

1

c1(
√

‖f‖2µ + λ)
≥ 1√

‖f‖2n + λ
≥ 1

c2(
√

‖f‖2µ + λ)
.

Thus, the j constraint reads

L√
n
&

〈fj,BπQ〉µ√
‖f‖2n + λ

=
〈fj,BπQ〉µ√

λ̂j + λ

where the last step follows from

‖fj‖2D =
1

n

∑

(s,a,r,s+)∈D
(fj(s, a))

2 =
1

n

n∑

i=1

(û⊤j φi)
2 = û⊤j Σ̂ûj = λ̂j .
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Now, squaring and summing over the constraints and using Eq. (64) yields

d
L2

n
&

m∑

j=1

〈
û⊤j φ√
λ̂j + λ

, φ⊤(w − P
π(w))〉2µ

=

m∑

j=1

[ û⊤j√
λ̂j + λ

Eµφφ
⊤(w − P

π(w))
]2

=
m∑

j=1

[ û⊤j√
λ̂j + λ

Σ(w − P
π(w))︸ ︷︷ ︸

def
= y

]2

= y⊤
( m∑

j=1

ûjû
⊤
j

λ̂j + λ

)
y

= y⊤
(
Σ̂ + λI

)−1
y

& y⊤Σ−1
λ y.

The last inequality holds via Lemma 14 (Covariance Concentration) with probability at least 1− δ
since λ is a large enough regularizer. Let us complete the quadratic form:

‖y + λ(w − P
π(w))‖2

Σ−1

λ

≤ (‖y‖Σ−1

λ
+ λ‖(w − P

π(w))‖Σ−1

λ
)2 . ‖y‖2

Σ−1

λ

+ λ.

Therefore, adding λ to both sides of the prior display and noticing that λ . L2

n gives

d
L2

n
& ‖y + λ(w − P

π(w))‖2
Σ−1

λ

= (w − P
π(w))Σ⊤

λ

(
Σ−1
λ

)
Σλ(w − P

π(w))

= (w − P
π(w))(Σλ)(w − P

π(w))

= ‖(w − P
π(w))‖2Σλ

.
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11 Proof of Theorem 2

In this section, we prove the guarantee on our actor-critic procedure stated in Theorem 2.

11.1 Adversarial MDPs

We now introduce sequence of adversarial MDPs {Mt}Tt=1 used in the analysis. Each MDP Mt is
defined by the same state-action space and transition law as the original MDP M, but with the
reward functions R perturbed by Rt—that is

Mt
def
= 〈S,A, R+Rt,P, γ〉. (65)

For an arbitrary policy π, we denote with Qπ
t and with Aπ

t the action value function and the
advantage function on Mt; the value of π from the starting distribution νstart is denoted by V π

t .
We immediately have the following expression for the value function, which follows because the
dynamics of Mt and M are identical and the reward function of Mt equals that of M plus Rt

V π
t

def
=

1

1− γ
Eπ

[
R+Rt

]
. (66)

Consider the action value function Q̂
πt

returned by the critic, and let the reward perturbation

Rt = BπtQ̂
πt

be the Bellman error of the critic value function Q̂
πt

. The special property of Mt is

that the action value function of πt on Mt equals the critic lower estimate Q̂
πt

.

Lemma 17 (Adversarial MDP Equivalence). Given the perturbed MDP Mt from equation (65)

with Rt
def
= BπtQ̂

πt
, we have the equivalence

Qπt
t = Q̂

πt
.

Proof. We need to check that Q̂
πt

solves the Bellman evaluation equations for the adversarial MDP,

ensuring that Q̂
πt

is the action-value function of πt on Mt. Let T πt
t be the Bellman evaluation

operator on Mt for policy πt. We have

Q̂
πt

− T πt
t (Q̂

πt
) = Q̂

πt
− T πt(Q̂

πt
)−Rt = BπtQ̂

πt
− BπtQ̂

πt
= 0.

Thus, the function Q̂
πt

is the action value function of πt on Mt, and it is by definition denoted by
Qπt

t .

This lemma shows that the action-value function Q̂
πt

computed by the critic is equivalent to the
action-value function of πt on Mt. Thus, we can interpret the critic as performing a model-based
pessimistic estimate of πt; this view is useful in the rest of the analysis.

