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Abstract—Although mission-critical applications require the
use of deep neural networks (DNNs), their continuous execution
at mobile devices results in a significant increase in energy con-
sumption. While edge offloading can decrease energy consump-
tion, erratic patterns in channel quality, network and edge server
load can lead to severe disruption of the system’s key operations.
An alternative approach, called split computing, generates com-
pressed representations within the model (called “bottlenecks™),
to reduce bandwidth usage and energy consumption. Prior work
has proposed approaches that introduce additional layers, to the
detriment of energy consumption and latency. For this reason,
we propose a new framework called BottleFit, which, in
addition to targeted DNN architecture modifications, includes
a novel training strategy to achieve high accuracy even with
strong compression rates. We apply Bott1leFit on cutting-edge
DNN models in image classification, and show that BottleFit
achieves 77.1% data compression with up to 0.6% accuracy loss
on ImageNet dataset, while state of the art such as SPINN loses
up to 6% in accuracy. We experimentally measure the power
consumption and latency of an image classification application
running on an NVIDIA Jetson Nano board (GPU-based) and
a Raspberry PI board (GPU-less). We show that BottleFit
decreases power consumption and latency respectively by up to
49% and 89 % with respect to (w.r.t.) local computing and by 37%
and 55% w.r.t. edge offloading. We also compare BottleFit
with state-of-the-art autoencoders-based approaches, and show
that (i) BottleFit reduces power consumption and execution
time respectively by up to 54% and 44% on the Jetson and
40% and 62% on Raspberry PI; (ii) the size of the head model
executed on the mobile device is 83 times smaller. We publish the
code repository for reproducibility of the results in this study.

Keywords-Split Computing, Split Deep Neural Networks, Edge
Computing

I. INTRODUCTION

Emerging mobile applications, such as real-time navigation
and obstacle avoidance on drones [[1]-[3]], increasingly require
the execution of complex inference tasks. The key challenge
in supporting these applications is that state-of-the-art deep
neural network (DNN) models are characterized by computa-
tional requirements that go far beyond what the vast majority
of mobile devices can offer today. Recent trends approach this
problem by (i) reducing model complexity using knowledge
distillation (KD) [4] and model pruning/quantization [5], and
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Fig. 1: Pros and cons of edge, local and split computing.

(if) designing lightweight models such as MobileNet [6] and
MnasNet [7]], at the expense of significant accuracy loss, e.g.,
up to 6.4% compared to the large convolutional neural network
(CNN) model ResNet-152 [J8]].

An alternative approach is edge computing [9]—[11]], where
the execution is completely offloaded to edge servers. While in
some scenarios high-throughput links are possible — e.g., a 5G
link in Line of Sight (LoS) — the channel quality may suddenly
fluctuate, thus impairing performance. For instance, protocol
interactions triggered by mobility and impaired propagation
have been proven to induce erratic capacity patterns even in
high-capacity 5G links [[12]. Moreover, most Internet of Things
(IoT) devices do not support high data rates, and instead rely
on lower-power technologies such as WiFi and LoRa [[13]], the
latter having maximum data rate of 37.5 kbps due to duty
cycle and other limitations [14].

The challenging edge-device dilemma can be tackled with
split computing [15], which is depicted in Fig. [} The idea is
to split a larger DNN into head and tail models executed at
the mobile device and edge server, respectively. In the most
advanced splitting strategies, the original model is modified by
introducing a “bottleneck” layer [16]-[22]. The core intuition
behind this strategy is to let the part of the model before
the bottleneck learn a compressed feature representation. This
way, the output tensor of the head model — which is designed
to be smaller than the input size — is transmitted over the



channel to the edge server instead of the input data. The
compressed representation is then used by the tail network to
produce the final prediction output (e.g., classification), which
is sent back to the mobile device. Notice that different from
federated learning [23]], training is performed offline (e.g., at
edge/cloud servers), while split computing occurs at runtime.

Challenges. The success of split computing critically hinges
on its capability to substantially decrease energy and latency
with respect to traditional computational paradigms. In other
words, the key issue is to design bottleneck architectures that
can achieve the best trade-off between head model compres-
sion and tail model accuracy. This problem is extremely
challenging, since the introduction of a bottleneck with high
compression rate usually comes to the cost of severe detriment
in accuracy. The key innovation, therefore, would be to design
custom-tailored training strategies to maintain high accuracy
despite the bottleneck compression.

