
Nearly Minimax Optimal Regret for Learning Infinite-horizon
Average-reward MDPs with Linear Function Approximation

Yue Wu Dongruo Zhou Quanquan Gu
UCLA UCLA UCLA

Abstract

We study reinforcement learning in an
infinite-horizon average-reward setting with
linear function approximation for linear mix-
ture Markov decision processes (MDPs),
where the transition probability function of
the underlying MDP admits a linear form
over a feature mapping of the current state,
action, and next state. We propose a new al-
gorithm UCRL2-VTR, which can be seen as
an extension of the UCRL2 algorithm with
linear function approximation. We show that
UCRL2-VTR with Bernstein-type bonus can
achieve a regret of Õ(d

√
DT ), where d is

the dimension of the feature mapping, T is
the horizon, and D is the diameter of the
MDP. We also prove a matching lower bound
Ω̃(d
√
DT ), which suggests that the proposed

UCRL2-VTR is minimax optimal up to loga-
rithmic factors. To the best of our knowledge,
our algorithm is the first nearly minimax op-
timal RL algorithm with function approxi-
mation in the infinite-horizon average-reward
setting.

1 INTRODUCTION

One of the major goals of reinforcement learning
(RL) is to maximize the expected accumulated re-
ward within a certain environment, which is often
represented by a Markov Decision Process (MDP).
To achieve this goal, the agent interacts with the
environment sequentially under the guidance of cer-
tain policy, receives the reward returned by the envi-
ronment, and updates the policy. There are several
MDP settings such as finite-horizon episodic MDPs,
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infinite-horizon discounted MDPs, and infinite-horizon
average-reward MDPs (See Sutton and Barto (2018)
for a detailed introduction). Among them, the infinite-
horizon average-reward MDP attracts a lot of atten-
tion, because it not only imposes the least constraints
on the underlying MDP structure but also serves as
a proper environment for many real-world decision-
making problems that care more about the long-term
return, such as factory optimization, and product de-
livery (Proper and Tadepalli, 2006), and automated
trading in the financial markets. This is also the focus
of this work.

A series of previous work (Bartlett and Tewari, 2009;
Jaksch et al., 2010; Fruit et al., 2018b; Talebi and Mail-
lard, 2018; Zhang and Ji, 2019) has proved both upper
and lower regret bounds for learning infinite-horizon
average-reward MDP in the tabular setting, where the
number of states and actions are finite. Specifically,
Jaksch et al. (2010) first proposed UCRL2 algorithm

which achieves Õ(DS
√
AT ), where S is the number of

states, A is the number of actions, and D is the di-
ameter of MDP. Jaksch et al. (2010) also proved that
no algorithm can achieve a regret bound lower than
Ω(
√
DSAT ). Zhang and Ji (2019) proposed a nearly

minimax optimal algorithm EBF with Õ(
√
DSAT ) re-

gret, which matches the lower regret up to logarithmic
factors. However, these regret bounds depend on the
cardinalities of state and action spaces (i.e., S and A),
which prevent the application of these algorithms to
real-world RL with large state and action spaces.

To overcome the curse of large state space, function
approximation has been used to design practically suc-
cessful algorithms (Singh et al., 1995; Mnih et al.,
2015; Bertsekas, 2018). However, most existing studies
on learning infinite-horizon average-reward MDPs are
limited to tabular MDPs, with only a few exceptions
(Abbasi-Yadkori et al., 2019a,b; Hao et al., 2020; Wei
et al., 2020a). More specifically, Abbasi-Yadkori et al.
(2019a,b); Hao et al. (2020) studied RL with func-
tion approximation for infinite-horizon average-reward
MDPs under strong assumptions such as uniformly-
mixing and uniformly excited feature, and proved sub-
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linear regrets. More recently, Wei et al. (2020a) con-
sidered the linear MDP (Yang and Wang, 2019a; Jin
et al., 2019) where the transition probability and re-
ward function can be represented as linear functions
over given feature mapping defined on the state and
action pair, and proposed two algorithms, FOPO and
OLSVI.FH. FOPO achieves Õ(

√
d3T ) regret but re-

lies on solving a fixed-point equation at each iteration,
which is computationally inefficient. OLSVI.FH, on
the other hand, is computationally efficient, but can
only achieve Õ(T 3/4) regret. Wei et al. (2021) also pro-
posed another algorithm MDP-EXP2, which relies on
very strong assumptions including the uniform-mixing
and uniformly-excited-features assumptions to achieve
Õ(
√
T ) regret. It remains an open question that if

and how the minimax optimality of learning infinite-
horizon average-reward MDPs can be achieved with
linear function approximation.

