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Abstract—False data injection cyber-attack detection models
on smart grid operation have been much explored recently,
considering analytical physics-based and data-driven solutions.
Recently, a hybrid data-driven physics-based model framework
for monitoring the smart grid is developed. However, the frame-
work has not been implemented in real-time environment yet.
In this paper, the framework of the hybrid model is developed
within a real-time simulation environment. OPAL-RT real-time
simulator is used to enable Hardware-in-the-Loop testing of
the framework. IEEE 9-bus system is considered as a testing
grid for gaining insight. The process of building the framework
and the challenges faced during development are presented. The
performance of the framework is investigated under various false
data injection attacks.

Index Terms—false data injection attack, machine learning,
state estimation, OPAL-RT, real-time simulation

I. INTRODUCTION

Smart Grid (SG) has become the epitome of the next-
generation power grid in part to its positive environmental
impacts and desirable operational costs. The decentralized
integration of controls and communications allow SG to have
self-healing capabilities, easier integration of renewable en-
ergy generation, and lower operational costs. Consequently,
increased dependency on communication networks exposes
SG infrastructure to cyber-physical security threats, such as
false data injection (FDI) attacks. Currently, real-time mon-
itoring of power systems is done through State Estimation
(SE). SE has error processing capabilities; however, it is
limited to steady-state assumptions and lacks compatibility
to the rapidly evolving demands of cyber-physical security in
smart grids. In contrast, machine learning solutions consider
temporal and spatial information to validate data and learn the
normal state of a properly functioning grid to detect anomalies
introduced in field measurements. Together, physics-based and
data-driven methods can complement one another to provide a
promising outlook for cyber-physical security in smart grids.

In recent work of the Machine Learning (ML) realm, the
bad data analysis within SE has been enhanced [1]-[3]. The
aim of these works is to detect FDI attacks through the
use of the Ensemble CorrDet with Adaptive Statistics (ECD-
AS) algorithm. Based on past measurements, this algorithm
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Fig. 1. Overview of Hybrid Framework

analyzes the current real-time measurement values in order to
detect false data. The feature of temporal information is an
add-on to the physics-based SE.

While the aforementioned enhanced solution has not been
integrated yet, in this paper, we provide a methodology to
integrate such solution in a Hardware-in-the-loop environment
for detecting FDI attack embedded with an adaptive voting
system towards data fusion. First, we build the power grid to
represent the physical model in Simulink. Next, we developed
the Machine Learning and State Estimation model in Simulink.
The simulink model which represents the hybrid solution is
configured in RT-LAB format to be executed in real-time.
Therefore, the contributions of this work are threefold:

1) Building Simulink model of hybrid solution for FDI

detection;

2) Configuring the hybrid solution to be executed in RT-

LAB simulator;

3) Implementing an adaptive voting system for data fusion.

The remainder of the paper is organised as follows. In
Section II, background information of the framework’s major
components, i.e., State Estimation, Machine Learning and
OPAL-RT, is presented. Section III presents the implemen-
tation of the framework within RT-LAB environment. Case
studies used to evaluate the method’s performance are shown
in Section IV. Finally, Section V presents the conclusions of
this work as well as future remarks.



II. BACKGROUND
A. State Estimation

The primary goal of the physics-based SE process is to
estimate the power system state variables, namely the complex
voltages at each bus. This is achieved through a collection of
measurements taken throughout the system. Telemetry errors
must also be taken into consideration. Thus, the measurement
model can be generalized as:

z=h(x)+e (1)

where x is the vector of estimated state variables of size (N X
1). For a system of n buses and (n— 1) bus voltage magnitudes
and angles, N =2n— 1 where N is the number of states. A(.) is
of size (m — 1), where m is the number of measurements, and
relates the measured quantities and state variables as a vector
of linear and/or nonlinear functions [4].

In the weighted-least squares (WLS) SE model, the goal is
to estimate the best state vector x which minimizes the J(x)
index:

J(x) = [z—h(x)]) R [z— h(x)] )

where R~! is the inverse of the measurement variance errors,
referred to as the weight matrix.

Although the WLS method is considered the most com-
putationally efficient method for the overdetermined set of
measurements [4], improper estimates can be made if such
measurements are taken near leverage points, where highly
influential measurements “attract” the SE solution [5]. Such
conditions can yield erroneous low errors where, in reality,
a large component of the error may be undetectable using
traditional Gross Error (GE) detection methods. To better
detect and identify GEs at these leverage points, the Innovation
Index (/I) method and Largest Normalized Error Test are
used to incorporate the undetectable error component of the
measurement residuals into the GE detection process.