We summarize below the core contributions of this paper.

e We present BottleFit, a novel framework for split
computing. The key innovation of BottleFit is a novel
multi-stage training strategy to achieve high accuracy even
with strong compression rates. In short, in the first stage
we pretrain encoder and decoder structures built around the
bottleneck to mimic the intermediate representations in the
original pretrained model (without bottlenecks), while freezing
parameters in the subsequent layers. Then, we perform a re-
finement stage where we adapt the compressed representation
learnt in the first stage to a target task;

e We apply BottleFit on cutting-edge CNNs such
as DenseNet-169, DenseNet-201 and ResNet-152 on the
ImageNet dataset, and compare the accuracy obtained by
BottleFit with state-of-the-art local computing [6] and
split computing approaches [[16]-[19]], [21]], [24]. Our training
campaign concludes that BottleFit achieves up to 77.1%
data compression (with respect to JPEG) with only up to 0.6%
loss in accuracy, while existing mobile and split computing
approaches incur considerable accuracy loss of up to 6% and
3.6%, respectively. For the sake of completeness, we com-
pare BottleFit with an autoencoder-based approach, which
loses up to 16% in accuracy with respect to BottleFit.

e We experimentally measure the power consumption and
latency of an image classification application. We consider two
configurations (i) a Jetson Nano board (GPU-based) commu-
nicating with the edge server (a high performance Laptop)
using WiFi and Long-Term Evolution, and (ii) a Raspberry
PI board (GPU-less) communicating using LoRa. We show
that BottleFit decreases power consumption and latency
respectively by up to 49% and 89% with respect to (w.r.t.)
local computing and by 37% and 55% w.r.t. edge offloading.
Notably, our head model is 83 times smaller compared to state-
of-the-art autoencoder-based approaches.

e Finally, we release the code repository of BottleFit
and trained model weights produced in this study to ensure
reproducibility]l]

Uhttps://github.com/yoshitomo-matsubara/bottlefit-split_computing

II. RELATED WORK

Many different aspects of mobile edge computing have been
extensively investigated [25], [26]. The key assumption of
edge-based computing is that wireless links are stable and high
capacity, which is seldom the case in many practical scenarios.
For this reason, split computing was introduced to divide the
computation between the mobile device and the edge [15].
Early contributions, such as [[15]], split the neural model while
leaving unaltered its architecture. This approach has been
shown to grant limited improvement over traditional local or
edge computing in most application scenarios. Building on this
framework, other contributions introduce compression at the
splitting point [27] and consider autoencoders and generative
models to provide computing options alternative to local and
edge computing [28|]. SPINN [29] improves the performance
Neurosurgeon by introducing “early exits” in existing models,
but also incurs a significant deradation of the original accuracy
in complex tasks.

In this paper, we focus on bottleneck-injected models to
realize effective and efficient split computing. Most of the
existing studies train the altered models from scratch [16],
[18]], [[19]. Others reuse pretrained parameters in available
architectures for the tail model, while re-designing and re-
training the head portion to introduce a bottleneck [17]], [21]],
[22]. These latter contributions introduce the notion of Head
Network Distillation (HND) and Generalized HND (GHND),
that use knowledge distillation in the training process. None of
these studies provide a comprehensive discussion on training
methodologies, and the bottleneck-injected models are either
not assessed [30] or assessed in relatively simple classification
tasks [[16]—[20]] such as minilmageNet, Caltech 101, CIFAR-
10 and -100 datasets. For example, CIFAR datasets present an
input RGB image of 32 x 32 pixels, that is, transferring the
image would require a very short time and the compression
granted by split computing strategies is likely unnecessary.
Furthermore, many modern applications require higher reso-
lution images and more complex classes. In this paper, we use
the large-scale ImageNet dataset [31]] for image classiﬁcation
where the most common input tensor size for CNN models is
3 x 224 x 224, which gives us a strong motivation to compress
tensors for split computing.

Some recent architectures make use of autoencoders at the
splitting point [32]. We thoroughly compare our approach,
where we directly modify the layers of the model to embed
a bottlenck, with those frameworks in Section and show
that BottleFit greatly improves accuracy. We note that
the introduction of autoencoders in the models increases the
overall computational complexity. For instance, compared to
DeepCOD [32]] our head model is 83 times smaller in the
worst case. This leads to a reduction in energy consumption
at the mobile device of up to 54% (on a Jetson Nano) and
449% (Raspberry Pi 4), as well as lower encoding time — up to
86% less on the Jetson Nano and 82% on the Raspberry Pi 4
— and overall execution time.

Zhttps://image-net.org/
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Fig. 2: (left) Split computing: the original model is redesigned
with a “bottleneck” and then split into head and tail sections.
(right) Example of split computing system. Note that the
training process is not split but done offline.

