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Abstract—This paper considers the problem of detecting
whether two databases, each consisting of n users with d
Gaussian features, are correlated. Under the null hypothesis, the
databases are independent. Under the alternate hypothesis, the
features are correlated across databases, under an unknown row
permutation. A simple test is developed to show that detection is
achievable above p® ~ %. For the converse, the truncated second
moment method is used to establish that detection is impossible
below roughly p® ~ ﬁ These results are compared to the
corresponding recovery problem, where the goal is to decode the
row permutation, and a converse bound of roughly p? ~ 1—n~%/¢
has been previously shown. For certain choices of parameters, the
detection achievability bound outperforms this recovery converse
bound, demonstrating that detection can be easier than recovery
in this scenario.

I. INTRODUCTION

Consider the following naive approach to database
anonymization in order to protect the privacy of individuals:
prior to public release, unique identifying information (e.g.,
names, user IDs) is deleted while other features are left un-
changed. It is now well known that this approach is vulnerable
to de-anonymization attacks, given another correlated database
with identifying information intact, see examples |1]-[4].

The database alignment problem models the scenario above
via two correlated databases. Specifically, the entries in the
first database can be matched to the entries in the second
data via a random permutation. For a pair of matched entries,
the features are correlated (and are otherwise independent).
The goal is to recover this unknown permutation using only
the two correlated databases. Cullina et al. [5] proposed an
information-theoretic model for the recovery problem, and
derived achievability and converse bounds for the discrete
memoryless version. Subsequent work extended this analysis
to the case of Gaussian features [6]. More general distributions
are studied using typicality in [7] and partial recovery for
correlated Gaussian databases is studied in [8]. Other gener-
alizations such as databases with random feature deletions [9]
and repetitions [10] have also been recently studied.

The Gaussian database alignment problem is also equivalent
to a certain idealized tracking problem studied by [11], [[12],
inspired by the application of particle tracking to infer the
trajectories of objects from sequences of still images. Note that
in this setting, the pairings are coupled whereas reconstruction
of the planted matching in random bipartite graphs proposed
by [13], [14] deals with independent random pairings.
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We also note similarities between database alignment and
the problem of graph alignment. In this setting, the edges
of two random graphs are correlated and the node labels
are shuffled. The recovery problem is to find the true node
labeling, which is equivalent to a certain quadratic assignment
optimization problem. Since randomness is associated with the
edges that are simply pairs of nodes, neighbors create side in-
formation about a user during relabelling. Initial work [15] on
this problem in the information theory literature proposed the
correlated Erdos—Rényi graph model with dependent Bernoulli
edge pairs. Subsequent work considered the recovery problem
for the Gaussian setting [16], specifically correlated Gaussian
Wigner matrices. Other recent papers have considered the
corresponding detection problem for graph correlation [17],
[18] and it is now known [19], [20] that detecting whether
Gaussian graphs are correlated is as difficult as recovering the
node labeling.

This paper considers the problem of detecting whether a
pair of Gaussian databases is correlated. This problem can be
phrased a binary hypothesis test where, under the alternate
hypothesis, the databases are correlated as in the recovery
problem, whereas under the null, the databases are independent
independent. Similar to the previous work, the challenge is
that the user identities are unknown and shuffled. Upper and
lower bounds on the correlation needed for reliable detection
are derived. Due to space limitations, full proofs will appear
in the arXiv version.

II. PROBLEM STATEMENT

Notation. Random column vectors are denoted by capital let-
ters such as X with corresponding transpose X . A collection
of n random vectors is written as X" = (X1,...,X,,). The
n X n identity matrix is denoted by I,,, the n x n all-ones
matrix by 1,, and the length-n all-zeros column vector by
0n. Let [n] £ {1,...,n} and define S, as the set of all
permutations over [n]. For a given permutation o € S,,, let
o; denote the value to which o maps i € [n]. The notation

Xi,.., Xy id Px means that the random vectors X1,..., X,
are independent and identically distributed (i.i.d.) according
to Px, or, equivalently, X1,..., X, ~ Pg?”. E. X represents
the expectation of X where X ~ P,. We use N(u,Y) to
represent the multivariate normal distribution with mean vector
v and covariance matrix ¥. For two probability measures

P and @, with a slight abuse of notation, we write g to

represent the Radon-Nikodym derivative %. For two real-

valued functions f(xz) and g¢(z), the standard asymptotic



notations f(z) = O(g(x)) and g(z) = Q(f(z)) imply that
there exist C' and zo such that |f(z)] < C'|g(z)| for all
x > xzo; f(z) = o(g(x)) and g(z) = w(f(z)) mean that
f(z)/g(x) — 0 as z — oo.

