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Abstract

We study the model-based reward-free reinforcement learning with linear function
approximation for episodic Markov decision processes (MDPs). In this setting,
the agent works in two phases. In the exploration phase, the agent interacts with
the environment and collects samples without the reward. In the planning phase,
the agent is given a specific reward function and uses samples collected from the
exploration phase to learn a good policy. We propose a new provably efficient
algorithm, called UCRL-RFE under the Linear Mixture MDP assumption, where
the transition probability kernel of the MDP can be parameterized by a linear
function over certain feature mappings defined on the triplet of state, action, and
next state. We show that to obtain an ϵ-optimal policy for arbitrary reward function,
UCRL-RFE needs to sample at most Õ(H5d2ϵ−2) episodes during the exploration
phase. Here, H is the length of the episode, d is the dimension of the feature
mapping. We also propose a variant of UCRL-RFE using Bernstein-type bonus and
show that it needs to sample at most Õ(H4d(H + d)ϵ−2) to achieve an ϵ-optimal
policy. By constructing a special class of linear Mixture MDPs, we also prove that
for any reward-free algorithm, it needs to sample at least Ω̃(H2dϵ−2) episodes to
obtain an ϵ-optimal policy. Our upper bound matches the lower bound in terms of
the dependence on ϵ and the dependence on d if H ≥ d.

1 Introduction

In reinforcement learning (RL), the agent sequentially interacts with the environment and receives
reward from it. In many real-world RL problems, the reward function is manually designed to
encourage the desired behavior of the agent. Thus, engineers have to change the reward function time
by time and train the agent to check whether it has achieved the desired behavior. In this case, RL
algorithms need to be repeatedly executed with different reward functions and are therefore sample
inefficient or even intractable. To tackle this challenge, Jin et al. [9] proposed a new reinforcement
learning paradigm called Reward-Free Exploration (RFE), which explores the environment without
using any reward function. In detail, the reward-free RL algorithm consists of two phases. The first
phase is called Exploration Phase, where the algorithm explores the environment without receiving
reward signals. The second phase is called Planning Phase, where the algorithm is given a specific
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reward function and use the collected data in the first phase to learn the policy. They have shown that
this exploration paradigm can learn a near-optimal policy in the planning phase given any reward
function after collecting polynomial number of episodes in the exploration phase. Follow up work
[12, 14, 28] proposed improved algorithms to achieve better or nearly optimal sample complexity.

All the aforementioned works are focused on the tabular Markov decision process (MDP), where
the number of states and actions are finite. In practice, the number of states and actions can be
large or even infinite, and therefore function approximation is required for the sake of computational
tractability and generalization. However, the understanding of function approximation for reward-
free exploration, even under the simplest linear function approximation, remains underexplored,
with only two notable related works [18, 27]. Specifically, Wang et al. [18] studied linear MDPs
[21, 10], where both the transition probability and the reward function admit linear representations,
and proposed a reward-free RL algorithm with Õ(d3H6ϵ−2) sample complexity, where d is the
dimension of the linear representation, H is the planning horizon, and ϵ is the required accuracy.
They also proved that if the optimal state-action function is linear, then the reward-free exploration
needs an exponential number of episodes in the planning horizon H to learn a ϵ-optimal policy.
Zanette et al. [27] considered a slightly larger class of MDPs with low inherent Bellman error [26],
and proposed an algorithm with Õ(d3H5ϵ−2) sample complexity. However, both works assume the
reward function is a linear function over some feature mapping. Moreover, the lower bound proved
in [18] is for a very large class of MDPs where the optimal state-action function is linear, thus it is
too conservative and cannot tell the information-theoretic limits of reward-free exploration for linear
MDPs or related models.

In this paper, we seek a better understanding of the statistical efficiency for reward-free RL with
linear function approximation. We propose two reward-free model-based RL algorithms for the
finite-horizon episodic linear mixture/kernel MDP [16, 7, 3, 30], where the transition probability
kernel is a linear mixture model. In detail, our contributions are highlighted as follows:

• We propose a new exploration-driven reward function and its corresponding pseudo value function
for linear mixture MDPs, which will encourage the algorithm to explore the state-action pair with
more uncertainty on the transition probability.

• We propose a UCRL-RFE algorithm which guides the agent to explore the state space using
the exploration-driven reward function and pseudo value functions. We prove an Õ(H5d2ϵ−2)
sample complexity for UCRL-RFE to achieve an ϵ-optimal policy for any reward function for
time-homogeneous MDP.

• We further propose a UCRL-RFE+ algorithm which uses a Bernstein-type exploration bonus.
UCRL-RFE+ can reduce the error caused by the exploration-driven reward function during the
exploration phase. With a novel analysis based on total variance, we prove an Õ(H4d(H + d)ϵ−2)
sample complexity for UCRL-RFE+, which improves that of UCRL-RFE by a factor of min{H, d}.