III. BorTLEFIT: PROPOSED FRAMEWORK

We first introduce the system model in Section [[II-A]
describe the bottleneck design in Section [[II-B] then we
present our new training strategy in Section and finally
illustrate the performance tradeoff guiding our system design
in Section

A. System Model and Preliminaries

The core idea behind split computing is to divide a DNN
into head and tail models, which are executed on the mobile
device and the edge server at runtime, respectively. The left
side of Fig. [2] shows an example of split computing with
bottlenecks, while the right side shows a concrete example
of a split computing system. When split computing is used in
our setting, the mobile device captures high-resolution images
(step 1), which are then fed to the head model, ultimately
tasked to produce a compressed representation by its output
tensor (step 2). The result is transmitted over the wireless
channel (step 3) and received by the edge server (step 4).
The compressed representation, then, is fed to the tail model
to produce the inference output such as predicted class label
(step 5), which is sent over the wireless channel (step 6) and
received by the mobile device (step 7).

In the following, the notation R indicates the set of real
numbers. Without loss of generality, we consider a deep
neural network (DNN) model defined as a mapping f(x;;0) :
R! — R° of an input representation x; € R’ to an output
representation x, € R°. By defining as L the number of
layers, the DNN mapping is computed through L subsequent
transformations given a model input x:

_J X j=0
OJ_{fj(Oj—qu) 1<j<L (1)

where o and 0 = {6,,...,6r} are the output of the j-th layer
and the set of parameters of the DNN. Note that f; can be a
low-level layer (e.g., convolution, pooling and fully-connected
layers), but also a high-level layer consisting of multiple low-
level layers such as residual block or “shortcut” in ResNet
models [8]], and dense block in DenseNet models [33]].

B. Bottleneck Design

To build and define the bottlenecks, we introduce encoder
and decoder structures within an original pretrained model.
Specifically, we replace the first [y layers in the original
model with an encoder and decoder. The former structure is
positioned from the first layer to the bottleneck, and plays a
role of “compressor”, generating a compact tensor from the
input sample. The latter is composed of the layers as part of
the tail model that decompress the encoded object, i.e., the
bottleneck’s output to recreate the output of an intermediate
layer. We point out that while traditional autoencoders com-
press and reconstruct an input, we modify the layers to operate
in an encoder-decoder fashion, which (i) maps the model input
to an intermediate output and (ii) is trained to execute a given
downstream task without excessive loss in accuracy. We show
in Section that autoencoders lose about 16% in accuracy
with respect to our approach.

Clearly, the design of the encoder/decoder (e.g., position in
the model, dimension of the bottleneck) influences the tradeoff
between computing load at the mobile device, overall com-
plexity and compression gain, which ultimately determines
key performance metrics such as energy consumption, delay
and accuracy. Thus, when introducing bottlenecks, we need
to carefully (i) design the encoder and decoder; (ii) choose
the bottleneck placement in the head model; (iii) preserve the
accuracy of the unaltered original model as much as possible.
The following sections address all these aspects to build the
BottleFit framework.

Bottleneck modeling: Given an original pretrained model
consisting of N layers, we design and introduce bottlenecks
to the model, and retrain the bottleneck-injected model to
preserve accuracy as much as possible. A bottleneck-injected
model is composed of n < N layers and takes as input a
tensor whose shape is identical to that for the original model.
As illustrated in Fig. 3] the head model # and tail model 7 are
built by splitting the model at the bottleneck layer B (=fx~).
The head model H overlaps with the encoder fe,., composed
of k* layers i.e.,

hg=09=1=x
h; = f;(0;_1,0;)
hy« = B(og~-1,05)

where 0 is the set of parameters of the bottleneck layer 3, and
hj« indicates the bottleneck representation to be transferred
from the mobile device to the edge server in inference session.

H:fenc: 1§j§k*—1, (2)

Classifier

(k" +d)™ - n*" layers

Fig. 3: Model components: encoder, decoder and classifier.
Note that the last component, classifier, consists of the last
(n — (k* 4+ d)) layers in the original pretrained model.



The bottleneck representation hy« is then fed to the tail
model 7, which consists of the decoder fg.. (d layers where
leg = K* 4 d) and the remaining (n — [q) layers in the original
model.

/ _{ to = hy-
T=4 "7 tjrs1=fi(0j1,0;) k <j<la
tj—kt1 = [j(0j-1,0;) lea<j<n )

We remark that different from traditional autoencoders, we
do not create additional layers for the bottleneck, thus the
overall complexity of a bottleneck-injected model will not
increase from that of the original pretrained model. Instead,
to introduce bottlenecks we modify the head portion of the
original pretrained models that are often overparameterized.