Q

A. Model
In our considerations, a database is a collection X" =
(X1,...,X,) of nii.d. random vectors in R? where n is the

number of users (or entries) and d is the number of features.
For i € [n] and k € [d], let Xi(k) denote the k™ feature of the
i user.

We say that a pair of databases X" = (Xy,...,X,,) and
Y™ = (Y1,...,Y,) is correlated with permutation o if, for
some o € Sy, we have that (X1,Y,,),...,(X,,Ys,) id Pxy
for some joint distribution Pxy over R? x R9. We will focus
on the special case of Gaussian correlated databases. Define
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for some correlation coefficient —1 < p < 1. Then, Pxy =
N®4(0,,%,), i.e., the features of a matched pair of entries are

distributed as (X7, V"), (X v ) B A(0,, ).

B. Detection

Consider the following binary hypothesis testing problem.
Under the null hypothesis Hy, the databases X" and Y™
are generated independently with Xq,..., X, Y7,....Y, i
N(04,14). (This is equivalent to generating the databases
as above with the covariance matrix X,.) Let Py denote
the resulting distribution over X", Y ™. Under the alternate
hypothesis H,, the databases X" and Y™ are correlated
with permutation o for some (unknown) o € S, and some
correlation coefficient p # 0. Let P, denote the resulting
distribution over X", Y". Summarizing,

Ho: (X1,Y1),..., (X0, Yy) S N®4(0,,1,)

. (1)
Hi: (X0, Y)) s (X, Yo, ) S N®(0,,5,)

for some o € S,,.

Given only the databases X" and Y" (and not the permuta-
tion o), a test ¢ : RTX™ x R¥X™ — {0, 1} guesses whether the
null, (X", Y™) = 0, or alternate, $(X™,Y™) = 1 hypothesis
occurred. For a given n and d, the risk of a test ¢ is

R(6) £ Po{¢(X", ¥™) = 1} + max Py, {(X",Y") = 0}

and the minimax risk is R* £ infy R(¢) where the infimum
is over all (measurable) decision rules. Note that this is the
smallest possible sum of false alarm (FA) and missed detection
(MD) probabilities.

C. Recovery

Consider the following recovery problem. Gaussian corre-
lated databases X™ and Y™ are generated according to

(X1,Y5)s e (X0, Yy ) ii(}/\/’®d(()2,2]p) for some o € S,,,

and the resulting distribution is denoted as Py, to be con-
sistent with our detection notation. The goal is to decode
the permutation ¢ € S, given X™ and Y. Specifically, the
decoder is a function & : R¥*"™ x R9*" — G  We define the
probability of error

Puy(6) 2 max Py, {6(X",Y") # 0}

and the minimax probability of error P 2 inf; Pu. (&) where
the infimum is over all (measurable) decodersE]

III. MAIN RESULTS

Our achievability argument is based on a sum-of-inner-
products statistic 7' £ sign(p) >, ; el Y, with corresponding
test ¢7, that compares the resulting 7' value to a threshold t

0, sign(p) ZXZTY] <t
dr (X", Y") = b 2

1, sign(p)ZXiTY} >t.

Let ¢ be the optimal test over such fu;ijctions, ie., R(pr) =
inf; R(¢r,¢) and the minimizer ¢ € (Eq T, min,cs, By, T') =
(0, |p|nd) may depend on n, d, and p.

Theorem 1 (Detection Achievability). Let t = /4% with

v € (0,4p%). The risk of the sum-of-inner-products test ¢ for
the binary hypothesis testing problem is upper bounded by

R(¢7) < min

T 7e(0,4p2) P ( B ElgFA(v)) +exp < B ggMD(fY))

2
2

ool )
gup(7) = 1_1p2 (\/m_ m)
()

Thus, if p? = w(}), then R(¢r) — 0 as d — oo. The
proof can be found in Section [IV]

Our converse exhibits a similar d—asymptotic behavior, up
to a constant factor, but also dependent on n.

