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Abstract

We consider a binary classification problem
when the data comes from a mixture of two ro-
tationally symmetric distributions satisfying
concentration and anti-concentration prop-
erties enjoyed by log-concave distributions
among others. We show that there exists a
universal constant Cerr > 0 such that if a pseu-
dolabeler βpl can achieve classification error
at most Cerr, then for any ε > 0, an iterative
self-training algorithm initialized at β0 := βpl

using pseudolabels ŷ = sgn(〈βt,x〉) and using
at most Õ(d/ε2) unlabeled examples suffices
to learn the Bayes-optimal classifier up to
ε error, where d is the ambient dimension.
That is, self-training converts weak learners
to strong learners using only unlabeled ex-
amples. We additionally show that by run-
ning gradient descent on the logistic loss one
can obtain a pseudolabeler βpl with classi-
fication error Cerr using only O(d) labeled
examples (i.e., independent of ε). Together
our results imply that mixture models can
be learned to within ε of the Bayes-optimal
accuracy using at most O(d) labeled examples
and Õ(d/ε2) unlabeled examples by way of a
semi-supervised self-training algorithm.

1 Introduction

Current state-of-the-art methods for computer vision
and natural language understanding have relied upon
self-training methods. These methods are generally
unsupervised or semi-supervised learning approaches
that take advantage of massive unlabeled datasets to
improve performance on benchmark machine learning
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tasks (Devlin et al., 2019; Chen et al., 2020a). As
human-annotated labeled data is expensive to collect,
any approach which can reduce the number of labeled
examples necessary for good performance is very desir-
able.

One common approach in semi-supervised and self-
supervised learning is the usage of a pseudolabeler,
which generates labels for unlabeled data x by using
the outputs of a classifier x 7→ ŷ := sgn(f(x;β)) where
the pseudolabeler f(x;β) has weights β that have been
pre-trained on labeled data (or a combination of la-
beled and unlabeled data). This approach has been
remarkably successful in improving performance on im-
age recognition tasks (Pham et al., 2021; Rizve et al.,
2021), although there is very little theoretical under-
standing for why this method can improve performance
or reduce the labeled sample complexity of the learning
problem.

In this work, we provide algorithmic guarantees for the
error of linear classifiers trained using only unlabeled
samples using a standard self-training framework. We
assume the learner has access to an initial classifier
βpl which could be generated in an arbitrary man-
ner. Given unlabeled examples {xi}ni=1, initial classi-
fier β0 := βpl, at each time t we generate pseudolabels
ŷi = sgn(〈βt,xi〉) that are then used in a standard
gradient-based optimization of a weight-normalized loss
of the form `(ŷi〈βt,xi〉/ ‖βt‖). We assume the data is
generated by a mixture model with two modes in the
sense that, for labels y ∈ {±1} and mean parameter
µ ∈ Rd, x|y is a random variable with mean yµ and
the distribution of z := x− yµ is unimodal, spherically
symmetric, and satisfies some mild concentration and
anti-concentration properties.

Our main contributions are as follows.

(1) Provided the classification error of the initial pseu-
dolabeler is smaller than some absolute constant
Cerr, self-training with Õ(d/ε2) unlabeled examples
produces a classifier that has classification error at
most ε larger than the Bayes-optimal error.
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(2) If the mixture model is sufficiently separated (i.e.,
‖µ‖ ≥ Cµ for some absolute constant Cµ), then in
the supervised learning setting, gradient descent on
the logistic loss finds a classifier with classification
error at most Cerr using onlyO(d) labeled examples—
i.e., independent of ε.

(3) Putting (1) and (2) together implies that in the semi-
supervised setting, mixture models can be learned to
within ε of the Bayes-optimal accuracy using O(d)
labeled examples and Õ(d/ε2) unlabeled examples
by using self-training with weight normalization.

Organization of the paper. We first discuss re-
lated work in Section 2. We provide our main results
on self-training with unlabeled examples in Section 3.
In Section 4, we describe our results in the supervised
setting and combine this with our results from Section 3
to get guarantees in the semi-supervised setting. In
Section 5, we provide a proof sketch for our results
on self-training. We conclude in Section 6, and leave
detailed proofs for the appendices.

Notation. We note here the notational conventions
adopted in the paper. We use bold letters to denote
vectors. We use ‖x‖ to denote the `2 Euclidean norm
of a vector x. We say that f(x) = O(g(x)) if there exist
universal constants C,C ′ such that f(x) ≤ Cg(x) for
x ≥ C ′; f(x) = Ω(g(x)) if there exist C,C ′ such that
f(x) ≥ Cg(x) for x ≥ C ′; and f(x) = Θ(g(x)) if f(x) =
O(g(x)) and f(x) = Ω(g(x)). We use Õ, Ω̃, and Θ̃ to
additionally ignore logarithmic factors. For a vector v,
we denote by err(v) := P(x,y)∼D(y 6= sgn(〈v,x〉), where
the distribution D will be understood from the context
in which this term appears. We use 1(A) to denote the
indicator function of an event A, i.e. equal to one when
the event A occurs and zero otherwise. The function
sgn(z) = 1(z > 0) − 1(z < 0) is the sign function,
equal to the sign of a real number with sgn(0) = 0. We
use the notation a∧ b to denote the minimum of a and
b, and the notation a ∨ b to denote the maximum of
a and b. For a linear classifier x 7→ sgn(〈x,β〉) with
parameter β, we will interchangeably refer to β as
the classifier or as the parameter. We will likewise
interchangeably refer to the parameters βpl defining a
pseudolabeler, a pseudolabeler x 7→ 〈x,βpl〉, and the
classifier induced by a pseudolabeler x 7→ sgn(〈x,βpl〉)
itself, with the particular sense being clear in context.

2 Related Work

Although the usage of the term ‘pseudolabel’ dates back
to as recently as 2013 (Lee, 2013), the usage of self-
supervised (unsupervised) methods to improve perfor-
mance in supervised learning tasks has a long history in
machine learning (Scudder, 1965; Yarowsky, 1995). It

is only over the past few years that self-supervised ‘pre-
training’ methods have become a standard approach
for improving performance in supervised learning tasks
like image recognition and natural language under-
standing (Devlin et al., 2019; Chen et al., 2020a; Pham
et al., 2021). Such methods are particularly appealing
in the age of big data where in an increasing number
of domains it is possible to collect massive unlabeled
datasets.

From a theoretical perspective, much less is known
about self-supervised and semi-supervised learning than
in the supervised setting. Early works by Castelli
and Cover (1995, 1996) looked at the relative value
of labeled examples over unlabeled examples when
the underlying marginal distribution of the features
satisfies a parametric identifiability assumption. A
series of works have sought to clarify under what con-
ditions semi-supervised learning can have provably bet-
ter sample complexity or generalization performance
in comparison with using solely supervised learning
techniques (Ben-David et al., 2008; Singh et al., 2009;
Balcan and Blum, 2010; Darnstädt et al., 2013; Göpfert
et al., 2019). For surveys on early work in semi-
supervised learning, we refer the reader to Zhu and
Goldberg (2009) and Chapelle et al. (2010).

More related to this work, a number of theorists have
sought to better understand the mechanisms underly-
ing the types of self-training algorithms used for deep
neural networks. This includes an analysis of con-
trastive learning (Tosh et al., 2021), consistency reg-
ularization (Wei et al., 2021; Cai et al., 2021), robust
self-training (Raghunathan et al., 2020), knowledge
distillation (Hsu et al., 2021) and masked feature pre-
diction (Lee et al., 2020), to mention a few. A number
of works on the theory of self-training methods have
focused on their applications in transfer learning and
domain adaptation (Kumar et al., 2020; Chen et al.,
2020b; Xie et al., 2021).

A closely related paper is by Oymak and Gulcu (2021).
They considered the Gaussian mixture model setting
and considered a self-training algorithm based on up-
dating the estimate 1

n

∑n
i=1[yixi] ≈ µ for the mean of

the mixture. By replacing the labels yi with pseudola-
bels produced by some initial pseudolabeler, they are
able to show that in the high dimensional limit, the
predictors found by self-training are correlated with the
Bayes-optimal predictor µ. In contrast to our results,
they did not provide a guarantee that their self-training
algorithm converged to the Bayes-optimal predictor.
Additionally, the averaging operator they consider does
not have analogues used in deep learning, which stands
in contrast to the gradient-based training of the logistic
loss we consider in this paper.
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Kumar et al. (2020), in a broad work on the usage of
self-training methods for domain adaptation, worked
on a similar problem to the one we consider in this
paper. They showed that in a Gaussian mixture model
setting, assuming (1) iterative self-training solves an
appropriate constrained nonconvex optimization prob-
lem and (2) access to infinite unlabeled data, then
iterative self-training can yield the Bayes-optimal clas-
sifier provided it is initialized with a pseudolabeler
with sufficiently small error. By contrast, we directly
show that the nonconvex optimization algorithm con-
sisting of self-training with a finite set of unlabeled
samples via weight-normalized gradient descent yields
Bayes-optimal classifiers for a more general class of
distributions.

