Routledge

Multivariate Behavioral Research
E Taylor & Francis Group

JORRNAL 06 THE SOCIETY OF MULTIV MENTAL FSTCHOLOGY

Multivariate Behavioral Research

i ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/hmbr20

Modification Indices for Diagnostic Classification
Models

Christy Brown & Jonathan Templin

To cite this article: Christy Brown & Jonathan Templin (2022): Modification Indices for Diagnostic
Classification Models, Multivariate Behavioral Research, DOI: 10.1080/00273171.2022.2049672

To link to this article: https://doi.org/10.1080/00273171.2022.2049672

% Published online: 04 May 2022.

\J
C;/ Submit your article to this journal &'

il Article views: 59

A
& View related articles &'

@ View Crossmark data (&'
CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=hmbr20



MULTIVARIATE BEHAVIORAL RESEARCH
https://doi.org/10.1080/00273171.2022.2049672

% Routledge

Taylor & Francis Group

Modification Indices for Diagnostic Classification Models

Christy Brown® (® and Jonathan Templin®

'.) Check for updates ‘

Department of Education and Human Development, Clemson University; "Department of Psychological and Quantitative

Foundations, University of lowa

ABSTRACT

Diagnostic classification models (DCMs) are psychometric models for evaluating a student’s
mastery of the essential skills in a content domain based upon their responses to a set of
test items. Currently, diagnostic model and/or Q-matrix misspecification is a known problem
with limited avenues for remediation. To address this problem, this paper defines a one-
sided score statistic that is a computationally efficient method for detecting under-specifica-
tion at the item level of both the Q-matrix and the model parameters of the particular DCM
chosen in an analysis. This method is analogous to the modification indices widely used in
structural equation modeling. The results of a simulation study show the Type | error rate of
modification indices for DCMs are acceptably close to the nominal significance level when
the appropriate mixture y? reference distribution is used. The simulation results indicate
that modification indices are very powerful in the detection of an under-specified Q-matrix
and have ample power to detect the omission of model parameters in large samples or
when the items are highly discriminating. An application of modification indices for DCMs
to an analysis of response data from a large-scale administration of a diagnostic test dem-
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onstrates how they can be useful in diagnostic model refinement.

Introduction

Diagnostic classification models (DCMs; e.g., Rupp
et al., 2010), also known as cognitive diagnosis models
(e.g., Leighton & Gierl, 2007), are psychometric mod-
els allowing for the evaluation of an examinee’s mas-
tery of a set of predefined skills or attributes based
upon their responses to a set of test items. The diag-
nostic approach to modeling item responses is in con-
trast to more traditional psychometric approaches that
provide one overall measure of student ability in a
general content domain. DCMs, however, provide
estimates of student ability along multiple dimensions
within a content domain. In education, this equips
educators with an explanation for why a student is
not performing well based upon the skills that have or
have not yet been mastered, making it possible for
educators to provide targeted remediation addressing
individual strengths and weaknesses. Although DCMs
have become an active area of research within the
educational and psychological measurement commu-
nity, many issues remain in assessing the fit of such
models to empirical data.

The primary purpose in applying DCMs to a set of
item response data is to classify examinees according
to their degree of proficiency on multiple latent traits.
However, if the statistical relation between attribute
mastery and responses to the test items specified by
the DCM used in the analysis is not correct, the
resulting classifications will be questionable (e.g.,
Kunina-Habenicht et al., 2012; Rupp & Templin,
2008). Specification of a DCM includes two compo-
nents: (1) identifying the latent attributes being meas-
ured by each item, typically conducted by subject-
matter experts and then summarized as binary entries
in what is known as a Q-matrix (Tatsuoka, 1983), and
(2) defining the statistical model parameters that com-
bine to predict item responses based upon the meas-
ured attributes an examinee has mastered. Therefore,
any evaluation of diagnostic model fit should examine
both the plausibility of the Q-matrix used in the ana-
lysis and the statistical parameters
the model.

Research on diagnostic modeling has resulted in
the development and refinement of many specific
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2 . C. BROWN AND J. TEMPLIN

diagnostic model parameterizations such as the DINA,
DINO, and C-RUM models, as well as the formula-
tion of general diagnostic modeling families such as
the log-linear cognitive diagnosis model (LCDM;
Henson et al.,, 2009). For a thorough review of DCM
parameterizations, see Rupp et al. (2010). Model fit
can be assessed either in terms of the absolute fit, by
quantifying how well responses predicted by the esti-
mated model align with the observed responses, or in
terms of the relative fit, by comparing the estimated
model to an alternative one. However, measures of
absolute fit do not provide an explanation for the
source of the misfit. For this reason, we focus on
measures of relative fit, which can identify specific
sources of misfit and suggest potential pathways for
improving model fit, in this study. Furthermore, diag-
nostic model fit can be examined at either the test or
item level. Traditionally, relative fit at the test level
has been carried out by assuming one model holds for
all items and estimating the parameters of several spe-
cific DCMs, such as the DINA, DINO, and C-RUM,
and then selecting the best fitting model according to
measures of relative fit such as AIC or BIC (e.g.,
Chen et al, 2013). However, Henson et al. (2009)
demonstrated how the most commonly used DCMs
can each be represented using the LCDM formulation
by placing statistical constraints on some of the model
parameters, thus allowing the use of likelihood-based
inference to test the statistical significance of the
LCDM item parameters. That is, one could start by
fitting a baseline model within the LCDM family,
then add significant parameters and remove non-sig-
nificant ones until the best fitting model is achieved.
This may be the DINA for some items, the DINO for
others, or a previously undefined DCM for other
items. The study of Ma et al. (2016) even found an
improvement in examinee classification rate when dif-
ferent items were modeled by different DCM variants,
as opposed to assuming a general model holds for all
items. For these reasons, we will focus on inference-
based measures of relative fit at the item level in
this study.

Significance testing procedures for comparing
nested models estimated under maximum likelihood
include the likelihood ratio, Wald, and score tests.
The likelihood ratio statistic requires estimation of
parameters from both a full and reduced model and is
thus the most computationally intensive of the three
approaches. The Wald test requires estimation of the
parameters in the full model only. For this reason, the
Wald statistic is often used to test for model over-spe-
cification, that is, for removal of parameters currently

in the model. The software package Mplus (Muthén &
Muthén, 1998-2017) provides Wald statistics for
LCDM item parameters (see Templin & Hoffman,
2013), and several studies have investigated the per-
formance of Wald statistics in the DCM framework
(e.g., de la Torre & Lee, 2013; Ma et al., 2016). The
score (or Lagrange Multiplier) test requires only the
estimation of the reduced model parameters. This
makes the score statistic a computationally efficient
test for model under-specification, that is, for testing
whether the addition of certain model parameters
would significantly improve model fit. The modifica-
tion index widely used in structural equation model-
ing is in fact a one degree of freedom score statistic
(Sorbom, 1989), and score tests have also previously
been discussed in the context of item response theory
modeling (Glas, 1999; Glas & Sudrez-Falcén, 2003;
Glas & Verhelst, 1995). Sorrel et al. (2017) investi-
gated the use of the score test for the detection of
over-specification in diagnostic models, which requires
estimation of both the general and reduced DCM and
is thus not a computationally efficient approach.
Furthermore, the simulation study in Sorrel et al.
(2017) found severely inflated Type I error rates when
using the score test in this manner (e.g., observed
rates as high as .30 for a nominal significance level of
.05), necessitating the use of a simulated null distribu-
tion to assess statistical significance. As elaborated on
in what follows, this could in part be due to the fact
that the monotonicity constraints in diagnostic model-
ing mean some of the parameters of interest will be
placed at their lower bounds in the null hypothesis of
the score test. In this study, we seek to build on the
work of Sorrel et al. (2017) by defining and evaluating
the performance of score statistics appropriate for the
detection of diagnostic model under-specification, that
is, for fitting a reduced DCM and testing whether the
addition of item parameters from a more general
model significantly improve model fit, and by incor-
porating theory on score tests in a constrained param-
eter space to achieve Type I error control. We use the
term diagnostic model modification indices for these
score statistics to highlight the fact that they are used
specifically for the detection of model under-specifica-
tion and to connect to practitioners who are familiar
with the use of the score test for this purpose in struc-
tural equation modeling.

