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Advanced systems that require shared control are becoming increasingly pervasive. One advantage of a shared 
control approach is that the human and machine work together to accomplish safe operations. However, data about 
the human is needed to implement successful strategies. The goal of this study was to quantify naturalistic driving 
by collecting performance and physiological data during manual, open-loop driving. Sixteen participants 
performed a single drive that included four sudden obstacles of increasing difficulty (road debris, construction, 
inclement weather, and an animal). Participants were asked to traverse each obstacle using self-employed 
judgement and strategies. Action selection, lane deviation, speed, and heart rate data were recorded. Results 
showed two distinct driving strategies for avoiding the moving obstacle/animal (left vs. right lane navigation). 
Also, maximum speed was affected by obstacle type, but heart rate variability was not. Results can be used to 
inform shared control algorithms designed to combat poor driving performance.  
 
 

INTRODUCTION 
 

 The past decade has witnessed the introduction of 
advanced systems that require shared control. For example, 
semi-autonomous vehicles are assuming more control of 
driving dynamics, while there are still portions of the driving 
task that are the responsibility of human drivers. Shared control 
has the potential to provide additional roadway safety to drivers 
by taking over vehicle operations during critical situations. For 
example, if a driver maneuvers to avoid road objects, e.g., 
debris, such action can result in serious accidents. A report 
found that “nearly 37[%] of all deaths in road debris crashes 
resulted from the driver swerving to avoid hitting an object” 
(Tefft, 2016). Thus, in this setting, shared control can help to 
ensure safety by deploying swift and accurate interventions 
during off-nominal, adverse events. 
 Marcano et al. (2020) adapted Abbink et al. (2018)’s 
definition of shared control to the driving context and suggests 
that: “The driver and the steering assistance system interact 
congruently in a perception-action cycle to execute a dynamic 
driving task that either the driver or the system could execute 
individually under ideal circumstance.” Many researchers are 
investigating how to model shared control for driving tasks to 
better design vehicle control algorithms (e.g., Guo et al., 2019; 
C. Huang et al., 2021; Marcano et al., 2020; Terken & Pfleging, 
2020). They acknowledge the need to understand both drivers’ 
state and performance under a variety of complex situations. To 
do so, it is important to first characterize naturalistic driving 
behaviors in the absence of any automated assistance to 
understand how the human responds to unexpected events. This 
knowledge can enable the modeling and predicting of human 
actions as a function of dynamics of the environment and, in 
turn, be used to implement real-time control strategies to 
counteract poor driving performance.   

Wang et al. (2020) and others posit that there are no 
agreed-upon methods for determining which and when 
functions should be assigned to the automation versus the 
human. One approach is task-level shared control, such as an 
adaptive cruise control (ACC) function, where the human 

operator allocates a subtask to the automated agent while 
executing other subtasks (Wang et al., 2020). A second 
architecture is servo-level shared control that involves 
autonomous agents automatically assuming task-specific 
control via direct or indirect shared control. For direct shared 
control, the human and the automated agent work 
simultaneously to execute an action, where the vehicle receives 
inputs from both the human and the automatic controller (e.g., 
the human turns the steering wheel and the controller adds more 
torque). In the case of indirect shared control, for example, an 
automated vehicle estimates the driver’s desired steering wheel 
angle and applies that value directly to the control module of 
the wheels (without direct human input) (Wang et al., 2020). 
Researchers have modeled servo-level decision-making 
strategies of automated driving agents by applying concepts 
such as rule-based piecewise functions, exponential functions, 
and U-shape functions, in addition to game-theory based 
models, such as Nash and Stackelberg equilibriums (e.g., 
Benloucif et al., 2019; Y. Li et al., 2015). However, these 
approaches focus on vehicle dynamics and have not considered 
the role and behavior of the driver – which is a critical 
component of a shared control system.       