Theorem 2 (Detection Converse). If

Vinn
p2:0<ed ) and d = Q(eV"") |
n

then the minimax risk for the binary hypothesis testing prob-
lem (1) goes to 1, i.e., R* — 1 as d, n — oc.

The proof uses a truncated second moment method and is
outlined in Section (The full proof is available on arXiv.)
It follows immediately from our results that for fixed n, the
minimax risk undergoes a phase transition at p* =~ é. That

"Note that prior work [6] considers the average-case probability of error
with respect to a uniform distribution over permutations. However, owing to
the symmetries of the distribution, these two models are essentially equivalent,
and the results of [6] translate directly to minimax bounds.



is, for p? = w(}), detection succeeds with high probability
and, for p> = o(%), the risk of any test is lower bounded
by an absolute constant. Compared to the behavior of the
recovery problem as determined in 6], and reproduced in our
notation below, for sufficiently large d, our detection boundary
is significantly lower. However, our achievability and converse
bounds do not exhibit the same scaling with respect to n.

Theorem 3 (Recovery Achievability, [6| Theorem 1]). The
probability of error of the maximum likelihood (ML) decoder
OomL = argmax,cg Py, (X", Y") is upper bounded by

a1—(n(1—p)%)"

P (64) < n(1—p?
( ML) ( P) 1—n(1—p2)%

Consequently, if p? = 1 — o(n*%), then the ML decoder
returns the true permutation with high probability.

Theorem 4 (Recovery Converse, [6| Theorem 2]). The mini-
max probability of error is lower bounded by

Pro>1— (n(1— p2)%(1+e<d)))*2 —4(n(1 - p2)%(1+e(d)>)*1

err

where €(d) — 0 as d — .

Consequently, if p2 = 1 — w(n~1), then the probability of
error of any decoder is close to 1.

In Figures |1| and |2} we have the plotted upper and lower
bounds on the squared correlation coefficient p? required to
attain a specified risk R that follow from Theoremsand
For comparison, we have also plotted the achievable and
converse results from the recovery problem from Theorems

2For the plot of Theorem we assume the constants in the bound are 1,
Tnn

v Ton .
i.e., we plot p? = ET and d = eV!™™ This is primarily to show that the
converse bound has the same scaling behavior as our achievability bound.
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Fig. 1. Upper and lower bounds on the squared correlation coefficient p?
needed to attain risk R = 0.1 for n = 10000 users, with respect to the
number of features d.

andF_fI Specifically, any recovery scheme can be converted into
a detection scheme by first estimating the permutation as & and
then thresholding the statistic sign(p) ", X7 Y5,. These plots
show that detection is easier than recovery.

IV. ACHIEVABILITY

For our proposed sum-of-inner-products statistic 7', the mo-
ment generating function (MGF) can be calculated explicitly
under Hy and H;.

1

~w=ToD the MGF under

Lemma 5. For <AL

1
. n(1+[pl)”
H1 A

E1jo[eXT] = (1 —20A]p| —n®A2(1 — o))~

For |\| < 1, the MGF under Hy is

Eo[e)‘T] = (]E1|U[6AT]){/):0 — (1 _ n2)\2)fd/2 .

Proof. Observe that under Py, X; = pY,, ++/1 — p?Z; with

Z, NN (0,1;) and independent of Y, for any i € [n]. For

some A, we get

IEl|tf [eAT]

= Eyj, | exp (Asign(p) iXiTYJ‘H
i,

By pitnonn | o0 (AD_(01Vo, +sign(p)v/1= 92275 )|
0,J
(@ E {exp ()\\p| Z YjTYUi>
¥

-E[exp (/\sign(p)m ;Z:<ZY])) | YnH

J
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Fig. 2. Upper and lower bounds on the squared correlation coefficient p?
needed to attain risk R = 0.1 for d = 1000 features, with respect to the
number of users n.



g {exp (/\|p| ZY]TYm)

0]

: UE[exp (Asign(p)mZJ(Zj:YJD | YnH
)]

where (a) follows by the law of total expectation, (b) the
conditional independence of Z" given Y and (c) the moment
generating function of a normal variable. Due to the bijectivitzy
of a permutation, we observe that ), ; Y]-TYoi = HZ ; YJH .
To simplify the notation, let ¥ = }:.Y; so that % ~
N(0,1;). Plugging back into the last equation and using the
moment generating function of the x? distribution, we get

(el X))

