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Advanced systems that require shared control are becoming increasingly pervasive. One advantage of a shared
control approach is that the human and machine work together to accomplish safe operations. However, data about
the human is needed to implement successful strategies. The goal of this study was to quantify naturalistic driving
by collecting performance and physiological data during manual, open-loop driving. Sixteen participants
performed a single drive that included four sudden obstacles of increasing difficulty (road debris, construction,
inclement weather, and an animal). Participants were asked to traverse each obstacle using self-employed
judgement and strategies. Action selection, lane deviation, speed, and heart rate data were recorded. Results
showed two distinct driving strategies for avoiding the moving obstacle/animal (left vs. right lane navigation).
Also, maximum speed was affected by obstacle type, but heart rate variability was not. Results can be used to
inform shared control algorithms designed to combat poor driving performance.

INTRODUCTION

The past decade has witnessed the introduction of
advanced systems that require shared control. For example,
semi-autonomous vehicles are assuming more control of
driving dynamics, while there are still portions of the driving
task that are the responsibility of human drivers. Shared control
has the potential to provide additional roadway safety to drivers
by taking over vehicle operations during critical situations. For
example, if a driver maneuvers to avoid road objects, e.g.,
debris, such action can result in serious accidents. A report
found that “nearly 37[%] of all deaths in road debris crashes
resulted from the driver swerving to avoid hitting an object”
(Tefft, 2016). Thus, in this setting, shared control can help to
ensure safety by deploying swift and accurate interventions
during off-nominal, adverse events.

Marcano et al. (2020) adapted Abbink et al. (2018)’s
definition of shared control to the driving context and suggests
that: “The driver and the steering assistance system interact
congruently in a perception-action cycle to execute a dynamic
driving task that either the driver or the system could execute
individually under ideal circumstance.” Many researchers are
investigating how to model shared control for driving tasks to
better design vehicle control algorithms (e.g., Guo et al., 2019;
C. Huang et al., 2021; Marcano et al., 2020; Terken & Pfleging,
2020). They acknowledge the need to understand both drivers’
state and performance under a variety of complex situations. To
do so, it is important to first characterize naturalistic driving
behaviors in the absence of any automated assistance to
understand how the human responds to unexpected events. This
knowledge can enable the modeling and predicting of human
actions as a function of dynamics of the environment and, in
turn, be used to implement real-time control strategies to
counteract poor driving performance.

Wang et al. (2020) and others posit that there are no
agreed-upon methods for determining which and when
functions should be assigned to the automation versus the
human. One approach is task-level shared control, such as an
adaptive cruise control (ACC) function, where the human

operator allocates a subtask to the automated agent while
executing other subtasks (Wang et al., 2020). A second
architecture is servo-level shared control that involves
autonomous agents automatically assuming task-specific
control via direct or indirect shared control. For direct shared
control, the human and the automated agent work
simultaneously to execute an action, where the vehicle receives
inputs from both the human and the automatic controller (e.g.,
the human turns the steering wheel and the controller adds more
torque). In the case of indirect shared control, for example, an
automated vehicle estimates the driver’s desired steering wheel
angle and applies that value directly to the control module of
the wheels (without direct human input) (Wang et al., 2020).
Researchers have modeled servo-level decision-making
strategies of automated driving agents by applying concepts
such as rule-based piecewise functions, exponential functions,
and U-shape functions, in addition to game-theory based
models, such as Nash and Stackelberg equilibriums (e.g.,
Benloucif et al., 2019; Y. Li et al., 2015). However, these
approaches focus on vehicle dynamics and have not considered
the role and behavior of the driver — which is a critical
component of a shared control system.

Wang et al. (2020)’s review paper also highlights
approaches to modeling human driving behavior, including
sensory dynamics (e.g., visual and auditory), cognition, and
neuromuscular-skeletal dynamics. Sensing techniques for
understanding visual sensory dynamic information, e.g., eye
gaze/tracking, have been used to access driver-related behavior
such as intent, fatigue, and readiness to take-over during
conditional driving automation (X. Li et al., 2018; Mandal et
al., 2016; Zhou et al., 2021). But, other psychophysiological
methods, such as heart rate monitoring, electroencephalography
(EEG) and galvanic skin response (GSR), have not yet been
fully exploited for use in shared control contexts. Wang et al.
(2020) proposes that in the context of shared authority
“exploiting brain-related signals could directly offer rich
information about human driver intent, ability, and thus allow
us to optimize the allocation of authority and reduce the conflict
between two agents.”