Wang et al. (2020)’s review paper also highlights 
approaches to modeling human driving behavior, including 
sensory dynamics (e.g., visual and auditory), cognition, and 
neuromuscular-skeletal dynamics. Sensing techniques for 
understanding visual sensory dynamic information, e.g., eye 
gaze/tracking, have been used to access driver-related behavior 
such as intent, fatigue, and readiness to take-over during 
conditional driving automation (X. Li et al., 2018; Mandal et 
al., 2016; Zhou et al., 2021). But, other psychophysiological 
methods, such as heart rate monitoring, electroencephalography 
(EEG) and galvanic skin response (GSR), have not yet been 
fully exploited for use in shared control contexts. Wang et al. 
(2020) proposes that in the context of shared authority 
“exploiting brain-related signals could directly offer rich 
information about human driver intent, ability, and thus allow 
us to optimize the allocation of authority and reduce the conflict 
between two agents.”  



To provide empirical data that can be used to design 
driving-related shared control, we developed a study to observe 
naturalistic driving behaviors. Our specific goal was to quantify 
driving strategies and cognitive states when drivers experience 
unexpected obstacles. To this end, an experiment was designed 
that involved driving with various unexpected events hidden in 
the environment that could be encountered during daily driving. 
Also, to begin addressing the research gaps related to the use of 
sensing techniques that can help to characterize driving 
behavior, we employed cardiological-related physiological 
methods. Ultimately, this work can be used to inform the 
development of algorithms to create more robust shared control 
strategies implemented within the context of emerging human-
autonomy systems across a wide range of complex 
environments.  
 

METHOD 
 
Participants 
 
 Sixteen participants (8 males, 7 females, 1 non-binary), 
with a mean age of 21.63 years (SD = 4.79), volunteered for 
this study. Participants were students recruited from Purdue 
University. The average number of years driven within the U.S. 
across participants was 4.53 years (range: 1.5 to 10), and the 
average of years driven outside of the U.S. was 5.22 years 
(range: 1.5 to 15). For the three miles driven categories: five out 
of the 16 participants reported driving less than 10k miles/year, 
nine drove an average of 12k miles/year, and two reported 
driving more than 15k miles/year (all pre-COVID-19 travel 
estimations). This study was approved by the Purdue University 
Institutional Review Board (IRB-2020-755). 
 
Equipment 
 

This study used a fixed-based medium-fidelity driving 
simulator developed by the National Advanced Driving 
Simulator (NADS), miniSIMTM. The system is equipped with 
three 48-inch monitors and one 18.5-inch monitor for 
displaying the driving environment and the vehicle dashboard 
display, respectively. There are also two foot-pedals and a 
steering wheel to capture driver inputs. The miniSIMTM 
system’s sampling rate is 60Hz.  

In addition, heart rate-related data was collected using the 
Polar H10 heart monitor that was placed on participants’ chest 
under the sternum, above the stomach. The RR interval series 
was measured throughout the driving experiment at a sampling 
rate of 130Hz. 
 
Driving Scenario and Independent Variable 
 

The driving scenario was a two-lane rural road 
environment. The roadway topography consisted of multiple 
curves, hills, and straight, flat segments. Four obstacles (the 
independent variable) were placed throughout the drive and 
appeared approximately 5-8 minutes apart from one-another 
(see Figure 1 for a sample road network). The obstacles were 
intentionally selected to represent increasing levels of 
difficulty, in terms of how drivers might avoid the obstacle (see 

Table 1), as identified as “unexpected/relevant objects derived 
from normal driving scenarios” in Thorn et al. (2018)’s NHTSA 
report.  

 
Table 1: Independent variable (obstacle: 4 levels) ordered in 
terms of difficulty 
 

Level of 
Difficulty 

Description Obstacle 
Type 

1 Tire – an old tire in the center of 
the subject’s driving lane to 
mimic road debris 

Small static 
object 

2 Construction Zone – road signs, 
barriers, workers, and a cement 
truck 

Large static 
objects 

3 Rain & High Winds – a brief (~ 
5 sec) onset of heavy rain and 
high velocity wind gusts 

Small 
dynamic 
event 

4 Deer – initially hidden by 
stalled 18-wheeler, emerged 
into road, crossed driver’s lane, 
and stopped in middle of road 

