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Abstract—One major tool of Energy Management Systems for
monitoring the status of the power grid is State Estimation
(SE). Since the results of state estimation are used within the
energy management system, the security of the power system
state estimation tool is most important. The research in this
area is targeting detection of False Data Injection attacks on
measurements. Though this aspect is crucial, SE also depends
on database that are used to describe the relationship between
measurements and systems’ states. This paper presents a two-
stage optimization framework to not only detect, but also correct
cyber-attacks pertaining the measurements’ model parameters
used by the SE routine. In the first stage, an estimate of the
line parameters ratios are obtained. In the second stage, the
estimated ratios from stage I are used in a Bi-Level model
for obtaining a final estimate of the measurements’ model
parameters. Hence, the presented framework does not only unify
the detection and correction in a single optimization run, but
also provide a monitoring scheme for the SE database that is
typically considered static. In addition, in the two stages, linear
programming framework is preserved. For validation, the IEEE
118 bus system is used for implementation. The results illustrate
the effectiveness of the proposed model for detecting attacks in
the database used in the state estimation process.

Index Terms—state estimation, two-stage optimization, cyber-
physical security, false data injections, real-time monitoring

I. INTRODUCTION

Monitoring the power grid in real-time has been achieved
through the evolving developments on the Power System
State Estimator (PSSE). The objectives of the PSSE is the
estimation of complex voltages at each system bus, which are
considered as the typical system states. The outcomes of the
State Estimation (SE) process are used for other applications
such as protection schemes, power flow, post-processing of
gross errors etc. PSSE relies on two main inputs: a set of
measurements and model parameters. The former is obtained
through communicated reading of deployed meters in the field.
Such measurements could be complex power flow, complex
power injections and/or voltage magnitudes. The latter is a
representation of the physical grid such as line impedance,
transformers taps and capacitor banks. Any perturbation in the
aforementioned inputs of PSSE could lead to a wrong estimate
of the system states which could affect previously mentioned

applications that depend on the outcomes of the SE rou-
tine. The research of power systems data trustworthiness has
been invariably addressed through False Data Injection (FDI)
models. However, there is limited research regarding FDI
attacks on measurement model parameters. Model parameters
or system database are typically stored in files and considered
static. Hence, these database are considered error free while
performing SE routine. In the evolving power grid system
database is though inevitably exposed to cyber-threats. One
form of such could be an outside user who can obtain access
to the victim machine and modify/change the parameters in the
database. This type of attack is called Remote-to-Local attack.
The other form could be an individual user who is capable of
gaining sufficient permissions to manipulate the database. This
form of attack is classified as User-to-Root attack [1]–[5].

The work on state estimation can be categorized into
two main groups: DC and AC state estimation. While DC
SE considers relationships between measurements and state
variables are linear, the AC SE, on the other hand, uses non-
linear algebraic models. In both models, research focus on
FDI attacks on measurements. However, SE also uses mea-
surement model parameters, which is static data, to compose
the objective function. In the literature though, cyber-attacks
in the measurement model parameters has been much less
considered [6]. Current works on parameters estimation [7]–
[11] use iterative solutions that could be costly in real-time
applications. In addition, for the case of simultaneous attack
on measurements and parameters, the order to which one to
correct could affect the final estimate of the states.

In the author’s previous work [12], a bi-level model for
cyber-attack detection and correction was presented. However,
the solution is guaranteed for a known X/R ratio. Any
uncertainty in this ratio would lead to a solution that is
inaccurate. Hence, the solution is sensitive to the setting of this
ratio. In this work, the uncertainty in the model’s constraints
is addressed. Therefore, this paper highlights the following
contributions:

• Estimating the ratios of the parameters of lines used in
PSSE under uncertainty;

• Two-Stage optimization framework for measurements’
model parameter estimation.978-1-6654-8537-1/22/$31.00 © 2022 IEEE



The organization of the paper is as follows. In Section
II, a highlight on the theoretical background on relationships
between measurements and system states is presented. The
two-stage optimization formulation is illustrated in Section III.
A case study is presented in Section IV while closing remarks
are provided in Section V.