To provide empirical data that can be used to design
driving-related shared control, we developed a study to observe
naturalistic driving behaviors. Our specific goal was to quantify
driving strategies and cognitive states when drivers experience
unexpected obstacles. To this end, an experiment was designed
that involved driving with various unexpected events hidden in
the environment that could be encountered during daily driving.
Also, to begin addressing the research gaps related to the use of
sensing techniques that can help to characterize driving
behavior, we employed cardiological-related physiological
methods. Ultimately, this work can be used to inform the
development of algorithms to create more robust shared control
strategies implemented within the context of emerging human-
autonomy systems across a wide range of complex
environments.

METHOD
Participants

Sixteen participants (8 males, 7 females, 1 non-binary),
with a mean age of 21.63 years (SD = 4.79), volunteered for
this study. Participants were students recruited from Purdue
University. The average number of years driven within the U.S.
across participants was 4.53 years (range: 1.5 to 10), and the
average of years driven outside of the U.S. was 5.22 years
(range: 1.5 to 15). For the three miles driven categories: five out
of the 16 participants reported driving less than 10k miles/year,
nine drove an average of 12k miles/year, and two reported
driving more than 15k miles/year (all pre-COVID-19 travel
estimations). This study was approved by the Purdue University
Institutional Review Board (IRB-2020-755).

Equipment

This study used a fixed-based medium-fidelity driving
simulator developed by the National Advanced Driving
Simulator (NADS), miniSIM™, The system is equipped with
three 48-inch monitors and one 18.5-inch monitor for
displaying the driving environment and the vehicle dashboard
display, respectively. There are also two foot-pedals and a
steering wheel to capture driver inputs. The miniSIM™
system’s sampling rate is 60Hz.

In addition, heart rate-related data was collected using the
Polar H10 heart monitor that was placed on participants’ chest
under the sternum, above the stomach. The RR interval series
was measured throughout the driving experiment at a sampling
rate of 130Hz.

Driving Scenario and Independent Variable

The driving scenario was a two-lane rural road
environment. The roadway topography consisted of multiple
curves, hills, and straight, flat segments. Four obstacles (the
independent variable) were placed throughout the drive and
appeared approximately 5-8 minutes apart from one-another
(see Figure 1 for a sample road network). The obstacles were
intentionally selected to represent increasing levels of
difficulty, in terms of how drivers might avoid the obstacle (see

Table 1), as identified as “unexpected/relevant objects derived
from normal driving scenarios” in Thorn et al. (2018)’s NHTSA
report.

Table I: Independent variable (obstacle: 4 levels) ordered in
terms of difficulty

Level of | Description Obstacle

Difficulty Type

1 Tire — an old tire in the center of | Small static
the subject’s driving lane to object
mimic road debris

2 Construction Zone —road signs, | Large static
barriers, workers, and a cement objects
truck

3 Rain & High Winds — a brief (~ | Small
5 sec) onset of heavy rain and dynamic
high velocity wind gusts event

4 Deer — initially hidden by Large
stalled 18-wheeler, emerged dynamic
into road, crossed driver’s lane, object
and stopped in middle of road

A 4 x 4 Latin Square Design was utilized to
counterbalance ordering effects across participants. On-coming
vehicles, in the left adjacent lane, were randomly presented
throughout the drive, but not when the subject’s vehicle was
approaching an obstacle event. Also, obstacles were hidden in
the environment until participants approached them. To help
make the obstacles less visible, stalled vehicles were present
along the shoulder of the road during the drive, two of which
were decoys, and the other was an 18-wheeler tractor trailer
(which masked the deer obstacle). This was done to ensure that
participants did not see the upcoming obstacle (deer), before it
suddenly walked into the middle of the road. There was only
one leading vehicle during the drive, which related to the
construction zone obstacle (more details in Procedure section
below).
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Figure 1. Bird’s-eye view of sample road network of driving
scenario with right and left reference lanes and driver
(collected) data; zoomed in reference window (left-side
image)



Procedure

Participants were first asked to sign a consent form. Next,
the heart rate sensor was placed on them. Afterwards, they were
given a practice drive on an open highway (different from the
actual drive) to familiarize themselves with the driving
simulator. The actual driving scenario was comprised of the
four obstacles that unexpectedly appeared along the drive,
precipitating the need for an avoidance task. Participants were
instructed to drive along the rural road (see Figure 2) and avoid
any obstacles in the roadway that might be present. Specifically,
each participant was given the same set of instructions: (1) drive
as you normally would on the road, (2) drive at 60 mph, or any
other posted speed sign, and if anything in the environment
makes you cautious, do what you think is best, for example, (3)
you can steer or go around an obstacle to ensure that you
maintain control of your vehicle at all times, (4) however, do
not come to a complete stop and do not pass any traffic/leading
vehicles. The only leading vehicle in the driving scenario was a
leading cement truck that merged into traffic and led the
participant to the construction zone obstacle. This truck was
designed to keep the construction zone hidden until participants
reached the zone and, at that time, the cement truck exited to
the shoulder and the obstacle (signs, barricades, and
construction workers) was revealed.

