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Abstract
We study covariate shift in the context of nonpara-
metric regression. We introduce a new measure
of distribution mismatch between the source and
target distributions that is based on the integrated
ratio of probabilities of balls at a given radius. We
use the scaling of this measure with respect to the
radius to characterize the minimax rate of estima-
tion over a family of Hölder continuous functions
under covariate shift. In comparison to the re-
cently proposed notion of transfer exponent, this
measure leads to a sharper rate of convergence
and is more fine-grained. We accompany our the-
ory with concrete instances of covariate shift that
illustrate this sharp difference.

1. Introduction
In the standard formulation of prediction or classification,
the future data (as represented by a test set) is assumed to be
drawn from the same distribution as the training data. This
assumption, while theoretically convenient, may fail to hold
in many real-world scenarios. For instance, training data
might be collected only from a sub-population of a broader
population (such as in medical trials), or the environment
might change over time as data are collected. Such scenarios
result in a distribution mismatch between the training and
test data.

In this paper, we study an important case of such distribu-
tion mismatch—namely, the covariate shift problem (Shi-
modaira, 2000; Quionero-Candela et al., 2009). Suppose
that a statistician observes covariate-response pairs (X,Y ),
and wishes to build a prediction rule. In the problem of
covariate shift, the distribution of the covariates X is al-
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lowed to change between the training and test data, while
the posterior distribution of the responses (namely, Y | X)
remains fixed. Compared to the usual i.i.d. setting, this
serves as a more accurate model for a variety of real-world
applications, including image classification (Saenko et al.,
2010), biomedical engineering (Li et al., 2010), sentiment
analysis (Blitzer et al., 2007), and audio processing (Hassan
et al., 2013).

More formally, suppose that the statistician observes nP co-
variates {Xi}nPi=1 from a source distribution P , and nQ co-
variates {Xi}nP+nQ

i=nP+1 from a target distribution Q. For each
observed Xi, she also observes a response Yi drawn from
the same conditional distribution. The regression function
f?(x) = E[Y | x] defined by this conditional distribution
is assumed to lie in some function class F . The statistician
uses these samples to produce an estimate f̂ , which will
be evaluated on the target distribution, with a fresh sample
X ∼ Q, yielding the mean-squared error

‖f̂ − f?‖2L2(Q)
··= E

[(
f̂(X)− f?(X)

)2]
.

When there is no covariate shift, the fundamental (minimax)
risks for this problem are well-understood (Halász, 1972;
Ibragimov & Khas′ minskiı̆, 1980; Stone, 1982; Tsybakov,
2009). The goal of this paper is to understand how, for non-
parametric function classes F , this minimax risk changes
as a function of the “amount” of covariate shift between P
and Q.

1.1. Our contributions and related work

Let us summarize the main contributions of this paper, and
put them in the context of related work.

Our contributions. We introduce a new similarity mea-
sure1 ρh between two probability measures P,Q on a com-
mon metric space (X , d). For any level h > 0, it is defined
as

ρh(P,Q) ··=
∫

X

1

P
(
B(x, h)

) dQ(x), (1)

1We note that this quantity will actually serve as a dis-similarity
measure in the sequel. When it is larger, we obtain worse rates of
estimation over the nonparametric classes considered in this paper.
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where B(x, h) ··= {x′ ∈ X | d(x, x′) 6 h } is the closed
ball of radius h centered around x. We show the significance
of this similarity measure via the following contributions:

(i) For regression functions that are Hölder continuous,
we demonstrate that performance guarantee for the
Nadaraya-Watson kernel estimator under covariate
shift is fully determined by the scaling of the similarity
measure ρh(P,Q) with respect to the radius h.

(ii) We complement these upper bounds with matching
lower bounds—in a minimax sense—demonstrating
that the best achievable rate of estimation in Hölder
classes is also determined by the scaling of this simi-
larity measure.

(iii) We show how the similarity measure ρh can be con-
trolled based on the metric properties of the space X .
In addition, we compare ρh with existing notions for
covariate shift (e.g., bounded likelihood ratios, transfer
exponents), thereby showcasing some of its advan-
tages.

Related work. The problem of covariate shift was studied
in the seminal work by Shimodaira (Shimodaira, 2000), who
provided asymptotic guarantees for a weighted maximum
likelihood estimator under covariate shift. Since then, a
plethora of work has analyzed covariate shift, or the general
distribution mismatch problem (also referred to as domain
adaptation or transfer learning).

For general distribution mismatch, one line of work provides
rates that depend on distance metrics between the source-
target pair (e.g., (Ben-David et al., 2010a;b; Germain et al.,
2013; Mansour et al., 2009a; Cortes et al., 2019; Mohri &
Medina, 2012)). These results hold under fairly general
conditions, but do not necessarily guarantee consistency as
the sample size n increases. In contrast, our guarantees
for covariate shift do guarantee consistency, and moreover,
we provide explicit nonasymptotic, optimal nonparametric
rates. As pointed out in the paper (Kpotufe & Martinet,
2021), the distribution mismatch problem is asymmetric in
the sense that it may be easier to estimate accurately when
dealing with covariate shift from P to Q than from Q to P .
Our results also corroborate this intuition. It is worth noting
that these prior distance metrics fall short of capturing the
inherent asymmetry between P and Q.

Another line of work addresses covariate shift under condi-
tions on the likelihood ratio dQ/dP . For instance, some
authors have obtained results for bounded likelihood ra-
tios (Sugiyama et al., 2012; Kpotufe, 2017) or in terms of
information-theoretic divergences between the source-target
pair (Sugiyama et al., 2008; Mansour et al., 2009b). Our
work is inspired in part by the work of Kpotufe and Mar-
tinet (Kpotufe & Martinet, 2021), who introduced the notion

of the transfer exponent. It is a condition that bounds the
mass placed by the pair (P,Q) on balls of varying radii;
using this notion, they analyzed various problems of non-
parametric classification. Our work, focusing instead on
nonparametric regression problems and using the measure
ρh, provides sharper rates than those obtainable by consider-
ing the transfer exponent; see Section 3.2 for details. Thus,
the similarity measure ρh provides a more fine-grained con-
trol on the effect of covariate shift on nonparametric regres-
sion.

Finally, it is worth mentioning other recent works on
covariate shift, including on linear models (Lei et al.,
2021), as well as linear models and one-layer neural net-
works (Mousavi Kalan et al., 2020). Although these results
deal with covariate shift, the rates obtained are parametric
ones, and hence not directly comparable to the nonparamet-
ric rates obtained here.