11.2 Equivalence of Updates

The second step is to establish the equivalence between the update rule (22), or equivalently as the
update (67a), to the exponentiated gradient update rule (67b).
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Lemma 18 (Equivalence of Updates). For linear Q-functions of the form Qt(s, a) = 〈wt, φ(s, a)〉,
the parameter update

πt+1(a | s) ∝ exp(φ(s, a)⊤(θt + ηwt)), (67a)

is equivalent to the policy update

πt+1(a | s) ∝ πt(a | s) exp(ηQt(s, a)), π1(a | s) = 1

|As|
. (67b)

Proof. We prove this claim via induction on t. The base case (t = 1) holds by a direct calculation.
Now let us show that the two update rules update πt in the same way. As an inductive step, assume
that both rules maintain the same policy πt ∝ exp(φ(s, a)⊤θt) at iteration t; we will show the
policies are still the same at iteration t+ 1. At any (s, a), we have

πt+1(a | s) ∝ exp(φ(s, a)⊤(θt + ηwt)) ∝ exp(φ(s, a)⊤θt) exp(ηφ(s, a)
⊤wt)

∝ πt(a | s) exp(ηQt(s, a)).

Recall that θt is the parameter associated to πt and that wt is the parameter associated to
Q̂

πt
. Using Lemma 18 together with Lemma 17 we obtain that the actor policy πt satisfies through

its parameter θt the mirror descent update rule (67b) with Qt = Q̂
πt

= Qπt
t and π1(a | s) =

1/|As|, ∀(s, a). In words, the actor is using Mirror descent to find the best policy on the sequence
of adversarial MDPs {Mt} implicitly identified by the critic.

11.3 Mirror Descent on Adversarial MDPs

Our third step is to analyze the behavior of mirror descent on the MDP sequence {Mt}Tt=1, and
then translate such guarantees back to the original MDP M. The following result provides a bound
on the average of the value functions {V πt}Tt=1 induced by the actor’s policy sequence. This bound
involves a form of optimization error8 given by

Eopt(T ) = 2

√
2 log |A|

T
,

as is standard in mirror descent schemes. It also involves the perturbed rewards given by Rt
def
=

BπtQπt
t .

Lemma 19 (Mirror Descent on Adversarial MDPs). For any positive integer T , applying the update
rule (67b) with Qt = Qπt

t for T rounds yields a sequence such that

1

T

T∑

t=1

[
V π̃ − V πt

]
≤ 1

1− γ

{
Eopt(T ) +

1

T

T∑

t=1

[
− Eπ̃Rt + EπtRt

]}
, (68)

valid for any comparator policy π̃.

8Technically, this error should depend on |As|, if we were to allow the action spaces to have varyign cardinality,
but we elide this distinction here.
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See Section 11.6 for the proof.

To be clear, the comparator policy π̃ need belong to the soft-max policy class. Apart from the
optimization error term, our bound (68) involves the behavior of the perturbed rewards Rt along
the comparator π̃ and πt, respectively. These correction terms arise because the actor performs
the policy update using the action-value function Qπt

t on the perturbed MDPs instead of the real
underlying MDP.

11.4 Pessimism: Bound on Eπt
Rt

The fourth step of the proof is to leverage the pessimistic estimates returned by critic to simplify
equation (68). Using Lemma 9 and the definition of adversarial reward Rt we can write

V̂ π
min − V πt =

1

1− γ
〈1,BπtQ̂

πt
〉πt =

1

1− γ
EπtBπtQ̂

πt
=

1

1− γ
EπtRt.

Since weak realizability holds, Theorem 3 guarantees that V̂ π
min ≤ V π uniformly for all π ∈ Π with

probability at least 1− δ. Coupled with the prior display, we find that

EπtRt ≤ 0. (69)

Using the above display, the result in Eq. (68) can be further upper bounded and simplified.

11.5 Concentrability: Bound on Eπ̃Rt

The term Eπ̃Rt can be interpreted as an approximate concentrability factor for the approximate
algorithm that we are investigating.

Bound under only weak realizability: Lemma 15 gives with probability at least 1−δ that any
surviving Q in C

πt
n must satisfy: ‖w − wπt

⋆ ‖2
Σ

+πt
λ,Boot

. dρ
n where wπt

⋆ is the parameter associated to

the weak solution Qπt
⋆ . Such bound must apply to the parameter wt ∈ Ĉπt

n identified by the critic.9.
We are now ready to bound the remaining adversarial reward along the distribution of the

comparator π̃.

|Eπ̃Rt| = |Eπ̃BπtQ̂
πt
|

(i)
= |Eπ̃(φ− γφ+πt)⊤(wt − wπt

⋆ )|
≤ ‖Eπ̃[φ− γφ+πt]‖

(Σ
+πt
λ,Boot

)−1‖wt − wπt
⋆ ‖

Σ
+πt
λ,Boot

≤ c

√
dρ

n
sup
π∈Π

{
‖Eπ̃[φ− γφ+π]‖(Σ+π

λ,Boot
)−1

}
. (70)

Step (i) follows from the expression (63) for the weak Bellman error, along with the definition of
the weak solution Qπt

⋆ .