Encoder-Decoder Implementation: To obtain the bottle-
neck, we then define a new sequence of encoder and decoder
layers. Specifically, given a sequence of the first layers in
the original pretrained model, we design encoder-decoder
architectures using the following steps:

1) Decompose high-level layers (e.g., dense blocks in
DenseNet [33|] and residual blocks in ResNet [8]]) in the
sequence into low-level layers such as convolution, batch
normalization and ReLU layers;

2) Prune a subset of the layers and define a new sequence
by the loq remaining layers. If necessary, a set of new layers
can be added: deconvolution layers for upsampling after the
bottleneck point and/or pooling layers for better convergence;
3) Determine the location of the bottleneck in the new se-
quence (k*-th layer in the o4 layers);

4) Adjust layer-specific hyperparameters of layers such as
number of output channels, kernel size and kernel-stride to
have the sequence’s output shape match that expected by the
remaining layers in the original pretrained model.

We use convolution layers to create the bottleneck at the
k*-th layer (1 < k* < l¢q) since convolution layers allow us
to control their output tensor shape with respect to channel,
height and width. Then, we choose 2 consecutive convolution
layers in the new sequence to build bottlenecks oz = o~ at
the k*-th layer defined in the previous section, and the follow-
ing layers gradually decode the compressed representation. To
achieve further compression, we also reduce patch size (height
and width) of the bottleneck representation. We use a slightly
larger kernel-stride size in the early convolution layer(s) to
reduce all the output channels, width and height of the output
tensor, and introduce a deconvolution layer after the bottleneck
layer so that the decoded representation can match the tensor
shape expected by the following layers.

C. Multi-Stage Training Strategy

Our core intuition to preserve accuracy is to maximize
the performance of the encoding and decoding capabilities
of the layers neighboring the splitting point to produce an
output preserving the overall task performance. Specifically:
(i) the training strategy should be sophisticated enough to
train low-complexity encoders fe,c and (ii) the following

Fig. 4: Proposed multi-stage training method. It is optional to
freeze the encoder’s parameters in the stage 2.

modules including the decoder should adapt the compressed
representations to the downstream tasks.

Figure illustrates our proposed multi-stage training
method for bottleneck-injected models. We focus on the train-
ing of the compressed bottleneck representations, and adapt the
learnt representations to the target task, which in this study is
image classification on the ImageNet dataset. In the following,
we will refer to the original and modified models as teacher
and student models, respectively.

Stage 1 — Pretraining Encoder-Decoder: This stage fo-
cuses on training both the encoder f.,. and decoder fg. in
the modified model to reconstruct the representations of the
corresponding layer in the original model. At this stage, we
use a loss function — Generalized Head Network Distillation
(GHND) — which considers the output of multiple layers in
the model:

Lere() = Aealltea(®) = faee fenc(@)) |3+ Asllt; () =5 ()13,

jeJ

“4)
where t.q denotes a function consisting of teacher’s layers to
be replaced with the encoder fe,. and decoder fg. in the
student model. For example, the function ¢.4 for DenseNet-
169, DenseNet-201 and ResNet-152 consist of layers until
(including) the 2nd transition layer in DenseNet-169 and -
201 [33]], and the 2nd block in ResNet-152 [8], respectively.

j is a loss index for a pair of layers that are components

of classifier in teacher and student models (i.e., these layers
are frozen and in neither encoder nor decoder), and ¢; and
s; denote teacher and student model functions of input data
x for the loss index j (i.e, intermediate outputs of layers in
teacher and student models), respectivelyE] . is a balancing
factor and set to 1 in this study. Importantly, we consider the
outputs of frozen layers, in addition to those from the trainable
layers during the head network distillation process.

3For simplicity, we define s 4 as a nested function using the first K; layers in
student model i.e., s;(z) = fk; (fr;—1(.-.(f1(2)))), and the same applies
to teacher model.



Stage 2 — Adapting Bottleneck to the Target Task: In this
stage, we fine-tune the remaining components of the model
to suppress reconstruction errors produced by the encoder-
decoder pair while optionally freezing the parameters of the
encoder as illustrated in Fig. 4] The classifier learns repre-
sentations for the downstream task adopting the bottleneck
representations learnt to reconstruct the output of the teacher’s
head model.

We test different approaches to fine-tune the models with
encoder-decoder we pretrained in the Ist stage. One could
simply use a conventional fine-tuning (FT) method that mini-
mizes a task-specific loss L, €.g., a standard cross entropy
loss Lcg defined in Eq. E] for classification

exp (s(z,y))

5 ec 5D <s<z,j>>> o ©

where z and y indicate an input image and the associated class
label respectively. C is a set of class labels (|C| = 1,000 for
the ImageNet dataset), and s(z, j) is a model’s predicted value
for a class j given an input image z. We can use knowledge
distillation (KD) instead of the conventional fine-tuning (FT)
approach, then minimize the following loss:

»CKD(xa y) = a'clask(xvy) + (]- - Oé)T2KL (q($)7p(l')) 9 (6)

where « is a balancing factor (hyperparameter) between hard
target (left term) and soft target (right term) losses. Ly i
a task-specific loss function, and it is a cross entropy loss
in image classification tasks ie., Ly« = Lcg. KL is the
Kullback-Leibler divergence function, where p(z) and ¢(z)
are probability distributions of teacher (soft-target) and student
models for an input x, that is, p(x) = [p1(x),--- ,pjc|(x)] and

q(z) = [ (), qc)(2)):
exp (22

exp (t(m,c) )
Sjec e (12 > jecep (22)
(N

where t(z, j) indicates a teacher model’s predicted value for a
class j given a resized input image x, and 7 is a “temperature”
(hyperparameter) for knowledge distillation that is normally
set to 1. We set «v to 0.5 as in [4].