• By constructing a special class of linear mixture MDPs, we show that any reward-free algorithm
needs to sample at least Ω̃(H2dϵ−2) episodes to achieve an ϵ-optimal policy for any reward function.
This lower bound matches the upper bound of UCRL-RFE+ in terms of the dependence on the
accuracy ϵ and feature dimension d when H ≥ d.

Notation. Scalars and constants are denoted by lower and upper case letters, respectively. Vectors
are denoted by lower case bold face letters x, and matrices by upper case bold face letters A. We
denote by [k] the set {1, 2, · · · , k} for positive integers k. For two non-negative sequence {an}, {bn},
an = O(bn) means that there exists a positive constant C such that an ≤ Cbn, and we use Õ(·)
to hide the log factor in O(·); an = Ω(bn) means that there exists a positive constant C such that
an ≥ Cbn, and we use Ω̃(·) to hide the log factor. an = o(bn) means that limn→∞ an/bn = 0.
We denote by S,A as the cardinality of the state set S and action set A separately. For a vector
x ∈ Rd and corresponding matrix A ∈ Rd×d, we define ∥x∥2A = x⊤Ax. We denote [x](0,H) :=

max{min{x,H}, 0}. For vector x ∈ Rd, we denote by [x]i the i-th element of x.

2 Related Work

Reinforcement Learning with Function Approximation. Function approximation is extremely
useful for RL when the state space and/or the action space are large or even infinite. To develop
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provable RL algorithms with linear function approximation, linear MDPs [10] is probably the most
widely assumed MDP model, where both the transition kernel and the reward function are linear
functions of a given feature mapping. A line of works has developed RL algorithms with polynomial
sample complexity or regret bounds under this setting, such as LSVI-UCB [19] and randomized LSVI
[24]. Besides the linear MDP, linear mixture/kernel MDPs [16, 7, 3, 30] has emerged as a new model
which enables efficient RL with linear function approximation. In this setting, the transition kernel
is a linear function over a feature mapping on the triplet of state, action, and next-state. Under this
assumption, nearly minimax optimal regrets can be attained for both finite-horizon episodic MDPs
and infinite-horizon discounted MDPs [29]. Note also that linear mixture MDPs do not require the
reward function to be linear and therefore enables RL with arbitrary reward functions. Therefore, we
also consider linear mixture MDPs in this paper.

Algorithm Sample Complexity Time
Homo. MDP Type Model

Based

Jin et al. [9] Õ(H5S2Aϵ−2) × Tabular
√

RF-UCRL [12] Õ(H4S2Aϵ−2) × Tabular
√

RF-Express [14] Õ(H3S2Aϵ−2) × Tabular
√

SSTP [28] Õ(H2S2Aϵ−2)
√

Tabular
√

Lower bound [9] Ω(H2S2Aϵ−2)
√

Tabular
√

Wang et al. [18] Õ(H6d3ϵ−2) × Linear MDP ×
FRANCIS [26] Õ(H5d3ϵ−2)

√
Linear MDP ×

UCRL-RFE (Alg. 2) Õ(H5d2ϵ−2)
√

Linear Mixture
√

UCRL-RFE+ (Alg. 3) Õ(H4d(H+d)ϵ−2)
√

Linear Mixture
√

Lower bound
(Thm. 6.1) Ω̃(H2dϵ−2)

√ Linear MDP/Linear
Mixture

√

Table 1: Comparison of episodic reward-free RL algorithms. Time Homo. stands for the MDP is a
time-homogeneous, where the transition probabilities are the same at different stages of the episode.
Model Based stands for the algorithm is a model-based algorithm (

√
) or a model-free algorithm (×).

.
Reward-Free Exploration. As the first work on reward-free exploration, Jin et al. [9] assigned each
state an exploration-driven reward function at each round to guide the algorithm to do exploration.
Then they utilized the EULER [25] algorithm to minimize the total regret. Their algorithm achieves
an Õ(S2AH5ϵ−2) sample complexity in the tabular setting to achieve an ϵ-optimal policy, where S
is the number of states and A is the number of actions. They also proved a sample complexity lower
bound as Ω̃(S2AH2ϵ−2). Kaufmann et al. [12] extended the UCRL [2] algorithm to the reward-free
exploration. Their algorithm RF-UCRL achieves a sample complexity of Õ(S2AH4ϵ−2), which
improves that of [9] by a factor of H . Ménard et al. [14] proposed RF-Express algorithm by
modifying the UCB-bonus of UCRL to making it decay faster and achieved a sample complexity of
Õ(S2AH3ϵ−2). Zhang et al. [28] proposed SSTP algorithm in the time-homogeneous setting, which
achieves Õ(S2AH2ϵ−2) sample complexity, and matches the minimax lower bound provided in [9]
up to logarithmic factors. Liu et al. [13] has shown the similarity between the self-play setting and
reward-free setting. All of these works are for tabular MDPs.

Here we summarize and compare the related works on Reward Free Exploration in Table 1. Notice
that our lower bound Ω(H2dϵ−2) for linear mixture MDPs can imply the same lower bound for linear
MDPs and MDPs with low inherent Bellman error, using a similar argument used in [29].