Each participant drove the scenario only once and was not
made aware of the (different types of) obstacles nor when they
would occur. Participants were also not guided on how they
should avoid any obstacle. The drive lasted approximately 30
minutes, with three intermediate breaks, during which they
completed a NASA-TLX subjective workload assessment
(Hart & Staveland, 1988) (Hart & Staveland, 1988) after each
obstacle occurrence.

Figure 2. Sample participant driving on rural road
Dependent Measures and Data Analysis

The dependent measures in this study included: driving
performance measures, i.e., maximum speed and deviation
during obstacle avoidance, subjective workload ratings (via
NASA-TLX), and heart rate variability (HRV).

Driving performance. Maximum speed was measured by
the subject vehicle’s center of gravity velocity during obstacle
avoidance. The maximum deviation (in feet) represented the
farthest distance traveled away from the obstacle within the

avoidance trajectory (distance between the subject vehicle and
the obstacle at the time of avoidance). These measures were
captured in a £ 5-second time window before and after the
location of the obstacle in order to capture behavior when
approaching the obstacle and clearing the obstacle,
respectively.

Subjective data. Workload was measured subjectively
using an unweighted NASA-TLX workload assessment (Hart
& Staveland, 1988) to record perceived workload for avoiding
each obstacle event. Each participant rated each of the six items
using a 0-20 scale after every obstacle encounter.

Heart Rate Variability. HRV was used to measure
objective workload. HRV is a physiological measure often used
in Human Factors research to assess mental workload,
including reactions to external stimulus (Charles & Nixon,
2019). For HRV, data was captured using a +15-second time
window before and after the obstacle stimulus, while
maintaining an interval of time adequate for a ultra-short term
(UST) period of analysis (Shaffer & Ginsberg, 2017). Data was
also collected for 15 seconds of straight drive time (no external
elements), which was used to assess baseline HRV that could
be compared to the obstacle segments. HRV can be analyzed
using time-domain, frequency-domain, and non-linear metrics.
Shaffer & Ginsberg (2017) suggests that time-domain metrics
are better for measuring mental workload in regards to sudden
stimulus. Thus, we utilized the root mean square of successive
RR interval difference (RMSSD) metric, which is
conventionally analyzed during 5 minute segments, but has
been proposed for UST periods (Baek et al., 2015).

Data Analysis. Observational and statistical analysis was
performed on the subjective workload measurement. Also,
repeated-measures analysis of variances (ANOVAs) were
conducted on the driving performance data (one-way),
subjective workload (two-way), and HRV (one-way) using
IBM SPSS Statistics 28. Bonferroni corrections were applied
for multiple comparisons. Mauchly’s test of sphericity and
normality were used to evaluate assumptions and were not
violated. Results were considered significant at p < 0.05.

RESULTS
Driving Strategies and Performance

Participants completed a single drive that included four
different obstacle types. Though maximum deviations across
obstacles were analyzed, due to the lack of similarity of each
obstacle type, direct comparisons of values were not made. For
example, the small dynamic obstacle, i.e., rain and wind, would
not prompt significant lane deviations compared to a tire in the
road, which could cause a collision if not avoided (see Table 2
for average deviation values). Therefore, only driving strategies
for each obstacle were examined.

Of the four obstacles, the deer obstacle yielded two
distinctive avoidance patterns. In particular, participants either
went around by moving into the left lane (in front of the deer)
or by staying in the current lane and driving closely between the
deer and the stalled 18-wheeler on the shoulder (which had less
available vehicle clearance). Seven out of the 16 participants



drove behind the deer, while the remaining eight drove in front
of the deer. One participant collided with the deer.

Table 2. Average maximum lane deviation per obstacle event

Obstacle Type Max Deviation (ft)
Tire 10.18
Construction Zone 15.14

Rain & Wind 2.46

Deer (left vs right) 15.37 vs 5.15

Maximum speed (mph). There was a significant main
effect of obstacle type on maximum speed, (F(3, 45) = 11.073,
p <.001, partial n? = 0.425). Post-hoc comparisons revealed that
drivers’ speed was significantly higher for the rain and wind
obstacle compared to the tire obstacle (mean difference (M)
= 6.94 mph, standard error of the mean (SEM) = 2.202, p =
0.039), the construction zone (M= 12.41 mph, SEM =2.034,
p <.001), and the deer obstacle (My;=14.826, SEM =2.740, p
<.001) (see Figure 3).
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Figure 3. Maximum speed during each obstacle event (Note.