1.2. Notation

Here we collect notation used throughout the paper. We use
R to denote the real numbers. We use (X , d) to denote a
metric space, and we equip it with the usual Borel σ-algebra.
We let B(x, r) ··=

{
x′ ∈ X | d(x, x′) 6 r

}
be the closed

ball of radius r centered at x. We reserve the capital letters
X,Y , possibly with subscripts, for a pair of random vari-
ables arising from a regression model. Similarly, we reserve
P,Q for a pair of two probability measures on (X , d). For
h > 0, we denote by N(h) the covering number of X at
resolution h in the metric d. This is the minimal number of
balls of radius at most h > 0 required to cover the space X .

2. Covariate shift in the context of
nonparametric regression

In this section, we use the similarity measure introduced
in equation (1) to characterize the rate of estimation for a
nonparametric regression model when samples are drawn
with covariate shift.

2.1. Observation model

Suppose that we observe covariate-response pairs
{(Xi, Yi)}ni=1 ⊂ X ×R that are drawn from nonparametric
regression model of the following type. The conditional
distribution of Y | X is the same for all i = 1, . . . , n,
and our goal is to estimate the regression function
f?(x) ··= E[Y | X = x]. In terms of the “noise” variables,
ξi ··= Yi − f?(Xi), the observations can be written in the
form

Yi = f?(Xi) + ξi, i = 1, . . . , n. (2)

In our analysis, we impose three types of regularity condi-
tions: (i) Hölder continuity of the regression function; (ii)
the type of covariate shift allowed; and (iii) tail conditions
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on the noise variables {ξi}ni=1.

Assumption 1 (Hölder continuity). For some L > 0 and
β ∈ (0, 1], the function f? : X → R is (β, L)-Hölder con-
tinuous, meaning that
∣∣f?(z)− f?(z′)

∣∣ 6 L [d(z, z′)]β , for any z, z′ ∈ X .

We note that in the special case β = 1, the function f? is
L-Lipschitz.

Assumption 2 (Covariate shift). The covariates
X1, . . . , Xn are independent, and drawn as

X1, . . . , XnP
i.i.d.∼ P and XnP+1, . . . XnP+nQ

i.i.d.∼ Q,

where n = nP + nQ.

Assumption 3 (Noise assumption). The variables {ξi}ni=1

satisfy the second moment bound

sup
x

E
[
ξ2
i | Xi = x

]
6 σ2 for each i = 1, . . . , n.

Note that by construction, the variables ξi are (conditionally)
centered. Assumption 3 also allows ξi to depend on Xi, as
long as the variance is uniformly bounded above.

2.2. Achievable performance via the Nadaraya-Watson
estimator

We first exhibit an achievable result for the problem of
nonparametric regression in the presence of covariate shift.
It is achieved by using a classical and simple method for
nonparametric estimation, namely the Nadaraya-Watson
estimator (Nadaraya, 1964; Watson, 1964), or NW for short.
The main result of this section is to show that the mean-
squared error (MSE) of the NW estimator is upper bounded
by a bias-variance decomposition that also involves the
similarity measure ρh.

We begin by recalling the definition of the NW estimator,
focusing here on the version in which the underlying kernel
is uniform over a ball of a given bandwidth hn > 0. In
particular, define the set

Gn ··=
n⋃

i=1

B(Xi, hn),

corresponding to the set of points inX within distance hn of
the observed covariates. In terms of this set, the Nadaraya-
Watson estimator f̂ takes the form

f̂(x) ··=
∑n
i=1 Yi1{Xi ∈ B(x, hn)}∑n
i=1 1{Xi ∈ B(x, hn)} , for x ∈ Gn.

For x /∈ Gn, we set f̂(x) ··= 0.

We now state an upper bound on the MSE of the NW estima-
tor under covariate shift; this bound exhibits the significance
of the similarity measure (1). It involves the distribution
µn ··= nP

n P +
nQ
n Q, which is a convex combination of the

source and target distributions weighted by their respective
fractions of samples.

Theorem 1. Suppose that Assumptions 1, 2, and 3 hold.
For any hn > 0, the Nadaraya-Watson estimator f̂ with
bandwidth hn has MSE bounded as

E
∥∥f̂−f?

∥∥2

L2(Q)
6 cu

{
L2h2β

n +
‖f?‖2∞ + σ2

n
ρhn(µn, Q)

}
,

(3)
where cu > 0 is a numerical constant.

See Section 4.1 for a proof of this result.

Note that the bound (3) exhibits a type of bias-variance trade-
off, one that controls the optimal choice of bandwidth hn.
The quantity h2β

n in the first term is familiar from the classi-
cal analysis of the NW estimator; it corresponds to the bias
induced by smoothing over balls of radius hn, and hence is
an increasing function of bandwidth. In the second term, the
bandwidth appears in the similarity measure ρhn(µn, Q),
which is a non-increasing function of the bandwidth. The
optimal choice of bandwidth arises from optimizing this
tradeoff; note that it depends on the pair (P,Q), as well
as the sample sizes (nP , nQ), via the similarity measure
applied to the convex combination µn and Q.

No covariate shift: As a sanity check, it is worth check-
ing that the bound (3) recovers known results in the case
of no covariate shift (P = Q and hence µn = Q). As a
concrete example, if Q is uniform on the hypercube [0, 1]k,
it can be verified that ρh(Q,Q) � h−k as h → 0+. (See
Example 2 in the sequel for a more general calculation that
implies this fact.) Thus, if we track only the sample size,
the optimal bandwidth is given by h∗n = n−

1
2β+k , and with

this choice, the bound (3) implies that the NW estimator has
MSE bounded as n−

2β
2β+k . Thus, we recover the classical

and known results in this special case. As we will see, more
interesting tradeoffs arise in the presence of covariate shift,
so that µn 6= Q.

2.3. Some consequences of Theorem 1

In order to better understand the bias-variance tradeoff in the
bound (3) in the presence of covariate shift, it is helpful to
derive some explicit consequences for a particular function
class F , along with certain families of source-target pairs
(P,Q). So as to simplify our presentation, we assume that
X is the unit interval [0, 1]. For a given pair β ∈ (0, 1] and
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L > 0, consider the family

F(β, L) =
{
f : [0, 1]→ R | |f(x)− f(x′)| 6 L|x− x′|β ,

for all x, x′ ∈ X , f(0) = 0
}
.

The additional constraint f(0) = 0 ensures that this class
has finite metric entropy.

α-families of (P,Q) pairs: For a given parameter α > 1
and radius C > 1, we define the set of source-target pairs2

D(α,C) ··=
{

(P,Q) | sup
0<h61

hαρh(P,Q) 6 C
}
. (4a)

In words, these are source target pairs for which the growth
of the similarity as h → 0+ is at most h−α. In the case
α ∈ (0, 1], we define the related set

D′(α,C) ··=
{

(P,Q) | sup
0<h61

hαρh(P,Q) 6 C,

sup
0<h61

ρh(Q,Q) 6 C
}
, (4b)

where the additional condition is added to address the fact
that even without covariate shift, the rate n−2β/(2β+1) is
unimprovable for some distributions (Stone, 1982; Tsy-
bakov, 2009). Taking into account the first part of the next
corollary, it is necessary to impose some condition on the
target distribution in order to obtain significantly faster rates

such as n−
2β

2β+α , when α < 1.