3 Preliminaries

We consider episodic Markov Decision Processes (MDP), which is denoted by a tuple
M(S,A, H, {rh}Hh=1,P). Here S is the countable state space (may be infinite), A is the action
space, H is the length of the episode, rh : S × A → [0, 1] is the reward function. Without loss of
generality, we assume the reward function rh is deterministic. P(s′|s, a) is the transition probability
function which denotes the probability for state s to transit to state s′ given action a at step h. A
policy πh : S → A is a function which maps a state s to an action a. We define the action-value
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function (i.e., Q-function) Qπ
h(s, a) as follows:

Qπ
h(s, a; {rh}h) = E

[ H∑
h′=h

rh′(sh′ , ah′)

∣∣∣∣sh = s, ah = a

]
, V π

h (s; {rh}h) = Qπ
h(s, πh(s); {rh}h).

For simplicity, we denote Qπ
h(s, a; r) = Qπ

h(s, a; {rh}h) and V π
h (s; r) = V π

h (s; {rh}h). We define
the optimal value function {V ∗

h }Hh=1 and the optimal action-value function {Q∗
h}Hh=1 as V ∗

h (s; r) =
supπ V

π
h (s; r) and Q∗

h(s, a; r) = supπ Q
π
h(s, a; r) respectively. For any function V : S → R, we

denote [PV ](s, a; r) = Es′∼P(·|s,a)V (s′; r), and denote the variance of V as

[Vf ](s, a) = [Pf2](s, a)−
(
[Pf ](s, a)2

)
. (3.1)

In particular, we have the following Bellman equation, as well as the Bellman optimality equation:

Qπ
h(s, a; r) = rh(s, a) + [PV π

h+1](s, a; r), Q
∗
h(s, a; r) = rh(s, a) + [PV ∗

h+1](s, a; r).

In this paper, we focus on model-based algorithms and consider the following linear mixture/kernel
MDP [16, 7, 3, 30], which assumes that the transition probability P is a linear mixture of d
signed basis measures. Meanwhile, for any function V , we assume that we can do the summa-
tion

∑
s′∈S ϕ(s

′|s, a)V (s) efficiently, e.g., using Monte Carlo method [22].
Definition 3.1 (Linear Mixture MDPs [7, 3, 30]). The unknown transition probability P is a linear
combination of d signed basis measures ϕi(s

′|s, a), i.e., P(s′|s, a) =
∑d

i=1 ϕi(s
′|s, a)θ∗i . Mean-

while, for any V : S → [0, 1], i ∈ [d], (s, a) ∈ S × A, the summation
∑

s′∈S ϕi(s
′|s, a)V (s′)

is computable. For simplicity, let ϕ = [ϕ1, . . . , ϕd]
⊤, θ∗ = [θ∗1 , . . . , θ

∗
d]

⊤ and ψV (s, a) =∑
s′∈S ϕ(s

′|s, a)V (s). Without loss of generality, we assume ∥θ∗∥2 ≤ B, ∥ψV (s, a)∥2 ≤ 1 for all
V : S → [0, 1] and (s, a) ∈ S ×A.
Remark 3.2. A similar but notably different definition (i.e., linear MDPs [21, 10]) has been used
in [18], which assumes that P(s′|s, a) = ⟨ϕ(s, a),µ(s′)⟩ and rh = ⟨ϕ(s, a),θh⟩, µh(·) is a measure
and θh is an unknown vector. Comparing with linear MDPs, linear mixture MDPs do not need the
reward function r to be linear, which makes our algorithms more general.

With Definition 3.1, it is easy to verify that the expectation of any bounded function V is a linear
function of ψ:

[PV ](s, a) = ⟨ψV (s, a),θ
∗⟩. (3.2)

Reward-free RL For reward-free RL, the algorithm can be divided into two phases: exploration
phase and planning phase. In the exploration phase, the algorithm cannot access the reward function
but collect K episodes by doing exploration. In the planning phase, the algorithm is given a series of
reward functions and find the optimal policy based on these reward functions, using the K episodes
collected in the exploration phase. We formally define (ϵ, δ)-learn and sample complexity of the
algorithm as follows [9].
Definition 3.3 ((ϵ, δ)-learnability). Given an MDP transition kernel set P , reward function setR and
a initial state distribution µ, we say a reward-free algorithm can (ϵ, δ)-learn the problem (P,R) with
sample complexity K(ϵ, δ), if for any transition kernel P ∈ P , after receiving K(ϵ, δ) episodes in
the exploration phase, for any reward function r ∈ R, the algorithm returns a policy π in planning
phase, such that with probability at least 1− δ, Es1∼µ[V

∗
1 (s1; r)− V π

1 (s1; r)] ≤ ϵ.

4 Algorithm and Main Results

In this section, we propose a reward-free algorithm. This algorithm works as follows: Firstly, during
the exploration phase, it samples the MDP episodes, build an estimator θ for the MDP parameter θ∗,
and compute the covariance matrix Σ of the feature mappings, which characterizes the uncertainty of
the estimator θ. Secondly, during the planning phase, the algorithm uses the collected θ and Σ in the
exploration phase to find the optimal policy π based on the given reward functions.