Chen et al. (2020b) showed that for a mixture model
where some coordinates are ‘spurious’ and are dis-
tributed according to a (possibly anisotropic) Gaussian
while the remaining coordinates satisfy mild distri-
butional assumptions and fully determine the ‘signal’
of the label y, self-training via projected gradient de-
scent learns to avoid the spurious features, provided
the initial pseudolabeler does not depend much on
the spurious features. Under the additional assump-
tion that all of the coordinates are Gaussian with only
one coordinate determining the label, they are able to
show self-training converges to an optimal classifier.
In comparison to our work, we have a more complete
characterization of the sample complexity of the semi-
supervised learning problem in that we show that a
constant number of labeled examples is sufficient for
learning pseudolabelers for which self-training learns
optimal classifiers; we show convergence to the optimal
classifier for more general distributions; and we consider
the dynamics of self-training with weight-normalized
gradient descent, which are different from that of pro-
jected gradient descent.

3 Self-training Converts Weak
Learners to Strong Learners

In this section we show one of our key results, namely
for data coming from an isotropic mixture model, there
exists a universal constant Cerr > 0 such that if an
initial pseudolabeler βpl has classification error at most
Cerr, then self-training using only unlabeled examples
yields a classifier with classification error arbitrarily
close to the Bayes-optimal error. Before we begin, let
us introduce some definitions which we will need to
define the mixture model we consider. Our first set
of definitions are that of sub-exponential distributions
and that of anti-concentration.

Definition 3.1 (Sub-exponential distributions). We
say Dx is K-sub-exponential if every x ∼ Dx is a sub-

exponential random vector with sub-exponential norm
at most K. In particular, for any v̄ with ‖v̄‖ = 1,
PDx

(|〈v̄,x〉| ≥ t) ≤ exp(−t/K).

Definition 3.2. For v̄, v̄′ ∈ Rd, denote by pv̄(·) the
density function of the projection of x ∼ Dx on the one
dimensional subspace spanned by v̄, and by pv̄,v̄′(·) the
density function of the projection of x on the subspace
spanned by v̄ and v̄′. We say the distribution satisfies
U -anti-concentration if there exists U > 0 such that
for any unit norm v̄ ∈ Rd, pv̄(t) ≤ U for all t ∈ R. We
say (U ′, R)-anti-anti-concentration holds if there exists
U ′, R > 0 such that for any unit norm v̄, v̄′ ∈ Rd, it
holds that pv̄,v̄′(a) ≥ 1/U ′ for all a ∈ R2 satisfying
‖a‖2 ≤ R.

The sub-exponential definition is standard and satis-
fied by log-concave isotropic distributions among oth-
ers. Anti-concentration and anti-anti-concentration are
fairly benign distributional assumptions, the former
stating that the distribution cannot assign unbounded
probability mass along one dimensional projections and
the latter stating that the projection of the features
onto low dimensional subspaces have probability den-
sity functions which assign at least a constant amount
of mass near the origin. A number of recent works have
developed guarantees for learning halfspaces with noise
under these distributional assumptions to avoid com-
putational complexity lower bounds that exist without
such assumptions (Diakonikolas et al., 2019, 2020b;
Frei et al., 2021a,b; Zou et al., 2021).

We can now define the mixture distribution we consider
in this work.

Definition 3.3. A joint distribution D over (x, y) ∈
Rd×{±1} is defined as follows. Let µ ∈ Rd, and y = 1
with probability 1/2 and y = −1 with probability 1/2.
Then we generate x|y ∼ z + yµ where z is an isotropic,
rotationally symmetric1 and K-sub-exponential distri-
bution satisfying U -anti-concentration and (U ′, R)-anti-
anti-concentration. Further assume z is unimodal in
the sense that its probability density function pz(z)
is decreasing function of ‖z‖2. We call (x, y) ∼ D
a mixture distribution with mean µ and parameters
K,U,U ′, R.

We note that log-concave isotropic distributions
like the standard Gaussian are K-sub-exponential
and satisfy U -anti-concentration and (U ′, R)-anti-anti-
concentration with K,U,U ′, R = Θ(1) (see Diakoniko-
las et al. (2020a, Fact 19)). Thus, our generative model
is a natural generalization of the Gaussian mixture
model that can accommodate a broader class of dis-
tributions. We further note that the Bayes-optimal

1By isotropic we mean E[x] = 0 and E[xx>] = I, and by
rotationally symmetric we mean x has the same distribution
as Qx for any orthogonal matrix Q.
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classifier for the mixture models we consider in this
work is given by the linear classifier x 7→ sgn(〈µ,x〉).
Fact 3.4. For mixture models satisfying Definition 3.3,
the Bayes-optimal classifier is given by x 7→ sgn(〈µ,x〉).

A proof for Fact 3.4 is given in Appendix C. With the
above in place, we can begin to describe the self-training
algorithm we will use to amplify weak learners to strong
learners using only unlabeled data. We assume we have
access to a pseudolabeler βpl which is able to achieve a
sufficiently small, but constant, population-level classi-
fication error. We then use a weight-normalized logistic
regression method to train starting from the initial pre-
dictor βpl using only unlabeled examples. Our results
will rely upon loss functions that are well-behaved in
the following sense.

Definition 3.5. We say a loss function ` is well-
behaved for some C` ≥ 1 if the loss `(z) is 1-Lipschitz
and decreasing on the interval [0,∞), and additionally
−`′(z) ≥ 1

C`
exp(−z) for z > 0.

The exponential loss `(z) = exp(−z) and the logistic
loss `(z) = log(1 + exp(−z)) are well-behaved with
C` = 1 and C` = 2 respectively. Note that our analysis
will not require that the loss used is convex, merely
that it is decreasing, Lipschitz, and that −`′ is bounded
from below by a constant times the exponential loss.
Additionally note that we only specify the behavior of
the loss on the interval [0,∞). As we will see, this is
because in the self-training algorithm we consider, the
input to the loss function is always non-negative.

We can now formally describe the self-training algo-
rithm. Let σ > 0 be a parameter which we shall call
the temperature. We assume we have access to n = TB

samples {x(t)
i }i=1,...,B, t=0,...,T−1, which we partition

into T batches of size B. With a well-behaved loss `,
we define the (unsupervised) empirical risk

L̂u
t (β) :=

1

B

B∑
i=1

`

(
1

σ
· sgn

(〈
x

(t)
i ,β

〉)
·
〈

x
(t)
i ,

β

‖β‖

〉)

=
1

B

B∑
i=1

`

(
1

σ

∣∣∣∣〈x
(t)
i ,

β

‖β‖

〉∣∣∣∣) . (3.1)

That is, we use a typical weight-normalized logistic
regression-type loss with pseudolabels given by ŷ =
sgn(〈β,x〉), with an additional factor given by the
temperature σ. We start with the predictor β0 =
βpl/

∥∥βpl

∥∥ and then use updates

β̃t+1 = βt − η∇L̂u
t (βt),

βt+1 = β̃t+1/
∥∥∥β̃t+1

∥∥∥ .
Notice the usage of weight normalization in the defi-
nition of the unsupervised loss. This can be viewed

Algorithm 1 Self-training with pseudolabels and
weight normalization

1: input: Training dataset S =

{x(t)
i }i=1,...,B, t=0,...,T−1,

step size η, temperature σ > 0, pseudolabeler βpl

2: β0 := βpl/
∥∥βpl

∥∥
3: for t = 0, . . . , T − 1 do

4: Generate pseudolabels ŷ
(t)
i = sgn(〈x(t)

i ,βt〉)
5: β̃t+1 = βt−

η
B

∑B
i=1∇`(

1
σ · ŷ

(t)
i · 〈x

(t)
i ,βt/ ‖βt‖〉)

6: βt+1 = β̃t+1/
∥∥∥β̃t+1

∥∥∥
7: end for
8: output: βT−1

as a form of regularization for the learning algorithm,
since if we do not normalize the weights it is possi-
ble that L̂u(β) could be minimized by simply taking
‖β‖ → ∞. The usage of a temperature term is com-
mon in self-training algorithms (Hinton et al., 2015;
Zou et al., 2019), and has also previously been used
for learning halfspaces with noise (Diakonikolas et al.,
2020b; Zou et al., 2021). We summarize the above into
Algorithm 1.

Our main result is the following theorem. We will
present its proof in Section 5.

Theorem 3.6. Suppose that (x, y) ∼ D follows a
mixture distribution with mean µ satisfying ‖µ‖ =
Θ(1) and parameters K,U,U ′, R = Θ(1). Let ` be well-
behaved for some C` ≥ 1, and assume the temperature
satisfies σ ≥ R∨‖µ‖. Assume access to a pseudolabeler
βpl which satisfies P(x,y)∼D

(
y 6= sgn(〈βpl,x〉)

)
≤ Cerr,

where Cerr = R2/(72C`U
′). Let ε, δ ∈ (0, 1), and

assume that

B = Ω̃
(
ε−1
)
, T = Ω̃

(
dε−1

)
, η = Θ̃

(
d−1ε

)
.

Then with probability at least 1 − δ, by running Al-
gorithm 1 with step size η and batch size B, the last
iterate satisfies err(βT−1) ≤ err(µ) + ε. In particular,

T = Õ(d/ε) iterations using at most TB = Õ(d/ε2)
unlabeled samples suffices to be within ε error of the
Bayes-optimal classifier.