II. BACKGROUND

Consider a π model of a line km that link node k and node
m. The line admittance can be expressed as:

ykm = 1/zkm = 1/(rkm + jxkm) = gkm + jbkm. (1)

Hence, with the line admittance ykm, the complex power flow
in line km in its conjugate form can be written as follows
[13], [14]:

S∗
km = Pkm − jQkm = E∗

kIkm + jbshkmV 2
k . (2)

where the voltage at node k in complex form is Ek is , the
current in the line km is Ikm, V k is the voltage magnitude
of node k, and is the line shunt susceptance. Since Ikm also
equal to (Ek −Em)ykm, the complex power could be written
as:

Pkm − jQkm = ykmE∗
k(Ek − Em) + jbshkmV 2

k . (3)

By expressing Ek and Em in term of states, i.e., voltage
magnitude and angles, one can derive the following:

Pkm − jQkm = ykmVke
−jθk(Vke

jθk − Vmejθm)

+ jbshkmV 2
k .

(4)

where Vk and θk are the voltage magnitude and angle of bus
k, Vm and θm are the voltage magnitude and angle of bus m
respectively. By expanding (4) and decomposing it to real part
and imaginary part, it would result in 6 and 5 respectively:

Pkm = (V 2
k −VkVm cos θkm)gkm− (VkVm sin θkm)bkm. (5)

Qkm =(−VkVmsinθkm)gkm + (−V 2
k )b

sh
km+

(VkVmcosθkm − V 2
k )bkm.

(6)

where gkm is the conductance, i.e., ℜ{ykm = 1/zkm =
1/(rkm + jxkm)}, and bkm is the susceptance, i.e., ℑ{ykm =
1/zkm = 1/(rkm+jxkm)}, Vk and Vm are voltage magnitudes
of bus k and bus m respectively, and θkm = θk − θm is the
angle difference between bus k and bus m.

The expressions in (5) and (6) refers to the real power flow
and reactive power flow in the line km. Injection measure-
ments at bus k, i.e., real and reactive power injections Pk and
Qk respectively, can be written in terms of flow measurements
as follows [14]:

Pk =
∑
l∈Ωk

Pkl. (7)

Qk = −V 2
k b

sh
k +

∑
l∈Ωk

Qkl. (8)

where Ωk is the set of buses adjacent to the bus k, and bshk is
the bus shunt admittance at bus k. With the power flows from

opposite direction, i.e., bus m to bus k: Pmk and Qmk, the
power losses of line km could be written as:

P loss
km = Pkm + Pmk

= gkm(V 2
k + V 2

m − 2VkVmcosθkm)

= gkm|Ek − Em|2,
(9)

Qloss
km = Qkm +Qmk

= −(V 2
k + V 2

m)bshkm

− (V 2
k + V 2

m − 2VkVmcosθkm)bkm

= −(V 2
k + V 2

m)bshkm − (|Ek − Em|2)bkm.

(10)

where Em is voltage at node m and Ek is voltage at node k in
their complex form. Since state estimator routine uses a set of
measurements that are composed of real and reactive power
flows as well as injections, any perturbation in the line pa-
rameters, i.e., gkm, bkm and bshkm would result in an inaccurate
state estimation. Hence, a bi-level model for detecting changes
in the SE database was proposed in [12]. The main goal of the
such model is to provide a monitoring scheme for validating
the database used by SE. These database are considered static.

III. TWO-STAGE FRAMEWORK

To address the uncertainty in (xkm/rkm) ratio, consider the
expression in (3). Let the term E∗

k(Ek −Em) be expressed as
follow:

E∗
k(Ek − Em) = V km

re + jV km
im . (11)

By substituting (1) and (11) in (3), we derive the following:

Pkm−jQkm = (gkm+jbkm)(V km
re +jV km

im )+jbshkmV 2
k . (12)

Expanding (12) into real and imaginary parts and rearranging
terms, we derive:

Pkm − jQkm = (V km
re gkm − V km

im bkm)

+ j(V km
im gkm + V km

re bkm + V 2
k b

sh
km).

(13)

Hence, real and reactive power flows from bus k to bus m can
also be expressed as follows:

Pkm = V km
re gkm − V km

im bkm. (14)

−Qkm = V km
im gkm + V km

re bkm + V 2
k b

sh
km. (15)

Dividing (14) and (15) by gkm, the following expressions can
be obtained:

Pkm

gkm
= V km

re − V km
im

(
bkm
gkm

)
. (16)

−Qkm

gkm
= V km

im + V km
re

(
bkm
gkm

)
+ V 2

k

(
bshkm
gkm

)
. (17)

Dividing (17) by (16), the following expression is obtained:

−Qkm

Pkm
=

V km
im + V km

re

(
bkm

gkm

)
+ V 2

k

(
bshkm

gkm

)
V km
re − V km

im

(
bkm

gkm

) . (18)

It is important to note that the term Vk in (18) is based
on the measurement scenario of Qkm. If Qmk is the case,



then Vm should be used instead, since shunt susceptance is
related to the imaginary part as shown in (13). Expanding and
rearranging terms in (18), one can derive the following:((

Qkm

Pkm

)
V km
im − V km

re

)(
bkm
gkm

)
− V 2

k

(
bshkm
gkm

)
=

((
Qkm

Pkm

)
V km
re + V km

im

)
.