4.1 Planning phase algorithm

We first introduce the PLAN function (Algorithm 1), which is a common module in both planning
phase and exploration phase. Given a series of reward functions {rh}h, the goal of PLAN function
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Algorithm 1 UCRL-RFE Planning Module (PLAN)
Input: Estimated parameter and covariance θ,Σ, reward {rh}Hh=1, parameter β.

1: For consistency, set QH+1(·, ·)← VH+1(·)← 0
2: for h = H,H − 1, · · · , 1 do
3: Compute Q function as Qh(·, ·)←

[
rh(·, ·) +

〈
ψVh+1

(·, ·),θ
〉
+ β∥ψVh+1

(·, ·)∥Σ−1

]
(0,H)

4: Compute value function Vh(·)← maxa∈A Qh(·, a)
5: Compute policy as πh(·)← argmaxa∈A Qh(·, a).
6: end for

Output: Policy π ← {πh}Hh=1 and {Vh}Hh=1

is to output the optimal policies {πh}h and Q-functions {Qh}h corresponding to {rh}h. Suppose
the unknown parameter θ∗ is known, we can compute {Qh}h recursively by the following Bellman
equation:

Qh(s, a; r) = rh(s, a) + [PVh+1](s, a; r) = rh(s, a) + ⟨ψVh+1
(s, a),θ∗⟩. (4.1)

However, since θ∗ is unknown, we cannot compute Qh as in (4.1). Instead, PLAN takes the estimated
parameter θ and the “covariance matrix” Σ as input. To calculate Qh, PLAN replaces θ∗ with the
estimated θ and plus an additional exploration bonus term β∥ψVh+1

(·, ·)∥Σ−1 to (4.1), as in Line 3
of Algorithm 1. Then PLAN takes the greedy policy of the calculated optimistic Qh and proceeds to
the previous step. Finally, the algorithm returns policy π in Line 5 as well as the estimated value
functions {Vh}h.

4.2 Exploration phase algorithm

Based on the introduced PLAN function, we propose the UCRL-RFE algorithm in Algorithm 2. In
general, UCRL-RFE guides the agent to explore the unknown state space without the information of
the reward functions. In detail, for the k-th episode, UCRL-RFE first defines the exploration driven
reward function as follows:

rkh(s, a) = min

{
1,

2β

H

√
max

f∈S7→[0,H−h]
∥ψf (s, a)∥Σ−1

1,k

}
, (4.2)

where Σ1,k is the “covariance matrix” of the feature mapping. Intuitively speaking, rkh(s, a) represents
the maximum possible uncertainty level of the state-action pair (s, a) caused by the randomness of
the MDP transition function, which is independent of the true reward functions. Therefore, in order to
obtain a good estimation of the optimal policy for any given reward functions, it suffices to obtain the
optimal policy for rkh(s, a). Thus, after obtaining {rkh}h, UCRL-RFE finds the corresponding near-
optimal policies {πk

h}h using PLAN function, with the estimated parameter θk and the “covariance
matrix” Σ1,k as input. UCRL-RFE uses {πk

h}h as its exploration policy and observes the new episode
sk1 , a

k
1 , . . . , s

k
H , akH induced by {πk

h}h.

Next, UCRL-RFE needs to compute the parameters θk+1 and Σ1,k+1 for planning in the next episode.
Similar to UCRL-VTR proposed by [7, 3], UCRL-RFE also uses a “value-targeted regression (VTR)"
estimator, which computes θk+1 as the minimizer to a ridge regression problem with the target being
the past value functions. The main difference between UCRL-RFE and UCRL-VTR is that, due to the
lack of true reward functions, UCRL-RFE can not use the estimated value functions as its regression
targets. Instead, UCRL-RFE defines the following pseudo value function uk

h:

uk
h = argmax

f∈S7→[0,H−h]

ψ⊤
f (s

k
h, a

k
h)Σ

−1
1,kψf (s

k
h, a

k
h). (4.3)

Here, uk
h maximizes the “uncertainty" caused by the transition kernel, which will help the agent to

explore the state space. Now given the pseudo value functions, Algorithm 2 computes the estimated
θk+1 as the minimizer to the following ridge regression problem:

θk+1 ← argmin
θ

λ∥θ∥22 +
k∑

k′=1

H∑
h=1

(〈
θ,ψuk′

h
(sk

′

h , ak
′

h )
〉
− uk′

h (sk
′

h+1)
)2

, (4.4)
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which has a closed-form solution as in Line 12. It also updates the covariance matrix Σ1,k+1 as in
Line 12, by the observed feature mapping {ψuk

h
(skh, a

k
h)}h in the current episode. In the end, after

collecting HK state-action samples, UCRL-RFE calculates the policy {πh} as output based on θK+1

and Σ1,K+1.