Theorem 3.6 shows that provided we have a pseudola-
beler which achieves a constant level of classification
error, then by using only unlabeled examples, self-
training with pseudolabels and weight normalization
will amplify the pseudolabeler from a weak learner
(achieving a constant level of accuracy) to a strong
learner (achieving accuracy arbitrarily close to that of
the best possible). Note that for the mixture model,
sgn(〈µ, ·〉) is the Bayes-optimal classifier over the dis-
tribution (see Fact 3.4), and if ‖µ‖ is small then the
best error achievable might be quite large, as the region
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Algorithm 2 Logistic regression with online stochastic
gradient descent

1: input: Failure probability δ ∈ (0, 1),

Training dataset S = {(x(i)
t , y

(i)
t )} for t =

0, . . . , T − 1, i = 1, . . . , 4dlog(1/δ)e,
step size η.

2: β
(i)
0 := 0.

3: for i = 1, . . . , 4dlog(1/δ)e do
4: for t = 0, . . . , T − 1 do

5: β
(i)
t+1 = β

(i)
t − η∇ log(1 + exp(−y(i)

t ·
〈x(i)
t ,β

(i)
t 〉))

6: end for
7: end for
8: output: {β(i)

t }t∈[T ], i∈[log(1/δ)]

near the origin could have a large mass of samples that
are just as likely to be from the y = +1 cluster and the
y = −1 cluster (consider a mixture of two isotropic 2D
Gaussians with means (+1, 0) and (−1, 0)). Thus in
some settings it may not be possible for a pseudolabeler
to have error smaller than Cerr. However, we will see
in the next section that provided ‖µ‖ is bounded below
by a universal constant, we can ensure that a classifier
trained by gradient descent using only O(d) labeled
examples has classification error at most Cerr.

4 Semi-supervised Learning with O(d)
Labeled Examples via Self-training

Theorem 3.6 tells us that provided the self-training
procedure (Algorithm 1) starts with a pseudolabeler
that has classification error smaller than some absolute
constant Cerr, self-training will boost this weak learner
to a strong learner quickly. In this section, we show
that a standard logistic regression procedure produces a
pseudolabeler that can achieve the desired constant ac-
curacy by using only O(d) samples—that is, a constant
number of samples with respect to ε. The particular
algorithm we consider is online SGD used to minimize
the logistic loss `(z) = log(1 + exp(−z)) defined over a
linear classifier, and is given in Algorithm 2. We use
O(log(1/δ)) independent runs of online SGD to amplify
a constant probability guarantee to a high probability
guarantee.

Theorem 4.1. Suppose that (x, y) ∼ D follows a
mixture distribution with mean µ and parameters
K,U,U ′, R > 0. Let Cerr be the constant from Theo-
rem 3.6 and assume ‖µ‖ ≥ 3K max(log(8/Cerr), 22K).

By running Algorithm 2 with η = (‖µ‖2 + d)−1Cerr/8

and T = 8η−1C−1
err ‖µ‖

2
iterations, there exists i ≤

4 log(1/δ) and t < T such that with probability at least
1− δ,

P(y 6= sgn(〈β(i)
t ,x〉)) ≤ Cerr.

The proof of Theorem 4.1 follows standard stochastic
convex optimization arguments and can be found in
Appendix B.

Theorem 4.1 implies that if we have access to O
(
(‖µ‖2+

d) ‖µ‖2
)

labeled examples, where O(·) hides universal
constants depending on K, U , U ′, and R, we can learn
a pseudolabeler βpl with classification error at most
Cerr. In particular, for ‖µ‖ = Θ(1), using only O(d)
labeled examples suffices to learn a pseudolabler with
error at most Cerr. We can then use this pseudola-
beler in Theorem 3.6 with O(d/ε2) unlabeled examples
to perform self-training and yield a classifier which
achieves classification error at most ε larger than the
best-possible error. We collect these results into the
following corollary.

Corollary 4.2. Let (x, y) ∼ D be a mixture model
with mean µ and parameters K,U,U ′, R = Θ(1). As-
sume ‖µ‖ = Θ(1) satisfies

‖µ‖ ≥ 3K max
(
log(144U ′/R2), 22K

)
,

Then for any ε, δ ∈ (0, 1), with probability at least
1− δ, using O(d) labeled examples in Algorithm 2 and
Õ(d/ε2) unlabeled examples in Algorithm 1 suffices
to learn a predictor β to within ε error of the Bayes-
optimal classification error, where O(·) hides constants
depending on K, U , U ′, R, and log(1/δ) only, and Õ
additionally suppresses logarithmic dependence on ε−1

and d.

To the best of our knowledge, Corollary 4.2 is the
first result to show that a semi-supervised self-training
algorithm can learn an optimal classifier using only a
constant number of labeled examples.

On a related note, we want to acknowledge that
for Gaussian mixture models, there exist purely un-
supervised techniques (based on clustering meth-
ods) for which Õ(d/ε) unlabeled examples suffices
to learn within ε of the clustering error min

(
P(y 6=

sgn(〈µ,x〉)), 1 − P(y 6= sgn(〈µ,x〉))
)

(Li et al., 2017).
Thus, under more restrictive distributional assumptions
and using algorithms designed for mixture models, it
is possible to optimally learn a mixture model using
only unlabeled examples. We note this to emphasize
that in this work we do not make the claim that self-
training with pseudolabels is the optimal algorithm
for learning mixture models. Rather, our aim is to
develop a better understanding of how self-training
with pseudolabels can achieve good performance using
few labeled examples.

5 Proof of Main Results

In this section we provide a proof for Theorem 3.6. The
key to our proof comes from deriving a lower bound
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that takes the form

〈µ̄,−∇L̂u
t (βt)〉 ≥ C0 sin2(θt), (5.1)

where θt ∈ [0, π/2] is the angle between βt and µ̄ and
C0 is some absolute constant. To see the importance of
such an inequality, let us look at the increments between
the weights found using Algorithm 1 and those of the
(normalized) ideal predictor µ̄ := µ/ ‖µ‖. Denote

∆2
t = ‖βt − µ̄‖

2
. Let ∆̃2

t = ‖β̃t − µ̄‖22. Then,

∆2
t −∆2

t+1

(i)

≥ ∆2
t − ∆̃2

t+1

= 2η〈∇L̂u
t (βt),βt − µ̄〉 − η2

∥∥∥∇L̂u
t (βt)

∥∥∥2

(ii)
= 2η〈−∇L̂u

t (βt), µ̄〉 − η2
∥∥∥∇L̂u

t (βt)
∥∥∥2

(iii)

≥ 2η〈−∇L̂u
t (βt), µ̄〉 − ε. (5.2)

Inequalities (i) and (ii) follow from the fact that

∇L̂u
t (βt) is orthogonal to βt, as can be seen by the

identity

∇L̂u
t (βt) =

1

σB‖βt‖2

B∑
i=1

`′
(

1

σ

|〈βt,x
(t)
i 〉|

‖βt‖2

)

· sgn(〈βt,x
(t)
i 〉) ·

(
I − βtβ

>
t

‖βt‖22

)
x

(t)
i .

(5.3)

In particular, (i) follows from the identity ‖β̃t+1‖2 =

‖βt‖2+η2‖∇L̂u
t (βt)‖2 > 1. Inequality (iii) comes from

taking η sufficiently small. Thus, if we have a lower
bound like (5.1), then (5.2) shows that whenever the
angle θt between βt and µ̄ is large, the distance between
βt and µ̄ will decrease. Perhaps surprisingly, Lemma
5.1 below shows that one can guarantee this condition
holds provided the predictor βt has classification error
smaller than some absolute constant Cerr.

Lemma 5.1. Let D be a mixture model with mean µ
and parameters K,U,U ′, R > 0. Let ` be well-behaved
for some C` ≥ 1, and assume the temperature satisfies
σ ≥ R ∨ ‖µ‖. Suppose that ‖βt‖ = 1 is an initial
estimate. Denote θt as the angle between βt and µ,
and assume that θt ∈ [0, π/2]. Assume the classification
error of βt satisfies

errt := P
(
y 6= sgn(〈βt,x〉)

)
≤ R2

72C`U ′
=: Cerr.

Then we have

〈µ,−E[∇L̂u
t (βt)]〉 ≥

R2 ‖µ‖2

36σC`U ′
· sin2(θt).

Moreover, there exists a universal constant CB > 0
such that for any ε, δ ∈ (0, 1),

B ≥ CB
(
KC`U

′

R2

)2

ε−1 log(2/δ),

then with probability at least 1 − δ,

〈µ,−∇L̂u
t (βt)〉 ≥

R2 ‖µ‖2

72σC`U ′
sin2 θt − ε/2.

The proof of Lemma 5.1 is a somewhat involved calcula-
tion, and the complete details are left for Appendix A.
Below, we sketch some of the high-level ideas.

Lemma 5.1 Proof Sketch. Since ‖βt‖ = 1, using the
gradient formula (5.3),

− E[∇L̂u
t (βt)]

= Ex∼Dx

[
− `′

(
|〈βt,x〉|

)
· sgn(〈βt,x〉) ·

(
I − βtβ

>
t

)
x
]
.