The error vector e can be interpreted as a sum of two
components [4]:

e=ey+ep 3)

where ep and ey are detectable and undetectable parts of the
error e respectively, and K is the projection matrix which is
defined as [4]:

K=HH'R'H)'HTR™! 4)

where H is the Jacobian matrix of the first derivatives of
the nonlinear functions of A(.), and R is the diagonal matrix
whose elements are the measurement variance errors. The
measurement residuals r can then be defined as:

r=({I—-K)e=ep 5)

For the purposes of considering the undetectable error
component for GE processing, the /I is defined as the ratio
between the detectable and undetectable error components, and
is defined for the i’ measurement as:

(ep)"R7'(ep)  JT—K;
= = (0)
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where K is the i main diagonal element of matrix K.
By knowing the residual of the estimated measurements and
that the error components are orthogonal, total error for a
measurement i can be defined as the Composed Measurement
Error (CME) [4]:

1+L (7
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where r; is the residual of the " measurement and I7; is its

Innovation Index. This equation can be used to obtain the

composed error of measurement in its normalized form CMEY

[4], which will be used for GE detection as:
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The performance index for GE detection can now be related
to the CME. This new index, J..(x), will also have a chi-square

distribution: 5
" (CME;
L@ =Y ( ) ©)
i=1 \ Oi

Thus, the SE algorithm is as follows:

1) Perform the state estimation and find the residual vector.

2) Find the II of each measurement and obtain the unde-
tectable error component.

3) Calculate the composed error of all measurements.

4) Perform GE identification using the CME".

B. Machine Learning

A data-driven machine learning algorithm is implemented
to consider both temporal and spatial data. Ensemble CorrDet
with Adaptive Statistics (ECD-AS) combines concepts from
the work done with the CorrDet algorithm and the Ensemble
CorrDet algorithm [1]-[3]. CorrDet is implemented at the bus
level to make use of the distributed architecture. Namely, each
bus is considered as a local, spatial region corresponding to
one local CorrDet detector, ¢,,. Further exploration of CorrDet
led to ECD-AS in which adaptive statistics from local CorrDet
environments are collected, processed, and compared against
each other to determine data sample classification (i.e., normal
or abnormal).

Algorithm 1 summarizes the training and testing phases
of ECD-AS. For each ¢, the training process consists of
computing the mean (l,,) and sample covariance (X,,) of all
corresponding measurements considered to be normal. Sub-
sequently, the squared Mahalanobis distance (8z,,) for each
sample in the training set is computed using (10). A threshold
(7)) is then initialized for every local CorrDet using (11)
where ., and Oy, are the mean and standard deviation
of the squared Mahalanobis distance values of all normal
training samples, respectively, and 7n is a hyper-parameter
value determined through experimentation.

(10)
(1)

62111 = (Zm - lem)Z,;] (Zm - Mm)T

Tn = W+ 1M X Op



Algorithm 1 ECD-AS

1: Input: Z;,4in, Z

2: Training Phase:

3: Initialize sliding window (B) of length f.

4: for Every local CorrDet detector m=1:M do
5: Compute U, and X, of samples in Z;4iy,.
6: Compute &z, using (10).
7
8
9

Include &z, into B. > Insert the last f training samples into B.
Compute the threshold (7,,) using (11).
: end for
10: Testing Phase:
11: for Every incoming sample, Z; do

12: Compute 87 with respect to all local classifiers.

13: if Any 0z < T, then

14: Classify sample as normal. (Y; = 0)

15: Update u,, and Zl,;] using (12) and (13).

16: Update B by adding &z, of most recent sample and removing
oldest value.

17: Update 7, using (11) with u,, g and ©,, g from B.

18: else

19: Classify sample as abnormal. (¥, = 1)

20: end if

21: end for

22: Output: Y

As the program accepts new incoming data samples, statis-
tics are adapted to account for varying trends in data because
system conditions evolve as load and generation fluctuate
throughout time. The squared Mahalanobis distance of each
incoming sample with respect to all ¢, is computed using
(10). If at least one &g, is greater than its corresponding Ty,
the sample is classified as abnormal. On the other hand, if
the sample is classified as normal, then 7, W,, and Z,;l are
updated using (11), (12), and (13), respectively. The program
is then ready to accept another new sample of data.