Lcg(z,y) = —log (

pe(w) =

), qe(z) =

D. Latency-Power-Accuracy Trade-Off

We break down the end-to-end delay D as the sum of
the following random variables: (i) the head model execu-
tion time Dy (k*, f*), (ii) communication time D (k*, f*),
and (iii) tail model execution time Dy (k*, f*). The power
consumption at the mobile device is modeled as the sum
of the head model execution Py (k*, f*) and communication
Pyr(k*, f*) components. The distributions of these random
variables are dependent on the particular mobile device and
wireless technology, as well as the model design, and will be
computed experimentally. For simplicity, in the following we
will drop the k* and f* notations. The end-to-end delay then
iS Depe = Dy + Dy + D, while the power consumption at
the mobile device is Png = Py + Py. Intuitively, the design of

the model also influences the attainable accuracy. The tradeoff
between these measures guide our design and can be used to
find the best configuration given system-level parameters.

IV. BoTTLEFIT ACCURACY EVALUATION

In this section, we describe baseline methods and compare
their performance with BottleFit. Specifically, we will
consider ImageNet (ILSVRC 2012) [31]], a popular large-scale
benchmark dataset for image classification. For ResNet-152,
we design two splitting points, called Splitting Point 1 (SP1)
and Splitting Point 2 (SP2).

Splitting Point 1 (SP1): We design an early bottleneck by
reducing the output channels of the 2nd convolution layer. This
way, we obtain a bottleneck representation whose patch size
is 29 x 29 for each of the output channels defined in the 2nd
convolution layer e.g., 12 x 29 x 29 if the 2nd convolution
layer has 12 output channels. Besides the tensor shape, the
actual size of the bottleneck representation to be transferred
will be explained in Section [[V-B

Splitting Point 2 (SP2): SP2 is injected in the third convolu-
tion layer. The encoder-decoder architecture we embed (e.g.,
in ResNet-152) is designed to mimic the output representation
shaped 256 x 28 x 28. Using a convolution layer, we can reduce
the number of channels at bottleneck point from 256 channels
to 12 or fewer channels. If we reduce the width and height
(28 x 28 in this case) at the bottleneck point (e.g., 14 x 14),
however, we need then to upsample the compressed tensor
with respect to height and width (14 x 14 to 28 x 28) by a
deconvolution layer so that the decoder output matches the
input tensor shape expected by the 2nd block.

We note that later placements in the model would lead to an
excessive computing load assigned to the mobile device, which
would in turn would result in an increased overall execution
time sufficiently large to offset a larger compression gain.

A. Baseline Evaluation

First, we describe the training strategies used in previous

papers that we consider as baseline training methods.
Conventional Training In [16], [18[], [19]], the training
strategy applied to bottleneck-injected models is the same
conventional strategy used for the training of CNN models.
Specifically, training uses cross-entropy (CE) loss defined in
Eq. (3) as guiding metric with learning rate adjustment.
Knowledge Distillation: We also consider knowledge distil-
lation (KD) [4] as a baseline approach used in the previous
study [21]. In KD, the whole model is treated as a ‘“stu-
dent model” and trained with the original pretrained model
(teacher) by minimizing a linear combination of soft-labeled
and hard-labeled losses as shown in Eq. (6).
Head Network Distillation: In (HND) [17], [21], the the
head bottleneck-injected models (student) are trained with the
output of the original head model (teacher). This approach
does not need human-annotated data (e.g., class label) for
training encoder and decoder as the training target is the output
from the teacher head model.



TABLE I: Validation accuracy [%]' of models with bottlenecks trained on ImageNet dataset by baseline methods.

Bottleneck ‘

12 output channels

‘ 3 output channels

Base Model ‘ DenseNet-169 ‘ DenseNet-201 ‘

ResNet-152

| DenseNet-169 | DenseNet-201 | ResNet-152

Conventional [16]], [[18]], [[19]]
KD [4]
HND [21]

66.90 (-8.700) 68.92 (-7.970) 72.02 (-11.04)
69.37 (-6.230) 70.89 (-6.000) 74.06 (-4.250)
72.03 (-3.570) 73.62 (-3.270) 75.13 (-3.180)

60.69 (-14.91) 62.85 (-14.04) 66.86 (-11.45)
62.66 (-12.94) 64.09 (-12.80) 67.61 (-10.71)
55.18 (-20.48) 56.57 (-20.32) 53.40 (-24.91)

1 ImageNet (ILSVRC 2012) test dataset is not publicly available. f Numbers in brackets indicate difference from the original models.