Denote

µ̄ :=
µ

‖µ‖
, µ̃t := (I − βtβ

>
t )µ̄.

We can then write

〈µ,−E∇L̂u
t (βt)〉

= ‖µ‖E
[
− `′

(
|〈βt,x〉|

)
· sgn(〈βt,x〉) · µ̃>t x

]
.

Define the event St where a sample (x, y) is correctly
classified by βt,

St := {y = sgn(〈βt,x〉)}.

Then let Sct be the complement of the event St, we can
calculate

E[−`′
(
|〈βt,x〉|/σ

)
· sgn(〈βt,x〉) · µ̃>t x]

= E[−`′
(
|〈βt, yx〉|/σ

)
µ̃>t (yx)1(St)]

+ E[`′
(
|〈βt, yx〉|/σ

)
µ̃>t (yx)1(Sct )]

= E[−`′
(
|〈βt, yx〉|/σ

)
µ̃>t (yx)]

+ 2E[`′
(
|〈βt, yx〉|/σ

)
µ̃>t (yx)1(Sct )]. (5.4)

The proof relies upon deriving a lower bound on the first
quantity and an upper bound on the absolute value
of the second quantity. We proceed with the lower
bound for the first term as follows. Since the quantity
depends only on the projection of z onto the space
spanned by βt and µ̄, we work in this two dimensional
space. Since z is rotation invariant, we can rotate the
coordinate system so that βt = e2, µ̄ = (sin θt, cos θt),
and µ̃ = (sin θt, 0), where θt is the angle between βt and
µ̄. Denote pβt,µ(·, ·) : R2 → [0,∞) as the probability
density function of the projection of z onto the 2D
subspace spanned by βt and µ. Then, using that yx
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has the same distribution as z + µ,

E[−`′
(
|〈βt, yx〉|/σ

)
µ̃>(yx)]

=

∫ ∞
−∞

∫ ∞
−∞
−`′(|u2 + ‖µ‖ cos θt|/σ) · sin θt · . . .

· (u1 + ‖µ‖ sin θt) · pβt,µ̄(u1, u2)du1du2

=

∫ ∞
−∞
−`′(|u2 + ‖µ‖ cos θt|/σ) · sin θt · . . .

·
[ ∫ ∞
−∞

(u1 + ‖µ‖ sin θt) · pβt,µ̄(u1, u2)du1

]
du2

(i)
= ‖µ‖ sin2 θt

∫ ∞
−∞

∫ ∞
−∞
−`′(|u2 + ‖µ‖ cos θt|/σ) · . . .

· pβt,µ̄(u1, u2)du1du2.

In (i) we use that z is isotropic and so projections of it
onto one dimensional subspaces are mean zero. From
here, we use the well-behaved property of ` to bound
−`′ from below by an exponential-type loss, and anti-
anti-concentration to bound pβt,µ̄(u1, u2) from below.
After some lines of calculus, we get (see Appendix A
for details)

E[−`′
(
|〈βt, yx〉|/σ

)
µ̃>(yx)]

≥
‖µ‖R2 exp(−‖µ‖σ cos θt)

6C`U ′
. (5.5)

Using a similar line of argument, we can show an upper
bound for the second term of (5.4),∣∣∣E [`′(|〈βt, yx〉|/σ)µ̃>yx · 1(Sct )

]∣∣∣
≤ ‖µ‖ sin2 θt · P(Sct ) = ‖µ‖ sin2 θt · errt. (5.6)

Substituting (5.5) and (5.6) into (5.4), we get

〈µ,−E[∇L̂u
t (βt)]〉

≥ ‖µ‖
2

sin2 θt
σ

[
R2 exp(−‖µ‖σ cos θt)

6C`U ′
− 2errt

]

≥ ‖µ‖
2

sin2 θt
σ

[
R2 exp(−‖µ‖σ )

6C`U ′
− 2errt

]
.

Thus, we see that by choosing σ ≥ ‖µ‖, provided errt
is smaller than an absolute constant, 〈µ,−E[∇L̂u

t (βt)〉
is bounded from below by a constant multiple of sin2 θt,
as claimed. To translate the result from the population-
level estimate to that for batches of samples, we use
concentration. For details, see Appendix A.

As we described at the beginning of this section,
Lemma 5.1 is the key to showing that self-training
is able to learn the Bayes-optimal classifier over the
distribution using only unlabeled examples. In order to
apply it for the proof of Theorem 3.6, we need to con-
firm that the classification error of the learned classifier

satisfies errt ≤ Cerr almost surely for each iterate of the
algorithm. We also need to ensure that we have general-
ization guarantees for the last iterate of the algorithm,
as the standard cross-validation trick used in super-
vised learning is not desirable in the semi-supervised
setting due to the large labeled sample complexity of
such an approach. These constitute the main technical
hurdles in the following proof.

Proof of Theorem 3.6. For notational simplicity, in the
remainder of the proof let us denote

Cg :=
72σC`U

′

R2 ‖µ‖
, Cd := 2 ‖µ‖2 + 2dK2 log2

(
dBT

δ

)
.

Note that Cg (the g denoting gradient; see Lemma 5.1)
is a universal constant independent of the dimension
while Cd depends on the dimension. In the remainder
of the proof we will use η = ε/(16CdCg).

Let µ̄ := µ/ ‖µ‖. Denote ∆2
t = ‖βt − µ̄‖

2
. Let ∆̃2

t =
‖β̃t − µ̄‖22. Using the same argument from (5.2), we
have

∆2
t −∆2

t+1 ≥ 2η〈−∇L̂u
t (βt), µ̄〉 − η2

∥∥∥∇L̂u
t (βt)

∥∥∥2

.

(5.7)

To control the gradient norm term, we use concen-
tration. Standard concentration of sub-exponential
random variables gives (see Lemma D.1 for the full
details) with probability at least 1 − δ, for all i ∈ [B]
and t ∈ [T ],

‖x(t)
i ‖

2 ≤ 2 ‖µ‖2 + 2dK2 log2(dBT/δ) =: Cd. (5.8)

By Jensen’s inequality,

‖∇L̂u
t (βt)‖2 ≤

1

σ2B

B∑
i=1

|`′(|〈βt,x
(t)
i 〉|/σ)|2‖x(t)

i ‖
2

≤ Cd
σ2
. (5.9)

Substituting (5.9) into (5.7), we get

∆2
t −∆2

t+1 ≥ 2η
[
〈−∇L̂u

t (βt), µ̄〉 − ηCd/σ2
]
. (5.10)

For the first part of our proof, we claim that for all
t = 0, 1, . . . , it holds that ∆t ≤ ∆0, θt ∈ [0, π/2], and
err(βt) ≤ Cerr. We show this result by induction. For
the base case, we have for any β of unit norm,

P(y 6= sgn(〈β,x〉) = P(〈β, yx〉 < 0)

= P(〈β, yx− µ〉 < −〈β,µ〉)
= P(〈β, z〉 < −‖µ‖ cos θ), (5.11)

where θ denotes the angle between β and µ. Since
err(βpl) ≤ Cerr < 1/2 and z is mean zero, we must
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have θ0 ∈ [0, π/2]. Thus the base case t = 0 holds.
Now assume the result holds for t ∈ N and consider
the case t+ 1. Since βt and µ̄ are each of unit norm,
we have the identity

∆2
t = ‖βt − µ̄‖

2
= 2(1− cos θt) = 4 sin2(θt/2)

=⇒ ∆t = 2 sin(θt/2). (5.12)

By the induction hypothesis, err(βt) ≤ Cerr and θt ∈
[0, /π/2]. We can thus use Lemma 5.1 (with ε from the
lemma statement replaced with ε/8Cg) and (5.10) to
get

∆2
t −∆2

t+1 ≥ 2η

[
1

Cg
sin2(θt)−

ε

16Cg
− ηCd

σ2

]
≥ 2η

[
1

4Cg
∆2
t −

ε

16Cg
− ηCd

σ2

]
. (5.13)

In the last line we have used (5.12) and that θt ∈
[0, π/2]. We therefore have

∆2
t+1 ≤

(
1− η

2Cg

)
∆2
t + ηε/(8Cg) + 2η2Cd/σ

2

(i)

≤
(

1− η

2Cg

)
∆2

0 + ηε/(8Cg) + 2η2Cd/σ
2

= ∆2
0 − η

(
∆2

0

2Cg
− ε

8Cg
− 2ηCd

σ2

)
.

In (i) we have used that η = ε/(16CdCgσ
2) implies

1− η/2Cg > 0 and the inductive hypothesis that ∆2
t ≤

∆2
0. Thus, we see that the choice of η implies (where

we assume ∆2
0 > ε without loss of generality),

∆2
0

2Cg
− ε

8Cg
− 2ηCd

σ2
=

∆2
0

2Cg
− ε

4Cg
> 0.

Hence ∆2
t+1 ≤ ∆2

0. Using (5.11) and (5.12) and the
induction hypothesis, this implies err(βt+1) ≤ Cerr

and θt+1 ∈ [0, π/2]. This completes the induction
and hence we have that for all t, err(βt) ≤ Cerr and
θt ∈ [0, π/2] holds so that we may apply Lemma 5.1
for every t. In particular, for every t, (5.13) holds. We
re-arrange (5.13) to get for any T ∈ N,

∆2
T ≤ (1− η/2Cg)∆2

T−1 + ηε/(8Cg) + 2Cdη
2/σ2.