Algorithm 2 UCRL-RFE (Hoeffding Bonus)
Input: Confident parameter β, regularization parameter λ

1: Phase I: Exploration Phase
2: Initialize Σ1,1 ← λI,b1 ← θ1 ← 0
3: for k = 1, 2, · · · ,K do
4: Compute the exploration driven reward function {rkh(·, ·)}Hh=1 according to (4.2)
5: Compute exploration policy and value function as ({πk

h}Hh=1, {V k
h }Hh=1)← PLAN(θk,Σ1,k, {rkh}Hh=1, β)

6: Receive the initial state sk1 ∼ µ
7: for h = 1, 2, · · · , H do
8: Take action akh ← πk

h(s
k
h) and receive skh+1

9: Calculate uk
h for skh, a

k
h according to (4.3)

10: Set Σh+1,k ← Σh,k+ψuk
h
(skh, a

k
h)ψuk

h
(skh, a

k
h)

⊤,bh+1,k ← bh,k+ψuk
h
(skh, a

k
h)u

k
h(s

k
h+1)

11: end for
12: Set Σ1,k+1 ← ΣH+1,k, b1,k+1 ← bH+1,k,θk+1 ← Σ−1

1,k+1b1,k+1

13: end for
14: Phase II: Planning Phase
15: Receive target reward function {rh}Hh=1

16: Compute policy as ({πh}Hh=1, {Vh}Hh=1)← PLAN(θK+1,Σ1,K+1, {rh}Hh=1, β)
Output: Policy {πh}Hh=1

Remark 4.1. Here we do a comparison between our UCRL-RFE and the reward-free RL algorithm
in [18]. The main difference is that Wang et al. [18] estimates θk by regression with value function
V k
h being the target, while our UCRL-RFE does regression with the pseudo value function uk

h being
the target. That is mainly due to the different problem settings (linear MDP v.s. linear mixture MDP).

4.3 Implementation details

In general, solving the maximization problem (4.3) is hard. Here, we provide a simple approximate
solution to the problem (4.2) and (4.3) for the finite state space case (|S| <∞). Instead of maximizing
the ℓ2 norm-based objective

∥∥Σ−1/2
1,k ψf (s

k
h, a

k
h)
∥∥
2
, we write ψf (s, a) = Φ(s, a)f with Φ(s, a) =

(ϕ(s, a, S1), · · · ,ϕ(s, a, S|S|)) and f = (f(S1), · · · , f(S|S|))
⊤, relax the ℓ2 norm into ℓ1 norm

since ∥x∥2 ≥ ∥x1∥1/
√
d for any x ∈ Rd, and maximize the following ℓ1 norm-based objective

max
f

∥∥Σ−1/2
1,k Φ(s, a)f

∥∥
1

subject to ∥f∥∞ ≤ H − h. (4.5)

(4.5) can be formulated as a linear programming, which can be solved by interior method [11] or
simplex method [5] efficiently. Since ∥x∥1/

√
d ≤ ∥x∥2 ≤ ∥x∥1, the performance of this approximate

solution is guaranteed. For the case where the state space is infinite, we can use state aggregation
methods such as soft state aggregation [15] to reduce the infinite state space to finite state space and
then apply the above approximate solution to solve it.

4.4 Sample complexity

Now we provide the sample complexity for Algorithm 2.
Theorem 4.2 (Sample complexity of UCRL-RFE). For Algorithm 2, setting parameter β =

H
√
d log(3(1 +KH3B2)/δ) + 1, λ = B−2, then for any 0 < ϵ < 1, if K = Õ(H5d2ϵ−2), we

have with probability at least 1− δ that, Es∼µ[V
∗
1 (s; r)− V π

1 (s; r)] ≤ ϵ.
Remark 4.3. Theorem 4.2 shows that UCRL-RFE only needs poly(d,H, ϵ−1) sample complexity to
find an ϵ-optimal policy, which suggests that model-based reward-free algorithm is sample-efficient.
Thanks to linear function approximation, the sample complexity only depends on the dimension of
the feature mapping d and the length of the episode and does not depend on the cardinalities of the
state and action spaces.
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Corollary 4.4. Under the same conditions as in Theorem 4.2, if solving the relaxed optimization
problem in (4.5), Algorithm 2 has K = Õ(H5d3ϵ−2) sample complexity.

5 Improved Algorithm with Bernstein Bonus

Theorem 4.2 suggests that UCRL-RFE in Algorithm 2 enjoys an Õ(H5d2ϵ−2) sample complexity to
find an ϵ-optimal policy. In this section, we seek to further improve the sample complexity.

A key observation is that for any given reward functions {rh}h, the error between the exploration
policy {πh}h and the optimal policy can be decomposed into two parts: the exploration error
which is the difference between {rh}h and the exploration driven reward function {rkh}h, and the
approximation error which is the difference between the optimal value function V ∗

1 (·; rkh) and our

estimated value function V
πk
h

1 (·; rkh) with respect to {rkh}h. For the latter one, our exploration strategy
adapted from VTR is often too conservative since it does not distinguish different value functions
and state-action pairs from different episodes and steps. Therefore, inspired by [29], we propose a
variant of UCRL-RFE called UCRL-RFE+, which adopts a Bernstein-type bonus for exploration and
achieves a better sample complexity.