Hm.new = (1 —(X)Nm-l-OC(Zm—llm) (12)
_ T —
r;,]new _ : 1 r;] _ l_a(Zm I~Lm) (zm Nm) - (13)
- TJF(Zm*.um)(Zm*“m)

Adaptation to varying system conditions is achieved through
careful selection of sliding window size and hyper-parameters
responsible for adjusting the updated statistics. The hyper-
parameters (1, o, and f) enable the model to initialize
statistics during training and update the statistics after a sample
is classified as normal. 1 is a parameter determining how far
the classification threshold should be away from the mean
of the normal samples, 3 defines the size of the sliding
window, and a determines how much value is given to the new
sample data as opposed to the previous mean. The range of
values for the hyper-parameters are the following: 1 can range
from 4 to 18, B can range from 0 to 450, and & can range
from 0 to 10~*. Multiple combinations of the these hyper-
parameters were applied during the testing phase to achieve
optimal performance given a load profile. The following hyper-
parameter values were selected: 1 = 6, B = 65 and o = 0.001.

C. OPAL-RT

RT-LAB is a software fully integrated with the Simulink/
MATLAB environments. It is used in many industries, in-
cluding power systems, power electronics, aerospace, and

automotive [6]. Simulink models can interact in real-time with
the real world through RT-LAB by interfacing with the OPAL-
RT hardware, a component which enables HIL testing. It is
capable of running vast Simulink models and I/O capability in
parallel, allowing the load to be shared across multiple CPUs
[6]. Working with RT-LAB is broken down as follows:
1) Import and edit the Simulink model through RT-LAB.
2) Compile and load the model into a real-time application.
3) Execute on multiple cores within OPAL-RT hardware.
The upper level structure for producing a model consists of
two blocks: computation and console. In the console block,
the GUI and outputs are configured. OPAL-RT expects only
one master subsystem which must be labeled with the prefix
”SM_”. In contrast, there can be multiple slave subsystems
within the design as long as they are labeled with the pre-
fix ”SS_”. The console subsystem is optional; however, if
included, it must be labeled with the prefix ”SC_". Lastly,
if the subsystems within the model expect inputs, the inputs
must be passed with a Simulink block known as ”OpComm”.
Once the model is structured correctly, it is imported into RT-
Lab and compiled [7].

III. SIMULATION APPROACH
A. Modeling

The parameters of the transmission lines for the IEEE 9-
bus system were computed from the R, X, and B values of
MATPOWER [8] branch data of its 9-bus case. The buses were
added by creating nine subsystems, each containing several
”3-Phase V-I Measurement” blocks from the Simscape library
in Simulink. The loads of the original system were modified
such that ”3-Phase Dynamic Load” blocks were included to
simulate changing load conditions. The real and reactive load
values are controlled externally to follow a user defined load
profile. Lastly, measurement blocks within the main subsystem
gather and transmit selected measurements from the buses to
the SE and ECD-AS blocks.

The main integration challenge was attributed to the con-
figuration of the dynamic loads and generators to consider
varying load conditions corresponding to a load profile. The
”3-Phase Dynamic Load” block in Simulink can implement
a three-phase load by varying P and Q through external
control. According to MathWorks, the “3-Phase Dynamic
Load” is represented by current sources; therefore, it cannot
be connected to an inductive network in series [9]. A small
resistive load of approximately 5 MW is connected in parallel
to mitigate the limitation of the equivalent model. On a similar
note, the three-phase equivalent sources were replaced with
synchronous machines as the generators of the model to enable
interaction with dynamic loads.

B. Detection Methods

1) State Estimator: The SE MATLAB program includes
functions for generating the state variable estimates and iden-
tifying GEs. The initial WLS SE function obtains the residuals,
projection matrix K, and measurement standard deviations.
The II function then obtains the initial innovation indices,



Jo(x) index, and composed measurement errors. From the
composed measurement errors are derived the CMEY for GE
identification. J;(x) is then compared to the chi-square critical
value, which if exceeded indicates GE detection. The CMEY
then identifies the index of the GE.