One can verify (see Lemma D.2 for the detailed
calculation) that for η = ε/(16CdCgσ

2) and pro-
vided the number of iterations satisfies T ≥
32CdC

2
gσ

2ε−1 log(32CdC
2
gσ

2ε−1), this implies

4 sin2(θT /2) = ∆2
T ≤ ε.

To convert the guarantee for the angle between βt and
µ into one on the gap of the classification error between

βt and µ̄, we use (5.11) to write

err(βt)− err(µ̄) = P(〈βt, z〉 < −‖µ‖ cos θt)

− P(〈µ̄, z〉 < −‖µ‖) (5.14)

(i)
= P(〈v, z〉 ∈ [−‖µ‖ ,−‖µ‖ cos θt])

(ii)

≤ U ‖µ‖ [1− cos θt]

(iii)

≤ U ‖µ‖ sin2 θt.

In (i) we use that z is rotationally invariant and that
‖βt‖ = ‖µ̄‖ = 1 so that 〈βt, z〉 and 〈µ̄, z〉 have the
same distribution as 〈v, z〉 for a vector v satisfying
‖v‖ = 1. In (ii) we have used the definition of U -anti-
concentration. In (iii) we have used the inequality

1− cos θt = 1−
√

1− sin2 θt ≤ sin2 θt. Since sin2 θT ≤
4 sin2(θT /2) ≤ ε, by rescaling ε to ε/(U ‖µ‖), we get
the desired result.

6 Conclusion

In this work we theoretically analyzed an increasingly
popular semi-supervised learning method: self-training
with pseudolabels via gradient based optimization of
the cross-entropy loss following supervised learning
with a limited number of samples. We considered the
setting of general mixture models satisfying benign
concentration and anti-concentration properties. We
showed that provided the initial pseudolabeler has clas-
sification error smaller than some absolute constant
Cerr, using Õ(d/ε2) unlabeled samples suffices for the
self-training procedure to get within ε classification
error of the Bayes-optimal classifier for the distribu-
tion. By showing that the standard gradient descent
algorithm can learn a pseudolabeler with classification
error at most Cerr using only O(d) labeled examples,
our results provide the first proof that a constant (with
respect to ε) number of labeled examples suffices for
optimal performance in a semi-supervised self-training
algorithm.

As we mentioned above, we show that a self-training
algorithm achieves a sample complexity of Õ(d/ε2)
samples while Li et al. (2017) are able to achieve a
sample complexity of O(d/ε) in the Gaussian setting
by using a clustering-based algorithm. We are unsure
if the algorithm we consider can achieve O(d/ε) sample
complexity, but we believe there are significant tech-
nical hurdles to doing so even if we were to assume
a Gaussian mixture model. Typically, to achieve fast
rates for stochastic optimization algorithms one needs
a type of ‘smoothness’ result where the gradient of
the loss can be bounded from above by the loss it-
self. With smoothness, if one can show something akin



Spencer Frei∗, Difan Zou∗, Zixiang Chen∗, Quanquan Gu

to a proxy PL inequality (Frei and Gu, 2021) (since

‖∇L̂(β)‖ ≥ 〈−∇L̂(β), µ̄〉, our Lemma 5.1 establishes
such an inequality), then one can get linear convergence;
with our O(1/ε) batch size, this would give a total of
Õ(1/ε) sample complexity. The challenge in our setting
is that the optimization objective (the unsupervised
loss) is different from the objective we truly wish to
minimize (the supervised classification error), and so
the ‘smoothness’ and ‘PL inequality’ must be shown
in terms of the objective we truly wish to minimize (in
our work, we use sin2 θt as a proxy for this objective).
Lemma 5.1 provides the proxy PL inequality, and we
believe that a ‘fast rate’ result might be possible if one
could show an analogous ‘smoothness’ result, although
this is a highly challenging prospect as the unsuper-
vised loss we consider involves an absolute value term
and hence has a discontinuous derivative.

For future research, we are interested in understanding
if some of the methods we have developed can translate
to settings where the optimal classifier is nonlinear. We
expect this analysis to require novel non-convex opti-
mization analyses. Our hope is that such settings will
allow for better insight into the usage of self-training
in neural networks.
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Supplementary Material:
Self-training Converts Weak Learners to

Strong Learners in Mixture Models

A Proofs from Section 3

A.1 Proof of Lemma 5.1: expected value

In this section we prove the first part of Lemma 5.1, involving the lower bound given for 〈µ,−E∇L̂u
t (βt)〉. Our

proof relies upon similar ideas used by Diakonikolas et al. (2020b) and Zou et al. (2021) for learning halfspaces
with agnostic noise. At a high level, the noise in the halfspace setting considered by (Diakonikolas et al., 2020b;
Zou et al., 2021) corresponds to the error made by the pseudolabeler in our setting.

Lemma A.1 (Lemma 5.1, expected value). Let (x, y) ∼ D be a mixture model with mean µ and parameters
K,U,U ′, R > 0. Let ` be well-behaved for some C` ≥ 1, and assume the temperature satisfies σ ≥ R ∨ ‖µ‖.
Suppose that ‖βt‖ = 1 is an initial estimate. Denote θt as the angle between βt and µ, and assume that
θt ∈ [0, π/2]. Assume the classification error of βt satisfies

errt := P(y 6= sgn(〈βt,x〉)) ≤
R2

72C`U ′
=: Cerr.

Then

〈µ̄,−E∇L̂u
t (βt)〉 ≥

R2 ‖µ‖2

36σC`U ′
· sin2(θt).

Proof of Lemma 5.1. Since ‖βt‖ = 1, using the gradient formula (5.3),

−E[∇L̂u
t (βt)] = Ex∼Dx

[
− `′

(
|〈βt,x〉|

)
· sgn(〈βt,x〉) ·

(
I − βtβ

>
t

)
x
]
.

Denote

µ̄ :=
µ

‖µ‖
, µ̃t := (I − βtβ

>
t )µ̄.

We can then write

〈µ,−E∇L̂u
t (βt)〉 = ‖µ‖E

[
− `′

(
|〈βt,x〉|

)
· sgn(〈βt,x〉) · µ̃>x

]
.

Define the event

St := {y = sgn(〈βt,x〉)}.

Then we can calculate

E[−`′
(
|〈βt,x〉|/σ

)
· sgn(〈βt,x〉) · µ̃>t x]

= E[−`′
(
|〈βt, yx〉|/σ

)
µ̃>t (yx)1(St)] + E[`′

(
|〈βt, yx〉|/σ

)
µ̃>t (yx)1(Sct )]

= E[−`′
(
|〈βt, yx〉|/σ

)
µ̃>t (yx)] + 2E[`′

(
|〈βt, yx〉|/σ

)
µ̃>t (yx)1(Sct )]. (A.1)

In the remainder of the proof, we will derive a lower bound on the first quantity and an upper bound on the
absolute value of the second quantity.

We proceed with the lower bound for the first term as follows. Since the quantity depends only on the projection
of z onto the space spanned by βt and µ̄, we work in this two dimensional space. Since z is rotationally invariant,
we can rotate the coordinate system so that βt = e2, µ̄ = (sin θt, cos θt), and µ̃ = (sin θt, 0), where θt is the angle
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between βt and µ̄. Denote pβt,µ(·, ·) : R2 → [0,∞) as the probability density function of the projection of z onto
the 2D subspace spanned by βt and µ. Then, using that yx has the same distribution as z + µ,

E[−`′
(
|〈βt, yx〉|/σ

)
µ̃>(yx)]

=

∫ ∞
−∞

∫ ∞
−∞
−`′(|u2 + ‖µ‖ cos θt|/σ) · sin θt · (u1 + ‖µ‖ sin θt) · pβt,µ̄(u1, u2)du1du2

=

∫ ∞
−∞
−`′(|u2 + ‖µ‖ cos θt|/σ) · sin θt ·

[ ∫ ∞
−∞

(u1 + ‖µ‖ sin θt) · pβt,µ̄(u1, u2)du1

]
du2

(i)
= ‖µ‖ sin2 θt

∫ ∞
−∞

∫ ∞
−∞
−`′(|u2 + ‖µ‖ cos θt|/σ)pβt,µ̄(u1, u2)du1du2. (A.2)

In (i) we use the fact that z isotropic implies that the projection of z onto one dimensional subspaces are mean
zero, and thus for all u2 we have

∫∞
−∞ u1 · pβt,µ̄(u1, u2)du1 = 0. We now calculate a lower bound on the remaining

quantity. Since z is rotationally invariant, we know that pβt,µ̄(u1, u2) depends only on the distance from the

origin
√
u2

1 + u2
2. Thus, we can convert to polar coordinates and using an abuse of notation write pβt,µ̄(r) to

emphasize that the density only depends on the distance r from the origin in polar coordinates. Continuing, this
means we can write

∫ ∞
−∞
−`′(|u2 + ‖µ‖ cos θt|/σ)pβt,µ̄(u1, u2)du1du2.