Large 
dynamic 
object 

 
A 4 x 4 Latin Square Design was utilized to 

counterbalance ordering effects across participants. On-coming 
vehicles, in the left adjacent lane, were randomly presented 
throughout the drive, but not when the subject’s vehicle was 
approaching an obstacle event. Also, obstacles were hidden in 
the environment until participants approached them. To help 
make the obstacles less visible, stalled vehicles were present 
along the shoulder of the road during the drive, two of which 
were decoys, and the other was an 18-wheeler tractor trailer 
(which masked the deer obstacle). This was done to ensure that 
participants did not see the upcoming obstacle (deer), before it 
suddenly walked into the middle of the road. There was only 
one leading vehicle during the drive, which related to the 
construction zone obstacle (more details in Procedure section 
below).  

 

 
Figure 1. Bird’s-eye view of sample road network of driving 
scenario with right and left reference lanes and driver 
(collected) data; zoomed in reference window (left-side 
image) 
 
 



Procedure 
 
 Participants were first asked to sign a consent form.  Next, 
the heart rate sensor was placed on them. Afterwards, they were 
given a practice drive on an open highway (different from the 
actual drive) to familiarize themselves with the driving 
simulator. The actual driving scenario was comprised of the 
four obstacles that unexpectedly appeared along the drive, 
precipitating the need for an avoidance task. Participants were 
instructed to drive along the rural road (see Figure 2) and avoid 
any obstacles in the roadway that might be present. Specifically, 
each participant was given the same set of instructions: (1) drive 
as you normally would on the road, (2) drive at 60 mph, or any 
other posted speed sign, and if anything in the environment 
makes you cautious, do what you think is best, for example, (3) 
you can steer or go around an obstacle to ensure that you 
maintain control of your vehicle at all times, (4) however, do 
not come to a complete stop and do not pass any traffic/leading 
vehicles. The only leading vehicle in the driving scenario was a 
leading cement truck that merged into traffic and led the 
participant to the construction zone obstacle. This truck was 
designed to keep the construction zone hidden until participants 
reached the zone and, at that time, the cement truck exited to 
the shoulder and the obstacle (signs, barricades, and 
construction workers) was revealed. 

Each participant drove the scenario only once and was not 
made aware of the (different types of) obstacles nor when they 
would occur. Participants were also not guided on how they 
should avoid any obstacle. The drive lasted approximately 30 
minutes, with three intermediate breaks, during which they 
completed  a NASA-TLX subjective workload assessment 
(Hart & Staveland, 1988) (Hart & Staveland, 1988) after each 
obstacle occurrence.  
 

 
Figure 2. Sample participant driving on rural road  
 
Dependent Measures and Data Analysis 
  
 The dependent measures in this study included: driving 
performance measures, i.e., maximum speed and deviation 
during obstacle avoidance, subjective workload ratings (via 
NASA-TLX), and heart rate variability (HRV). 

Driving performance. Maximum speed was measured by 
the subject vehicle’s center of gravity velocity during obstacle 
avoidance. The maximum deviation (in feet) represented the 
farthest distance traveled away from the obstacle within the 

avoidance trajectory (distance between the subject vehicle and 
the obstacle at the time of avoidance). These measures were 
captured in a ± 5-second time window before and after the 
location of the obstacle in order to capture behavior when 
approaching the obstacle and clearing the obstacle, 
respectively. 

Subjective data. Workload was measured subjectively 
using an unweighted NASA-TLX workload assessment (Hart 
& Staveland, 1988) to record perceived workload for avoiding 
each obstacle event. Each participant rated each of the six items 
using a 0-20 scale after every obstacle encounter. 