Main contribution. In this paper, we resolve the
above open question by proving nearly matching up-
per and lower regret bounds for a class of infinite-
horizon MDPs called linear mixture/kernel MDP (Jia
et al., 2020; Ayoub et al., 2020; Zhou et al., 2021b)
in the average-reward setting. Specifically, we pro-
pose a UCRL2-VTR algorithm based on the principle
of “Optimism-in-Face-of-Uncertainty (OFU)”. At the
core of our algorithm is a variant of value-targeted re-
gression (Jia et al., 2020) which estimates the unknown
transition probability by least-squares over the expec-
tations of bias functions, along with an optimistic ex-
ploration. We consider both Hoeffding-type bonus and
Bernstein-type bonus for exploration. We show that
UCRL2-VTR with Hoeffding-type bonus achieves a
regret bound of Õ(dD

√
T ), and UCRL2-VTR with

Bernstein-type bonus can improve the regret to be
Õ(d
√
DT ), where T is the time horizon, D is the diam-

eter of the MDP, and d is the dimension of the feature
mapping. We also prove a Ω̃(d

√
DT ) lower bound on

the regret of any algorithms under a given linear mix-
ture MDP. The improved upper bound and the lower
bound match each other up to the logarithmic fac-
tors. To the best of our knowledge, this is the first
RL algorithm with linear function approximation that
achieves a nearly-minimax optimal regret bound under
the infinite-horizon average-reward MDP setting.

Technical novelty. Compared with many recent
works on RL with linear function approximation
(Abbasi-Yadkori et al., 2011; Azar et al., 2017; Jin
et al., 2019; Ayoub et al., 2020; Zhou et al., 2021a)
which study either the episodic MDP or discounted
MDP settings, our work focuses on a quite different
setting called the average-reward setting. Therefore,
most algorithms and analyses are not directly appli-
cable or extendable to our setting. For example, the

average-reward setting uses a different notion of re-
gret compared with those in the episodic setting or
discounted settings. Thus, to bound the regret, a new
regret decomposition is required, which does not ap-
pear in the aforementioned works. Besides the new re-
gret decomposition, we also develop some other novel
techniques. To bound the regret of the Bernstein-type
algorithm, we construct a different variance estimator
based on the centered value function wk, instead of the
standard value function. Another technical contribu-
tion we make is that we prove a new, non-trivial total
variance lemma for the average-reward setting with
linear function approximation, which plays a pivotal
role in achieving minimax optimality.

Notation. We use lower case letters to denote scalars,
lower and upper case bold letters to denote vectors and
matrices. We use ‖ ·‖ to indicate Euclidean norm, and
for a semi-positive definite matrix Σ and any vector
x, ‖x‖Σ := ‖Σ1/2x‖ =

√
x>Σx. For a real value x

and an interval [a, b], we use [x][a,b] to indicate the
projected value from x onto [a, b]. We also use the
standard O and Ω notations. We say an = O(bn)
if and only if ∃C > 0, N > 0, ∀n > N, an ≤ Cbn;
an = Ω(bn) if an ≥ Cbn. The notation Õ is used to
hide logarithmic factors. For a random variable X,
we say X is R-sub-Gaussian if E[X] = 0 and for any

s ∈ R, E[esX ] ≤ eR2s2/2.

2 RELATED WORK

Infinite-horizon average-reward tabular MDPs.
Learning infinite-horizon average-reward tabular
MDPs has been thoroughly studied in the past
decade. Bartlett and Tewari (2009); Jaksch et al.