MATPOWER was used to obtain the branch data for the
IEEE 9-bus system. Next, MATPOWER power flow was run
to obtain the real/reactive power injections at buses 1, 2, and 3
as well as the real/reactive power flows between each bus for a
9-bus case. MATPOWER also supplied the complex voltages
at each bus for that case, providing valuable reference for the
physics-based model. With the branch and power flow data,
the black-box SE model was created.

Integration challenges including converting code from MAT-
LAB 2021 to Simulink 2011. The RT-LAB version made
available to build this model is exclusively compatible with
MATLAB/Simulink 2011. Migrating and converting functions
involved careful initialization of variables and matrices used
in the SE, at the expense of some modularity.

2) Ensemble CorrDet with Adaptive Statistics: The vision
for implementing ECD-AS in a Simulink environment was
inspired by the definitions of ECD detector and local CorrDet
detector. The ECD detector is defined as a set of local CorrDet
detectors of data samples with a few, spatial neighboring
measurements, compared to full measurements in the CorrDet
detector. On the other hand, a local, spatial region, such as a
power system bus, is considered to be a local CorrDet detector.

Within Simulink the ECD detector is represented by a
MATLAB function block responsible for prompting individual
local CorrDets to process data and update statistics. Similarly,
each local CorrDet is represented by a single user-defined
function containing statistics unique to it. Each local classifier
retains the values of L, Z;', and B with persistent variables.
When prompted by the ECD detector block, each local Cor-
rDet function computes and reports squared Mahalanobis dis-
tance values and threshold values to the ECD detector block.
Congruent with Algorithm 1, the ECD detector block then
compares the set of squared Mahalanobis distances obtained
from all local CorrDet detectors with their corresponding
threshold values and classifies the sample accordingly. Once
the classification is determined, the ECD detector prompts the
local CorrDet detectors to process new samples.

3) Adaptive Voting System: The results from both detection
methods are combined with a voting system to reap the
desirable attributes of each method [1]. Previous implemen-
tations of a voting system (VS-Fixed) only consider a fixed
threshold and were constrained to constant system conditions.
Since constant system conditions are not realistic in the realm
of power systems, an adaptive voting system (VS-Adaptive)
is presented to account for varying system conditions and
decision scores as the program accepts samples. VS-Adaptive
is represented by a MATLAB function block which accepts
outputs from SE and ECD-AS. Algorithm 2 summarizes the
implementation of the voting system.

le“Sion = lI—‘E(:Dn()rmaliztzal + lI{S‘E/mrmalized (14)

The overall decision score from ECD-AS (Wgcp ) is con-
sidered to be minimum &z x when ECD-AS classifies a sample
as normal; however, the Wrcpy is 527/( corresponding to the
local CorrDet detector where an abnormal sample was found.
In the event there are multiple local CorrDet detectors that
detect an abnormal sample, Wgcpy is the maximum &z
among them. With regard to SE, the overall decision score
from SE (Wgg ) is considered to be J.(x) of every sample
computed using (9). A fusion decision (¥ fy0,) is computed
using (14) and compared to a threshold (Tyysion) similar to (11).
B is updated to prevent bias by ensuring equal consideration
of error detection between the two models.

Algorithm 2 Adaptive Voting System

1: Input: Z,4ins Zy Yecps Yse, Decisiongg, Decisiongcp

2: Training Phase:

3: Initialize sliding windows (B) of length 8 for both Wgcp i and Wsg .
4: Insert the most recent § minimum &z, from training phase into By, ..
5: Insert the most recent  J.(x) indices from SE into Byg,.

6: Testing Phase:

7: Normalize By, and By, .

8: Initialize sliding window (By fw.,m) of length f3 using (14).

9: for Every incoming sample, Z; do

10: Normalize Wgcp and Wsg with their respective B.

11: Compute ¥ 550, and Ty fusion using (14) and (11) respectively.

12: if lP/,”iu,, < T fsion then

13: Classify sample as normal. (¥pecision = 0)
14: Update By, ., by adding recent value and removing oldest.
15: if Decisiongg = “normal” then

16: Update By, .