Algorithm 3 UCRL-RFE+ (Bernstein Bonus)

Input: Parameter β, β̂, β̃, β̌, regularization parameter λ
1: Stage I: Exploration Phase
2: Initialize Σ1,1 = Σ̂1,1 = Σ̃1,1 = λI,b1 = b̂1 = b̃1 = θ1 = θ̂1 = θ̃1 = 0
3: for k = 1, 2, · · · ,K do
4: Set {rkh(·, ·)}Hh=1 to (4.2).
5: Compute exploration policy and value function as ({πk

h}Hh=1, {V k
h }Hh=1)← PLAN(θ̂k, Σ̂1,k, {rkh}Hh=1, β̂)

6: Receive the initial state sk1 ∼ µ.
7: for h = 1, 2, · · · , H do
8: Take action akh = πk

h(s
k
h) and receive skh+1

9: Calculate uk
h, ν

k
h for skh, a

k
h according to (4.3) and (5.2) separately

10: Set Σh+1,k ← Σh,k +ψuk
h
(skh, a

k
h)ψuk

h
(skh, a

k
h)

⊤

11: Set Σ̂h+1,k, Σ̃h+1,k, b̂h+1,k, b̃h+1,k using (5.4)
12: end for
13: Set Σ1,k+1 ← ΣH+1,k

14: Set Σ̂1,k+1 ← Σ̂H+1,k, b̂1,k+1 ← b̂H+1,k, θ̂k+1 ← Σ̂−1
1,k+1b̂1,k+1

15: Set Σ̃1,k+1 ← Σ̃H+1,k, b̃1,k+1 ← b̃H+1,k, θ̃k+1 ← Σ̃−1
1,k+1b̃1,k+1

16: end for
17: Set θK+1 ← Σ−1

1,K+1

∑K
k=1

∑H
h=1ψuk

h
(skh, a

k
h)u

k
h(s

k
h+1)

18: Stage II: Planning Phase
19: Receive target reward function {rh}Hh=1

20: Compute exploration policy as ({πh}Hh=1, {Vh}Hh=1)← PLAN(θK+1,Σ1,K+1, {rh}Hh=1, β)
Output: Policy {πh}Hh=1

5.1 Exploration phase algorithm with Bernstein bonus

UCRL-RFE+ in presented in Algorithm 3. The algorithm structure is similar to that of UCRL-RFE,
which can be decomposed into the exploration phase and planning phase. There are two main
differences. First, in contrast to UCRL-RFE which uses θk for the PLAN function in both exploration
and planning phases, UCRL-RFE+ only uses θK+1 for the PLAN function in the planning phase. For
the exploration phase, UCRL-RFE+ constructs a new estimator θ̂k based on {V k′

h+1}k′≤k−1,h, which
are the value functions of the exploration driven rewards. Second, to build θ̂k, one way is to choose it
as the solution to the ridge regression problem with contextsψV k′

h+1
(sk

′

h , ak
′

h ) and targets V k′

h+1(s
k′

h+1),

similar to (4.4). However, since the targets V k′

h+1(s
k′

h+1) have different variances at different steps
and episodes, we are actually facing a heteroscedastic linear regression problem. Therefore, inspired
by a recent line of work [29, 20] which use Bernstein inequality for vector-valued self-normalized
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martingale to construct a tighter confidence ball for exploration, we also incorporate the variance
to build choose θ̂k as the solution to the following weighted ridge regression problem, which is an
enhanced estimator for the heteroscedastic case:

θ̂k ← argmin
θ

λ∥θ∥22 +
k−1∑
k′=1

H∑
h=1

(〈
θ,ψV k′

h+1
(sk

′

h , ak
′

h )
〉
− V k′

h+1(s
k′

h+1)
)2

/[σk′

h ]2, (5.1)

where [σk′

h ]2 is the variance of V k′

h+1(s
k′

h+1). The idea to use variances to improve the sample
complexity is closely related to the use of “Bernstein bonus" in reward-free RL for the tabular MDPs
[12, 28, 14]. Since σk′

h is unknown, we will use νk
′

h = [σ̄k′

h ]2 as a plug-in estimator to replace [σk′

h ]2

in (5.1). After obtaining θ̂k, UCRL-RFE+ sets the Σ̂1,k as the covariance matrix of the features
ψV k

h+1
(skh, a

k
h)/σ̄

k
h, and feeds it into the PLAN function with the exploration-driven reward functions

and the confidence radius β̂. UCRL-RFE+ takes the output {πk
h}h as the exploration policy, and