(2010) are among the first works providing Õ(
√
T )

regret. Recently, many algorithms were proposed
to provide tighter regret bounds under various as-
sumptions. Ouyang et al. (2017) proposed a PSRL
that achieves the same regret as Jaksch et al. (2010).
Agrawal and Jia (2017) proposed an algorithm using

Thompson-sampling with an Õ(D
√
SAT ) regret.

Fruit et al. (2018b) proposed a SCAL algorithm

with an Õ(sp(h∗)
√

ΓSAT ) regret, where sp is the
span operator , h∗ is the optimal bias function for
weakly-communicating MDP and Γ is the number
of next states. Fruit et al. (2018a) proposed a
TUCRL algorithm for weakly-communicating MDPs.
Talebi and Maillard (2018) proposed a KL-UCRL

algorithm with an Õ(
√
SVT ) regret where V is the

summation of variances of the bias function with
respect to all state-action pairs. Zhang and Ji (2019)
proposed an EBF algorithm with the near-optimal
Õ(
√

sp(h∗)SAT ) regret. Fruit et al. (2020) proposed

a UCRL2B algorithm with an Õ(Γ
√
SDAT ) regret.
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Ortner (2020) proposed an OSP algorithm for ergodic

MDPs with an Õ(
√
tmixSAT ) regret, where tmix

is the mixing time parameter. Wei et al. (2020a)
proposed two model-free algorithms: optimistic
Q-learning algorithm with an Õ(sp(h∗)(SA)1/3T 2/3)
regret, and MDP-OOMD for ergodic MDPs with an
Õ(
√
t3mixρAT ) regret, where ρ is some distribution

mismatch coefficient. Our algorithm is inspired by the
algorithm UCRL2 proposed by Jaksch et al. (2010),
which maintains a confidence set for the transition
model and uses Extended Value Iteration (EVI) to
obtain an optimistic model and a near-optimal policy
under this model. Our work is also closely related
to Fruit et al. (2020), which employs the empirical
Bernstein inequality to provide tighter regret bound.

RL with linear function approximation. Prov-
able RL with linear function approximation has re-
ceived increasing interest in recent years. Jiang et al.
(2017) proposed the low Bellman rank assumption and
designed an OLIVE algorithm that achieves low sam-
ple complexity. As a special case of low Bellman
rank MDPs, the linear MDP class (Yang and Wang,
2019a; Jin et al., 2019) assumes the transition prob-
ability and the reward function are linear functions
Another related class of MDPs is the linear mixture
MDP (Jia et al., 2020; Ayoub et al., 2020; Zhou et al.,
2021b), which assumes the transition probability is a
linear combination of the feature mappings over the
state-action-next-state triplet. Representative works
include Yang and Wang (2019b); Modi et al. (2019);
Jia et al. (2020); Zhou et al. (2021b); Cai et al. (2020);
He et al. (2022). Note that while linear MDPs and
linear mixture MDPs share some common subset, one
cannot be covered by the other (Zhou et al., 2021b).
Our algorithm and upper bound results are for lin-
ear mixture MDPs, while our lower bound holds for
both MDPs. It is worth noting that for inhomogeneous
episodic linear mixture MDPs, Zhou et al. (2021a) ob-
tained matching upper and lower bounds of regret re-
spectively, i.e., Õ(dH

√
T ) and Ω(dH

√
T ), where H is

the length of the episode. In comparison, we provide
the first matching upper and lower bounds of regret in
the infinite-horizon average-reward setting for linear
mixture MDPs.

3 PRELIMINARIES

We denote a Markov Decision Process (MDP) by a
tuple M(S,A, r,P), where S is the state space, A is
the action space, P(s′|s, a) is the transition probability
function, and r : S×A → [0, 1] is the reward function.
A deterministic stationary policy π : S → A maps
a given state s to a certain action a. In this work,
we assume that the numbers of states and actions are

finite, i.e., |S|, |A| <∞ and the reward r is known and
deterministic. An algorithm A, which starts from some
initial state s ∈ S, will (stochastically) decide at each
round t what action at to take. Given the state space
S, the action space A, the algorithm starting from
s0 = s actually induces a Markov process {st, at}t,
and it is natural to define the undiscounted reward as:

R(M,A, s, T ) :=
∑T
t=1r(st, at) =

∑T
t=1rt.