Heart Rate Variability. HRV was used to measure 
objective workload. HRV is a physiological measure often used 
in Human Factors research to assess mental workload, 
including reactions to external stimulus (Charles & Nixon, 
2019). For HRV, data was captured using a ±15-second time 
window before and after the obstacle stimulus, while 
maintaining an interval of time adequate for a ultra-short term 
(UST) period of analysis (Shaffer & Ginsberg, 2017). Data was 
also collected for 15 seconds of straight drive time (no external 
elements), which was used to assess baseline HRV that could 
be compared to the obstacle segments. HRV can be analyzed 
using time-domain, frequency-domain, and non-linear metrics. 
Shaffer & Ginsberg (2017) suggests that time-domain metrics 
are better for measuring mental workload in regards to sudden 
stimulus. Thus, we utilized the root mean square of successive 
RR interval difference (RMSSD) metric, which is 
conventionally analyzed during 5 minute segments, but has 
been proposed for UST periods (Baek et al., 2015).  

Data Analysis. Observational and statistical analysis was 
performed on the subjective workload measurement. Also, 
repeated-measures analysis of variances (ANOVAs) were 
conducted on the driving performance data (one-way), 
subjective workload (two-way), and HRV (one-way) using 
IBM SPSS Statistics 28. Bonferroni corrections were applied 
for multiple comparisons. Mauchly’s test of sphericity and 
normality were used to evaluate assumptions and were not 
violated. Results were considered significant at p < 0.05.   
 

RESULTS 
 
Driving Strategies and Performance 
  

 Participants completed a single drive that included four 
different obstacle types. Though maximum deviations across 
obstacles were analyzed, due to the lack of similarity of each 
obstacle type, direct comparisons of values were not made. For 
example, the small dynamic obstacle, i.e., rain and wind, would 
not prompt significant lane deviations compared to a tire in the 
road, which could cause a collision if not avoided (see Table 2 
for average deviation values). Therefore, only driving strategies 
for each obstacle were examined. 

Of the four obstacles, the deer obstacle yielded two 
distinctive avoidance patterns. In particular, participants either 
went around by moving into the left lane (in front of the deer) 
or by staying in the current lane and driving closely between the 
deer and the stalled 18-wheeler on the shoulder (which had less 
available vehicle clearance). Seven out of the 16 participants 



drove behind the deer, while the remaining eight drove in front 
of the deer. One participant collided with the deer.  

 
Table 2. Average maximum lane deviation per obstacle event  
 

Obstacle Type Max Deviation (ft) 
Tire 10.18 
Construction Zone 15.14 
Rain & Wind 2.46 
Deer (left vs right) 15.37 vs 5.15 

 
Maximum speed (mph). There was a significant main 

effect of obstacle type on maximum speed, (F(3, 45) = 11.073, 
p < .001, partial η2 = 0.425). Post-hoc comparisons revealed that 
drivers’ speed was significantly higher for the rain and wind 
obstacle compared to the tire obstacle (mean difference (Mdiff) 
= 6.94 mph, standard error of the mean (SEM) = 2.202, p = 
0.039), the construction zone (Mdiff = 12.41 mph, SEM = 2.034, 
p < .001), and the deer obstacle (Mdiff = 14.826, SEM = 2.740, p 
< .001) (see Figure 3). 
 

 
Figure 3. Maximum speed during each obstacle event (Note. 
*: p < 0.05, **: p < .001, Error bars indicate 95% CI) 
 
Subjective Workload 
 
 A two-way repeated-measures ANOVA was conducted 
on the 4 obstacle types (tire, construction zone, rain and wind, 
deer) x 6 NASA-TLX un-weighted subscales (mental demand, 
physical demand, temporal demand, performance, effort, and 
frustration) (similar to Huang et al., 2019). There was a 
significant main effect of obstacle type (F(1, 15) = 28.967, p < 
.001, partial η2 = 0.659) and subscale (F(1, 15) = 10.325, p = 
.006, partial η2 = 0.408) on workload (see Figure 4). For 
obstacle type, post-hoc comparisons showed that drivers 
experienced a significantly higher level of perceived workload 
during the deer obstacle compared to the tire (Mdiff = 4.50, SEM 
= 0.913, p = .001). For workload, drivers perceived the driving 
task to be more mentally and temporally demanding (mean (M) 
= 9.31, SEM = 0.684 and M = 11.64, SEM = 0.791, respectively) 
compared to all other subscales. There was no significant 
obstacle type x subscale interaction.  
 