Corollary 1. Suppose that σ > L, and that Assump-
tions 2 and 3 hold. Then there exists a constant c′u >
0, independent of n, nP , nQ, σ2, and an integer nu ··=
nu(σ, β, L, α,C) such that, provided that max{nP , nQ} >
nu:

(a) For α > 1 and C > 1, we have

inf
f̂

sup
f?∈F(β,L)

E
∥∥f̂−f?∥∥2

L2(Q)
6 c′u

{(nP
σ2

) 2β+1
2β+α+

(nQ
σ2

)}− 2β
2β+1

,

(5a)
for any (P,Q) ∈ D(α,C).

(b) For α ∈ (0, 1] and C > 1, we have

inf
f̂

sup
f?∈F(β,L)

E
∥∥f̂−f?∥∥2

L2(Q)
6 c′u

{(nP
σ2

) 2β
2β+α +

(nQ
σ2

)}−1

(5b)
for any (P,Q) ∈ D′(α,C).

See Section A.3 for a proof of this corollary.

2Note that the restriction of the supremum to h ∈ [0, 1] is
necessary, as ρh(P,Q) = 1 for all h > 1. Note also that since
ρ1(P,Q) = 1, one necessarily has C > 1.

Let us discuss the bound (5a) to gain some intuition. The
special case of no covariate shift can be captured by setting
nP = 0 and nQ > 0, and we recover the familiar n−

2β
2β+k

rate previously discussed. At the other extreme, suppose
that nQ = 0 so that all of our samples are from the shifted
distribution (i.e., n = nP ); in this case, the MSE is bounded
as (σ2/n)−

2β
2β+α . As α increases, our set-up allows for more

severe form of covariate shift, and its deleterious effect is
witnessed by the exponent 2β

2β+α shrinking towards zero.
Thus, the NW estimator—with an appropriate choice of
bandwidth—remains consistent but with an arbitrarily slow
rate as α diverges to +∞.

There are many papers in the literature that discuss the co-
variate shift problem when the likelihood ratio is bounded—
that is, when Q is absolutely continuous with respect to P
and supx∈X

dQ
dP (x) 6 b for some b > 1. We say that the

pair (P,Q) are b-bounded in this case.

Example 1 (Bounded likelihood ratio). Suppose that X =
[0, 1]k with the Euclidean metric, and consider a pair (P,Q)
with b-bounded likelihood ratio. In this special case, our
general theory yields bounds in terms of the b-weighted
effective sample size

neff(b) ··=
nP
b

+ nQ. (6)

In particular, it follows from the proof of Corollary 1 that in
the regime σ2 > L2, we have the upper bound

E
∥∥f̂ − f?

∥∥2

L2(Q)
6 c′u

( σ2

neff(b)

) 2β
2β+k

,

provided that neff(b) is large enough. Consequently, the ef-
fect of covariate shift with b-bounded pairs is to reduce nP

to nP /b. Again, we recover the standard rate (σ
2

n )
2β

2β+k in
the case of no covariate shift (or equivalently, when b = 1).
This recovers a known result and is minimax optimal (Tsy-
bakov, 2009).

2.4. Matching lower bounds

Thus far, we have seen that the similarity measure ρh plays
a central role in determining the estimation error of the NW
estimator under covariate shift. However, this is just one
of many possible estimators in nonparametric regression.
Does this similarity measure play a more fundamental role?
In this section, we answer this question in the affirmative by
proving minimax lower bounds for covariate shift problems
parameterized in terms of bounds on ρh. To illustrate this,
we state our lower bounds for the case X = [0, 1], along
with the usual metric.

More precisely, we prove lower bounds on the mean-squared
error of any estimator, when measured uniformly over func-
tions in the Hölder class F(β, L), along with target-source
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pairs (P,Q) belonging to the class D(α,C) when α > 1
and the class D′(α,C) when α < 1.

We remark briefly on higher-dimensional lower bounds. In-
deed, it is possible to extend our lower bounds to dimensions
d > 1; however, our lower bounds will match our upper
bounds only in the case α > d. As can be seen from our
construction when d = 1, we need a separate argument
for the case α < 1. The reason is that when α < d, the
form of covariate shift is actually quite favorable, meaning
that it is possible to provide rates of estimation which are
faster than worst-case rates under no covariate shift. We
conjecture that our upper bound is tight for all α > 0, d = 1,
as we Theorem 2 demonstrates in the case d = 1; we leave
the determination of minimax lower bounds in the case
α < d, d > 1 for future work.

Theorem 2. Suppose that Assumptions 2 and 3 hold. Then
there is a constant c` > 0, independent of n, nP , nQ, σ2,
and an integer n` ··= n`(σ, L,C, α, β) such that for all
sample sizes max{nP , nQ} > n`:

(a) For α > 1 and C > 1, there is a pair of distributions
(P,Q) ∈ D(α,C) such that

inf
f̂

sup
f?∈F(β,L)

E
∥∥f̂−f?∥∥2

L2(Q)
> c`

{(nP
σ2

) 2β+1
2β+α+

(nQ
σ2

)}− 2β
2β+1

.

(7a)

(b) For α 6 1 and C > 1, there is a pair of distributions
(P,Q) ∈ D′(α,C) such that

inf
f̂

sup
f?∈F(β,L)

E
∥∥f̂ − f?∥∥2

(Q)
> c`

{(nP
σ2

) 2β
2β+α +

(nQ
σ2

)}−1

.

(7b)

See Sections 4.2 and A.6 for the proof of this result.

These lower bounds should be compared to Corollary 1.
This comparison shows that the MSE bounds achieved by
the NW estimator are actually optimal in the minimax sense
over families defined by the similarity measure ρh.

3. Properties of the similarity measure
In the previous sections, we have seen that the similarity
measure ρh controls both the behavior of the NW estimator,
as well as fundamental (minimax) risks applicable to any
estimator. Thus, it is natural to explore the similarity mea-
sure in some more detail, and in particular to draw some
connections to existing notions in the literature.