We can define the expected average reward over time
T as E[R(M,A, s, T )]/T , and its limit

ρ(M,A, s) = lim
T→∞

E[R(M,A, s, T )]/T,

is called the average reward.

In general, the learnability of an MDP depends on its
transition structure. Following Jaksch et al. (2010),
we define the diameter of an MDP as the expected
steps taken from one state s to another state s′ under
the fastest stationary policy. Throughout the paper,
the diameter is only used to provide an upper bound
on the span of the value function.

Definition 3.1. Let T (s′|M,π, s) be the random vari-
able for the number of steps after which the state s′

is reached for the first time starting from s, under the
MDP M and policy π. Then the diameter D(M) is de-
fined as D(M) = maxs,s′ minπ:S→A E[T (s′|M,π, s)].

In this work, following Jaksch et al. (2010), we consider
communicating MDPs (Puterman, 2014) which has a
finite diameter. We assume a known upper bound D
on the diameters of all MDPs considered. One may
question whether assuming a known upper bound is
too restrictive. This will be further explained later in
Remark 5.4.

For MDPs with finite diameter, the optimal average
reward does not depend on the starting state. There-
fore, we can define

ρ∗(M) = ρ∗(M, s) := max
π

ρ(M,π, s),

where π is any stationary policy. Naturally, the regret
is defined as

Regret(M,A, s, T ) := Tρ∗(M)−R(M,A, s, T ).

Besides the finite diameter assumption, another widely
used assumption for infinite-horizon average-reward
MDPs is the finite span of optimal bias function (finite
span) assumption (Bartlett and Tewari, 2009; Zhang
and Ji, 2019; Wei et al., 2020a), which assumes that
there exists a ρ∗ ∈ R, h∗ : S × A → R such that for
any s ∈ S, a ∈ A, the following Bellman optimality
equation holds:

ρ∗ + h∗(s, a) = r(s, a) + Es′∼P(·|s,a)[max
a′∈A

h∗(s′, a′)],
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where the span of maxa′∈A h
∗(s, a′) defined as

maxs,s′∈S |maxa′∈A h
∗(s, a′)−maxa′∈A h

∗(s′, a′)| is fi-
nite, h∗ is the optimal state-action bias function. It
can be verified that for any MDP with finite diameter,
the span of the optimal bias function is also finite. We
leave it as future work to extend our algorithm to deal
with the finite span assumption.

Linear mixture MDPs. In many application sce-
narios where the state space S and action space A are
intractably large, a certain structure of the transition
kernel P(·|s, a) will still enable efficient learning. One
of such structures is linear mixture MDP (Modi et al.,
2019; Zhou et al., 2021b; Jia et al., 2020; Ayoub et al.,
2020), where the transition kernel can be represented
by a linear combination of feature mappings.

Definition 3.2. M(S,A, r,P) is called a B-bounded
linear mixture MDP if there exist a known feature
mapping φ(s′|s, a) : S ×A×S → Rd and an unknown
vector θ∗ ∈ Rd with ‖θ∗‖2 ≤ B, such that

• For any state-action-state triplet (s, a, s′) ∈ S×A×
S, we have P(s′|s, a) = 〈φ(s′|s, a),θ∗〉;

• For any bounded function F : S → [0, 1] and any
tuple (s, a) ∈ S×A, we have ‖φF (s, a)‖2 ≤ 1, where
φF (s, a) =

∑
s′ φ(s′|s, a)F (s′) ∈ Rd.

We denote the linear mixture MDP by Mθ∗ for sim-
plicity.

The motivation behind defining φF is as follows: for
any state action pair s, a, the expectation of F (s′) is

[PF ](s, a) : = Es′∼P[F (s′)]

=
∑
s′∈SP(s′|s, a)F (s′) = 〈θ∗,φF (s, a)〉,

which is a linear function of φF (s, a). We will use this
fact in both algorithm design and analysis.