Table [I] shows the baseline performance on ImageNet
dataset [31]] by the above three training methods. We empiri-
cally find that such bottleneck-injected models trained by the
manners used in their studies suffer from degraded accuracy
in a complex task, and the accuracy loss is more significant
when introducing very small bottlenecks. Furthermore, we
confirm that models trained by KD consistently outperform
those trained using the conventional training method. No-
tably, another consistent trend is that models with bigger
bottlenecks trained by HND outperform those trained by
the other methods, but KD performs best for those with 4
times smaller bottlenecks. We can see that the performance
difference between the conventional and KD methods is small
compared to that between the HND and KD (or conventional)
methods. Interestingly, the performance gap between HND and
KD for models with smaller bottlenecks (3 output channels)
is, instead, quite perceivable. This implies that compressing
bottleneck representations makes it difficult for the models to
train with HND, which performs best for those with bigger
bottlenecks (12 output channels).

B. BottleFit Evaluation

We train exactly the same models on ImageNet dataset used
in Section reusing the same training configurations for
a fair comparison. Specifically, the number of training epochs
is set to 20, with the first and last 10 epochs are dedicated
to the 1st and 2nd stages with Adam and SGD optimizers,
respectively. The initial learning rates are set to 0.001 in both
the optimizers, and decayed by 0.1 after the first 5 epochs in
each stage.

SP1: We first focus on SP1 and examine the models with
the smallest bottleneck (3 output channels) as these models
have more room to emphasize the accuracy improvements
over the best baseline method for the models (See Table [I).
We pretrain encoder and decoder at the 1st stage of training,
and use both the conventional and KD methods for the 2nd
stage with/without freezing encoder pretrained in the 1st stage,
thus there are four configurations of the proposed approach.
As shown in Table [lI} all these configurations significantly
outperform the best baseline method for models with 3 output
channels for bottlenecks, with an accuracy improvement of
4.1 - 5.7 points. Interestingly, the results with the four differ-
ent configurations are comparable whereas we confirm gaps
between the conventional and KD methods in the baseline
evaluation (Table [). Given that the proposed multi-stage
training methods result in comparable accuracy, we apply the

TABLE II: Validation accuracy [%]" of models with bottle-
necks (3 output channels) trained by our proposed methods.

Base Model | DenseNet-169 | DenseNet-201 | ResNet-152
Best Baseline (KD) \ 62.66 64.09 67.61
Pretraining—FT (FE) 68.41 69.45 71.66
Pretraining—KD (FE) 68.10 69.61 71.62
Pretraining—FT 68.43 69.41 71.50
Pretraining—KD 68.23 69.54 71.73

FE: Frozen encoder pretrained in the 1st stage

first configuration, Pretraining—FT (FE) to the models with
bigger bottlenecks (6, 9 and 12 output channels) as it requires
the least training cost among the four configurations.

Figure [3] illustrates the trade-off between transferred data
size and accuracy. To further compress the size of data to be
transferred, we apply a post-training bottleneck quantization
(BQ) technique to the output at the bottleneck point. Specif-
ically, the quantization technique proposed in [5] is applied
to represent the bottleneck tensor (32-bit floating point) by 8-
bit integer tensor and one 32-bit value to dequantize at edge
side. Interestingly, as shown in Fig. 5} BQ technique does
not degrade the accuracy of the model while reducing the
transferred data size by approximately 75%. In Fig. 5] we
show the best accuracy of each model in Table [Ij as a baseline.
As for the curve with JPEG compression, the transferred data
size is average JPEG file size in the ImageNet dataset, resized
and center-cropped to 224 x 224 pixels for DenseNet-169,
DenseNet-201 and ResNet-152. The data size used to compute
the total delay for bottleneck-injected models corresponds to
the output from the bottleneck (splitting point). For all the
considered models, the approach we propose achieves up
to 5.6% improvement in accuracy for each of the models
with larger bottlenecks, while the trained models achieve the
accuracy of the original pretrained models while reducing
93.3% of tensor elements to be transmitted. Furthermore,
this improvement of the trade-off has the bottleneck-injected
models significantly outperform the original pretrained models
with JPEG compression. Figure [6] reports the actual data size
of model input and bottleneck output used in the inference
time evaluation. In addition to about 75% data size reduction
of tensor data by bottleneck quantization (32-bit to 8-bit), the
quantized bottleneck saves up to 93% compared to the size of
JPEG-compressed model input.