3.1. Controlling ρh via covering numbers

We start with a general way of controlling the similarity
measure ρh, which is based on the covering number of the

metric space (X , d). In particular, for any h > 0, the cov-
ering number N(h) is defined to be the smallest number of
balls of radius h needed to cover the space X . See Chapter
5 in the book (Wainwright, 2019) for more background.
Proposition 1 (Covering number bounds for the similarity
measure). Suppose that P,Q are two probability measures
on the same metric space (X , d). Suppose that for some
h > 0, there is a λ > 0 such that

P (B(x, h)) > λ Q(B(x, h)) for all x ∈ X . (8)

Then the similarity at scale h is upper bounded as
ρh(P,Q) 6 N(h2 )/λ.

See Section 4.3 for the proof of this claim.

It is worth emphasizing that—due to the order of quantifiers
above—the quantity λ > 0 is allowed to depend on h > 0.
We exploit this fact in subsequent uses of the bound (8).

One straightforward application of Proposition 1 is in bound-
ing the similarity measure when there is no covariate shift,
as we now discuss.
Example 2 (No covariate shift). Suppose that we compute
the similarity measure in the case P = Q; intuitively, this
models a scenario where there is no covariate shift. In
this case, we clearly may apply Proposition 1 with λ =
1, which reveals that ρh(P, P ) 6 N(h/2). To give one
concrete bound, suppose thatX ⊂ Rk is a compact set, with
diameter D. Then—owing to standard bounds on covering
numbers (see chapter 5 of (Wainwright, 2019))—we obtain
ρh(P, P ) 6 (1 + 2D

h )k. Note that this bound holds for any
metric, so long as the diameterD is computed with the same
metric as the balls in the definition of the similarity measure.

We give another application of Proposition 1 in the following
subsection.

3.2. Comparison to previous notions of distribution
mismatch

Next, we show how the mapping h 7→ ρh(P,Q) can be
bounded naturally using previously proposed notions of dis-
tribution mismatch for covariate shift. Again, Proposition 1
plays a central role.
Example 3 (Bounded likelihood ratio). Suppose that P,Q
are such that Q � P and the likelihood ratio dQ

dP (x) 6 b,
for all x ∈ X . Then note that by a simple integration argu-
ment P (B(x, h)) > 1

bQ(B(x, h)). Therefore, we conclude
ρh(P,Q) 6 bN(h/2).

As noted previously, our work was inspired by the transfer
exponent introduced by Kpotufe and Martinet (Kpotufe &
Martinet, 2021) in the context of covariate shift for nonpara-
metric regression. It is worth comparing these notions so as
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to understand in what sense the similarity measure ρh is a
refinement of the transfer exponent. In order to simplify this
discussion, we focus here on the special case X = [0, 1].D(4, C)

�(3, c)

Worst-case instances coincide

1

D
(�

+
1
,

2C
)

�
(�

,C
)

W
orst-case

instances
coincide

(1

D(� + 1, 2
C )

�(�, C)

Worst-case instances coincide
(

pairs (P, Q) for which transfer exponent is loose

1

T (γ,K)

D(γ + 1, 2
K )

Figure 1. The yellow circle depicts the contour for the
classD(γ+1, 2

K
), while the blue square plots the contour

for the class T (γ,K). It can be seen from Lemma 1
and Example 5 that T (γ,K) is strict subset of D(γ +
1, 2

K
). In addition, our lower bound shows that under

covariate shift, the worst-case instances for both classes
coincide with each other. However, there exist instances
(P,Q) where the characterization using transfer exponent
is intrinsically loose.

We begin by providing the definition of transfer exponent:

Definition 3.1 (Transfer exponent (Kpotufe & Martinet,
2021)). The distributions (P,Q) have transfer exponent
γ > 0 with constant K ∈ (0, 1] if

P (B(x, h)) > KhγQ(B(x, h)),

for all x in the support of Q.

We denote by T (γ,K) the set of all pairs (P,Q) with this
property.

It is natural to ask how the set T (γ,K) is related to the
α-family previously defined in equation (4a). The following
result establishes an inclusion:

Lemma 1. For X = [0, 1] and any γ > 0 and K ∈ (0, 1],
we have the inclusion

T (γ,K) ⊂ D(γ + 1, 2
K ). (9)

The proof of this inclusion is given in Section A.2.
At a high level, it exploits Proposition 1 to show
that for any (P,Q) ∈ T (γ,K), we have the bound
ρh(P,Q) 6 1

KhγN(h/2).

From the inclusion (9), we see that any covariate shift in-
stance (P,Q) with finite transfer exponent γ > 0 will also

have a similarity measure with a polynomial scaling with
order γ + 1. In fact, following a proof similar to that of
Theorem 2, we can show that the minimax risk over the

class T (γ,K) is n
− 2β

2β+γ+1

P for a β-Hölder function, which
coincides with that of the classD(γ+1, 2

K ). In other words,
from a worst-case point of view, T (γ,K) is equally hard as
D(γ + 1, 2

K ) for learning under covariate shift. However,
it is worth pointing out that for a wide family of covariate
shift instances, the transfer exponent fails to capture the
fundamental difficulty of the problem. Let us consider a
concrete example to illustrate.

Example 4 (Separation between transfer exponent and ρh).
Let the target distribution Q be a uniform distribution on
the interval [0, 1], and for some ν > 1, suppose that the
source distribution P has density p(x) = (ν + 1)xν for
x ∈ [0, 1]. With these definitions, it can be verified that
(P,Q) ∈ T (ν,K) for some constant K ∈ (0, 1], and more-
over, that the quantity ν is the smallest possible transfer
exponent for this pair. In contrast, another direct computa-
tion shows that the pair (P,Q) belongs to the classD(ν, C ′)
for some constant C ′ > 0; note that as shown by our theory,
the difficulty of estimation over D(ν, C ′) is much smaller
than that prescribed by T (ν,K). Indeed, if one observe n
samples from the source distribution, the worst-case rate
indicated by the computation from the transfer exponent
is n−

2β
2β+ν+1 , whereas our rate—induced by computing the

more fine-grained similarity measure ρh—is n−
2β

2β+ν , which
is significantly smaller when n is large.

Taking Lemma 1 and the example above collectively, one
sees that the new similarity measure is a strictly better char-
acterization than the transfer exponent. See also Figure 1 for
an illustration of the connections and differences between
the new similarity measure and the transfer exponent.

4. Proofs
In this section, we collect proofs for the main results in this
paper.

4.1. Proof of Theorem 1

Our proof makes use of the conditional expectation of the
estimator given the covariates

f(x) ··= E[f̂(x) | X1, . . . , Xn], for any x ∈ X .

Above, the expectation is over Yi | Xi, i = 1, . . . , n. In
particular, we have the following result which bounds the
conditional bias and variance.