*: p<0.05, **: p<.001, Error bars indicate 95% CI)
Subjective Workload

A two-way repeated-measures ANOVA was conducted
on the 4 obstacle types (tire, construction zone, rain and wind,
deer) x 6 NASA-TLX un-weighted subscales (mental demand,
physical demand, temporal demand, performance, effort, and
frustration) (similar to Huang et al.,, 2019). There was a
significant main effect of obstacle type (F(1, 15) =28.967, p <
.001, partial n? = 0.659) and subscale (F(1, 15) = 10.325, p =
.006, partial n?> = 0.408) on workload (see Figure 4). For
obstacle type, post-hoc comparisons showed that drivers
experienced a significantly higher level of perceived workload
during the deer obstacle compared to the tire (Mayr=4.50, SEM
=0.913, p =.001). For workload, drivers perceived the driving
task to be more mentally and temporally demanding (mean (M)
=9.31,SEM=0.684 and M =11.64, SEM =0.791, respectively)
compared to all other subscales. There was no significant
obstacle type x subscale interaction.
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Figure 4. Unweighted NASA-TLX subscale scores for each
obstacle type

Heart Rate Variability (RMSSD)

HRV was not significantly affected by obstacle type
(F(4,60) = 0.657, p = 0.624, partial n*> = 0.042) (see Figure 5).
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Figure 5. Average square root of mean squared difference
between successive RR intervals (RMSSD) (Note. Error bars
indicate 95% CI)

DISCUSSION

The goal of this study was to observe and quantify
naturalistic driving behavior and strategies deployed during the
appearance of sudden stimulus. In addition, physiological
measures, specifically heart rate variability, was used to collect
data about the state of the driver as a prerequisite for designing
shared control strategies that can intervene during adverse
driving events.

During the dynamic deer obstacle, there were two notable
driving strategies of avoidance that emerged: 1) merging into
the left lane (driving in front of the deer) and 2) staying in the
current lane (going behind the deer), except for one driver who
collided with the deer. Czarnecki (2018) reviewed roadway
driving behavior based on the size of domestic animals and
wildlife that may come into contact with vehicles. This study
found that most severe animal-vehicle crashes involved large
wild animals, such as a deer. Kaplan & Prato (2012) noted that
the “majority of drivers fail to take action when [faced with
critical events],” possibly due to objective infrastructural,
behavioral, or psychological constraints that result in delayed
recognition of and reaction to the critical event. This was partly
observed in our study as five of the 16 participants experienced



complete stops or collisions with the deer obstacle, though
instructed not to.

This may also explain why drivers experienced a
significantly higher level of perceived workload, as measured
by the NASA-TLX assessment, during the deer obstacle
compared to the tire obstacle. The inherent characteristics of the
tire obstacle are smaller and less consequential, in terms of
damage to the vehicle, if hit. Also, more mental workload may
be required to traverse the deer obstacle due to the constant
evaluation of the deer’s position when deciding how/when to
safely overtake it. The objective physiological workload
measure, HRV, however, was not significantly affected by
obstacle type. This could be due to the UST segments chosen
for analysis that, though logical to use for sudden stimulus, may
not be enough to capture statistically different HRV effects.
Future work will investigate if varying the length of time of
obstacle events influences HRV responses.

Maximum speed was affected by the wind and rain
obstacle. Czarnecki (2018) explains that drivers’ speed
selection is often dependent on many factors, including road
configurations, traffic, and weather. We speculate that
participants traveled at higher speeds during the rain and wind
obstacle compared to any of the other obstacles because they
may have felt it was less risky to generally maintain speed than
to apply hard braking and potentially lose control of the vehicle.
Also, compared to the other obstacles, there was no visible sign
of imminent collision, given that the duration of obscurity for
the rain was approximately 5 seconds and did not fully impair
visibility (i.e., the road was still visible through the rain drops
on the windshield).

Finally, the lane deviation metric, although not directly
compared across obstacles in this study, did provide some
insight into the drivers’ intent by revealing individual path
selection. One common theoretical approach to modeling
driving behavior is predictive modeling, i.e., the creation of
optimal and/or highly probable trajectories, to help train control
algorithms that will be used to develop future automated
controllers. The knowledge gained through the metrics
explored in this paper support the notion that these methods
should be further explored in other contexts.

CONCLUSION

In summary, our study collected data regarding
naturalistic behavior during manual, open-loop driving, which
can be used to predict actions and develop shared control
algorithms for intervening in unsafe, off-nominal conditions.
This study represents one area of activity within a larger NSF-
funded (NSF # 1836952) Cyber-Physical Systems (CPS)
project that seeks to integrate human behavior, performance,
and physiological data into theoretical models to be used to
design shared control algorithms across various complex
domains, e.g., driving, aviation, and defense to improve safety,
skillset refinement, and user experience.
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