9We abuse the notation and write w ∈ Ĉ
π
n in place of Q ∈ Ĉ

π
n
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Bound under weak Bellman closure: When Bellman closure holds we proceed analogously.
The bound in Lemma 16 ensures with probability at least 1− δ that ‖w − P

πt(w)‖2Σλ
≤ c dρ

n for all

w ∈ C
πt
n ; as before, this relation must apply to the parameter chosen by the critic wt ∈ Ĉ

πt
n . The

bound on the adversarial reward along the distribution of the comparator π̃ now reads

|Eπ̃Rt| = |Eπ̃BπtQ̂
πt
| (i)
= |Eπ̃φ

⊤(wt − P
πt(wt))|

≤ ‖Eπ̃φ‖Σ−1

λ
‖wt − P

πt(wt)‖Σλ

≤ c ‖Eπ̃φ‖Σ−1

λ

√
dρ

n
. (71)

Here step (i) follows from the expression (64) for the Bellman error under weak closure.

11.6 Proof of Lemma 19

We now prove our guarantee for a mirror descent procedure on the sequence of adversarial MDPs.
Our analysis makes use of a standard result on online mirror descent for linear functions (e.g., see
Section 5.4.2 of Hazan [Haz21]), which we state here for reference. Given a finite cardinality set X , a

function f : X → R, and a distribution ν over X , we define f(ν)
def
=

∑
x∈X ν(x)f(x). The following

result gives a guarantee that holds uniformly for any sequence of functions {ft}Tt=1, thereby allowing
for the possibility of adversarial behavior.

Proposition 5 (Adversarial Guarantees for Mirror Descent). Suppose that we initialize with the
uniform distribution ν1(x) =

1
|X | for all x ∈ X , and then perform T rounds of the update

νt+1(x) ∝ νt(x) exp(ηft(x)), for all x ∈ X , (72)

using η =

√
log|X |
2T . If ‖ft‖∞ ≤ 1 for all t ∈ [T ] then we have the bound

1

T

T∑

t=1

[
ft(ν̃)− ft(νt)

]
≤ Eopt(T ) def

= 2

√
2 log|X |

T
. (73)

where ν̃ is any comparator distribution over X .

We now use this result to prove our claim. So as to streamline the presentation, it is convenient
to introduce the advantage function corresponding to πt. It is a function of the state-action pair
(s, a) given by

Aπt
t (s, a)

def
= Qπt

t (s, a)− Ea+∼πt(·|s)Q
πt
t (s, a+).

In the sequel, we omit dependence on (s, a) when referring to this function, consistent with the rest
of the paper.

From our earlier observation (66), recall that the reward function of the perturbed MDP Mt

corresponds to that of M plus the perturbation Rt. Combining this fact with a standard simulation
lemma (e.g., [K+03]) applied to Mt, we find that

V π̃ − V πt = V π̃
t − V πt

t +
1

1− γ

[
− Eπ̃Rt + EπtRt

]
=

1

1− γ

[
Eπ̃A

πt
t − Eπ̃Rt + EπtRt

]
. (74a)
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Now for any given state s, we introduce the linear objective function

ft(ν)
def
= Ea∼νQ

πt
t (s, a) =

∑

a∈A
ν(a)Qπt

t (s, a),

where ν is a distribution over the action space. With this choice, we have the equivalence

Ea∼π̃A
πt
t (s, a) = ft(π̃(· | s))− ft

(
πt(· | s)

)
,

where the reader should recall that we have fixed an arbitrary state s. Consequently, applying the
bound (73) with X = A and these choices of linear functions, we conclude that

1

T

T∑

t=1

Ea∼π̃A
πt
t (s, a) ≤ Eopt(T ). (74b)

This bound holds for any state, and also for any average over the states.
We now combine the pieces to conclude. By computing the average of the bound (74a) over all

T iterations, we find that

1

T

T∑

t=1

[
V π̃ − V πt

]
≤ 1

1− γ

{
1

T

T∑

t=1

Eπ̃A
πt
t +

1

T

T∑

t=1

[
− Eπ̃Rt + EπtRt

]}

≤ 1

1− γ

{
Eopt(T ) +

1

T

T∑

t=1

[
− Eπ̃Rt + EπtRt

]}
,

where the final inequality follow from the bound (73), applied for each s. We have thus established
the claim.
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