=

∫ ∞
r=0

rpβt,µ̄(r)

∫ π

φ=−π
−`′(|r cosφ+ ‖µ‖ cos θt|/σ)drdφ

(i)

≥
∫ ∞
r=0

rpβt,µ̄(r)

∫ π/2

φ=0

−`′(|r cosφ+ ‖µ‖ cos θt|/σ) · sinφ · drdφ

(ii)

≥
∫ ∞
r=0

rpβt,µ̄(r)

∫ π/2

φ=0

1

C`
exp(−|r cosφ+ ‖µ‖ cos θt|/σ) · sinφ · drdφ

(iii)
=

exp(−‖µ‖σ cos θt)

C`

∫ ∞
r=0

rpβt,µ̄(r)

∫ π/2

φ=0

exp(−r cos(φ)/σ) · sinφ · drdφ

(iv)
=

σ exp(−‖µ‖σ cos θt)

C`

∫ ∞
r=0

pβt,µ̄(r)(1− exp(−r/σ)) · dr

(v)

≥
σ exp(−‖µ‖σ cos θt))

C`U ′

∫ R

0

[1− exp(−r/σ)]dr

(vi)

≥
σ exp(−‖µ‖σ cos θt)

2C`U ′

∫ R

0

r

σ
dr

=
R2 exp(−‖µ‖σ cos θt)

6C`U ′
. (A.3)

In (i) we use that ` is decreasing and hence −`′ ≥ 0, as well as sinφ ∈ [0, 1] for φ ∈ [0, π/2]. In (ii) we use Definition
3.5. In (iii) we have used the assumption that θt ∈ [0, π/2] and that cos θt ≥ 0 for θt ∈ [0, π/2]. In (iv) we use

that
∫ π/2

0
exp(−a cosx) sinxdx = (1− exp(−a))/a. In (v) we have used the definition of anti-anti-concentration.

In (vi) we use that σ ≥ R and that 1− exp(−x) ≥ x/2 on [0, 1]. Putting (A.2) together with (A.3), we get

E[−`′(|〈βt, yx〉|)µ̃>(yx)] ≥
R2 ‖µ‖ exp(−‖µ‖σ cos θt)

6C`U ′
· sin2(θt). (A.4)

We now want an upper bound on the second term in (A.1). Using the same coordinate system defined in terms of
βt = e2 and µ̄ = (sin θt, cos θt), we have that

Sct = {〈βt, yx〉 < 0} = {〈βt, z + µ〉 < 0} = {u2 + ‖µ‖ · cos θt < 0}.
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Thus,

E
[
`′(|〈βt, yx〉|/σ)µ̃>yx · 1(Sct )

]
=

∫ ∞
−∞

∫ ∞
−∞

`′(|u2 + ‖µ‖ cos θt|/σ) · (u1 sin θt + ‖µ‖ sin2 θt)1(u2 + ‖µ‖ cos θt ≤ 0) · pβt,µ̄(u1, u2)du1du2

=

∫ ∞
−∞

`′(|u2 + ‖µ‖ cos θt|/σ) · 1(u2 + ‖µ‖ cos θt ≤ 0)

[ ∫ ∞
−∞

(u1 sin θt + ‖µ‖ sin2 θt) · pβt,µ̄(u1, u2)du1

]
du2

(i)
= ‖µ‖ sin2 θt

∫ ∞
−∞

`′(|u2 + ‖µ‖ cos θt|/σ) · 1(u2 + ‖µ‖ cos θt ≤ 0)

∫ ∞
u1=−∞

pβt,µ̄(u1, u2)du1du2.

In (i) we use the fact that z isotropic implies that for all u2 we have
∫∞
−∞ u1 · pβt,µ̄(u1, u2)du1 = 0. Using

|`′(z)| ≤ 1 on [0,∞), we can therefore bound∣∣∣E [`′(|〈βt, yx〉|/σ)µ̃>yx · 1(Sct )
]∣∣∣ ≤ ‖µ‖ sin2 θt · P(Sct ) = ‖µ‖ sin2 θt · errt. (A.5)

We then return to (A.1). By combining (A.5) with (A.4), we see that

〈µ,−E[∇L̂u
t (βt)]〉 =

‖µ‖
σ

E[−`′
(
|〈βt, yx〉|/σ

)
µ̃>(yx)] +

2 ‖µ‖
σ

E
[
`′
(
|〈βt, yx〉|/σ

)
µ̃>(yx)1(Sct )

]
≥ ‖µ‖

σ

[
R2 ‖µ‖ exp(−‖µ‖σ cos θt)

6C`U ′
· sin2(θt)

]
− 2
‖µ‖
σ

[
‖µ‖ sin2 θt · errt

]
=
‖µ‖2 · sin2 θt

σ

[
R2 exp(−‖µ‖σ cos θt)

6C`U ′
− 2errt

]

≥ ‖µ‖
2 · sin2 θt
σ

[
R2 exp(−‖µ‖σ )

6C`U ′
− 2errt

]
.

Thus, by choosing σ ≥ ‖µ‖, we have

〈µ,−E[∇L̂u
t (βt)]〉 ≥

‖µ‖2 · sin2 θt
σ

[
R2 exp(−1)

6C`U ′
− 2errt

]
≥ ‖µ‖

2 · sin2 θt
σ

[
R2

18C`U ′
− 2errt

]
.

In particular, if

errt ≤
R2

72C`U ′
=: Cerr,

then we have

〈µ,−E[∇L̂u
t (βt)]〉 ≥

‖µ‖2R2

36σC`U ′
sin2 θt.

A.2 Proof of Lemma 5.1, batch of samples

We now prove the second part of Lemma 5.1, where we show that provided the batch size is large enough, then
the same lower bound that holds from the expected value holds when using finite samples.

Lemma A.2 (Lemma 5.1, batch of samples). Let (x, y) ∼ D be a mixture model with mean µ ∈ Rd and
parameters K,U,U ′, R > 0. Let ` be well-behaved for some C` ≥ 1 and assume the temperature satisfies
σ ≥ R ∨ ‖µ‖. Suppose that θt ∈ [0, π/2] is the angle between µ and βt where ‖βt‖ = 1. Then there exists a
universal constant CB > 0 such that for any ε, δ ∈ (0, 1),

B ≥ CB
(
KC`U

′

R2

)2

ε−1 log(2/δ),
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then with probability at least 1 − δ,

〈µ,−∇L̂u
t (βt)〉 ≥

R2 ‖µ‖2

72σC`U ′
sin2 θt − ε/2.

Proof of Lemma 5.1, batch of samples. Denote by zi = yixi − µ and St = {yi = sgn(〈βt,xi〉)}. Let µ̄ = µ/ ‖µ‖
and µ̃ = (I − βtβ

>
t )µ̄. Let us define

At =
1

B

B∑
i=1

−`′
(
|〈βt,x

(t)
i 〉|/σ

)
· sgn(〈βt,x

(t)
i 〉) · µ̃

>x
(t)
i ,

so that 〈µ,−E∇L̂u
t (βt)〉 = ‖µ‖

σ EAt. We can use 〈µ̃,x(t)
i 〉 = 〈µ̃, zi + yµ〉 to write the above as the sum of two

terms:

A
(1)
t =

1

B

B∑
i=1

u
(1)
i :=

1

B

B∑
i=1

−`′
(
|〈βt,x

(t)
i 〉|

)
· sgn(〈βt,x

(t)
i 〉) · 〈µ̃, zi〉,

A
(2)
t =

1

B

B∑
i=1

u
(2)
i :=

1

B

B∑
i=1

−`′
(
|〈βt,x

(t)
i 〉|

)
· sgn(〈βt,x

(t)
i 〉) · ‖µ‖ · y〈µ̃, µ̄〉.

First note

‖µ̃‖2 = ‖µ̄− βt〈βt, µ̄〉‖2

= ‖µ̄− βt cos θt‖2

= 1 + cos2 θt − 2 cos2 θt

= sin2 θt.

Since zi are i.i.d. isotropic, each u
(1)
i are i.i.d. mean zero random variables with sub-exponential norm at

most ‖µ̃‖ · ‖〈‖µ̃‖ / ‖µ̃‖ , z〉‖ψ2
≤ ‖µ̃‖K = K sin θt. Thus, using sub-exponential concentration (Vershynin, 2010,

Proposition 5.16), there exists a universal constant C > 0 such that for any ξ > 0,

P(|A(1)
t − EA(1)

t | ≥ ξ) ≤ 2 exp

(
−C min

(
ξ2B

K2 sin2 θt
,

ξB

K sin θt

))
.

By taking ξ = CK sin θt

√
1
B log(2/δ) for a sufficiently large constant C > 0, this implies that with probability at

least 1− δ/2,

|A(1)
t − EA(1)

t | ≤ CK sin θt

√
1

B
log(2/δ). (A.6)

On the other hand, each of u
(2)
i are i.i.d. sub-exponential random variables with mean EAt and sub-exponential

norm at most ‖µ‖ ‖〈µ̃, µ̄〉‖ψ2
= ‖µ‖ (1− cos θt) ≤ ‖µ‖ sin2 θt (using θt ∈ [0, π/2]) and thus for any ξ > 0,

P(|A(2)
t − EA(2)

t | ≥ ξ) ≤ 2 exp

(
−C min

(
ξ2B

‖µ‖2 sin4 θt
,

ξB

‖µ‖ sin2 θt

))
.