Lemma 2. The Nadaraya-Watson estimator f̂ satisfies the
following guarantees for each x ∈ X , almost surely:

(a) (f(x)− f?(x)
)2 6 ‖f?‖2∞1{x 6∈ Gn}+ L2h2β

n
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(b) E[(f(x)− f̂(x))2 | Xn
1 ] 6 σ21{x∈Gn}∑n

i=1 1{Xi∈B(x,hn)}

We can now prove Theorem 1. Fix x ∈ X . Note that by a
conditioning argument, and after applying bounds (i) and
(ii) from Lemma 2, we obtain

E
[
(f̂(x)− f?(x))2

]
6
{
‖f?‖2∞E[1{x 6∈ Gn}] + L2h2β

n

}

+ E
[
1{x ∈ Gn}

σ2

∑n
i=1 1{Xi ∈ B(x, hn)}

]
(10)

By independence, note that for any x ∈ X ,3

E
[
1{x /∈ Gn}

]
=
(

1− P
(
B(x, hn)

))nP (
1−Q

(
B(x, hn)

))nQ

6 1

nµn(B(x, hn))
. (11)

Applying Lemma 6, it follows that for x ∈ X ,

E
[ 1{x ∈ Gn}∑n

i=1 1{Xi ∈ B(x, hn)}
]
6 4

nµn(B(x, hn))
. (12)

Applying inequalities (11) and (12) in bound (10), we obtain

E
[(
f̂(x)− f?(x)

)2] 6 L2h2β
n +

4σ2 + L2

n

1

µn(B(x, hn))
.

(13)
Applying Fubini’s theorem, we obtain

E
[∥∥f̂ − f?

∥∥2

L2(Q)

]
=

∫

X
E
[(
f̂(x)− f?(x)

)2]
dQ(x).

Applying inequality (13) to the integrand above yields the
result. The proof of the pointwise bounds of Lemma 2 are
given in section A.4.

4.2. Proof of Theorem 2(a)

Before giving the complete proof, we outline the main steps
involved.

1. We first construct a hard instance (P,Q) ∈ D(α,C).
This instance is designed such that the integral quantity
ρh(P,Q) must scale as Ch−α.

2. Then we select a family of hard regression functions
contained within F(β, L) that guarantees the worst-
case expected error for our pair of distributions, (P,Q).

3. Finally, we apply Fano’s method over this set of re-
gression functions to show that the expected error must
scale as the righthand side of inequality (7a).

3We use the elementary inequalities (1 − p)n(1 − q)m 6
exp(−(np+mq)) 6 1

np+mq
, valid for p, q ∈ (0, 1) and nonneg-

ative integers n,m.
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Proposition 2. Let ↵ > 1 and C > 1. Define P and Q as in Table 1, with the following choice of
parameters ", S:

(a) if C > 6, set " = 6/C, and S = 1/4;

(b) if 1 6 C 6 6, set " = 1, and S = 1
4(C/6)1/↵.

Then for any choice of M, r > 0 satisfying S = 6Mr, the pair (P, Q) lies in D(↵, C).

See section 5.2.1 for a proof of this claim.

Construction of hard regression functions. Now we move on to construct a packing set of
F(�, L). Let  : [�1, 1] ! R be such that  (�1) =  (1) = 0 and

�� (x) � (y)
�� 6 |x � y|� , for all x, y 2 [�1, 1], and, (10a)

Z 1

�1
 2(x) dx =·· C2

 > 0. (10b)

Many choices of  are possible above [22, see chap. 2]; we require C2
 6 1/6, which is possible by

taking  (x) = e�1/(1�x2)1{|x| 6 1}. For a sequence b = (b1, . . . , bM ) 2 {0, 1}M , we define

fb(x) ··=
MX

j=1

bj�j(x), where �j(x) ··= Lr� 
⇣x � zj

r

⌘
.

We will take
H ··=

n
fb | b 2 B

o
.

Above, B is a packing set of the discrete cube {0, 1}M , originally constructed by Gilbert [7] and
Varshamov [23]. The following result records the main property of this set.

Lemma 2 (Gilbert-Varshamov [22, Lemma 2.9]). Let M > 8. There is a subset B ⇢ {0, 1}M such
that kb � b0k1 > M/8 for all distinct b, b0 2 B, and |B| > 2M/8.

The next result summarizes the important properties of the hard set of regression functions, H.

Lemma 3. The set H has the following properties:

(a) it is contained within the Hölder class, H ⇢ F(�, L);

(b) it has the following separation: for each distinct f, g 2 H, kf � gk2
L2(Q) >

C2
 

16 L2r2� ;

(c) it satisifes the following L2(P ) and L2(Q) bounds:

kfk2
L2(Q) 6

C2
 M

2S
L2r2�+1 and kfk2

L2(P ) 6
"C2
 M

6S↵
L2r2�+↵,

for all f 2 H.
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f(x) � f?(x)
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1{x 2 Gn} =
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i=1(f

?(x) � f?(Xi))1{Xi 2 B(x, hn)}Pn
i=1 1{Xi 2 B(x, hn)}

⌘2
1{x 2 Gn}

(i)

6
Pn

i=1(f
?(x) � f?(Xi))

21{Xi 2 B(x, hn)}Pn
i=1 1{Xi 2 B(x, hn)} 1{x 2 Gn}

(ii)

6 L2h2�
n 1{x 2 Gn}.

Bound (a) now follows immediately. Above, (i) follows from Jensen’s inequality and (ii) makes use
of Assumption 1. For bound (b), note that by independence among {(Xi, ⌫i)}n

i=1,

E[(f(x) � bf(x))2 | X1, . . . , Xn] =
nX

i=1

E[⌫2
i | Xi]

� 1{Xi2B(x,hn)}Pn
i=1 1{Xi2B(x,hn)}

�2
1{x 2 Gn}

(iii)

6 �2
nX

i=1

� 1{Xi2B(x,hn)}Pn
i=1 1{Xi2B(x,hn)}

�2
1{x 2 Gn}

=
�2

Pn
i=1 1{Xi 2 B(x, hn)}1{x 2 Gn},

which proves the claim. Above, (iii) follows from Assumption 3.

5.2 Proof of Part (a) of Theorem 2

Before giving the complete proof, we outline the main steps involved.

1. We first construct a hard instance (P, Q) 2 D(↵, C). This instance is designed such that the
integral quantity ⇢h(P, Q) must scale as Ch�↵.

2. Then we select a family of hard regression functions contained within F(�, L) that guarantees
the worst-case expected error for our pair of distributions, (P, Q).

3. Finally, we apply Fano’s method over this set of regression functions to show that the expected
error must scale as the righthand side of inequality (2).

Construction of hard pair of distributions. Let S, r 2 (0, 1] Let M = S
6r . Define the intervals

Ij ··= (zj � 3r, zj + 3r], where zj ··= 6jr � 3r, j = 1, . . . , M.