It is noteworthy that tabular MDPs can be covered by
linear mixture MDPs via setting the feature mapping
φ(s′|s, a) to be a one-hot vector for s, a, s′.

A recent work (Wei et al., 2020a) studied RL with
linear function approximation under the linear MDP
assumption, which assumes that there exists a known
feature mapping Φ(s, a) and an unknown mapping
µ(s′) such that P(s′|s, a) = 〈Φ(s, a),µ(s′)〉. Both
linear mixture MDPs and linear MDPs cover some
common MDP, including tabular MDPs and bilinear
MDPs (Yang and Wang, 2019b). However, in general,
they are two different classes of MDPs, because their
feature mappings are defined over different domains
(Zhou et al., 2021b), and neither can cover the other.

In the rest of this paper, we also use the following
shorthand to indicate the variance of the random vari-

able F (s′) under distribution P (·|s, a):

[VPF ](s, a) := Es′∼P [F 2(s′)]− Es′∼P [F (s′)]2,

and [VF ] denotes the case when P is the true transition
probability P of the MDP.

4 ALGORITHMS

We are going to present two algorithms. The
first algorithm is UCRL2-VTR (Algorithm 1), which
extends the UCRL2 algorithm by Jaksch et al.
(2010) from tabular MDPs to linear mixture MDPs.
UCRL2-VTR includes two types of exploration
strategies: Hoeffding-type bonus (OPTION I), and
Bernstein-type bonus (OPTION II). The main differ-
ence between UCRL2-VTR and UCRL2 is the con-
struction of confidence sets, due to the difference
between the tabular MDP and the linear mixture
MDP. The second algorithm is extended value itera-
tion (EVI) (Algorithm 2), which serves as a subroutine
of UCRL2-VTR to calculate the optimistic estimation
of the value function.

4.1 UCRL2-VTR with Hoeffding-type bonus

We first present UCRL2-VTR with the Hoeffding-
type bonus (OPTION I). The learning process
can be divided into several episodes indexed by k
(tk ≤ t < tk+1). At the beginning of each episode,
we call the subroutine Extended Value Iteration (EVI)

(Jaksch et al., 2010) under a given confidence set Ĉtk ,
which contains the true parameter θ∗ with high prob-
ability. Within each episode, we follow the induced
policy πtk and use the new observation to obtain a
better confidence set.

How EVI works? In Line 4 of Algorithm 2, it per-
forms one step of extended value iteration, which takes
maximum over both the action set A and the set of
plausible transition models C ∩ B. EVI terminates
when the difference between two consecutive iterations
is small enough (Line 5).

Generally speaking, EVI outputs the optimal value
function corresponding to a near-optimal MDP among
all plausible MDPs contained in the confidence set
Ĉtk ∩ B, which is similar to its counterpart for tab-
ular MDPs in Jaksch et al. (2010). The main dif-
ference from the EVI for tabular MDPs is that we
need to restrict the parameter in the set B as well,
which admits all parameters θ that can induce a tran-
sition probability, i.e., B = ∩s,aBs,a with Bs,a =

{
θ :

〈φ(·|s, a),θ〉is a probability function
}

. It is easy to
show that B is a convex set. For some special feature
mapping φ, B can be a very simple convex set. For
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Algorithm 1 Upper-Confidence Reinforcement Learning with Value Targeted Regression (UCRL2-VTR)

Require: Regularization parameter λ, upper bound B of ‖θ∗‖2, precision of extended value iteration rounds ε
1: Receive s1, Set k ← 0, t0 ← 1
2: OPTION 1 (Hoeffding-type Bonus): Set Σ̂1 ← λI, b̂0 ← 0

OPTION 2 (Bernstein-type Bonus): Set Σ̂1, Σ̃1 ← λI, b̂1, b̃1, θ̂1, θ̃1 ← 0
3: Set π0(·|s)← uniform(A), ∀s ∈ S
4: for t = 1, 2, . . . do
5: if det(Σ̂t) ≤ 2det(Σ̂tk) then
6: πt ← πt−1 { Keep the policy unchanged}
7: else
8: k ← k + 1, tk ← t { Starting a new episode k}
9: Set Ĉt as (4.4) (OPTION 1) or (4.5) (OPTION 2)