{V k
h }h as the value functions to construct the estimator θ̂k+1 for next episode. In the end, when it

comes to the planning phase, after receiving reward functions {rh}h, UCRL-RFE+ takes θK+1 as the
solution to the ridge regression problem with contexts {ψuk

h
(skh, a

k
h)}k,h and targets {uk

h(s
k
h+1)}k,h,

and the covariance matrix Σ1,K+1 as input, and uses PLAN to find the near optimal policy {πh}h
with confidence radius β. It remains to specify νkh in the weighted ridge regression. On the one hand,
we need νkh to be an upper bound of [σk

h]
2. On the other hand, we require νkh to have a strictly positive

lower bound to let (5.1) be valid. Therefore, we construct νkh as follows:

νkh = max{α, V̄k
h(s

k
h, a

k
h) + Eh

k (s
k
h, a

k
h)}, (5.2)

where V̄k
h is the estimated variance of value function V k

h and Ek
h is a correction term to calibrate

the estimated variance, and α > 0 is a positive constant. To compute V̄k
h(s

k
h, a

k
h), considering the

following fact:

[VV k
h+1](s, a) = [P[V k

h+1]
2](s, a)− [PV k

h+1](s, a)
2 = ⟨θ∗,ψ[V k

h+1]
2(s, a)⟩ − ⟨θ∗,ψV k

h+1
(s, a)⟩2,

it suffices to estimate ⟨θ∗,ψ[V k
h+1]

2(s, a)⟩ and ⟨θ∗,ψV k
h+1

(s, a)⟩ separately. For the first term, θ∗ can

be regarded as the unknown parameter of a regression problem w.r.t. contexts ψ[V k′
h+1]

2(sk
′

h , ak
′

h ) and

targets ψ[V k′
h+1]

2(sk
′

h , ak
′

h ). Therefore, the first term can be estimated by
〈
ψ[V k

h+1]
2(s, a), θ̃k

〉
, where

θ̃k ← argmin
θ

λ∥θ∥22 +
k−1∑
k′=1

H∑
h=1

(〈
θ,ψ[V k′

h+1]
2(s

k′

h , ak
′

h )
〉
− [V k′

h+1(s
k′

h+1)]
2
)2

.

In addition, the second term ⟨θ∗,ψV k
h+1

(s, a)⟩ can be approximated by ⟨ψV k
h+1

(s, a), θ̂k⟩. Therefore,

the final estimator [V̄V k
h+1](s, a) is defined as

V̄k
h(s, a) =

[〈
ψ[V k

h+1]
2(s, a), θ̃k

〉]
(0,H2)

−
[〈
ψV k

h+1
(s, a), θ̂k

〉]2
(0,H)

. (5.3)

For the correction terms Ek
h , we define it as follows:

Ek
h(s, a) = min

{
H2, β̃

∥∥ψ[V k
h+1]

2(s, a)
∥∥
Σ̃−1

1,k

}
+min

{
H2, 2Hβ̌

∥∥ψV k
h+1

(s, a)
∥∥∥
Σ̂−1

1,k

}
,

where Σ̃1,k is the covariance matrix of the featuresψ[V k′
h+1]

2(sk
′

h , ak
′

h ), β̃, β̌ are two confidence radius.

It can be shown that, with these definitions, V̄k
h(s, a) + Ek

h(s, a) is an upper bound of [σk
h]

2.

Finally, to enable online update, UCRL-RFE+ updates its covariance matrices recursively as follows,
along with sequences b̂k

h, b̃
k
h:

Σ̂h+1,k ← Σ̂h,k +ψV k
h+1

(skh, a
k
h)ψV k

h+1
(skh, a

k
h)

⊤/νkh

Σ̃h+1,k ← Σ̃h,k +ψ[V k
h+1]

2(skh, a
k
h)ψ[V k

h+1]
2(skh, a

k
h)

⊤

b̂h+1,k ← b̂h,k +ψV k
h+1

(skh, a
k
h)V

k
h+1(s

k
h+1)/ν

k
h

b̃h+1,k ← b̃h,k +ψ[V k
h+1]

2(skh, a
k
h)[V

k
h+1(s

k
h+1)]

2, (5.4)
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where uk
h is the pseudo value function in (4.3) and νkh is defined in (5.2). Then UCRL-RFE+ computes

θ̂k, θ̃k as in Line 14 to Line 15 of Algorithm 3.

5.2 Sample complexity

Now we present the sample complexity for Algorithm 3.
Theorem 5.1 (Sample complexity of UCRL-RFE+). For Algorithm 3, setting λ = B−2, α = H2/d
in (5.2), and the confidence radius as

β̂ = 8
√
d log(1 +KHB2) log(48K2H2/δ) + 4

√
d log(48K2H2/δ) + 1

β̌ = 8d
√
log(1 +KHB2) log(48K2H2/δ) + 4

√
d log(48K2H2/δ) + 1

β̃ = 8H2
√

d log(1 +KHB2) log(48K2H2/δ) + 4H2 log(48K2H2/δ) + 1

β = H
√
d log(12(1 +KH3B2)/δ) + 1,

then for any 0 < ϵ < 1, if K = Õ(H4d(H + d)ϵ−2), then with probability at least 1− δ, we have
Es∼µ[V

∗
1 (s; r)− V π

1 (s; r)] ≤ ϵ.
Remark 5.2. Theorem 5.1 suggests that when d ≥ H , the sample complexity of UCRL-RFE+ is
Õ(H4d2ϵ−2), which improves the sample complexity of UCRL-RFE by a factor of H . On the other
hand, when H ≥ d, the sample complexity of UCRL-RFE+ reduces to Õ(H5dϵ−2), which is better
than that of UCRL-RFE by a factor of d. At a high-level, the sample complexity improvement is
attributed to the Bernstein-type bonus.
Corollary 5.3. Under the same conditions as in Theorem 5.1, if solving the relaxed optimization
problem in (4.5), Algorithm 3 has K = Õ(H5d3ϵ−2) sample complexity.