17: end if

18: if Decisiongcp = “normal” then

19: Update By,

20: end if

21: else

22: Classify sample as abnormal. (Wpecision = 1)
23: end if

24: end for

25: Output: ¥pecision

IV. CASE STUDY

The Simulink model was imported and executed using RT-
LAB to generate and collect a total of 21,600 samples with
Gaussian noise. The number of samples considered repre-
sents 24 hours of real-time operations given SCADA obtains
measurements every four seconds. The measurement set of
the samples includes real and reactive power flows, real and
reactive power injections, and voltage magnitudes, of which
43 measurements were selected for the SE and ECD-AS. For
the purposes of ECD-AS, the first 1,800 samples (around 8%)
were used for training while the remaining 19,800 samples
were used to validate performance.

A series of FDI attacks were introduced into the model via
a MATLAB function block. Out of the 19,800 testing samples,
1080 samples (around 5%) were selected at random. For this
work, ten different FDI scenarios were developed in which
a single measurement was intercepted by introducing a gross
error between 7% and 23% of measurement’s magnitude. In
this particular case, one standard deviation is defined as one
percent of the ideal measurement value (i.e., a measurement
without Gaussian noise). The duration of each FDI attack



varied from 3 to 15 samples to simulate a sustained attack
by an adversary.

FDI detection is treated as a classification problem in
which expected and unexpected measurements are discerned.
Confusion matrices are created by comparing the output of
the detection methods to the known classification of data.
Each sample from the testing phase is classified as either True
Negative (TN), True Positive (TP), False Negative (FN), or
False Positive (FP). TN refers to a normal sample predicted
as normal while FN refers to a normal sample predicated
as abnormal. Similarly, TP refers to an abnormal sample
predicted as abnormal while FP refers to an normal sample
predicted as abnormal. Once samples are labeled/classified,
metrics such as Accuracy, Precision, Recall and F1-score can
be calculated [2]. Matthews correlation coefficient (MCC) is
used as an evaluation metric which is described using (15) as:

(TPxTN)—(FPXFN)
\/(TP+FP)(TP+FN)(TN—|—FP)(TN+FN)15)
(

The MCC coefficient, also known as phi coefficient (ry),
is chosen as an evaluation metric because it produces a high
score only if the prediction of the classification model yielded
favorable results in all confusion matrix categories [10]. MCC
varies from -1 to +1 where +1 indicates a perfect prediction,
0 represents random prediction, and -1 indicates observations
in disagreement with predictions. Fundamentally, MCC is
defined as the correlation coefficient between predicted values
and true values (15), and can be an ideal metric when there is
a predefined threshold, as is the case with SE and VS-Fixed.
The performance of each detection method with respect to
MCC is summarized in Fig. 2.

MCC =

Performance of Detection Methods
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Fig. 2. Performance considering Matthews Correlation Coefficient.

The performance of the detection methods is evaluated
using conventional classification performance metrics (i.e.,
precision, accuracy, recall, and Fl-score). TABLE I presents
the overall performance of each method across ten scenarios.

VS-fixed is not an appropriate method when considering
changing system conditions given its low MCC and poor
Fl-score relative to other methods. In contrast, VS-Adaptive
outperforms both SE and ECD-AS by yielding the highest
MCC and Fl-score. The hybrid solution in the form of VS-
Adaptive provides a promising outlook for cyber-security by

TABLE I
COMPARISON OF DETECTION METHODS

Method Accuracy Precision Recall F1-Score

Hpm + opm Hpm + Opm Hpm + Opm HpM + Spm
SE 98.60+£1.73 100£0.00  72.03£34.58 78.23£30.62
ECD-AS 99.76+0.29 99.41£0.14  95.754+5.74  97.47+3.11
VS-Fixed 97.59+£0.80 99.844+0.21 51.88£16.05 66.99+13.67
VS-Adaptive | 99.79+0.28 99.79+0.14  96.00+5.52  97.78+2.98

showcasing the ability to handle varying system conditions,
evaluating results from physics-based and data-driven solu-
tions, and enhancing their desirable features.

V. CONCLUSION

In this paper, an implementation of a hybrid solution toward
false data injection attack in smart grid is presented. Integrat-
ing an enhanced solution in a Hardware-in-the-loop environ-
ment for detecting FDI attacks provides a promising outlook
on the future of the cyber-physical security of smart grids.
The feature of the framework is to fuse data from Machine
Learning as well as State Estimation for providing an overall
system that takes advantage of both models. In addition, the
fused model updates the detection threshold since the statistics
of the data change over time. Simulation results show that the
voting system with adaptive statics outperformed individual
systems. The framework is implemented in Simulink with
OPAL-RT for real time simulation.
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