—d/2

© T (1 =p%)
= E{exp ()\\p| ZY] Y,. tn————
i

vt o
= (1—2nX|p| = n®N*(1—p?))

for 1 —2n\|p| —n?A?(1—p?) > 0. By completing the square,
we can rewrite the constraint as

1 —2nM|p| — n?A%(1 — p*) >0

ol ) 1 P’
A
“ ( Taa-m) Swa-p) Twea- 2y

RIS

For Eq[e*T], we simply note that the null model is equal to the
alternate model evaluated at zero correlation, Py = (Py|,)|,=o0,

and thus Eg[e?T] = (E1|a[6>\T]) |p=o' u

Proof of Theorem|l| From the definition of the threshold
test , we have that

<A< —— .
n(1+pl)

R(¢r) = min (IP’O{T >t} + max Py, {T < t}) .

Next, we apply the Chernoff bound. For the false alarm
probability, we have

Po{T >t} < I/{ligexp ( — A +1n (Eo[e’\T]))

d
= min exp( — M — - In(1 — n?\?
0</\1<71Lep< Al 2 ( n/\))

d
= &Xp ( - §QFA('Y))
where the last step follows from plugging in the optimal value
Nia = =3¢ T/ az + (5)% defining v = (25)* € (0,4p%),
and simplifying. Similarly, for the missed detection probabil-
ity, we have

IP>1|0{T < t}
< minexp (M + In (Bxjp 7))

= min

d
exp ()\t — —In (1 +2nAp| — n®X*(1 — p?) ))
0<>\<m 2

d

= exp ( - §gMD(7))

where the last step follows from plugging in the optimal value

Mo = st + 4 — /G (5% defining 7 =
(25)? € (0,4p?), and simplifying.
By using the inequality Inax < z — 1 and the concavity of

the square root function, we get
V2 -1
B 0
Set v = p?. By using the inequalities for x € (0,1] Inz < 2—

5 21 and 2*(VT+2-1) <VI+23-1<z(VT+o-

1), one can show that
awp(p°) > gealp®) — (V2 = 1)%p.
alp2

Finally, the concise (but loose) upper bound 2exp ( — &)
follows by combining these results.

gra(y) >

V. CONVERSE

We begin with the well-known fact that the minimax risk
is lower bounded by the Bayes risk. For a prior distribution 7
over the set of permutations S,,, we define the corresponding
Bayes risk as

R}, £ inf Bo[o(X",Y") =

1 +EomnPrjo [¢(X™,Y™) =0] .
Then, R* > R} for any prior m. The Bayes risk stems from
a binary hypothesis test between simple hypotheses, Py for
the null and the mixture distribution Py = E, P, for the
alternate. We assume that Py and [P; are mutually absolutely
continuous and we define their likelihood ratio as L £ PPy /.
Thus, we immediately have that

1-R* < 1-R* = dpv(Po, Py ) = Eo |L—1]| </EoL2—1 (3)

where the last step is due to Cauchy-Schwarz inequality and
the total variation distance is drv (P, Q) = %]EQIS -1

This second moment method (i.e., upper bounding Eq L?)
is a common approach to find the lower bound for hypothesis
testing problems (see, e.g., [17]], [22], |23]). The composite
law under H; makes it challenging to compute EqL? =
Eo(Egnn P1jo / Po)2. The lemma below gives an alternative
expression by using Fubini’s theorem to exchange the order of
integration. To the best of our knowledge, this approach was
introduced by Ingster and Suslina in the context of a Gaussian
location model (see |24, Equation (3.66)]).

Lemma 6 (Ingster-Suslina method). Ler Py, and Py be dis-
tributions with o from a parameter space. Given a prior on the
space of o, define the mixture distribution as P1 = Eqor Py 4.

. - iid ~ Py sP15
Then, with 0,6 ~ 7 and G(0,5) = [ —z112

o, we have

anﬂ' ]P1|J
Po

This leads to our first converse result.

2
Eo L? = E, ( ) =E, 5n G(0,5) .

Lemma 7.

R*>1—/(1—p?)~dn —1



Consequently, if p*> = o(ﬁ), then R* — 1 as n — oo or
d — oo.

Proof. The proof uses a version of [17, Proposition 1], Lemma
E] with 7 = Unif(S,,) and Equation (3). |
A. Truncation

To sharpen the converse, we truncate the likelihood ratio
by conditioning on a carefully-chosen event that occurs with
high probability under H;, following the approach of [17],
[22]. For an event I',, define the truncated likelihood ratio as

L =E,ur Ly1r, where L, =Py, /P, .