SP2: We now discuss the trade-off between bottleneck size
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Fig. 6: Tensor size and corresponding transferred data size for
our DenseNet-169, DenseNet-201, and ResNet-152.

and accuracy in SP2, where the bottleneck reduces by up
98% the amount of transferred data with respect to the input
JPEG image. Figure [/| illustrates a trend of trade-off between
bottleneck size and accuracy for the models with bottlenecks
introduced to their later layers (SP2). As expected, while later
bottlenecks impose additional computing load, the accuracy vs
compression trend improves, that is, the accuracy degradation
is smaller given a compression rate, specifically when further
compression (leftward in the figure) is required.

C. Comparison with Autoencoders

For a comparison purpose, we consider an autoencoder (AE)
consisting of Lag layers (= LE% + LD layers for its encoder
and decoder) introduced within a pretrained model composed
by Ly layers at the kag-th layer (1 < kag < Lym). As
discussed in Section [[I} this approach has been widely used
in the literature, but has the drawback of increasing models’
complexity both of the head and tail. By directly modifying the
layers of the models, BottleFit creates encoder/decoder
structures transforming the output of an intermediate layer
into that of a later one through a bottleneck, thus embedding
compression in the computing process.

Then, the first kag and Li‘g layers in the original model
and the encoder of the AE respectively are executed by the
mobile device, and the remaining layers (LEEC and (Ly — kag)
layers) are executed to complete inference. As the additional
layers increase computing load, we design lightweight AE
using 4 convolution layers (encoder) and 4 deconvolution
layers (decoder). We also use batch normalization and ReLU
layers between convolution (and deconvolution) layers for
better convergence in training. We train AEs on ImageNet
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Fig. 7: Comparison of BottleFit with (i) our ResNet-152
with bottleneck introduced to its later layer (SP2), and (ii)
original ResNet-152 with autoencoder to its 2nd block.

for 20 epochs with the following hyperparameters: batch size
of 32, initial learning rate of 0.001 decayed by a factor of
10 every 5 epochs. The parameters of AE are learned with
Adam optimizer [34] by minimizing a reconstruct loss (sum
of squared loss). Due to the limited space, we put our focus on
ResNet-152 in this experiment, and inject the AE between the
2nd and 3rd residual blocks. Figure [/|shows the resulting trend
compared to the baseline and proposed methods. Interestingly,
AEs do not reach even the best baseline methods, while they
increase computing load compared to simple and bottleneck-
injected model splitting.

V. EXPERIMENTAL EVALUATION

In this section, we extensively evaluate BottleFit
through a real-world experimental testbed. We first describe
our experimental setup in Section then present the
delay and power consumption measurements obtained from
Jetson Nano in Section and finally the delay and power
consumption obtained from Raspberry Pi 4 in Section [V-C|

A. Experimental Setup

The experiments were performed indoor in the Donald Bren
Hall at University of California, Irvine as shown in Fig. [§] We
evaluate BottleFit on several configurations of embedded
platforms and communication technologies. As mobile device,
we use either an NVIDIA Jetson Nano, quad-core ARM
1.9GHz CPU and mounting a 128-core GPU operating at
0.95GHz and 4GB of 64-bit LPDDR4 memory or a Raspberry



Fig. 8: Experimental setup.

Pi 4, mounting a quad-core ARM 1.5GHz CPU and 2GB
of LPDDR4 memory. As edge server, we use a ThinkPad
P72 with hexa-core CPU operating up to 4.3GHz, 32GB of
memory and NVIDIA GPU Quadro P600 that has 384 cores
operating at 1.45GHz as edge server.

In terms of communication technologies we use:

Wi-Fi: We use the laptop’s Intel Wireless-AC 9560 as hotspot
to which the Jetson Nano connects through a Realtek WiFi
dongle supporting IEEE 802.11n. The figure shows the lo-
cation of the edge server, which acts as WiFi hot-spot, to
which Jetson Nano board connects as client. We implemented
an application generating 300 images in total, at a rate of 5
images/sec. We placed the mobile device in different positions
in the building (Fig. [8) to evaluate the impact of link quality
on performance. For each of these positions we measure the
average quality link — as provided by the ss tool in Linux.
In the following, we will show the average values as well as
90% confidence intervals.

LoRa: the Long Range (LoRa) technology is a widely adopted
technology used in Internet of Things (IoT) applications. We
extract achievable transmission rates from the networking
dataset available in [35]], and then, the communication time
based on the data size. The total latency is then computed as
the sum of the experimental execution time of the models’
sections and the communication time.