As previously discussed, in addition to possible
misspecification of the diagnostic model, the Q-matrix
can also potentially be misspecified. The studies of
Rupp and Templin (2008) and Choi et al. (2010) both
examined conditions in which a Q-matrix was under-



specified (that is, some attributes measured by an item
were not recorded as such) and conditions in which a Q-
matrix was over-specified (that is, attributes identified as
measured by an item were not in fact related to the
item). Both cases of Q-matrix misspecification led to
decreased accuracy in parameter estimation and exam-
inee classification, with the study of Choi et al. (2010)
finding Q-matrix under-specification to be particularly
detrimental. Kunina-Habenicht et al. (2012) also found
Q-matrix misspecification to adversely impact examinee
classification accuracy. DeCarlo (2011) discussed how a
potential misspecification of the Q-matrix for the frac-
tion subtraction data (Tatsuoka, 1990) has led to some
counter-intuitive examinee classifications.

Numerous methods for detecting Q-matrix misspe-
cification have been proposed in previous studies (e.g.,
Chiu, 2013; de la Torre & Chiu, 2016; Kunina-
Habenicht et al.,, 2012, Liu et al, 2012; Yu & Cheng,
2020). These methods showed promising results but
none are perfect: many are based on computationally
intensive search algorithms, some apply only to spe-
cific DCM variants, and none are inference-based.
Moreover, none apply methods that are as well-known
and are well-studied from other fields as the methods
we develop in this study. Specifically, we define how
the score statistic can also be used as a computation-
ally efficient, inference-based, and empirically driven
method of detecting Q-matrix under-specification.
Therefore, we use the term Q-matrix modification
index for these statistics as they parallel the modifica-
tion indices widely used in structural equation model-
ing and have the advantage of connecting with
practitioners familiar with this approach.

We note the investigation of over-specification of
the Q-matrix in the likelihood-based context is already
provided in maximum likelihood estimated DCMs by
both Wald tests (when estimating a so-called alternative
model) or by likelihood ratio tests (when estimating
both a null and alternative model, when the null model
is nested within the alternative). Asymptotically, the
Wald, score, and likelihood ratio tests provide similar
results. In practice, however, understanding model
under-specification is difficult as model fit statistics are
not often phrased in the context of potential model
parameters. Moreover, in the case of some DCMs (i.e.,
DINA and DINO), the limited nature of their parame-
ters makes assumptions that can easily be investigated
by using modification indices.

The main purpose of this study is to define and
investigate the statistical properties of score statistics
for Q-matrix modification and for diagnostic model
modification within the LCDM framework. The next
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section provides the technical details underlying the
LCDM. This is followed by a definition of the score
test and an outline of how it can be applied to the
problem of improving model-data fit for the LCDM.
Results from a series of simulation studies designed to
assess the utility of score statistics for modification of
the LCDM are presented as is an empirical application
of modification indices for DCMs.

Overview of the LCDM

The purpose of a DCM is to classify examinees
according to the attributes that they have or have not
yet mastered. If a test measures A dichotomous attrib-
utes, all possible combinations of mastery/non-mas-
tery result in 24 possible mastery profiles.
Classification into these 24 possible attribute mastery
profiles is equivalent to assigning examinees to the
appropriate latent class in a constrained latent class
model (e.g., Lazarsfeld & Henry, 1968).

To formulate the general latent class model, let Y,
denote the response of examinee e to item i with
Y, =1 for a correct response and Y, =0 for an
incorrect response, e=1, 2, ..., Eand i=1, 2, ..., L
The latent class model assumes that the conditional
distribution of Y,; given that examinee e belongs to
latent class ¢ is Bernoulli, with 7, representing the
probability an examinee in latent class ¢ answers item
i correctly for c=1, ..., C. Let v, denote the prob-
ability that a randomly selected examinee belongs to
latent class ¢ with 2%, v, =1. Then, the uncon-
strained latent class model defines the probability of
observing a particular item response vector y, =
(yel,yez, ...,yd) for examinee e as:

C 1

P(Ye=y) =) ve[[Zit—m) ™" . ()

The class membership probabilities v, are referred
to as structural parameters, and the summation por-
tion of the model is referred to as the structural com-
ponent. The product across items stems from the local
independence assumption and is referred to as the
measurement component of the model. The latent class
model parameters can be estimated using the method
of maximum likelihood (see Bartholomew & Knott,
1999, Chapter 6). The different DCM variants can be
formulated by placing appropriate constraints on the
item response probability parameters ;. in the meas-
urement component of the model.

The LCDM item response function is determined
in part by the attributes being measured by each item.
Attributes enter the model as categorical latent
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variables, with the attribute mastery profile for an
latent class ¢ given by a.=
(01> %c2s - ca) Where o, = 1 indicates mastery of
attribute a and o, = 0 indicates non-mastery of the
attribute. The item by attribute Q-matrix specifies
which attributes are measured by each item, with
qia = 1 indicating that item i measures attribute a and
qia = 0 indicating that it does not.

As an example of the LCDM parameterization,
consider an item i that measures attributes 1 and 2 so
that g5 = 1 and g;; = 1. Conditional on the attribute
mastery profile a. for the latent class ¢ to which
examinee e belongs, the LCDM item response func-
tion for this item is:

examinee in

Tic = P(Yei = 1|occ)
_ eXP(;~i,0 + i1, ()% + Aq 1 (2) % + A-i,z,(l,z)fxclacz)
I+ eXP(;Li,O + A1, %+ A1 )% + 2:‘,2,(1,2)%10&2) .

2)

Thus, the LCDM models the conditional item
response probability via a logit link function with the
linear predictor resembling a factorial ANOVA model
where the measured attributes represent fully crossed
and reference coded design factors. The first subscript
on the A parameters refers to the item, the second to
the level of the effect (i.e., 0 for intercept, 1 for main
effect, 2 for two-way interaction, etc.), and the paren-
thetical subscripts identify the attributes with which
the parameter is associated.

Comparing the linear predictor in Equation 2 for
examinees having mastered exactly one of the measured
attributes (that is, either «,; = 1 and o, = 0, or o;ey = 0
and o, = 1) to that for examinees not having mastered
any measured attributes (that is, o, = 0 and o, = 0),
we see that the following restrictions are needed to
ensure that examinees having mastered one attribute
have a higher probability of responding correctly than
examinees not having mastered either attribute:

;L,i,() + ;»1',1’(1) > Ai,O — j’i,l,(l) > 0
and /li,() + ;Li,l)(z) > ;ui)() — ;ui)l’(z) > 0.

)

In general, all LCDM main effects must be positive in
order to ensure that masters of a given attribute have a
higher probability of a correct response than do non-mas-
ters. For Equation 2, we see that the following order con-
straints for the two-way interaction are also necessary:

Ziyo + A1)+ AL e) Az ,2) > Ao AL a) =
2i2,(1,2) > i1, (2)

and Aio + 4i1,0) +Ai ) T A2 12) > Ao+ i) =
i, (12) > —4i1,01).

(4)

The LCDM can be expressed in a general form as:
exp ()»,',o + l,-Th(occ, ‘11))
1+ exp ()»,',o + l,-Th(ac, ‘11))
)

where 4; is a column vector containing the 24 — 1
main effect and interaction terms for item i and q; is
the i™ row of the Q-matrix indicating the attributes
measured by item i. The column vector h(ac, q;) con-
tains linear combinations of a. and g, such that:

T — P(Yei = 1‘@5) =

A
iiTh(aC’ ql) = Z li, 1, (a)%caia
a=1

A—1 A
+ Z Z i, (a, @) %catea GiaQigr + **

a=1 a'=a+1
(6)

The first A elements of the A; vector are the main
effects for item i, the next (‘;‘) are the two-way interac-
tions, the next (f;) are the three-way interactions, and
so on up until a final A-way interaction term for items
measuring all A attributes. Order constraints must also
be imposed on these higher-order interaction terms to
guarantee that the item response probability increases
as additional attributes are mastered.

Constraints may also be placed upon the v, param-
eters in the structural component of Equation 1
through what is referred to as a structural model. By
imposing constraints on the v, parameters, structural
models reduce the number of parameters that need to
be estimated. Several methods for modeling the struc-
tural parameters have been proposed in the DCM lit-
erature, including a log-linear model (Henson &
Templin, 2005) and a structured tetrachoric model
(de la Torre & Douglas, 2004; Templin, 2004).