10: Set uk(s)← EVI(Ĉt, ε)
11: Denote wk(s) = uk(s)−

(
maxuk(·)−minuk(·)

)
/2

12: Set πt(s) as (4.2) { Compute new policy}
13: end if
14: Take action at = πt(st), receive st+1 ∼ P(·|st, at)
15: OPTION 1 (Hoeffding-type Bonus):

16: Set Σ̂t+1 ← Σ̂t + φwk
(st, at)φwk

(st, at)
>, b̂t+1 ← b̂t + φwk

(st, at)wk(st+1)
17: OPTION 2 (Bernstein-type Bonus):
18: Set [V̄twk] as in (4.7) and Et as in (4.8)

19: Set σ̄t ←
√

max{D2/d, [V̄twk](st, at) + Et}
20: Set Σ̂t+1 ← Σ̂t + σ̄−2t φwk

(st, at)φwk
(st, at)

>, b̂t+1 ← b̂t + σ̄−2t wk(st+1)φwk
(st, at)

21: Set Σ̃t+1 ← Σ̃t + φw2
k
(st, at)φw2

k
(st, at)

>, b̃t+1 ← b̃t + w2
k(st+1)φw2

k
(st, at)

22: Set θ̃t+1 ← Σ̃−1t+1b̃t+1

23: Set θ̂t+1 ← Σ̂−1t+1b̂t+1

24: end for

Algorithm 2 Extended Value Iteration (EVI)

Require: A set C, a desired accuracy level ε
1: Set u(0)(s)← 0, ∀s ∈ S
2: Set i← 0
3: repeat
4: ∀s ∈ S, set u(i+1)(s) ← maxa∈A

{
r(s, a) +

maxθ∈C∩B{〈θ,φu(i)(s, a)〉}
}

5: until maxs∈S{u(i+1)(s) − u(i)(s)} −
mins∈S{u(i+1)(s)− u(i)(s)} ≤ ε

6: Return u(i)(s)

instance, when φ is a collection of d transition prob-
ability functions, B is the d-dimension simplex (Modi
et al., 2019). This will make the optimization in each
step of EVI easy to solve. In detail, given the accuracy
parameter ε, EVI(Ĉt, ε) outputs a value function u(i)

satisfying

|u(i+1)(s)− u(i)(s)− ρk| ≤ ε, (4.1)

where ρk is the average reward under Pk and πtk , both

of which are defined as follows

Pk(·|s, a) := 〈θk(s, a),φ(·|s, a)〉, (4.2)

θk(s, a) := argmax
θ∈Ĉtk∩B

〈
θ,φuk

(s, a)
〉

πtk(s) := argmax
a∈A

{
r(s, a) +

〈
θk(s, a),φu(i)(s, a)

〉}
.

When the context is clear, we will abuse the notation
a little bit and use θk to denote θk(st, at) for different
t. It is worth noting that u(·) is quite different from
the traditional value function V (·) defined for episodic
MDPs or discounted infinite-horizon MDPs. This re-
quires a different analysis in the later proof.

Then the agent uses the greedy policy πtk with respect
to u(i) to select the actions in k-th episode. It is easy
to see that centering u(i)(s) to u(i)(s)− (maxu(i)(·)−
minu(i)(·))/2 does not change πtk . Therefore, we con-
sider wk (in Line 11) as the centered version of uk in
the later analysis.

An important observation for our later analysis, made
by Jaksch et al. (2010), is that u(i)(s) computed in
EVI (Algorithm 2) satisfies

max
s∈S

u(i)(s)−min
s∈S

u(i)(s) ≤ D. (4.3)
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This is because u(i)(s) is the expected total i-step re-
ward of an optimal non-stationary i-step policy start-
ing from s. Suppose for s and s′ we have u(i)(s)−D >
u(i)(s′), then we can obtain a better u(i)(s′) by adopt-
ing the following policy: first travel to s as fast as
possible (which takes at most D steps in expectation),
then following the optimal policy for s. Since the re-
ward for each step belongs to [0, 1], the new policy
will gain at least u(i)(s) − D, contradicting the opti-
mality of u(i)(s′). By (4.3), we also have the centered
version wk satisfy |wk(s)| ≤ D/2. It is safe and rea-
sonable to consider wk instead of uk since we only care
argmaxu(i+1)(·) as the greedy policy.