(19)

For a perturbation in the ratios in (18), we can obtain:

α =
V km
im + V km

re

(
bkm

gkm
+ d

)
+ V 2

k

(
bshkm

gkm
+ dsh

)
V km
re − V km

im

(
bkm

gkm
+ d

) . (20)

where d is the deviation in the ratio bkm/gkm, dsh is the
deviation in the ratio bshkm/gkm, and α is the result due to the
perturbation in the ratios. By expanding (20) and rearranging
terms, one could derive:(

V km
re + αV km

im

)( bkm
gkm

)
+ V 2

k

(
bshkm
gkm

)
+ V 2

k d
sh

+
(
V km
re + αV km

im

)
d = αV km

re − V km
im .

(21)

The ratios in (19) represents the (X/R) ratio of the line
connecting bus k and bus m. These quantities are important
and widely used in short circuit analysis. In other words,

bkm
gkm

= −xkm,L

rkm
. (22)

bshkm
gkm

=
xkm,C

rkm
. (23)

The interpretation of (22) is the contribution to the tangent
of the phase angle formed by the line impedance due to
the line inductance while (23) is the contribution due to
the line capacitance. Therefore, with the information of line
characteristics (typically known for short circuit studies) and
prior states estimate (at time t−) from SE under no attack
scenario, it will be possible to retrieve original measurement
model parameters (i.e, gkm, bkm and bshkm) at time t = ∆t+t−.
In [12], such model is developed. However, the (X/R) ratio
is assumed to be correct and exact. Such information can be
known with some uncertainty. In addition, it would make the
model in [12] to be non-linear if it is modeled explicitly.
To relax the assumption of the known (xkm/rkm), a two-
stage optimization framework is presented in this paper. The
obtained results in (19) and (20) can enable us to incorporate
the uncertainty on the given ratio within the model presented in
[12]. In particular, the model is divided into two-stages. In the
first stage, an estimate of the ratio is obtained. In the second
stage, the estimated ratio is used in the presented model in
[12] instead of the known ratio. The two stage optimization
framework would then be used as a sliding window to validate
the database over time.

The overview of the framework is illustrated in Fig. 1
The State estimation process typically validate measurements
only before running the state estimator routine. Database are
considered as static and true. As measurements are subject

Fig. 1. Framework of Two Stage Optimization

to attack, the database of the network parameters are also
subject to attack in the smart grid paradigm. For such, database
validation is proposed in this paper as a pre-processing step
for state estimator. The consideration in developing the model
takes into account the ability to have it running in online
platform. For such, the developed model process valuable
information and data that are available in order to enhance
the robustness of the existing state estimator software. The
detailed structure of the two stage approach for validating
database is illustrated in the following:

A. Optimization model for Stage I

In this stage, the primary goal is to obtain an estimate of the
ratios (22)-(23). Instead of relying on an exact value that could
be inaccurate or could be changed over time due to changes of
line characteristic, the model would incorporate a variation in
these ratios within a feasible region. Hence, a model pertaining
to deviation in the ratios is developed as follows:

min d+ dsh (24a)

s.t. f1a

(
b

g

)
− V 2

k

(
bsh

g

)
= f1b (24b)

f2a

((
b

g

)
+ d

)
+ V 2

k

((
bsh

g

)
+ dsh

)
= f2b (24c)(

b

g

)
+ d =

(
b

g

)t

(24d)(
bsh

g

)
+ dsh =

(
bsh

g

)t

(24e)(
b

g

)l

≤
(
b

g

)
≤

(
b

g

)u

(24f)(
bsh

g

)l

≤
(
bsh

g

)
≤

(
bsh

g

)u

(24g)

d, dsh,

(
b

g

)
,

(
bsh

g

)
∈ R (24h)

where d and dsh are deviations in the ratios of
(

b
g

)
and

(
bsh

g

)
respectively. The parameters f1a and f1b are the evaluation of
the corresponding terms in (19) given states, i.e., Ek and Em,
and measurements Qkm and Pkm at time t−. The parameters
f2a and f2b, on the other hand, are based on the evaluation
of (21) given states Ek and Em at time t−, and the current
database to be validated i.e., gkm, bkm, and bshkm at time t. The



ratios
(

b
g

)t

and
(

bsh

g

)t

are obtained based on the database at

time t. In this stage, the ratios
(

b
g

)
and

(
bsh

g

)
are considered

as decision variables to be estimated. The upper and lower
limits on the ratios of