The choice of models for both the v, and ;. parame-
ters in Equation 1 completely specifies a diagnostic
model. Estimation of these model parameters and calcu-
lation of P(c[y,) leads to the classification of examinees
into attribute mastery profiles, with classification made
to the latent class for which an examinee has the highest
membership probability. However, as discussed in the
introduction, the accuracy of examinee classifications
can be impacted if the DCM or its Q-matrix are misspe-
cified. Thus, methods for detecting model misspecifica-
tion are an important part of the model fitting process.

Likelihood theory and score tests

The modification indices for DCMs proposed in this
paper are based upon the score test, a general



hypothesis testing procedure useful in the detection of
model under-specification. Thus, an overview of the
score test for a general parametric model will be pro-
vided before describing how the score test can serve
as an empirically driven method for modifying the
parameters of a diagnostic model and its associated
Q-matrix.

The score test considers the adequacy of a reduced
(potentially under-specified) statistical model. That is,
the fully-specified model contains p parameters, but a
model with only p — g parameters is estimated; the g
remaining parameters have been fixed to zero in esti-
mation and we would like to see if freely estimating
these parameters would significantly improve the fit
of the model to the data. As the score test only
requires estimation of the p - g parameters in the
reduced model, it is often preferred over equivalent
hypothesis testing procedures such as the likelihood
ratio test, which requires estimation of both the full
and reduced models, and the Wald test, which
requires estimation of all p parameters in the
full model.

To define the score statistic, let f be a p x 1 vector
of model parameters and partition § as g7 = (BT, pI)
where f, is a (p - g) x 1 vector of the nuisance
parameters and B, a g x 1 vector of the parameters of
interest in hypothesis testing. The adequacy of the
reduced model is then tested by the null hypothesis
Hy: B, =0. Let /() denote the log-likelihood func-
tion of the model containing all p parameters. Denote
the score vector by S(f) and partition it as:

0
= U(B)
0 op, S
&m:5#wﬁ:_£ﬂm =(&%). )
o8,

Solving §; ( ,BIT,OT)T =0 gives the maximum likeli-
hood estimates of the reduced model containing only
N ~T 1
p - q parameters, f = (f,,0 ) Let I;(B) be the
information matrix for a single observation and parti-

tion it according to the partitioning of f :

hw>—(31‘”) ®)

12 I22

where I; is (p - q) x (p - ¢), Iix is (p - q) x g, and
I, is q x q. Similarly, partition I;*(f) as:

1nooq2
() = <izl izz) %)

IZl IZZ

where the dimensions of I'!, I'2, I?!, and I*? are the
same as those of I;;, Iy, IITZ, and I, respectively.
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Let Inp; = Iy — ILI;'T};. Then I?? = 1!, by the for-
mula for the inverse of a partitioned matrix (e.g.,
Harville, 2008, Section 8.5). Thus, the score statistic in
the test of Hy : B, = 0 versus Hy : B, # 0 is given by:

SRR
- [ot] [ B
= n 1 [8,(B)] 2 (B) [52(B)] -

Under the null

n-1/2s, (i{)iNq (0, I, [(ﬁlT,OT)TD. Thus, the
asymptotic distribution of the score statistic in
Equation 10 is that of a Xz(q) random variable.

Many researchers in educational measurement have
used score tests to detect model under-specification in
their respective areas of interest; perhaps the best
known application is in the field of structural equation
modeling (SEM) where Sorbom (1989) described the
use of one degree of freedom score tests that he
referred to as modification indices. SEM is a broad
term encompassing many related modeling families,
each with the primary goal of explaining the covari-
ance structure among a set of variables. Traditionally,
the observed variables in SEM can be either categor-
ical or continuous but all latent variables must be
continuous, thereby excluding DCMs from the SEM
framework. Measures of overall model fit assess
whether the structural equation model hypothesized
by the researcher fits the observed data adequately. If
the fit is poor, modification indices can be used as a
guide in determining which parameters to add to the
model so as to significantly improve model-data fit,
i.e. they test for model under-specification.

In confirmatory factor analysis, the model for the
vector of observed variables Y is:

Y=1+A0+¢ (11)

hypothesis,

where t is a vector of intercept parameters, A is a
matrix of regression weights commonly referred to as
factor loadings with number of rows equal to the
number of observed variables and number of columns
equal to the number of latent variables, 0 is a vector
of the continuous latent variables referred to as fac-
tors, and ¢ is a vector of measurement errors uncorre-
lated with 0. As a simple example of how
modification indices can be applied to the measure-
ment component of a structural equation model, con-
sider the following hypothesized factor loading matrix
for a confirmatory factor model with five observed
and two latent variables:
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/11)1 0
)LZ,I /12,2
A= /13)1 0 . (12)
0 4
Jsy s

The ‘0’ entry in the first column means the fourth
measured variable is not hypothesized to be an indica-
tor of the first latent factor, and there are ‘0" entries
in the second column because the first and third
measured variables are not hypothesized as indicators
of the second factor. If the model is a poor fit for the
data, then allowing some of the parameters con-
strained to zero to be freely estimated may improve
the fit. For example, adding a path from the first fac-
tor to the fourth measured variable may significantly
reduce the discrepancy between model and data. The
modification index for making this determination is
the score statistic (see Equation 10) in a test of Hj :
J41 = 0 versus Hy : /41 # 0, which will have a (1)
distribution for large samples.

There are several paths that could be added and the
determination of which ones should be included in the
model is typically made in a sequential forward selection
procedure. Such a process begins by calculating the
modification index for all constrained paths and the
most significant ones are added to the model one at a
time until it is no longer possible to improve model fit
by freely estimating one of the constrained parameters.
However, as MacCallum et al. (1992) point out, in mak-
ing multiple successive modifications to a model one
runs the risk of capitalizing on chance variation in the
sample data such that the model modifications may not
generalize to the population. Furthermore, some modifi-
cations suggested by such a procedure may not have a
meaningful interpretation, making it important for
researchers to carefully consider the substantive implica-
tions of each potential modification.

Another important criticism concerning the typical
use of score tests in the context of SEM is that users
rarely control for Type I error rates across multiple
tests of individual parameters, even though they likely
would do so in the context of an analysis of variance
(e.g., Cribbie, 2007; Green & Babyak, 1997). To
address this lack of multiplicity control when modifi-
cation indices are used in SEM, Green and Babyak
(1997) demonstrated the use of three methods for
controlling Type I error rates in both a path analytic
example and a factor analytic example, including the
well-known Bonferroni procedure (Dunn, 1961).
These criticisms and potential resolutions also apply
to modification indices developed for use with DCMs.

Adapting score tests for DCMs
Q-matrix modification indices

This method of model modification so prevalent in
the SEM literature can be extended to a diagnostic
modeling context, and could be used for detection of
under-specification of both the Q-matrix (the focus of
this subsection) and the diagnostic model (the focus
of the next subsection). As an example of how modifi-
cation indices would function in a test of Q-matrix
under-specification, consider a hypothesized Q-matrix
for the DCM of a test with five items measuring two
attributes:

(13)

Q

|
—_ O = = =
= =)

With respect to indicating which items measure
which latent variables, the Q-matrix is analogous to
the factor loading matrix in Equation 12. The ‘0’ entry
in the second column of the first row implies that
attribute 2 is not measured by item 1. Modification
indices can determine whether the addition of this
path, or any path corresponding to a ‘0’ entry in the
Q-matrix, would significantly improve the fit of the
model to the sample data. However, even if a modifi-
cation is statistically justifiable it may not be substan-
tively plausible, thus the item should be reviewed to
determine whether measurement of this attribute is
even conceivable.