Convergence and efficiency of EVI. Here we
briefly discuss the convergence and computational effi-
ciency of EVI. For the convergence, as we will show in
the next section, the set of plausible MDPs induced by
θ ∈ C ∩B includes the true MDP Mθ∗ with high prob-
ability. Since we assume Mθ∗ is communicating in this
work, according to Theorem 7 in Jaksch et al. (2010),
EVI is guaranteed to converge. Here we present a
sufficient condition under which EVI converges within
logarithmic number of iterations. Define the quantity
γ(C) as follows:

max
θ∈C,s,s′∈S,a,a′∈A

[
1−

∑
j∈S

min
{
Pθ(j|s, a),Pθ(j|s′, a′)

}]
,

and it is shown by Puterman (2014) (see Theorem
6.6.6.) that γ(C) serves as a contraction coefficient:

span(u(i+1) − u(i)) ≤ γ(C) · span(u(i) − u(i−1)).

Therefore, as long as γ(C) < 1, EVI will converge
within logarithmic steps.

For the computation, suppose additionally, the fea-
ture mapping admits the form [φ(s′|s, a)]j = [ψ(s′)]j ·
[µ(s, a)]j (Yang and Wang, 2019b), then we can use
Monte Carlo integration to avoid the summation over
the whole state space. In fact, we only need a few
evaluations on each [ψ(s′)]j to obtain an accurate

enough estimator φ̂(s′|s, a) and perform the maxi-
mization over the estimated integration. This kind
of feature mapping gives rise to a special case of lin-
ear mixture MDPs, namely bilinear MDPs (Yang and
Wang, 2019b). Note that bilinear MDPs belong to
both linear mixture MDPs and linear MDPs (Jin et al.,
2019). More detailed discussions on the computational
complexity of EVI can be found in Zhou et al. (2021b).

Construction of Ĉt. Now we discuss how to con-
struct the confidence set Ĉt at the end of each episode.
We construct Ĉt as an ellipsoid centering at θ̂t with co-
variance matrix Σ̂t defined in Line 16 of Algorithm 1.
Moreover, we construct θ̂t as the minimizer to the
ridge regression problem over contexts φwk

(st, at) and

targets wk(st+1) with regularizer λ‖θ‖22, whose closed-
form solution is given in Line 23. The reason why
we construct such a θ̂t is due to the following obser-
vation: the form of φwk

(st, at) and wk(st+1) fit in a
linear bandits problem with stochastic reward. More
specifically, by setting the action xt = φwk

(st, at), the
reward yt = wk(st+1), and the noise ηt = wk(st+1) −
〈θ∗,φwk

(st, at)〉, we have

yt = 〈θ∗,xt〉+ ηt,

and E[ηt|Ft] = 0, |ηt| ≤ D, ‖θ∗‖ ≤ B, ‖xt‖ ≤ D/2.

This setting has been thoroughly studied in Abbasi-
Yadkori et al. (2011). Define the confidence set as

Ĉt =

{
θ :
∥∥∥Σ̂1/2

t (θ − θ̂t)
∥∥∥ ≤ β̂t}, (4.4)

where β̂t is β̂t = D
√
d log

(
(λ+ tD2)/(δλ)

)
+
√
λB.

In the later section, we show that the true parameter
θ∗ belongs to Ĉt with high probability. Therefore, Ĉt
is a valid confidence set of θ∗, thus can be fed into the
EVI procedure.

In summary, at each time step, UCRL2-VTR always
takes action at under the policy πt, receives the next
state st+1 and refines its confidence set with the new
observation (Lines 14-23 of Algorithm 1). When it col-
lects enough new observations for a better estimation
than the previous one (Line 5), UCRL2-VTR calls the
subroutine EVI with the tighter confidence set and ob-
tains a better policy πt (Lines 8-12).