(
b
g

)
and

(
bsh

g

)
are defined by the user,

which represent the uncertainty on the ratios.

B. Optimization model for Stage II

In this stage, the presented model in [12] is performed. Since
the model requires the (X/R) ratio, the estimated ratio from
stage I is fed into the optimization model instead of a know
ratio. The known ratio could be inaccurate. For such reason,
a prior validation is needed, which is done through Stage I
process. The optimization model at time t = ∆t + t− for
retrieving the original database values, which was at time t−,
is as follow [12]:

min dgkm + dbkm + dbshkm (25a)
s.t. dgkm = gtkm − gkm (25b)

dbkm = btkm − bkm (25c)

dbshkm = bsh,tkm − bshkm (25d)

bkm = gkm

(
b

g

)stageI

(25e)

Pkm = (fg
Pkm

)gkm + (f b
Pkm

)bkm (25f)

Qkm = (fg
Qkm

)gkm + (f b
Qkm

)bkm + (f bsh

Qkm
)bshkm

(25g)

Pmk = (fg
Pmk

)gkm + (f b
Pmk

)bkm (25h)

Qmk = (fg
Qmk

)gkm + (f b
Qmk

)bkm + (f bsh

Qmk
)bshkm (25i)

P pert,loss
km = Pkm + Pmk + dP loss

km (25j)

dP loss
km = (fg

Pkm
+ fg

Pmk
)dgkm + (f b

Pkm
+ f b

Pmk
)dbkm

(25k)

P pert,loss
km = (|Et−

k − Et−

m |2)gtkm (25l)

Qpert,loss
km = Qkm +Qmk + dQloss

km (25m)

dQloss
km = (f b

Qkm
+ f b

Qmk
)dbkm + (f

bshkm

Qkm
+ f

bshkm

Qmk
)dbshkm

(25n)

Qpert,loss
km = (fg

Qkm
)gtkm + (f b

Qkm
)btkm + (f bsh

Qkm
)dbshkm

(25o)

gkm, bshkm ≥ 0 (25p)
bkm ≤ 0 (25q)

where gtkm, btkm, and bsh,tkm are the parameters of the database
at time t. The variables gkm, bkm, and bshkm are the true
parameters of the database (which is unknown) and we are
interested to obtain. The (xkm/rkm)

(stageI) is the ratio of the
line obtained from Stage I . The function fparam

measkm
evaluates

the coefficient coupled with the given parameter param from
node m to node k for the corresponding measurement type
meas as (5) and (6). The evaluation of those functions are
obtained using V and θ of the nodes linking line km at time
t−, which is at the previous time step. Using the current system
database at t and the states at t−, the losses in the line are

TABLE I
PERCENTAGE OF ERROR FOR STAGE I OUTPUT UNDER NO PARAMETER

ATTACK

Ratio
Uncertainty in ratios in %

1 2 3 4 5 6 7 8 9 10

g
b

0.408 0.816 1.223 1.631 2.039 2.447 2.855 3.262 3.670 4.078

evaluated: i.e., P pert,loss
km and Qpert,loss

km . In (25f)–(25i), at time
t− for each type of measurements, it is required to have one
estimate of each. The remaining two variables are free .

IV. CASE STUDY

The presented framework is implemented on IEEE 118
bus system that is obtained from MATPOWER package [15].
MATLAB environment is used for the computation and Gurobi
solver [16] is selected as the optimization tool for solving
the model. The measurement set includes complex power
flows, complex power injections, and voltage magnitude at all
buses. The set of measurements consists of 712 measurements.
For the standard deviations of measurements, 1% of their
absolute values are considered for the weights in SE process.
The simulation setup in this section are carried out on a
Apple computer with the following specifications: macOS
High Sierra 32 GB RAM 1876 MHz DDR3, 4 GHz Intel Core
i7.