Q-matrix modification indices will be a bit more
complex than their SEM counterparts due to the fact
that DCMs incorporate terms representing interac-
tions between latent variables. In SEM the latent vari-
ables are typically combined in a purely additive form,
such that the addition of a path from a latent factor
to an observed variable implies the addition of only
one model parameter. For DCMs, the addition of a
path from an attribute to an item entails the addition
of a main effect and one or more interaction terms.
For example, consider item 1 in the Q-matrix of
Equation 13 for which the LCDM item response func-
tion is given by:

exp (41,0 + 41,1, (1) %1 )

P(Y, = 1|a) = . (14
( ! |ac> 1 + eXp (ll’() + )vl’l)“)(xd) ( )

If this item were specified as measuring both attrib-
utes 1 and 2 instead of only attribute 1, the fully-
specified form of the LCDM function would then be:



exp (1,0 + Ay, 1, (1)%1 + Ay, 2)%2 F ALz, (1,2) %1 %2
P(Yel = 1|ac) = ( )

-1 + exp (/11,0 + ),1,1)(1)0(61 -+ /11,1)(2)0(52 + 21,2,(1,2)0(51(1,;2)
(15)

Hence, using the score statistic to test the hypotheses
Hy:B,=0 versus Hy:p,#0 where pI=
(/11, L(2)> /”LLZ,(LZ)) represents an omnibus test of
whether item 1 measures attribute 2 in addition to
measuring attribute 1. However, the order constraints
imposed upon the / parameters define a complicated
parameter space under this alternative hypothesis. For
practitioners, implementation will be much simpler if
modification indices instead focused on the individual
A parameters included in B, in a one at a time
sequential fashion, as is common in SEM modification
indices reported from widely used statistical software
packages. Conducting individual score tests has the
added benefit of immediately identifying the particular
parameters that differ from zero, rather than just indi-
cating that at least one of them differs from zero.
Thus, in testing whether item 1 measures attribute 2
in addition to measuring attribute 1 there will be two
Q-matrix modification indices, which we define as the
score statistics in the tests of the null hypotheses: (1)
Ho : /11’1, (2) = 0 and (2) Ho : )»1)2,(1,2) =0.

The alternative hypotheses for these tests are deter-
mined in part by the order constraints imposed on
the / parameters. Recall that, in general, main effects
must be greater than zero in order for mastery of an
additional measured attribute to increase (rather than
decrease) the chance of answering an item correctly.
Thus, for testing Ho:4;,2) =0 the alternative
hypothesis is Hy : 411,(2) > 0. Now, the second Q-
matrix modification index is testing for the addition
of an interaction term between attributes 1 and 2 to
the model in Equation 14, which contains only an
intercept term and a main effect for attribute 1.
Hence, it is only necessary to require the interaction
to be greater than zero, thus for testing Hy :
/1,2,(1,2) = 0 the alternative hypothesis is Hy :
A1,2,(1,2) > 0. Note that the score statistic given in
Equation 10 applies only to two-sided tests. However,
methods do exist for conducting score tests when the
alternative hypothesis of interest is one-sided (e.g.,
Silvapulle & Silvapulle, 1995). These methods and
their application to modification indices for diagnostic
classification models will be discussed at the conclu-
sion of this section.

The number of Q-matrix modification indices asso-
ciated with a given item will depend upon the number
of attributes both the item and the test are specified
as measuring. For instance, given a test measuring
four attributes and an item specified as measuring two
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of these attributes, there will be eight Q-matrix modi-

" fication indices that could be considered for this item:

one main effect, two two-way interactions, and one
three-way interaction for each of the unspecified
attributes. For long tests measuring many items, the
total number of Q-matrix modification indices to con-
sider can become quite large. In the context of SEM,
it has been suggested that researchers conduct a
restricted search in which only indices for the modifi-
cations which could be substantively justified are con-
sidered, thereby reducing the total number of
hypothesis tests (e.g., MacCallum, 1986). For items
already specified as measuring multiple attributes, it
would also make sense for the researcher to initially
consider Q-matrix modification indices corresponding
only to the main effects and the lower-order (e.g.,
two-way) interactions. Given this potential for large
numbers of tests, it is paramount that some sort of
multiplicity correction, such as the Bonferroni proced-
ure, is used with Q-matrix modification indices.
Consider again the example of using Q-matrix
modification indices to test whether item 1 in the Q-
matrix of Equation 13 measures attribute 2 in addition
to attribute 1. Rejection of either Hy : 4y, =0 or
Ho : /1,2,1,2) = 0 would suggest item 1 does measure
attribute 2. If item 1 is reviewed and this suggestion
seems reasonable, the Q-matrix in Equation 13 should
be altered so that the entry in the second column of
the first row is now a ‘I’ instead of a ‘0.” Now, if only
Hp : 21,1,(2) = 0 is rejected, then it would make sense
for the model for item 1 to be re-specified so as to
include the main effect of attribute 2. But, if only Hy :
A1,2,(1,2) = 0 is rejected the analyst must decide
whether or not to adhere to the principle of hierarchy
in statistical modeling, whereby higher-order inter-
action terms are included only if all corresponding
lower-order terms are also included. In this case, fol-
lowing the principle of hierarchy would mean includ-
ing both the significant interaction between attributes
1 and 2 and the non-significant main effect for attri-
bute 2 in the re-specified model. In general, though, it
is not advisable to add multiple parameters in a subse-
quent model re-specification, as modification indices
are a comparison of the initially specified model and a

model that adds just the parameter under
consideration.
Q-matrix modification indices were so named

because they represent the addition of model parame-
ters that would alter the entries of the Q-matrix.
However, when the hypothesized model is not a fully-
specified LCDM, e.g., the model contains only main
effects and no interaction terms, it is possible to
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modify the model parameters in such a way that the
Q-matrix is not altered. Modification indices for these
model parameters will be referred to as diagnostic
model modification indices, and are elaborated on in
the following subsection.

Diagnostic model modification indices

Diagnostic modeling families such as the LCDM offer
modeling flexibility and a unified DCM framework, as
most of the commonly used DCM variants are simply
special cases of the fully-specified LCDM. However,
many researchers and analysts still choose to imple-
ment a specific restricted DCM, with the most com-
mon being the DINA model. Diagnostic model
modification indices can be wused to determine
whether freeing some of the parameters constrained
by a particular DCM variant might significantly
improve model fit, thereby allowing analysts to test
whether sample evidence rejects the response process
hypothesized by their chosen DCM.

To define diagnostic model modification indices,
consider the case where the initially specified diagnos-
tic model is the DINA model, a noncompensatory
DCM hypothesizing that all measured attributes must
be mastered to have a high probability of answering
an item correctly. That is, the probability of respond-
ing correctly to an item can only increase by master-
ing all measured attributes and does not increase
incrementally for each additional attribute mastered.
Thus, the LCDM representation of the DINA model
for an item i measuring attributes 1 and 2 is:

exp (ii’o + i2, (1,2)O€e10€e2)

P(Yy = 1a,) =
( et |de) 1+ exp (/1,',() + )»i,z,(1,2)0(e10(e2)

(16)

In comparing the DINA model to the fully-speci-
fied LCDM for an item i measuring attributes 1 and 2
as given in Equation 2, there will be two associated
diagnostic model modification indices, which we
define as the score statistics in the tests of the hypoth-
eses: (1) Ho: Z;1,1) =0 versus Hy : /;1,1) > 0 and
(2) Ho : Zj1,2) = 0 versus Hy : 41 (2) > 0.

These modification indices test whether the
response process hypothesized by the DINA model is
supported by sample evidence. If so, then neither
main effect would be statistically significant, but their
interaction term would be significant. If only one
main effect is significant, this item might not measure
the second attribute and the two-way interaction term
would not be significant in a re-specified model
including the significant main effect. Thus, in light of
the availability of the LCDM, initially hypothesizing a

DINA model is inefficient. It would be more product-
ive in terms of number of model specifications to
begin either with a fully-specified LCDM and subse-
quently remove non-significant parameters, or to fol-
low the principle of hierarchy in statistical modeling
and begin with a model including only main effects
and possibly some lower-order interaction terms, and
then test for the inclusion of higher-order
interactions.

DINA model modification indices can be con-
structed for all items measuring multiple attributes,
with the number of modification indices depending
upon the number of attributes measured by the item.
For example, an item measuring three attributes will
have six associated DINA model modification indices,
three for the omitted main effects and three for the
omitted two-way interactions. For items measuring
only one attribute, the LCDM representation of the
DINA model contains an intercept and one main
effect, and is therefore fully specified. Thus, no DINA
model modification indices will be needed for single
attribute items.

As diagnostic model modification indices can be
applied whenever the initial model is not a fully-speci-
fied LCDM, an important application will be to the
case where higher-order interaction terms were ini-
tially omitted from the model because of their compu-
tational burden. In such circumstances, diagnostic
model modification indices corresponding to these
omitted interaction terms would supply information
about whether their exclusion is statistically justifiable.
Modification indices are computationally efficient in
that they can provide such information without actu-
ally estimating the omitted model parameters.