By taking ξ = C ‖µ‖ sin2 θt

√
1
B log(2/δ) for C sufficiently large universal constant, we get that with probability

at least 1− δ/2,

|A(2)
t − EA(2)

t | ≤ C ‖µ‖ sin2 θt

√
1

B
log(2/δ). (A.7)
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Putting (A.6) and (A.7) together and applying union bound, we have that with probability at least 1 − δ,

〈µ,−∇L̂u
t (βt)〉 =

‖µ‖
σ

[
A

(1)
t +A

(2)
t

]
(i)

≥ ‖µ‖
σ

[
EAt − CK sin θt

√
1

B
log(2/δ)− C ‖µ‖ sin2 θt

√
1

B
log(2/δ)

]
(ii)

≥ ‖µ‖
σ

[
‖µ‖R2

36C`U ′
sin2 θt − CK sin θt

√
1

B
log(2/δ)− C ‖µ‖ sin2 θt

√
1

B
log(2/δ)

]
. (A.8)

In (i) we use (A.6) and (A.7). In (ii) we use Lemma A.1. Now, to complete the proof, we consider separately the
case that sin2 θt > ε and the case that sin2 θt ≤ ε. In the first instance, the batch size satisfies of

B ≥
(

144KC2C`U
′

R2

)2

ε−1 log(2/δ) ≥
(

144KC2C`U
′

R2 sin θt

)2

log(2/δ).

Thus using K ≥ 1 and ‖µ‖ ≥ 1, we have

CK sin θt

√
1

B
log(2/δ) ≤ R2

144C`U ′
sin2 θt ≤

‖µ‖R2

144C`U ′
sin2 θt,

and

C ‖µ‖ sin2 θt

√
1

B
log(2/δ) ≤ ‖µ‖R2

144KC`U ′
sin3 θt ≤

‖µ‖R2

144C`U ′
sin2 θt,

Substituting this into (A.8), we get

〈µ,−∇L̂u
t (βt)〉 ≥

‖µ‖
σ

[
‖µ‖R2

72C`U ′
sin2 θt

]
≥ ‖µ‖

σ

[
‖µ‖R2

72C`U ′
sin2 θt − ε/2.

]
(A.9)

On the other hand, if sin2 θt ≤ ε, then notice that (A.8) becomes

〈µ,−∇L̂u
t (βt)〉 ≥

‖µ‖
σ

[
‖µ‖R2

36C`U ′
sin2 θt − CKε1/2

√
1

B
log(2/δ)− C ‖µ‖ ε

√
1

B
log(2/δ)

]
. (A.10)

Then B = Ω(ε−1) implies that (A.9) holds in this case as well. This completes the proof.

B Proofs from Section 4

In this section, we prove the following theorem.

Theorem B.1 (Theorem 4.1, restated). Let (x, y) ∼ D be a mixture distribution with mean µ and parameters
K,U,U ′, R > 0. Let Cerr > 0 be arbitrary, and assume ‖µ‖ ≥ 3K max(log(8/Cerr), 22K). By running Algorithm 2

with η = (‖µ‖2 + d)−1Cerr/8 and T = 8η−1C−1
err ‖µ‖

2
iterations, there exists i ≤ 4 log(1/δ) and t < T such that

with probability at least 1 − δ,
P(y 6= sgn(〈β(i)

t ,x〉)) ≤ Cerr.

To show this theorem, we will first need an upper bound for the classification error that is achieved by the
classifier x 7→ sgn(〈µ̄,x〉). For the standard isotropic Gaussian mixture model N(yµ, Id), it is easy to show that
P(y 6= sgn(〈µ̄,x〉)) = Φ(−‖µ‖), where Φ is the standard normal CDF. For sub-exponential mixture models, we
have a similar bound.

Lemma B.2. Let (x, y) ∼ D be a mixture model with mean µ and parameters K,U,U ′, R > 0. Then we have,

P (y 6= sgn(〈x,µ〉)) ≤ K exp(−‖µ‖ /K).
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Proof. For simplicity denote µ̄ = µ/ ‖µ‖. We have

P (y 6= sgn(〈x,µ〉)) = P(〈yx, µ̄〉 < 0)

= P(〈yx− µ, µ̄〉 < −‖µ‖)
= P(〈z, µ̄〉 < −‖µ‖)

=

∫ −‖µ‖
−∞

P(〈z, µ̄〉 < −t)dt

≤
∫ −‖µ‖
−∞

exp(−|t|/K)dt

= K exp(−‖µ‖ /K).

The inequality uses the definition of sub-exponential.

The next intermediate result we need will be a characterization of the population loss under a surrogate for the
0-1 loss.

Lemma B.3. Let ` be 1-Lipschitz, decreasing, with `(z) ≤ exp(−z) for z > 0. Let (x, y) ∼ D be a mixture
model with mean µ and parameters K,U,U ′, R > 0. Then

E(x,y)∼D`(y〈µ, x〉) ≤ (1 + ‖µ‖+ 2 ‖µ‖2)K exp(−‖µ‖ /K) + exp(−‖µ‖ /2K) + exp(−‖µ‖ /2).

In particular, provided ‖µ‖ ≥ 64K2, we have

E(x,y)∼D`(y〈µ,x〉) ≤ exp(−‖µ‖ /3K).

Proof. Denote µ̄ = µ/ ‖µ‖ for simplicity, and let γ = 1/2. Our proof uses an argument similar to Frei et al.
(2021a, Lemma 5.9) and Zou et al. (2021, Lemma 2.7), where we decompose

E`(〈yx,µ〉) = E[`(〈yx,µ〉)1(〈yx, µ̄〉 < 0)]

+ E[`(〈yx,µ〉)1(〈yx, µ̄〉 ∈ [0, γ))]

+ E[`(〈yx,µ〉)1(〈yx, µ̄〉 > γ)]. (B.1)

We first bound the first term. Denote by OPT the classification error using µ/ ‖µ‖,

OPT = P(y 6= sgn(〈x,µ/ ‖µ‖)〉) ≤ K exp(−‖µ‖ /K),

where the inequality follows by Lemma B.2. Let ξ = 2 ‖µ‖. We have

E[`(〈yx,µ〉)1(〈yx, µ̄〉 < 0)]
(i)

≤ E[(1 + |〈yx,µ〉|)1(〈yx, µ̄〉 < 0)]

= OPT + ‖µ‖E[|〈yx, µ̄〉|1(〈yx, µ̄〉 < 0, |〈yx, µ̄〉| ≤ ξ)
+ ‖µ‖E[|〈yx, µ̄〉|1(〈yx, µ̄〉 < 0, |〈yx, µ̄〉| > ξ)

≤ (1 + ‖µ‖ ξ)OPT + ‖µ‖E[|〈yx, µ̄〉|1(〈yx, µ̄〉 > ξ)]

= (1 + ‖µ‖ ξ)OPT + ‖µ‖
∫ ∞
ξ

P(〈yx, µ̄〉 > t)dt

= (1 + ‖µ‖ ξ)OPT + ‖µ‖
∫ ∞
ξ

P(〈yx− µ, µ̄〉 > t− µ)dt

(ii)

≤ (1 + ‖µ‖ ξ)OPT + ‖µ‖
∫ ∞
ξ

exp(−(t− ‖µ‖)/K)dt

= (1 + ‖µ‖ ξ)OPT +K ‖µ‖ exp((‖µ‖ − ξ)/K)

= (1 + 2 ‖µ‖2)OPT +K ‖µ‖ exp(−‖µ‖ /K). (B.2)

In (i) we use Cauchy–Schwarz and that ` is 1-Lipschitz and decreasing. In (ii) we use that t ≥ ξ ≥ ‖µ‖ and the
definition of sub-exponential.
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For the second term of (B.1), we have

E[`(〈yx,µ〉)1(〈yx, µ̄〉 ∈ [0, γ))] ≤ `(0)P(〈yx, µ̄〉 ∈ [0, γ))

≤ P(〈yx− µ, µ̄〉 ∈ [−‖µ‖ ,−‖µ‖+ γ))

= P(〈yx− µ, µ̄〉 ≤ −‖µ‖+ γ)− P(〈yx− µ, µ̄〉 ≤ −‖µ‖)
(i)

≤ P((〈yx− µ, µ̄〉 ≤ −1

2
‖µ‖)

(ii)

≤ exp(−‖µ‖ /2K). (B.3)

where in (i) we use γ < 1 ≤ 1
2 ‖µ‖ and in (ii) we have used the definition of sub-exponential.

Finally, for the third term of (B.1), we use that ` is decreasing and has exponential tail so that

E[`(〈yx,µ〉)1(〈yx, µ̄〉 > γ)] ≤ `(‖µ‖) ≤ exp(−γ ‖µ‖) = exp(−‖µ‖ /2). (B.4)

Putting (B.2), (B.3), and (B.4) all together, we get

E[`(y〈µ, x〉)] ≤ (1 +K ‖µ‖3)OPT +K ‖µ‖ exp(−‖µ‖2 /2) + exp(−‖µ‖ /(2K)) + exp(−‖µ‖ /2)

≤ (1 + 2 ‖µ‖2)K exp(−‖µ‖ /K) +K ‖µ‖ exp(−‖µ‖2 /2) + 2 exp(−‖µ‖ /(2K))

(i)

≤ (3K + 2) exp(−‖µ‖ /2K)

(ii)

≤ exp(−‖µ‖ /3K).