1) No parameter attack at time t: In this scenario, we want
to validate the line parameters at time t = t− + ∆t. Both
data at t and t− are correct. The difference between the two
samples is the loading condition change from t− to t. Five
lines are selected randomly. The selected lines are: 86 − 87,
44 − 45, 35 − 36, 52 − 53, and 31 − 32. For this case, the
uncertainty in the ratios is varied from ±1% to ±10% of the
actual ratios. Hence, the optimization in Stage I is performed
10 times for each selected line. In other words, the constraints
24f and 24g are tested under different percentages of the actual
values. The results are shown in TABLE I. In this table, the
percentage of the error of the output of Stage I , which is
the deviation of the ratio from its true value, is recorded and
presented for each different scenario. The average value for
the five lines in each scenario is calculated and reported in the
table. As the relaxation increases, the observed percent of the
error reached to 4% for

(
b
g

)
when the ratios are accepted to

be within ±10% of their true values. It is worth mentioning
that, under parameter attack, the attack to b and bsh could be
with same percentage, i.e., balance, or different percentages,
i.e., unbalance [17]. Hence, the relaxed model enable us to
use ratio in Stage II that is smaller than the uncertain one.

2) Parameter attack at time t: Similar to the previous
scenario, the selected lines 86−87, 44−45, 35−36, 52−53,
and 31 − 32, which were random initially, are maintained.
However, in this case, the parameters of those selected lines
are attacked. The attack was chosen randomly to be between



TABLE II
PERCENTAGE OF ERROR FOR ESTIMATED PARAMETER USING [12]

Variable
Uncertainty in ratios in %

1 2 3 4 5 6 7 8 9 10

g 21.91 24.00 41.68 42.22 42.74 43.26 43.77 44.27 44.75 45.23

b 21.66 23.55 40.32 40.43 40.53 40.63 40.73 40.83 40.92 41.02

bsh 28.60 38.18 44.77 46.30 47.80 49.27 50.71 52.13 53.52 54.88

TABLE III
PERCENTAGE OF ERROR FOR ESTIMATED PARAMETER USING DECISION

FROM STAGE I FOR ATTACK CASE

Variable
Uncertainty in ratios in %

1 2 3 4 5 6 7 8 9 10

g 0.274 0.551 0.830 1.111 1.395 1.681 1.970 2.261 2.555 2.852

b 0.118 0.2359 0.355 0.2753 0.596 0.718 0.841 0.965 1.090 1.216

bsh 0.974 1.953 2.938 3.928 4.923 5.924 6.931 7.944 8.962 9.99

11% to 30% of the parameters’ true values. Results of a
comparative study with the state-of-the-art solution [12] are
presented in TABLE III and TABLE II. The results in TABLE
III are for the presented model in this paper, i.e., using
two-stage approach, while the results in TABLE II are for
the state-of-the-art solution [12]. The considered attack is
unbalance. In other words, line parameters gkm, bkm, and
bshkm are changed with different percentages. In the meantime,
for evaluating the model in [12], the known ratio assumed to
be the percentage associated with the scenario to be tested.
As shown in TABLE III and TABLE II, under unbalanced
attack of the parameters, which is considered the difficult case,
and the uncertainty in the ratios of the line parameters, the
proposed framework outperformed the model in [12].

For experimental purposes of the model, the range of the
ratios are considered to up to 10%. This could be very high.
However, the model is still able to enhance the database
validation for the state estimator with minimizing errors in the
database. In the meantime, the framework is still support paral-
lel computation environment. In other words, the optimization
framework can be computed for each line in parallel.

V. CONCLUSION

This paper presents a Two-Stage optimization framework
for not only detecting FDI attacks into parameters of the
SE process, but also correcting them. In the first stage, the
ratios of line parameters are estimated. The estimated ratios
are then applied to the model in the second stage. The model
in Stage II requires X/R ratio of the line under consider-
ation. Modeling X/R ratio explicitly turns the optimization
problem to be non-linear. Hence, the presented framework

relaxes the assumption of known ratios. In addition, the
linear programming formulation of the original problem is
preserved. Simulation results show that under uncertain ratios,
the proposed two-stage model is able to reduce the error in
correcting line parameters. The existing software of power
system state estimation can be modified to incorporate the
framework with simple modifications, enabling the two-stage
approach to be adapted by utilities. Moreover, a solver without
sophisticated features is sufficient to obtain a solution.
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