Score tests in a constrained parameter space

The score statistic in Equation 10 implicitly assumes a
two-sided alternative hypothesis, and must be adjusted
for the one-sided cases of interest in DCM modifica-
tion. Silvapulle and Silvapulle (1995) presented a score
test appropriate for one-sided alternatives, and
Verbeke and Molenberghs (2003) demonstrated its
use in the context of variance components testing in
the generalized linear mixed model. Here, we demon-
strate how this one-sided score statistic can be used as
a modification index for DCMs.

As outlined above, the hypotheses associated with
modification indices for DCMs will frequently be of
the form Hy : f, = 0 versus Hy : 5, > 0. When f, is
a scalar constrained to be greater than zero, the one-
sided score statistic Ts based on a sample of E



examinees is given by:

@ S (s® o
Tszm—mf (\E —b)I (B)b>0

(17)

with Ts ~142(0) +1,*(1). Note that the first term in
Ts is the general score statistic, which has a y*(1) dis-
tribution. If unconstrained estimation of [, would
result in a negative value of B,, the infimum in
Equation 17 is achieved when b =0, resulting in Ts =
0. Else, the infimum in Equation 17 is zero and T
will be the value of the general score statistic, provid-
ing an intuitive argument for why the distribution of
Ts is a 50:50 mixture of the x?(0) and »*(1)
distributions.

When testing for the addition of an interaction
term to a model containing only main effects, the
alternative hypothesis will be of the form Hy : f, >
—k, where f3, represents an interaction term and k is
the value of the smallest main effect. In this case, the
infimum in Equation 17 is conditional on b > —k,
and the one-sided score statistic will follow a weighted
mixture of the »*(0) and y*(1) distributions with
unknown weights (Silvapulle & Sen, 2005, Section
3.5). Using x*(1) as the reference distribution will
serve as a good approximation when the sample size

is large, as is frequently the case in educa-
tional testing.
In order to evaluate T, we will need to find
4
$:(B) = a(ﬁ)u 3 (18)

which is the partial derivative of the log-likelihood of
the full model (i.e., the model that includes all
reduced model parameters and f3,) with respect to f3,,
evaluated at the maximum likelihood estimates of the
reduced model when 3, = 0. In practice, the software
package Mplus can find maximum likelihood esti-
mates of LCDM parameters (see Templin & Hoffman,
2013). From Equation 1, we see that the log-likelihood
of the LCDM for a sample of E examinees is:

(=3 logi(rip)

E C 1
Z {ZVCH cm l_nzc 1 yﬁi} (19)

c=1 i=1

where the m; parameters are as defined by the LCDM
of Equation 5 and the v, are defined by the chosen
structural model. Evaluation of S,(f) requires the par-
tial derivatives of the LCDM log-likelihood with respect
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to the item parameters, which can be shown to be:

I
0 i el 1 ei
E Zc 1 cam?(u)( ei Tcic) 1:[ (1 - TCIC) -

a/Lz l(a ; ZC
c=1

Ve H e (1 — mie) "
i=1

(20)

where 1, = 40 + iTh(ozC,ql) as defined in Equation 5
and the entries of 4; are denoted as 4; (o) where [ des-
ignates the level of the effect and the Vector a identifies
the attributes with which the parameter is associated.
The calculation of 1?2 (if) is also needed to evaluate
Ts, which depends upon the entries in the informa-
tion matrix I, (f), defined in Equation 8. However, as
discussed in McLachlan and Peel (2000, Section 2.15),
calculation of the second-order derivatives of the
model log-likelihood can be quite tedious for mixture
models such as the LCDM. They suggest approximat-
ing the sample information matrix, ie., E-I;(f),
using the empirical observed information matrix:

E dlogf (Y.;B) _ logf (Y.; B)
Z aﬂ x aﬁT :

In addition to the partial derivatives with respect to
the item parameters, this approximation also requires
the partial derivatives of the LCDM log-likelihood
with respect to the structural parameters. For the log-
linear structural model proposed in Henson and
Templin (2005), the expected number of examinees in
a latent class, p,, is predicted by:

ZVl O‘cu“‘z Z V2, (a,a') %ca%ca + -

a=1 a'=a+1

VA H Olca

(21)

e=1

log(pe) =

(22)

and the partial derivatives of the LCDM log-likelihood
with respect to the structural parameters y; ), where
I designates the level of the effect and the vector a
identifies the attributes with which the structural par-
ameter is associated, can be shown to be:

Yt [ 1
_ l::) La)"* H n,’lvcm(l o nic)lfyei

_He i=1

c il
o £ Cla'” -

M@ S (] )i

= pell
(23)

Mplus can provide the approximation to the sam-
ple information matrix defined in Equation 21 for the
estimated model if MLF is specified as the estimator
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in the analysis statement, where MLF requests max-
imum likelihood parameter estimates with standard
errors approximated by first-order derivatives
(Muthén & Muthén, 1998-2017). The approximation
in Equation 21 is based on work by Louis (1982), and
was also used by Glas (1999) and by Glas and Suarez-
Falcon (2003) in their application of the score test to
item response theory models.

Simulation study

To assess the utility of both Q-matrix and diagnostic
model modification indices as methods for detecting
under-specification of DCMs, a simulation study was
conducted. The simulation study consisted of two
main components: a study evaluating the performance
of Q-matrix modification indices and a study evaluat-
ing diagnostic model modification indices. Each of
these included both a Type I error study and a power
analysis. In the Type I error studies, the goal was to
demonstrate that modification indices for DCMs indi-
cate that unnecessary attributes or model parameters
should be added to the model at an acceptably low
rate (i.e, at the Type I error rate specified by the
researcher). In the power analyses, the goal was to
verify that modification indices for DCMs indicate
that necessary attributes or model parameters should
be added to the model at an acceptably high rate (i.e.,
that the test is powerful), and to investigate the sam-
ple sizes needed to reach a desired level of power. The
simulation study evaluating Q-matrix modification
indices also included a Q-matrix recovery study in
which the goal was to evaluate the performance of Q-
matrix modification indices in the presence of both
under-specification and over-specification of the Q-
matrix, as commonly occurs in practice.

All simulation conditions included 30 items, 3 attrib-
utes, a .455 tetrachoric correlation among attributes,
and 1000 replications. In the Type I error studies and
power analyses, samples of 500, 1000, 2500, and 5000
examinees were considered. The Q-matrix recovery
study included samples of 1000 and 2500 examinees. In
all cases, the Q-matrix for the generating models was
balanced, with every item measuring either one or two
attributes and each possible pattern (100, 010, 001, 110,
101, and 011) repeated five times. The item parameter
values of the generating models were selected based
upon the resulting item response probabilities. The
item intercepts were set to —1.5 in all cases, such that
examinees having mastered none of the measured
attributes respond correctly with probability .18,
roughly equivalent to the chance of guessing the correct

answer from among five answer choices. For the item
main effects and interaction terms, two different cases
were considered: a smaller effect size in which examin-
ees that have mastered all measured attributes respond
correctly with probability .62 and a larger effect size in
which this probability is .92. Thus, items in the larger
effect size will be better able to discriminate between
masters and non-masters of the measured attributes.
Altogether, the Type I error studies and power analyses
both included eight conditions (4 sample sizes x 2
effect sizes) in each of the two modification index stud-
ies (Q-matrix and diagnostic model) and the Q-matrix
recovery study included four conditions (2 sample sizes
x 2 effect sizes), for a total of 36 distinct conditions.

The number of items, attributes, and examinees
chosen for this simulation study are reflective of val-
ues currently used in practice and in other studies
reported in the DCM literature. A test with 30 items
would be typical of the length of a formative assess-
ment such as a county-wide benchmark test. Setting
the number of attributes to three would ensure that
each attribute could be measured a sufficient number
of times by the test. A sample of 2500 examinees
would be representative of the number of students an
average sized county would have per grade level for
their benchmark testing program. Moreover, to inves-
tigate likelihood-based item-level fit statistics in
DCMs, the simulation study of Ma et al. (2016) used
30 items, 5 attributes, and samples of 500, 1000, and
2000 examinees, then Sorrel et al. (2017) used tests
with 12, 24, and 26 items measuring 4 attributes and
samples of 500 and 1000 examinees. To investigate
methods for correcting Q-matrix misspecification, the
simulation study of Kunina-Habenicht et al. (2012)
contained tests with 25 and 50 items measuring both
three and five attributes, and samples of 1000 and
10000 examinees, then Liu et al. (2012) used a Q-
matrix with 20 items and three attributes, with sample
sizes ranging from 500 to 4000 examinees.