We specify P and Q on each interval Ij as follows: RP — would be nice to put a picture here.

subinterval density of P density of Q

(zj � 3r, zj � r] 1
4Mr (1 � "

3( r
S )↵�1) 0

(zj � r, zj + r] "
6Mr ( r

S )↵�1 1
2Mr

(zj + r, zj + 3r] 1
4Mr (1 � "

3( r
S )↵�1) 0

Table 1. Specification of densities for lower bound pair of distributions (P, Q) on the interval Ij .

By construction, both P and Q assign probability 1/M to the entire interval Ij . The following
proposition verifies that (P, Q) lies in D(↵, C) for proper choices of the " and S.
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Figure 2. An illustration of the distributions (P,Q) con-
structed as a hard pair in our lower bound.

Construction of hard pair of distributions. Let S, r ∈
(0, 1] Let M = S

6r . Define the intervals for j ∈ [M ],

Ij ··= (zj − 3r, zj + 3r], where zj ··= 6jr − 3r.

We specify P and Q on each interval Ij as follows:

subinterval density of P density of Q

(zj − 3r, zj − r] 1
4Mr (1− ε

3 ( rS )α−1) 0

(zj − r, zj + r] ε
6Mr ( rS )α−1 1

2Mr

(zj + r, zj + 3r] 1
4Mr (1− ε

3 ( rS )α−1) 0

Table 1. Specification of densities for lower bound pair of
distributions (P,Q) on the interval Ij .

By construction, both P and Q assign probability 1/M to
the entire interval Ij . The following proposition verifies that
(P,Q) lies in D(α,C) for proper choices of the ε and S.

Proposition 2. Let α > 1 and C > 1. Define P and Q as
in Table 1, with the following choice of parameters ε, S:

(a) if C > 6, set ε = 6/C, and S = 1/4;

(b) if 1 6 C 6 6, set ε = 1, and S = 1
4 (C/6)1/α.

Then for any choice of M, r > 0 satisfying S = 6Mr, the
pair (P,Q) lies in D(α,C).

See Section A.1 for the proof of this claim.

Construction of hard regression functions. Now we
move on to construct a packing set of F(β, L). Let
Ψ: [−1, 1] → R be such that Ψ(−1) = Ψ(1) = 0 and
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∣∣Ψ(x)−Ψ(y)
∣∣ 6 |x− y|β , for all x, y ∈ [−1, 1], and,

(14a)
∫ 1

−1

Ψ2(x) dx =·· C2
Ψ > 0. (14b)

Many choices of Ψ are possible above (Tsybakov, 2009);
we require C2

Ψ 6 1/6, which is possible by taking Ψ(x) =

e−1/(1−x2)1{|x| 6 1}. For a sequence b = (b1, . . . , bM ) ∈
{0, 1}M , we define

fb(x) ··=
M∑

j=1

bjφj(x), where φj(x) ··= LrβΨ
(x− zj

r

)
.

We will take
H ··=

{
fb | b ∈ B

}
.

Above, B is a packing set of the discrete cube {0, 1}M ,
originally constructed by Gilbert (Gilbert, 1952) and Var-
shamov (Varshamov, 1957). The following result records
the main property of this set.

Lemma 3 (Gilbert-Varshamov (Tsybakov, 2009)). Let
M > 8. There is a subset B ⊂ {0, 1}M such that
‖b− b′‖1 >M/8 for all distinct b, b′ ∈ B, and |B| > 2M/8.

The next result summarizes the important properties of the
hard set of regression functions,H.

Lemma 4. The setH has the following properties:

(a) it is contained within the Hölder class,H ⊂ F(β, L);

(b) it has the following separation: for each distinct f, g ∈
H, ‖f − g‖2L2(Q) >

C2
Ψ

16 L
2r2β ;

(c) it satisfies the following L2(P ) and L2(Q) bounds:

‖f‖2L2(Q) 6
C2

ΨM

2S
L2r2β+1, ‖f‖2L2(P ) 6

εC2
ΨM

6Sα
L2r2β+α,

for all f ∈ H.

Applying Fano’s method. To prove the claim we first
introduce some notation. We denote, for a function f ∈
H, by µf the distribution of the sequence {(Xi, Yi)}ni=1.
For the lower bound, we restrict to Gaussian noises, and
select ξi

i.i.d.∼ N(0, σ2). Note that this satisfies Assumption 3.
Given this, note that using standard properties of the KL
divergence, we obtain

Dkl(µf ‖ µg) =
1

2σ2

(
nP ‖f − g‖2L2(P ) + nQ‖f − g‖2L2(Q)

)

6 2

σ2

(
nP max

f∈H
‖f‖2L2(P ) + nQ max

f∈H
‖f‖2L2(Q)

)
.

After applying part (c) of Lemma 4, we obtain

Dkl(µf ‖ µg) 6
MC2

ΨL
2

σ2

{nP ε
Sα

r2β+α +
nQ
S
r2β+1

}

6M
{4α

C

L2

σ2
nP r

2β+α +
4α

C

L2

σ2
nQr

2β+1
}

The final inequality arises by using C2
Ψ 6 1/6. Suppose we

take

r =
((

64
4α

C

L2nP
σ2

)
2β+1
2β+α +

(
64

4α

C

L2nQ
σ2

))− 1
2β+1

Then for any distinct f, g ∈ H, we obtain

Dkl(µf ‖ µg) 6M/32. (15)

A standard reduction to hypothesis testing (see Chapter 15
of (Wainwright, 2019)) and part (a), gives the lower bound

minf 6=g∈H ‖f − g‖2L2(Q)

4

{
1−

log 2 + maxf,g∈HDkl(µf ‖ µg)

log |H|

}
Thus, after applying part (b) of Lemma 4, we obtain

inf
f̂

sup
f?F(β,L)

E
[
‖f̂ − f?‖2L2(Q)

]
>

C2
ΨL

2

256

((
64

4α

C

L2nP
σ2

)
2β+1
2β+α +

(
64

4α

C

L2nQ
64σ2

))− 2β
2β+1

,

provided that r 6 1
4608 6 S/192, which happens if

max{nP , nQ} >
(

72
σ2

L2

C

4α

)2β+α

.