 
Figure 4. Unweighted NASA-TLX subscale scores for each 
obstacle type 
 
Heart Rate Variability (RMSSD) 
 
 HRV was not significantly affected by obstacle type 
(F(4,60) = 0.657, p = 0.624, partial η2 = 0.042) (see Figure 5).
   
 

 
Figure 5. Average square root of mean squared difference 
between successive RR intervals (RMSSD) (Note. Error bars 
indicate 95% CI) 

 
DISCUSSION 

 
 The goal of this study was to observe and quantify 
naturalistic driving behavior and strategies deployed during the 
appearance of sudden stimulus. In addition, physiological 
measures, specifically heart rate variability, was used to collect 
data about the state of the driver as a prerequisite for designing 
shared control strategies that can intervene during adverse 
driving events.  
 During the dynamic deer obstacle, there were two notable 
driving strategies of avoidance that emerged: 1) merging into 
the left lane (driving in front of the deer) and 2) staying in the 
current lane (going behind the deer), except for one driver who 
collided with the deer. Czarnecki (2018) reviewed roadway 
driving behavior based on the size of domestic animals and 
wildlife that may come into contact with vehicles. This study 
found that most severe animal-vehicle crashes involved large 
wild animals, such as a deer. Kaplan & Prato (2012) noted that 
the “majority of drivers fail to take action when [faced with 
critical events],” possibly due to objective infrastructural, 
behavioral, or psychological constraints that result in delayed 
recognition of and reaction to the critical event. This was partly 
observed in our study as five of the 16 participants experienced 



complete stops or collisions with the deer obstacle, though 
instructed not to. 
 This may also explain why drivers experienced a 
significantly higher level of perceived workload, as measured 
by the NASA-TLX assessment, during the deer obstacle 
compared to the tire obstacle. The inherent characteristics of the 
tire obstacle are smaller and less consequential, in terms of 
damage to the vehicle, if hit. Also, more mental workload may 
be required to traverse the deer obstacle due to the constant 
evaluation of the deer’s position when deciding how/when to 
safely overtake it. The objective physiological workload 
measure, HRV, however, was not significantly affected by 
obstacle type. This could be due to the UST segments chosen 
for analysis that, though logical to use for sudden stimulus, may 
not be enough to capture statistically different HRV effects. 
Future work will investigate if varying the length of time of 
obstacle events influences HRV responses. 
 Maximum speed was affected by the wind and rain 
obstacle. Czarnecki (2018) explains that drivers’ speed 
selection is often dependent on many factors, including road 
configurations, traffic, and weather. We speculate that 
participants traveled at higher speeds during the rain and wind 
obstacle compared to any of the other obstacles because they 
may have felt it was less risky to generally maintain speed than 
to apply hard braking and potentially lose control of the vehicle. 
Also, compared to the other obstacles, there was no visible sign 
of imminent collision, given that the duration of obscurity for 
the rain was approximately 5 seconds and did not fully impair 
visibility (i.e., the road was still visible through the rain drops 
on the windshield). 
  Finally, the lane deviation metric, although not directly 
compared across obstacles in this study, did provide some 
insight into the drivers’ intent by revealing individual path 
selection. One common theoretical approach to modeling 
driving behavior is predictive modeling, i.e., the creation of 
optimal and/or highly probable trajectories, to help train control 
algorithms that will be used to develop future automated 
controllers. The knowledge gained through the metrics 
explored in this paper support the notion that these methods 
should be further explored in other contexts.    

 
CONCLUSION 

 
 In summary, our study collected data regarding 
naturalistic behavior during manual, open-loop driving, which 
can be used to predict actions and develop shared control 
algorithms for intervening in unsafe, off-nominal conditions. 
This study represents one area of activity within a larger NSF-
funded (NSF # 1836952) Cyber-Physical Systems (CPS) 
project that seeks to integrate human behavior, performance, 
and physiological data into theoretical models to be used to 
design shared control algorithms across various complex 
domains, e.g., driving, aviation, and defense to improve safety, 
skillset refinement, and user experience.   
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