Long-Term Evolution: We use the traces reported in [36]]
to compute the transmission rate when Long-Term Evolution
(LTE) is used by the distributed system. The traces have been
collected while driving in densely serviced areas.

B. Latency and Power — Jetson Nano/Wi-Fi and LTE

First, we analyze the end-to-end delay and power consump-
tion in the configuration with Jetson Nano as mobile device
and WiFi as a communication technology. Figure [9] shows the
end-to-end average delay with 95% confidence interval using
edge offloading, and BottleFit with 3,6 and 12 channels,
for each of the four considered models. The results show that
in high channel quality regimes, some models work well with
edge offloading. However, when the link quality decreases,
BottleFit offers lower average delay and delay variability.
We exclude from these graphs MobileNetV2, whose execution
time, independent from channel quality, is 0.17s (confidence
interval is negligible).
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Fig. 9: Delay of the considered models run on Jetson Nano in
different conditions of the WiFi channel quality. Local process-
ing delay of original models (not displayed): DenseNet-169:
0.27s, DenseNet-201: 0.42s, ResNet-152: 0.53s.
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Fig. 10: Cumulative distribution of power consumption for
the models considered. We compare edge offloading as well
as local processing both using MobileNetV2 and full models
(DenseNet/ResNet).

Figure |10] depicts the cumulative distribution of the power
consumption — measured at the mobile device — of the consid-
ered models. We first observe that the Local DenseNet/ResNet
distributions exhibit peak value well over 6W, with average
value equal to 4.3W. Being a model designed to be run on
mobile devices, MobileNetV2 shows impressive power saving,
limiting its range below 4W (and average 2.9W). In line with
expectations, we see that in all cases except DenseNet-201,
offloading to the edge server is the strategy yielding the lowest
power used, which never exceeds 2W (average value 1.6W).

However, as pointed out in Fig. P the delay offered by
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Fig. 11: Delay of the considered models run on Jetson Nano
in different LTE Channel Quality Index conditions.

edge offloading can exceed the constraint imposed by the
application. For this reason, BottleFit should be preferred,
since with power consumption only 37% higher than edge
offloading, and 89% lower than local processing, it offers
comparable accuracy when using 12 channels configuration
(less than 1% loss in all cases), while delivering the most
stable and low delays. Similarly, as shown in Fig[TT] when
the system employs LTE, we observe a reduction of end-to-
end delay in the range 45% — 70% compared to offloading.
Conversely to the WiFi configuration, even for high rates,
BottleFit always outperforms offloading.

C. Latency and Power — Raspberry Pi 4/LoRa

We present in Figs. and the delay and power
consumption obtained by executing the image classification
application on a Raspberry Pi 4 with Long Range (LoRa)
connectivity [14], which is not equipped with a GPU. The
purpose of these experiments is to evaluate BottleFit in
the context of a low-power device equipped with low-power,
low-rate connectivity. We estimated the network delay by
taking the nominal data rates of LoRa with spreading factor 6
and coding rate 4:5 (which yield the highest throughput). As
expected, Fig. [I2] shows that BottleFit outperforms a full
edge offloading approach, given the compression provided by
the bottleneck. On the other hand, the networking delay given
by LoRa makes local computation more delay-effective.

The advantage of local computing with respect to
BottleFit comes to the detriment of power consumption.
Figure [I3] shows the average power consumption experienced
by the Raspberry Pi 4 as a function of different models.
Confidence intervals are not shown as those were below 1%.
It indicates that BottleFit presents power consumption
comparable to edge offloading, while saving up to 50% power
consumption with respect to local computing approaches.
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Fig. 12: Delay of the considered models run on Rasp-
berry Pi 4 with different LoRa bandwidths. Local pro-
cessing delay of original models (not displayed): DenseNet-
169: 2.34s, DenseNet-201: 2.55s, ResNet-152: 4.29s, Mo-
bileNetV2: 1.97s.
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VI. CONCLUSIONS

In this paper, we have proposed BottleFit, a new
framework for split computing. We have applied BottleFit
on cutting-edge DNN models in image classification, and show
that Bott 1leFit achieves 77.1% data compression with up to
0.6% accuracy loss on ImageNet dataset. We experimentally
measure the power consumption and latency of an image clas-
sification application, and shown that BottleFit decreases
power consumption and latency respectively by up to 49% and
89% with respect to local computing and by 37% and 55%
w.r.t. edge offloading. We also compare BottleFit with
state-of-the-art autoencoders-based approaches, and show that
(i) BottleFit reduces power consumption and execution
time respectively by up to 54% and 62%; (ii) the size of the
head model executed on the mobile device is 83 times smaller.
To achieve more efficient split computing, it would be essential
to further improve the tradeoff between transferred data size
and model accuracy while keeping encoder lightweight as
discussed in [37]], [38]].
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