6 Lower Bound of Sample Complexity

In this section, we will provide a lower bound of sample complexity for reward-free RL under linear
mixture MDP setting.

S1

...

... S2,2

S2,1

1
2
+ c⟨a1, θ̃i⟩

1
2
− c⟨a1, θ̃i⟩

1

1

Figure 1: The transition kernel P of the class of
hard-to-learn linear mixture MDPs. The kernel P is
parameterized by θi = (

√
2, αθ̃⊤i /

√
d)⊤ for some

small α. c = α/(
√
2d). The learner knows the

MDP structure, but does not know the parameter
θi (or θ̃i ∈M).

The proof is by construction. Given d ≥ 2, we
first define a binary vector set M = {x|x ∈
Rd−1, [x]i ∈ {−1, 1}}. We index each vec-
tor inM as x1,x2, · · · ,x|M|. Equipped with
the setM, we construct a class of MDPs. As
shown in Figure 1, there are in total three
states S1, S2,1, S2,2 and |A| = |M| actions
a1, a2, · · · a|A|. We define the feature mapping
ϕ(s′|s, ai) ∈ Rd as follows:

ϕ(S2,1|S1, aj) =
(√

2
4

a⊤
j√
2d

)⊤
,

ϕ(S2,2|S1, aj) =
(√

2
4 − a⊤

j√
2d

)⊤
,

ϕ(S2,j |S2,j , ai) =
(
1/
√
2 0⊤

)⊤
for j = 1, 2,

and ϕ(s′|s, a) = 0 for all the remaining cases.
Furthermore, we define a d-dimensional pa-
rameter set Θ ⊆ Rd+1 by Θ =

{
θi|θi =

(
√
2, αθ̃⊤i /

√
d)⊤

}
where θ̃i = xi ∈M and α is a small absolute constant. Therefore, for each pa-

rameter θi, we define the transition probability of the linear mixture MDP as P(·|·, ·) = ⟨ϕ(·|·, ·),θi⟩.
Specifically, the transition between S1 and {S2,1, S2,2} is represented as

Pθi
(S2,1|S1, aj) =

1

2
+

α√
2d
⟨θ̃i,aj⟩, Pθi

(S2,2|S1, aj) =
1

2
− α√

2d
⟨θ̃i,aj⟩.

Meanwhile, we have S2,1 and S2,2 are both absorbing states. With the constructed hard-to-learn
MDP class, we can prove the lower bound of sample complexity as follows:
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Theorem 6.1. Given dimension d ≥ 50 and H ≥ 2, set ϵ ≤ (H − 1)/(2
√
2) and δ ∈ (0, 1/2),

then there exists a class of linear mixture MDPs, such that any reward-free RL algorithm that
(ϵ, δ)-learns the problem (P,R) where R = {{rh}Hh=1, 0 ≤ rh ≤ 1}, needs to collect at least
K = C(1− δ)dH2ϵ−2 episodes during exploration, where C is an absolute constant.

Remark 6.2. When d ≤ H , the sample complexity of UCRL-RFE+ is Õ(H5dϵ−2), which matches
the lower bound in terms of both ϵ and d, ignoring the logarithmic terms. When d > H , the sample
complexity of UCRL-RFE+ is Õ(H4d2ϵ−2), which matches the lower bound only in terms of ϵ. The
factor of d gap between the upper and lower bounds is due to the fact that our upper bound holds
for the arbitrary number of actions. Such a gap also appears in best-arm identification in the linear
bandits problem (See Eq. (3) in Tao et al. [17] with N = O(2d)). There is also a factor of H2 gap
between the upper and lower bounds, and we leave it as future work to remove this gap.

7 Conclusion

We studied model-based reward-free exploration for learning the linear mixture MDPs. We proposed
two algorithms, UCRL-RFE, and UCRL-RFE+, which are guaranteed to have polynomial sample
complexities in exploration to find a near-optimal policy in the planning phase for any given reward
function. To our knowledge, these are the first algorithms and theoretical guarantees for model-based
reward-free RL with function approximation. We also give a sample complexity lower bound for any
reward-free algorithm to learn linear mixture MDPs. The sample complexity of our algorithm UCRL-
RFE+ matches the lower bound in terms of the dependence on accuracy ϵ and feature dimension d
when H ≥ d.
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