4.3. Proof of Proposition 1

SetN ··= N(h/2). There is a collection {z1, . . . , zN} ⊂ X
such that we have

X ⊂
N⋃

j=1

B(zj ,
h

2
). (16)

Therefore, we observe that
∫

X

1

P (B(x, h))
dQ(x) 6 1

λ

∫

X

1

Q(B(x, h))
dQ(x)

6 1

λ

N∑

j=1

∫

B(zj ,h/2)

1

Q(B(x, h))
dQ(x). (17)

Above, the final inequality follows by the inclusion (16).
Note by the triangle inequality, for each j ∈ [N ] and x ∈
B(zj , h/2), we have B(zj , h/2) ⊂ B(x, h). This implies
that
∫

B(zj ,
h
2 )

1

Q(B(x, h))
dQ(x) 6

∫

B(zj ,
h
2 )

1

Q(B(zj ,
h
2 ))

dQ

= 1,

for each j ∈ [N ]. Applying the display above to the
bound (17), we obtain the result.
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5. Discussion
In this paper, we introduced a new similarity measure ρh,
and used it to characterize the minimax rate of estimation
for a standard Hölder classes in the context of nonparamet-
ric regression and covariate shift. These results are always
as good as what one can obtain from the previously sug-
gested notion of transfer exponent, and recover standard
rates for standard settings (such as the uniform distribution
on [0, 1]k). It should also be noted that our similarity mea-
sure can be used to refine existing results for a classification
setting under covariate shift with an analagous Hölder con-
dition on the conditional class probabilities of the outcome
variable given the covariate variates. Specifically, our simi-
larity measure can be used to provide bounds that refine the
results of (Kpotufe & Martinet, 2021); we mention this only
in passing and do not develop those results here for the sake
of brevity.

There are certainly many interesting directions to be devel-
oped in the future. For instance, one can ask whether a
completely instance-dependent characterization of the mini-
max rate of estimation is possible. For instance, is the upper
bound of Theorem 1 always optimal? Or are there instances
of covariate shift for which Nadaraya-Watson is suboptimal
for some Hölder continuous function? In general this may
be a difficult question: even without covariate shift, there
are few results that give distribution-dependent results for
nonparametric regression outside of the uniform distribution
and fixed-design problems.
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A. Deferred results
A.1. Proof of Proposition 2

We will show that for a general choice of ε, S ∈ (0, 1], the following holds:

P
(
B(x, h)

)
> ε

3

( h
4S

)α−1
Q
(
B(x, h)

)
, for all x ∈ supp(Q), and any h > 0. (18)

For the moment let us take this bound as given. By Lemma 1, note that bound (18) implies that (P,Q) ∈ D(α, C(ε, S)), with
C(ε, S) = 6

ε (4S)α−1, for any ε, S ∈ (0, 1]. Note that the parameter choices given in the statement of the result ensure that
ε, S ∈ (0, 1]. When C > 6, we have C(ε, S) = 6(C/6)1−1/α = C(6/C)1/α 6 6 6 C. Otherwise C 6 6 and C(ε, S) = C.
Therefore, checking the two cases C > 6 and C 6 6 verifies C(ε, S) = C in both regimes, which furnishes the claim.

We now turn to establish bound (18). Let h > 0. First observe that the support of Q is the disjoint union of intervals
∪Mj=1(zj − r, zj + r]. Thus, fix x in the support of Q, and let zj denote the center of the interval that x belongs to. Suppose
that 0 6 h 6 4r. In this case, B(x, h) ⊂ Ij , and consequently,

P (B(x, h)) > P
(
B(x, h) ∩ B(zj , r)

)

(i)
=
ε

3

( r
S

)α−1

Q
(
B(x, h) ∩ B(zj , r)

)

(ii)

> ε

3

( h

4S

)α−1

Q
(
B(x, h) ∩ B(zj , r)

)

(iii)
=

ε

3

( h

4S

)α−1

Q
(
B(x, h)

)
(19)

Above (i) follows from the construction of P,Q, (ii) follows from h 6 4r, whereas (iii) follows since B(x, h) ⊂ Ij and Q
assigns no mass to the set Ij \ B(zj , r).

On the other hand, now suppose 4r 6 h 6 S. Then, we have B(x, h) ⊃ Ij . Denote by N > 1 the number of intervals of
the form Ij that are included within B(x, h). Note that since B(x, h) is connected, it is always contained in at most N + 2
intervals (by considering partial intervals on the left and right). Thus,

P (B(x, h))

Q(B(x, h))

(iii)

> N · P (Ij)

(N + 2) ·Q(Ij)

(iv)

> 1

3
. (20)

Above (iii) follows since B(x, h) is contained in a collection of at most (N + 2) intervals and contains at least N intervals,
and the intervals are disjoint and have the same mass under both P and Q. The second inequality (iv) follows since
P (Ij) = Q(Ij), and x 7→ x

x+2 is increasing on {x > 1}.
Therefore, combining inequalities (19) and (20), we conclude that for every x in the support of Q,

P (B(x, h)) > 1

3

[
ε
( h

4S

)α−1

∧ 1
]
Q(B(x, h)) > ε

3

( h
4S

)α−1
Q(B(x, h))

The final inequality follows since α > 1. Since h > 0 was arbitrary, this establishes bound (18) and completes the proof.

A.2. Proof of Lemma 1

Note that by assumption ∫ 1

0

1

P (B(x, h))
dQ(x) 6 1

Khγ

∫ 1

0

1

Q(B(x, h))
dQ(x)

Note that there exists a collection of N ··= d1/he balls with centers z1, . . . , zN of radius h/2 that cover the interval [0, 1].
Therefore, ∫ 1

0

1

Q(B(x, h))
dQ(x) 6

N∑

j=1

∫

x∈B(zj ,h/2)

1

Q(B(x, h))
dQ(x) 6 N.

The final inequality is due to the inclusion B(x, h) ⊃ B(zj , h/2). Define g(t) ··= dte /t. Since g(t) 6 2 whenever t > 1,
we obtain

hγ+1ρh(P,Q) 6 1

K
g(1/h) 6 2

K
, for any h 6 1.



A new similarity measure for covariate shift

Passing to the supremum over h ∈ (0, 1], we obtain the result.

A.3. Proof of Corollary 1

Let ξ = 1{α > 1}. Consider h ∈ (0, 1].
∫

X

1

nPP (B(x, h)) + nQQ(B(x, h))
dQ(x) 6 min

{ 1

nP
ρh(P,Q),

1

nQ
ρh(Q,Q)

}

6 3ξC min
{ 1

nPhα
,

1

nQhξ

}

6 2 · 3ξC 1

nPhα + nQhξ
.

The last inequality follows from (1) and standard covering number bounds (note h 6 1). Thus the final performance bound
is

2 · 3ξCL2
{
h2β +

L2 + σ2

nPhα + nQhξ

}
.

Then we can take

h? =
(( nQ
L2 + σ2

)
+
( nP
L2 + σ2

) 2β+ξ
2β+α

)− 1
2β+ξ

This is valid, since σ2 > L2 and we can have max{nP , nQ} > 4σ2. Evaluating this in our risk bound, we obtain the result.

A.4. Proof of conditional pointwise bounds

We give the proof of Lemma 2, used to establish the performance guarantee for the NW estimator.