All models in the simulation studies were estimated in
Mplus, and the modification indices were calculated
using a program written in the statistical software pack-
age R. Item parameter recovery was assessed by compar-
ing the generating values to the mean estimated values
across the 1000 replications in a particular simulation
condition, and the largest observed discrepancy was 0.01.

Type | error study for Q-matrix
modification indices

This study considered modification indices for the
addition of attribute 2 to the model for item 1, which



Table 1. Observed Type | error rates in the Q-Matrix Mls
simulation study.
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Table 2. Proportion of significant Mis in the Q-matrix Mls
power analysis.

o Level o Level

Effect Size M Sample Size  .100 .050 .025 .010 .005 Effect Size Ml Sample Size .05 .025 .0005
Large ) 500 115 061 032 012 007  Large Jan ) 500 1000 1.000  1.000
1,000 109 064 .034 .017 .006 1,000 1.000 1.000 1.000

2,500 103 055 .027 .008 .003 2,500 1.000 1.000 1.000

5,000 .093 .047 029 .016 .011 5,000 1.000 1.000 1.000

Jaa 02 500 106 065 035 017 .004 D21, 500 1000 1000  1.000

1,000 091 .050 .026 .009 .005 1,000 1.000 1.000 1.000

2,500 117 067 .031 .008 .005 2,500 1.000 1.000 1.000

5,000 097 .046 .022 .008 .003 5,000 1.000 1.000 1.000

Smaller ,1,2) 500 125 060 .033 .018 .010 Smaller 24,1,(2) 500 .996 .989 .858
1,000 106 .061 .038 .013 .004 1,000 1.000 1.000 992

2,500 .082 .048 .025 .010 .005 2,500 1.000 1.000 1.000

5,000 102 045 .024 .008 .003 5,000 1.000 1.000 1.000

Jaa 02 500 119 061 026 017 014 D21, 500 991 978 790

1,000 117 058  .027 .012 .007 1,000 1.000 1.000 991

2,500 .090 .045 .026 .010 .006 2,500 1.000 1.000 1.000

5,000 101 .052  .019 .007 .006 5,000 1.000 1.000 1.000

Note: MI = modification index; o« = significance level. Type | error rate cal-
culated as the proportion of observed MIs for a given item parameter
exceeding the upper o critical value of the 172(0) +12(1) distribution,
where the critical value ¢ is such that %P(l (1) > =a

measures only attribute 1 in the generating model.
That is, the unnecessary addition of both 4, ;) and
41,2,(1,2) to the estimated LCDM was considered. The
proportion of replications in which the modification
indices incorrectly indicated this modification was
advantageous is summarized in Table 1. These
observed Type I error rates were consistently close to
the nominal significance level o across the range of
reported o values (.10, .05, .025, .01, and .005). Given
that two hypothesis tests were conducted on each set
of simulated data, one for the main effect and one for
the interaction term, the familywise error rate is of
concern. For example, with 2500 examinees the
observed probability that at least one of the two null
hypotheses was incorrectly rejected at the o = .05
level was .107 in the large effect size and .069 in the
smaller effect size. Hence, some type of multiplicity
control should be considered when using Q-matrix
modification indices in practice.

Power analysis for the Q-matrix
modification indices

The item of interest in this study was item 4, which
measures both attributes 1 and 2 in the generating Q-
matrix, but was incorrectly specified as only measur-
ing attribute 1 in the estimated model (ie., 441,
and 445, (1,2) were both included in the generating but
not the estimated LCDM). The proportion of replica-
tions in which the modification indices correctly
detected this under-specification are given in Table 2.
The significance levels reported include: (1) o = .05,
corresponding to no multiple testing correction, (2) «

Note: MI=modification index; o = significance level. Statistical signifi-
cance assessed according to the J2(0) + 3 x*(1) reference distribution.

= .025, corresponding to a Bonferroni correction for
the two tests actually conducted for each sample, and
(3) o = .0005, corresponding to a Bonferroni correc-
tion for the 105 potential tests for the main effect and
two-way interaction of every ‘0’ entry in the generat-
ing Q-matrix. As seen in Table 2, these tests were
quite powerful even when the familywise error rate
was controlled for the 105 potential tests.

Q-matrix recovery study

In practice, Q-matrices can contain both under-speci-
fication and over-specification such that Q-matrix
modification indices would need to be used in tandem
with a method for detecting over-specification, such
as the Wald test reported in Mplus, in order to
recover the true generating Q-matrix. To evaluate
how Q-matrix modification indices perform in such
situations, the estimated model in the Q-matrix recov-
ery simulation study both over-specified item 1 as
measuring attributes 1 and 2, when it measures only
attribute 1 in the generating model, and under-speci-
fied item 4 as measuring only attribute 1, when it
measures both attributes 1 and 2 in the generating
model. In practice, we would recommend that analysts
begin their model refinement by first using the Wald
test results reported in Mplus to guide their decisions
as to removing any non-significant item parameters
before using Q-matrix modification indices to suggest
significant item parameters to potentially add to the
model. Following this approach, and adhering to the
principle of hierarchy in statistical modeling, the esti-
mated model in the Q-matrix recovery simulation
study would require three model refinement steps to
recover the generating Q-matrix.
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Table 3. Proportion of correct decisions at each step of the Q-matrix recovery study with o = .05.

Model Refinement Step

Effect Size Sample Size (1) Remove 44 5 (1,2) (2) Remove /1 1,3 (3) Add 4,1, (2) and/or /45 1,2) Recovered Q-matrices
Large 1,000 976 1.000 1.000 976

2,500 .986 1.000 1.000 986
Smaller 1,000 994 1.000 1.000 .994

2,500 994 1.000 1.000 994

e Step 1: The Wald Z-statistic for A;, (1, ) is not
statistically ~significant and this parameter is
removed from the model. In this case, the null
hypothesis does not place the parameter at a
boundary value and statistical significance can be
assessed according to the standard normal
distribution.

e Step 2: In the estimated model without the inter-
action term for item 1, the Wald Z-statistic for
Mi,1,(2) is not statistically significant and this par-
ameter is removed from the model. As the null
hypothesis for this test places the parameter at its
lower bound of 0, statistical significance of 72
should be assessed according to the 1y*(0)+
1x*(1) distribution (Molenberghs & Verbeke,
2007). Note that removing both A, (;, 2 and
Mi,1,(2) from the model changes the Q-matrix entry
for attribute 2 of item 1 from a ‘1’ to a ‘0.

e Step 3: In the estimated model with item 1 cor-
rectly specified as measuring only attribute 1, the
modification indices for A4 () and/or Ay (1, 2)
are statistically significant, correctly suggesting to
analysts that Item 4 also measures attribute 2. As
previously discussed, statistical significance of these
Q-matrix modification indices should be assessed
according to the 1%%(0) +1%*(1) distribution.

This model refinement process was followed in
every replication of the Q-matrix recovery simulation
study, and the proportion of correct decisions at each
step with a significance level of o = .05 is given in
Table 3. Additionally, the last column of Table 3 gives
the proportion of replications in which a correct deci-
sion was made at every step such that the generating
Q-matrix was recovered by this model refine-
ment process.

The Q-matrix recovery rate was quite high across
all simulation conditions with oo = .05. In fact, the
proportion of correct decisions in Steps 1 and 2 was
higher than the expected rate of 1 — «. If a Bonferroni
correction is applied and the significance level is
adjusted for the number of tests of interest at each
step (60 in Step 1, 59 in Step2, and 105 in Step 3), the
proportion of correct decisions in Step 1 becomes

1.000 in all conditions as it already was for Step 2
when o = .05. The results for Step 3 are in line with
the results from the power analysis when o = .0005,
where the Q-matrix modification indices were not
statistically significant in just a few replications for the
1000 examinee smaller effect size condition, including
2 replications where neither A4 (5) nor 445 (1, 2) were
statistically significant such that the generating Q-
matrix would not be recovered.

Type I error study for diagnostic model
modification indices

This study focused on modification indices for the
DINA model because of its popularity among
researchers and analysts. The DINA model was both
the generating and estimated model for all items in
this study in order to estimate the ability of diagnostic
model modification indices to correctly find that a
given diagnostic model is not under-specified.
Specifically, we considered modification indices for
the main effects of attributes 1 and 2 in the model for
item 4, which were not in the generating model. Table
4 reveals that the observed Type I error rates were
consistently close to the nominal level across the
range of reported o values (.10, .05, .025, .01, and
.005). Observed familywise error rates with no multi-
plicity control were again inflated, with the observed
probability that at least one of the two null hypotheses
was incorrectly rejected at the oo = .05 level was .089
in the large effect size and .081 in the smaller effect
size with 2500 examinees.