In (i) we use that x/ log x ≥
√
x and thus 2 ‖µ‖2 exp(−‖µ‖ /K) = exp(− 1

k ‖µ‖+ 4 log ‖µ‖) ≤ exp(−‖µ‖ /2K)
for ‖µ‖ ≥ 64K2, and in (ii) we again use that ‖µ‖ ≥ 64K2.

With the above in hand we can complete the proof of Theorem 4.1. We will show that provided the means of
the mixture model are sufficiently well-separated (by an absolute constant), then the population risk under the
convex surrogate ` can be as small as Θ(Cerr). This leads to an upper bound for the classification error using
supervised learning that is at most Cerr.

Proof of Theorem 4.1. Fix i ∈ {1, . . . , log(1/δ)} as given in Algorithm 2. As the cross-entropy loss is convex

and 1-Lipschitz, and as E[‖x‖2] ≤ 2 ‖µ‖2 + 2E[‖z‖2] = 2(‖µ‖2 + d), by Frei et al. (2021a, Lemma C.1), for

η ≤ (‖µ‖2 + d)−1ε/4, we know there exists ti < T = 4η−1ε−1 ‖µ‖2 such that E[`(y〈βti,x〉] ≤ E[`(y〈µ,x〉)] + ε/2.

By Markov’s inequality, for each i, with probability at least 1− 1
1+δ0

over {(x(i)
t , y

(i)
t )}t=0,...,T , E[`(y〈βti ,x〉)] ≤ (1+

δ0)[E`(y〈µ,x〉)+ε]. As the {(x(i)
t , y

(i)
t )} are independent for different i, the probability of failure for I independent

such i is [1/(1 + δ0)]I . As 1/x ≤ 1/ log(1 + x) ≤ 2/x on [0, 1], this implies that as long as I ≥ 2δ−1
0 log(1/δ),

then with probability at least 1 − δ, there exists i ∈ I such that E[`(y〈βti ,x〉)] ≤ (1 + δ0)[E`(y〈µ,x〉) + ε]. In
particular, for I = 4dlog(1/δ)e, we have with probability at least 1 − δ, for some i and ti < T ,

E`(y〈βti ,x〉) ≤ 2E`(y〈µ,x〉) + ε.

By Lemma B.3, we know that for ‖µ‖ ≥ 64K2, we have

E`(y〈µ,x〉) ≤ exp(−‖µ‖ /3K).

To guarantee 2 exp(−‖µ‖ /3K) ≤ Cerr log(2)/2 it suffices to take ‖µ‖ ≥ 3K log(8/Cerr). Thus, provided
‖µ‖ ≥ 3K max(log(8/Cerr), 22K), we have that with probability at least 1 − δ,

P(y 6= sgn(〈βti ,x〉)) ≤
1

`(0)
E`(y〈βti ,x〉) ≤

1

2
Cerr + ε.

Taking ε = Cerr/2 completes the proof.
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C Bayes-optimal Classifier for Mixture Distributions

Here we prove a more general version of Fact 3.4 that relies only upon rotational symmetry and unimodality.

Fact C.1. Let µ ∈ Rd. Suppose z is continuous, rotationally symmetric and unimodal in the sense that its
density function pz(z) is a decreasing function of ‖z‖2. Assume Y ∼ Unif({1,−1}) and x|Y = y ∼ z + yµ. Then
the Bayes-optimal classifier is given by x 7→ sgn(〈µ,x〉).

Proof. Let us introduce some notation. We denote by X,Z, Y as random variables and by z,x ∈ Rd and
y ∈ {−1, 1} as possible realizations of those random variables. The Bayes-optimal classifier chooses a label for a
feature x ∈ Rd by taking the maximum value of P(Y = y|x) over y ∈ {±1}. Thus, we can write the Bayes-optimal
classifier hBayes(x) as

hBayes(x) = argmaxy∈{±1}P(Y = y|x).

Note that P(Y = 1) = P(Y = −1) = 1/2. Thus, by Bayes’ theorem,

P(Y = y|x) =
P(x|Y = y)P(Y = y)

P(x|Y = 1)P(Y = 1) + P(x|Y = −1)P(Y = −1)

=
P(x|Y = y)

P(x|Y = 1) + P(x|Y = −1)
.

Thus, we see that the Bayes-optimal classifier chooses the label for a feature x which maximizes the likelihood of
observing x:

hBayes(x) = argmaxy∈{±1}P(x|Y = y).

If we denote by pz(·) as the probability density function of z, since x|Y = y ∼ z + yµ, using the properties of the
probability density function under linear transformations, we have

P(x|Y = y) = pz(x− yµ).

Thus,

hBayes(x) =

{
1 if pz(x− µ) > pz(x + µ),

−1 if pz(x− µ) ≤ pz(x + µ).
(C.1)

By assumption, there exists a decreasing function g : [0,∞)→ [0,∞) such that the density function of z satisfies

pz(z) = g(‖z‖22).

By (C.1), the Bayes-optimal decision boundary is determined by comparing pzb(x− µ) and pz(x + µ). We have,

pz(x− µ) > pz(x + µ)
(i)⇐⇒ g(‖x− µ‖22) > g(‖x + µ‖22)

(ii)⇐⇒ ‖x− µ‖22 ≤ ‖x + µ‖2

⇐⇒ ‖x‖22 + ‖µ‖22 − 2〈x,µ〉 ≤ ‖x‖22 + ‖µ‖22 + 2〈x,µ〉
⇐⇒ 〈x,µ〉 ≥ 0.

Above, (i) follows by using rotational symmetry of z, and (ii) follows by using that z is unimodal so g is decreasing.

D Remaining Proofs

Lemma D.1. If (x, y) ∼ D is from a K-sub-exponential mixture model with mean µ, then for any δ > 0, with
probability at least 1− δ, for any i ∈ [B] and t ∈ [T ],

‖x(t)
i ‖

2 ≤ 2 ‖µ‖2 + 2dK2 log2(dBT/δ).
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Proof. Since the z
(t)
i are K-subexponential, we have that for each component j ∈ [d], for any ξ > 0,

P([z
(t)
i ]2j ≥ ξ) ≤ exp(−

√
ξ/K).

Since we have the inclusion for ρ > 0,

{‖z(t)
i ‖

2 ≥ ρ} ⊂ ∪dj=1{[zi]2j > ρ/d},

we have that for any i,

P(‖z(t)
i ‖

2 ≥ ρ) ≤ dP([z
(t)
i ]2j ≥ ρ/d) ≤ d exp

(
−
√
ρ

K
√
d

)
,

where we have used the fact that z is K-sub-exponential. By taking ρ = dK2 log2(dB/δ), we get that with
probability at least 1− δ, for any i ∈ [B] and fixed t,

‖z(t)
i ‖

2 ≤ dK2 log2(dB/δ).

Using Young’s inequality, this implies

‖x(t)
i ‖

2 ≤ 2 ‖µ‖2 + 2dK2 log2(dB/δ).

Scaling δ 7→ δ/T and using a union bound completes the proof.

Lemma D.2. Suppose that we have the recursion

∆2
t ≤ (1− η/2Cg)∆2

t−1 +
ηε

8Cg
+

2Cdη
2

σ2
, for t = 1, . . . , T,

where CdC
2
gσ

2 ≥ 1 and ∆0 ≤ 2.2 Then, for η = ε/(16CdCgσ
2) and T ≥ 32CdC

2
gσ

2ε−1 log(32CdC
2
gσ

2ε−1), we
have ∆2

T ≤ ε.

Proof. We unroll the recursion and use the geometric series formula to get

∆2
T ≤

(
1− η

2Cg

)T
∆2

0 +

(
ηε

8Cg
+

2Cdη
2

σ2

) T−1∑
i=0

(
1− η

2Cg

)i

=

(
1− η

2Cg

)T
∆2

0 +

(
ηε

8Cg
+

2Cdη
2

σ2

) 1−
(

1− η
2Cg

)T
η/2Cg

≤
(

1− η

2Cg

)T
∆2

0 + ε/4 + 4CdCgη/σ
2.

Substituting the value for η = ε/(16CdCgσ
2), we get

∆2
T ≤

(
1− ε

32CdC2
gσ

2

)T
∆2

0 + ε/2.

Thus, for T ≥ 32CdC
2
gσ

2ε−1 log(32CdC
2
gσ

2ε−1) and using the identity (1 − x)x
−1 log(1/x) ≤ x for x ∈ (0, 1), we

get that (using ∆0 ≤ 2)

∆2
T ≤

∆2
0ε

32CdC2
gσ

2
+ ε/2 ≤ ε.

2Note that CdC
2
gσ

2 ≥ 1 for Cd, Cg as in the proof of Theorem 3.6, and that ∆0 = ‖β0 − µ̄‖ ≤ ‖β0‖+ ‖µ̄‖ = 2.
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