Then, by the triangle and Cauchy-Schwarz inequalities com-
bined with the fact that L < L =E, .., L,, we get

1-R*<1-R!=FEg|L—1|<Eg|L—1|+Eo(L - L)
:\/EOE271+2(17E0Z)+(17E0E) L@

Thus, if we simultaneously lower bound E L and upper bound

on Ey L?, we can obtain a converse bound. Observe that by
Fubini’s theorem, the truncated first moment becomes

IEO -Z:/ = ]EO ED'NTK‘LD']]-FG = ]EO'NWEO LD'II-FU = ]EO'N‘IT]PlltT(FO') .

Setting m = Unif(S,,), we will select an event I', that occurs
with high probability under H; for any o € .S,, which in
turns shows that [Eq L —1. Moreover, Lemma [6|can be used
to compute Ey L? as before.

For a permutation o € Sy, let F, = {i € [n] : i = 0;} be
the set of corresponding fixed points and let NY = |F|. For
any o, define the truncation event ', as

N
Lo 2 ﬁ ﬂ {ZXiTXi>wk,ZYiTYi>wk,

k=k* TCF, lieT i€T
|T|=k
sign(p) ZXZ-TYW < vk} Q)
€T
where k* € [n], wy > 0 and vy, for k = k*,..., NY will be

chosen later.

In the following, we will bound the first and sec-
ond moments of the truncated likelihood ratio L =
Egntnif(s,,) %11"6 where Py and Py, are the likelihoods

of the binary hypothesis testing problem with prior distri-
bution Unif(S,) on S,.

Lemma 8 (Truncated First Moment). If

wy = dk —2Vdkry, and v, = |p|dk + 4 |p| Vdk sy,

d
with £>1"k> ln@ and
2 k
1—p2? 2
S > 2p lnel:jmaux{l,\/g lne:}

forgllk =k* ...,nwith k* :~w(1) and d = Q(lnk%), then
EoL—1lasn—oowithEgL>1—0O(1).

Proof outline. As discussed above, it suffices to upper bound
Py, (T') for any o where I'S is the complement of T';. Upon
applying the union bound, we get

N7
Py, (T5) < Z Z Q]P’ua(z I1X:* < wk)

k=k* TCF, €T
|T|=k
+ ]P1|0' (Slgn(p) Z XZTYU.; > Uk?) :

icT
Then, the proof follows by applying two concentration in-
equalities: the Laurent-Massart lemma [25, Lemma 1] and
Lemmafrom the Appendix, applied to the first and second
terms, respectively. |

Lemma 9 (Truncated Second Moment). If the conditions
of Lemma hold by choosing k* = e\/lf—n_l and p? =

o (%T) then Eg L? — 1asn — oo with Eo L? < 14+0(1).

Proof Sketch. The proof follows by examining the behavior
of Eg L? for small and large number of fixed points of a
permutation separately as

Eo L? = Eg L*1{N{ < k*} +Eo L*1{N{ > k*} .

2 2

Then, the aim is converted into finding two functions of k*,
call them f;(k*) and fo(k*), such that

for p? < f1(k*), (I)=1+4O(1) and
for p* < fo(k"), (II) = O(1)

both hold. Combining them, we find the desired condition:
For p? < min{f,(k*), fo(k*)}, Eo L? = (D+(D) = 1+0O(1) .

In order to find a converse region of p? as large as possible —
as tight as possible — we need to choose k* as the maximizer

of min{ f1(k*), f2(k*)}. .

Proof of Theorem 2| Apply Equation (@) along with Lemma|g]
and Lemma E] by setting the prior distribution as © =

Unif(S,), if p? = o(S9—) and d = Q(In &) = Q(eVIm)

for k* = —=—, then one gets R* — 1 as n — oc. [ |
RV ey
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APPENDIX

Lemma 10 (Gaussian chaos). Let X ~ N(0,1;) and A =
O + D be a symmetric matrix where D = diag(«) with a; =
Aj; for i € [d] and O is the off-diagonal part of A with
A= (A1,...,\q) eigenvalues of O. For t > 0,

P(XTAX —EXTAX >t) <2exp (—1t6

{ t 1 t 1 })
n 29 ’ 2 .
2lally Nalle 12X Mo
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