Power analysis for diagnostic model
modification indices

In this study, data were generated from a fully-speci-
fied LCDM for the given Q-matrix. However, the
DINA model parameters were estimated for item 4
such that the main effects for attributes 1 and 2 were
included in the generating but not in the estimated
model. As seen in Table 5, the modification indices
were quite powerful in the detection of this under-
specification for the large effect size conditions.
However, they were less powerful for the smaller



Table 4. Observed Type | error rates in the diagnostic model
MiIs simulation study.
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Table 5. Proportion of significant Mls in the diagnostic model
MIs power analysis.

o Level o Level

Effect Size Ml Sample Size  .100 .050 .025 .010 .005 Effect Size Ml Sample Size .05 .025 .0017
Large Jan (1) 500 099 050 023 005 004 Large Jan (1) 500 965 938 753
1,000 090 .045 .026 .011 .004 1,000 1.000 999 963

2,500 089 .048 .022 .007 .002 2,500 1.000 1.000 1.000

5,000 .087 .044 .022 .010 .005 5,000 1.000 1.000 1.000

Jan ) 500 098 052 020 .006 .001 Jan ) 500 952 930 744

1,000 099 .049 .020 .008 .008 1,000 1.000 1.000 976

2,500 09 .041 020 .010 .004 2,500 1.000 1.000 1.000

5,000 101 .058 .025 .005 .002 5,000 1.000 1.000 1.000

Smaller 41, 500 097 043 024 007 000  Smaller Jan (1) 500 342 238 049
1,000 091  .051 .025 .008 .005 1,000 499 375 105

2,500 090 .041 018 .009 .003 2,500 815 713 331

5,000 108 .058 .032 .011 .006 5,000 971 946 729

Jan ) 500 091 046 022 013 009 Jan ) 500 338 239 053

1,000 .088 .041 .021 .008 .005 1,000 478 .360 105

2,500 .088 .040 .021 .010 .006 2,500 .805 699 342

5,000 104 053 .028 .012 .006 5,000 964 939 729

Note: MI = modification index; o« = significance level. Type | error rate cal-
culated as the proportion of observed Mls for a given item parameter
exceeding the upper o critical value of the 172(0) +12(1) distribution,
where the critical value ¢ is such that %P(l (1) > =a

effect sizes where the items were not as discriminating
between masters and non-masters of the measured
attributes, especially for smaller sample sizes and
when using a significance level of o = .0017 to control
the familywise error rate for the 30 tests that would
result if the DINA was specified for all items.

DTMR fractions test data analysis

Having defined a one-sided score statistic appropriate
for use as a modification index for DCMs, affirmed
Type I error control when a mixture y* reference dis-
tribution is used, and explored the conditions in
which these modification indices have reasonable
power, we next investigated their utility to suggest
appropriate model revisions in practice. The data used
in this analysis were from a large-scale administration
of the Diagnosing Teachers’ Multiplicative Reasoning
(DTMR) Fractions Test, a diagnostic test designed to
assess middle grades teachers’ conceptual understand-
ings of fraction arithmetic (Bradshaw et al., 2014).
The DTMR Factions Test was specifically designed for
assessing examinee mastery of multiple attributes
using DCMs, in contrast to typical analyses where
DCMs are fit to existing response data from exams
developed for use with other (often unidimensional)
psychometric models.

The DTMR fractions test included 21 question
stems and 28 items in total. The test was designed to
measure four essential attributes of multiplicative rea-
soning: attending to referent units (o), partitioning
and iterating (o), identifying appropriate situations
to make multiplicative comparisons («3), and forming

Note: Ml = modification index; o = significance level. Statistical signifi-
cance assessed according to the J,%(0)+]7%(1) reference
distribution.

multiplicative comparisons (¢4). The test was admin-
istered to a sample of 990 in-service middle-grades
mathematics teachers from across the country.
Bradshaw et al. (2014) analyzed the response data
using a fully-specified LCDM with the initially
hypothesized Q-matrix given in Table 6. Note that
there is not an entry for item 20 because this item
was removed from the analysis due to difficulties in
scoring the responses. Item parameters removed from
the model on the basis of Wald test results led to the
seven changes in the Q-matrix noted in Table 6.

Q-Matrix modification indices for the DTMR
fractions test data

Q-matrix modification indices were used to test for
under-specification of the Q-Matrix using the esti-
mated model of Bradshaw et al. (2014). That is, for
each ‘0’ entry in the initial Q-matrix in Table 6, a Q-
matrix modification index was calculated to deter-
mine if there is statistical evidence that the item
measures that attribute. In an effort to reduce the
total number of hypothesis tests, only modification
indices corresponding to main effects and two-way
interactions of items specified as measuring multiple
attributes were considered. The results are given in
Table 7.

As there were 148 potential model modifications
considered in Table 7, a Bonferroni correction to con-
trol the familywise error rate at .05 required p <
(.05/148) for statistical significance. This corre-
sponded to a critical value of 11.55 for the §%*(0) +
177(1) reference distribution. From Table 7, we see
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Table 6. Initial Q-matrix for the DTMR fractions test.

Item o o0 o3 n
1 1 0 0 0
2 0 0 1 0
3 0 1 0 0
4 1 0 0 0
5 1 0 0 19
6 0 1 0 0
7 1 0 0 0
8a 0 0 1 14
8b 0 0 1 0
8¢ 0 0 1 0
8d 0 0 1 0
9 1 0 0 0
10a 19 0 0 1
10b 1 0 0 1
10c 1 0 0 1
11 1 0 0 14
12 1 0 0 0
13 0 1 0 1
14 1 1 0 0
15a 0 1 0 1
15b 0 1 0 19
15¢ 0 1 0 1
16 1 0 0 0
17 1 1 0 0
18 1 1 0 0
19 0 0 19 0
21 1 0 0 0
22 1 1 0 0

Note. DTMR = Diagnosing Teachers’ Multiplicative Reasoning; o; = attend-
ing to referent units; «; = partitioning and iterating; o3 = identifying
appropriate situations to make multiplicative comparisons; oy = forming
multiplicative comparisons.

The Q-Matrix is adapted from Bradshaw et al. (2014).

“Entry subsequently changed to 0 based on the statistical significance of
LCDM item parameters.

that 10 modification indices exceeded 11.55. There
were four statistically significant two-way interaction
terms, and in each case the corresponding main effect
was also significant. Hence, the Q-matrix modification
indices suggested six possible alterations to the initial
Q-matrix: specifying item 2 as also measuring oy,
specifying item 3 as also measuring oy, specifying
item 6 as also measuring oy and o4, and specifying
item 8d as also measuring o; and «,. This represents
a reasonable number of Q-matrix modifications for
the mathematics education content specialists to con-
sider as a means to improving the agreement between
the statistical model and the observed response pat-
terns. Bradshaw (2017) noted that item 3 was a diffi-
cult item with only 40% of examinees having
mastered o5, the only attribute the item was originally
specified as measuring, expected to answer the item
correctly and that an additional required attribute
may explain the difficulty of this item.

DINA model modification indices for the DTMR
fractions test data

In the second component of the DTMR Fractions test
data analysis, DINA model modification indices were

Table 7. Q-Matrix modification indices for the DTMR fractions
test data.

Parameter Ml
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*p < .05.

#p < (.05/148).

Multiplicative Reasoning;

used to determine if this popular DCM might be an
appropriate model for the DTMR data. At first, the
parameters of the DINA model according to the initial
Q-matrix in Table 6 were estimated. However, none
of the items were initially specified as measuring only
o4. This caused the attribute profile for masters of
only attribute 4 to be indistinguishable from the attri-
bute profile for masters of none of the attributes due
to the DINA model parameterization (Madison &
Bradshaw, 2015; Rupp & Templin, 2008). To resolve
this issue, item 10a was specified as measuring only
attribute 4 in a subsequent estimation of the DINA
model parameters, as the LCDM analysis indicated
that item 10a did not also measure attribute 1 as ini-
tially hypothesized.