Proof of Lemma 2. By definition, we have

f(x) =

{∑n
i=1 f

?(Xi)1{Xi∈B(x,hn)}∑n
i=1 1{Xi∈B(x,hn)} x ∈ Gn

0 x /∈ Gn

This implies that

(
f(x)− f?(x)

)2
1{x ∈ Gn} =

(∑n
i=1(f?(x)− f?(Xi))1{Xi ∈ B(x, hn)}∑n

i=1 1{Xi ∈ B(x, hn)}
)2

1{x ∈ Gn}

(i)

6
∑n
i=1(f?(x)− f?(Xi))

21{Xi ∈ B(x, hn)}∑n
i=1 1{Xi ∈ B(x, hn)} 1{x ∈ Gn}

(ii)

6 L2h2β
n 1{x ∈ Gn}.

Bound (a) now follows immediately. Above, (i) follows from Jensen’s inequality and (ii) makes use of Assumption 1. For
bound (b), note that by independence among {(Xi, ξi)}ni=1,

E[(f(x)− f̂(x))2 | X1, . . . , Xn] =

n∑

i=1

E[ξ2
i | Xi]

( 1{Xi∈B(x,hn)}∑n
i=1 1{Xi∈B(x,hn)}

)2
1{x ∈ Gn}

(iii)

6 σ2
n∑

i=1

( 1{Xi∈B(x,hn)}∑n
i=1 1{Xi∈B(x,hn)}

)2
1{x ∈ Gn}

=
σ2

∑n
i=1 1{Xi ∈ B(x, hn)}1{x ∈ Gn},

which proves the claim. Above, inequality (iii) follows from Assumption 3.
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A.5. Proof of Lemma 4

Fix b ∈ {0, 1}M . Note that each φj has disjoint support (specifically, the interval Ij). Additionally since Ψ satisfies the
continuity condition (14a), it follows that φj is (β, L)-Hölder. Finally, as fε(0) = 0, it follows that fε ∈ F(β, L), as
required. To prove (b), let b, b′ ∈ B be distinct. Note that

∫ 1

0

(fb(x)− fb′(x))2 dQ(x) =

∫ 1

0

( M∑

j=1

(bj − b′j)φj(x)
)2

dQ(x)

(i)
=

1

2Mr

M∑

j=1

(bj − b′j)2

∫ zj+3r

zj−3r

φ2
j (x) dx

(ii)
=

C2
Ψ

2M
L2r2β‖b− b′‖1

(iii)

> C2
Ψ

16
L2r2β .

Above, (i) follows from the definition of Q along with the disjointedness of the supports of φj . The relation (ii) follows
from (14b) and the fact that b, b′ ∈ B ⊂ {0, 1}M . Finally (iii) follows from Lemma 3. Lastly, to prove (c), fix b ∈ B.
Following the manipulations above, for µ ∈ {P,Q}, we have by symmetry

∫ 1

0

f2
b (x) dµ(x) =

M∑

j=1

b2j

∫

Ij

φ2
j (x) dµ(x) 6M

∫

I1

φ2
1(x) dµ(x).

Note
∫ 6r

0
φ2

1(x) dQ(x) =
C2

Ψ

2ML2r2β , and consequently, ‖fb‖2L2(Q) 6 L2r2βC2
Ψ/2. Additionally,

∫ 6r

0

φ2
1(x) dP (x) =

ε

6rMα

∫ 4r

2r

φ2
1(x) dx =

ε

6Sα
L2r2β+αC2

Ψ.

Thus ‖fb‖2L2(P ) 6 εL2r2β+α−1/(6Sα−1).

A.6. Proof of Theorem 2(a)

Since D′(α, 1) ⊂ D′(α,C), we use the case C = 1 to prove the result.

Construction of hard distributions. Let Q = δ1, and we set Pα to have Lebesgue density

pα(x) ··= α(1− x)α−11{x ∈ [0, 1]}.

Then, for h ∈ (0, 1],

ρh(Pα, Q) =
1

Pα(B(1, h))
= h−α.

This implies (Pα, Q) ∈ D′(α, 1). In the rest of the argument we denote P ··= Pα to lighten notation.

Construction of two point alternative. If the regression function is f , we denote the resulting distribution of
{(Xi, Yi)}ni=1 by µf . We consider the two point alternatives {ft, g} with g ≡ 0 and ft(x) ··= L(x − t)β+. The next
result, whose proof is found in section A.7, demonstrates the validity of this choice of alternatives.

Lemma 5. The function ft lies in F(β, L) for any t ∈ [0, 1].

Note that for any t ∈ [0, 1], ‖ft‖2L2(Q) = L2(1− t)2β . Additionally,

‖ft‖2L2(P ) = L2

∫ 1

t

α(1− x)α−1(x− t)2β dx 6 L2(1− t)2β

∫ 1−t

0

αsα−1 ds = L2(1− t)2β+α.
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Applying Le Cam’s method. By Le Cam’s two point method (Tsybakov, 2009), we have

inf
f̂

sup
f?∈F(β,L)

E
[
‖f̂ − f?‖2L2(Q)

]
> L2(1− t)2β

16
exp

(
−Dkl(µft ‖ µg)

)

By standard KL calculations (using N(0, σ2) noises)

Dkl(µft ‖ µg) =
L2

2σ2

{
nP (1− t)2β+α + nQ(1− t)2β

}

We will take

1− t =

((L2nP
2σ2

) 1
2β+α

+
(L2nQ

2σ2

) 1
2β

)−1

This assures Dkl(µft ‖ µg) 6 2, and thus we obtain the result.

A.7. Proof of Lemma 5

Clearly ft(0) = 0. To prove the claim it suffices to show that

ft(y)− ft(x) 6 L(y − x)β for any 0 6 t < x < y 6 1.

To show this, fix 0 6 t < x 6 1. Define

φx(y) ··= L(yβ − xβ)− L(y − x)β .

Differentiating, φ′x(y) = Lβ(yβ−1 − (y − x)β−1). For y > x, it follows that φ′x(y) 6 0 (since β 6 1), and thus
φx(y) 6 φx(x) = 0. This proves the claim.

Lemma 6. Let n,m be positive integers and p, q ∈ (0, 1). Suppose that U ∼ Bin(n, p) and V ∼ Bin(m, q). Then

E
[ 1

U + V
1{U + V > 0}

]
6 4

np+mq
.

Proof. Note first that on {U + V > 0}, we certainly have

U + V > U + V + 1

2
> U + 1

2
∨ V + 1

2
.

Consequently,

E
[ 1

U + V
1{U + V > 0}

]
6 E

2

U + 1
∧E

2

V + 1
6 2

(np ∨mq) 6 4

np+mq
.

The penultimate inequality is a consequence of known results for Binomial random variables (see equation (3.4) in (Chao &
Strawderman, 1972)).