As noted previously, the DINA model is equivalent
to the LCDM in the case of items measuring just one
attribute. For the 13 items now specified as measuring
two attributes, diagnostic model modification indices



Table 8. DINA model modification indices for the DTMR frac-
tions test data.

Parameter Mi Parameter Mi Parameter Mi

/ALS’-L(]) 321* )43’1 () 0.00 ;L]7']’(]> 0.00
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/AL-|0b'-|'(1> 0.00 )453’1 ) 0.00 ;“22,1,(1) 1.67
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;L]]’]’(]) 0.05 )4591’(2) 2.01

A,1,(4) 1.86 A5¢,1, (4) 0.05

Note. DINA = Deterministic Input Noisy And Gate; DTMR = Diagnosing
Teachers’ Multiplicative Reasoning; Ml = modification index.

*p < .05.

#*p < (.05/26).

were used to determine if inclusion of an omitted
main effect would significantly improve model-data
fit. These results are given in Table 8. If a Bonferroni
correction is used to control the familywise error rate
at .05 for these 26 tests, then a modification index
greater than 8.36 is considered statistically significant.
From Table 8, we see that there were three significant
DINA model modification indices and that the sug-
gested model modifications include: adding the main
effect for attribute 3 to the model for item 8a, adding
the main effect for attribute 4 to item 10b, and add-
ing the main effect for attribute 4 to the model for
item 10c. However, average estimated item parameter
values were similar to those in the smaller effect size
conditions of the simulation study, where estimated
power for 1,000 examinees was very low (about .10)
when controlling the familywise error rate at .05 for
30 tests (see Table 5).

Several of the results from the DINA model modi-
fication indices for the DTMR data support the argu-
ment that initially hypothesizing a DINA model is
inefficient. For example, consider the model specifica-
tion for item 8a. The original Q-matrix identified this
item as measuring attributes 3 and 4. In the LCDM
analysis of Bradshaw et al. (2014), neither the inter-
action between these two attributes nor the main
effect of attribute 4 were statistically significant and
the item was subsequently re-specified as measuring
only attribute 3. However, in the DINA model ana-
lysis, arriving at the same conclusion took an add-
itional step. In the first specification, the interaction
between attributes 3 and 4 was statistically significant,
but the DINA model modification indices indicated
that the main effect for attribute 3 should be added to
the model. When the model was re-specified accord-
ingly, the main effect for attribute 3 was significant
(z=7.68, p < .001) but the interaction term was no
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longer statistically significant (z =0, p = .50). Thus,
it took a third model specification to arrive at the
same conclusion the LCDM analysis arrived at in two
steps: Item 8a only measures attribute 3. Therefore, an
analysis following the principle of hierarchy in statis-
tical modeling by beginning with a fully-specified
LCDM and subsequently removing non-significant
parameters would be the preferred approach.

Discussion

The primary aim in applying DCMs to the analysis of
item response data is to classify examinees according
to their mastery of multiple latent attributes.
However, misspecification in either the parameteriza-
tion of the DCM or its associated Q-matrix (or both)
can cause the accuracy with which examinees are clas-
sified to the correct mastery profile to diminish. There
are currently limited avenues for identifying such
sources of misfit which can be feasibly implemented.
The modification indices for DCMs defined in this
paper represent a computationally efficient inference-
based method for evaluating the appropriateness of a
diagnostic model specification at the item level and
determining if its Q-matrix is complete. They also
have the advantage of being a familiar model refine-
ment technique in the educational measurement com-
munity because of their widespread use in SEM. The
diagnostic model modification indices we defined apply
when a reduced DCM is fit and the addition of item
parameters from a more general DCM that would not
alter the Q-matrix entries is being considered, whereas
Q-matrix modification indices are used to test for the
addition of item parameters that would alter the Q-
matrix entries. The simulation study we conducted
made important strides in understanding the condi-
tions in which modification indices for DCMs will be
most useful.

In practice, we recommend initially estimating a
tully-specified LCDM and first using Wald statistics to
identify non-significant item parameters to consider
for removal. Note that some of the suggested modifi-
cations would change certain Q-matrix entries from a
‘1’ to a ‘0’ and some would not alter the Q-matrix,
such that this process tests for both model and Q-
matrix over-specification. Next, diagnostic model
modification indices can be used to address potential
model under-specification. If there are items measur-
ing many attributes, then some higher-order interaction
terms could be omitted in the initial specification, as they
can be computationally intensive to estimate, and diagnos-
tic model modification indices can be used to determine if
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their omission is statistically justifiable. Though initial spe-
cification of a DINA model proved inefficient in the
DTMR data analysis, practitioners choosing to initially fit
a reduced DCM such as the DINA model could use diag-
nostic model modification indices to justify their choice.
The DINA model modification indices in the simulation
study did have limited power in the small effect size condi-
tions, and we believe this is because the missing main
effects were quite small and as a result the intercept term
served to hide those effects overall. For example, in the
generating LCDM for the smaller effect size, the probabil-
ity of a correct response was .18 for masters of neither
measured attribute, .32 for masters of only one of the two
attributes, and .62 for masters of both attributes. Across
the 1000 replications of the 2500 examinee condition
where the DINA model was incorrectly estimated, the
mean probability of a correct response was .63 for masters
of both attributes, but was .25, the average of .18 and .32,
for masters of only one and for masters of none of the
attributes. Sorrel et al. (2017) also found smaller item par-
ameter sizes to adversely impact power of the score test in
the diagnostic modeling context, especially with small
samples. This underscores the need for items to be highly
discriminating between masters and non-masters of the
target attributes, which can be somewhat of an art form
for item developers. After addressing model misspecifica-
tion, Q-matrix modification indices can be used to detect
Q-matrix under-specification. The results of the simula-
tion study showed Q-matrix modification indices to be
very powerful in the detection of an incomplete Q-matrix.
The DTMR Fractions test data analysis illustrated this rec-
ommended process and how the incorporation of modifi-
cation indices for DCMs into an analysis of diagnostic
testing data can be useful in practice.

Though the conditions considered in our simula-
tion study are in no way exhaustive, they were care-
fully chosen so as to be reflective of those
encountered in practice such that it is reasonable to
assume these findings will be fairly generalizable to
empirical applications. In the simulation study, we
fixed the number of attributes to three in all condi-
tions, but in practice, tests can be designed to measure
more than three attributes, such as the DTMR
Fractions test which measures four attributes.
However, even when a test is designed to measure a
large number of attributes, each item typically only
measures one or two attributes, just like in our simu-
lation conditions, as writing complex items measuring
multiple attributes at once can be difficult. Though,
the number of Q-matrix modification indices to con-
sider will increase as the number of attributes meas-
ured by the test increases. For example, in the DTMR

Fractions test data analysis, we chose to restrict the
Q-matrix modification indices considered to only
main effects and two-way interaction terms for every
‘0’ entry in the Q-matrix. This meant that for every
item specified as measuring only one attribute, there
was one main effect and one two-way interaction
term to consider adding for each of the three ‘0’ Q-
matrix entries for the item, for a total of six modifica-
tion indices. For these items, two more modification
indices would be considered for each additional attri-
bute the test was designed to measure. Similarly, for
items specified as measuring two attributes, there was
one main effect and two two-way interactions to con-
sider for both of the ‘0’ Q-matrix entries for the item,
for a total of six modification indices. For these items,
three more modification indices would be considered
for each additional attribute the test was designed to
measure. Thus, the three-attribute simulation study
may not have captured what would happen with, say,
a 10-attribute test, even if each item still only meas-
ures one or two attributes. In structural equation
modeling, many of the popular software packages
handle this issue of large numbers of modification
indices to consider by only reporting those that are
larger than a specified threshold value.

It is hoped that through the development of modi-
fication indices for DCMs and the evaluation of their
statistical properties, educational researchers will have
a valuable set of likelihood-based inferential proce-
dures that can be used to justify their choice of model
at the item level, to modify it as appropriate, and to
take full advantage of the flexibility afforded by the
LCDM family of models. This aligns with what
Joreskog (1993) referred to as a model generating
approach. An additional illustration of how modifica-
tion indices for DCMs fit in to this iterative process
of model refinement is described in Bradshaw (2017).
Thus, with the advent of diagnostic modeling families
and the development of modification indices for
DCMs, diagnostic model building will be able to
employ empirically driven methods to arrive at a
model that is substantively meaningful, reasonably
parsimonious, and statistically well-fitting.
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