4.2 UCRL2-VTR with Bernstein-type bonus

UCRL2-VTR with Bernstein-type bonus (OP-
TION 2) is an improved variant of the basic version
of UCRL2-VTR with Hoeffding-type bonus. The key
difference is that here we are trying to utilize the vari-
ance information of the value functions to construct a
tighter confidence set of θ∗. Recall the construction of
Ĉt in Section 4.1, we set the center of the confidence
set θ̂t as the solution to a ridge regression problem.
The motivation is that UCRL2-VTR relies on the fact
that the noise ηt is D-bounded and therefore D2-sub-
Gaussian. However, the variance of ηt is not neces-
sarily that large. In fact, by the law of total variance
(Azar et al., 2013), we know that on average, the vari-
ance of the noise is roughly on the order of D rather
than D2. To enable the application of total variance,
for tk < t ≤ tk+1, we set θ̂t as the solution to the
following weighted ridge regression problem :

argmin
θ

k∑
i=1

t∑
j=tk

[〈φwi(sj , aj),θ〉 − wi(sj+1)]2

σ̄2
j

+ λ‖θ‖22,
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where σ̄2
j (Line 19) is an estimation of the variance

of wi(sj+1). Choosing the weights as the inverse of
the variances can guarantee that the estimator has the
lowest variance, similar to the best linear unbiased esti-
mator (BLUE) estimator (Henderson, 1975) for linear

regression with fixed design. After obtaining θ̂t, sim-
ilar to UCRL2-VTR with Hoeffding-type bonus, we
construct the following confidence set which contains
θ∗,

Ĉt =
{
θ :
∥∥∥Σ̂1/2

t (θ − θ̂t)
∥∥∥ ≤ β̂t}, (4.5)

where Σ̂t is the covariance matrix of contexts
φwi

(sj , aj) weighted by σ̄−2j , recursively defined in

Line 20 of Algorithm 1; β̂t is defined as follows:

β̂t := 8
√
d log(1 + t/4λ) log(4t2/δ)

+ 4
√
d log(4t2/δ) +

√
λB,

In our later analysis, we require σ̄2
t to satisfy: (1) it

upper bounds the true variance [Vwk](st, at) with high
probability; and (2) it is strictly positive. To fulfil
these two requirements, we first build a valid estimator
[V̄twk](st, at) for the true variance [Vwk](st, at), based
on the following fact:

[Vwk](st, at) = [Pw2
k](st, at)− [Pwk(st, at)]

2

= 〈φw2
k
(st, at),θ

∗〉 − 〈φwk
(st, at),θ

∗〉2,
(4.6)

(4.6) suggests that the variance of wk can be re-
garded as the combination of two linear functions
〈φw2

k
(st, at),θ

∗〉 and 〈φwk
(st, at),θ

∗〉, with respect to
different feature mappings. Therefore, we define our
variance estimator [V̄twk](st, at) as follows

[V̄twk](st, at) : =
[〈
φw2

t
(st, at), θ̃t

〉]
[0,D2/4]

−
[〈
φwt(st, at),θt

〉]2
[0,D/2]

, (4.7)

where θ̃t is another estimator for θ∗. Specifically,
we choose θ̃t as the solution to the ridge regres-
sion problem with contexts {φw2

i
(sj , aj)} and targets

{w2
i (sj+1)}, whose closed-form solution is in Line 22 of

Algorithm 1. Based on this initial variance estimator,
we build our final variance estimator σ̄2

t as in Line 19,
where the correction term Et is defined as

Et := min
{
D2/4, β̃t

∥∥∥Σ̃−1/2t φw2
t
(st, at)

∥∥∥}
+ min

{
D2/4, Dβ̌t

∥∥∥Σ̂−1/2t φwt(st, at)
∥∥∥},

(4.8)

where Σ̃t is the covariance matrix of features
φw2

i
(sj , aj) recursively defined in Line 20, β̌t and β̃t

are defined respectively as follows

β̌t := 8d
√

log(1 + t/4λ) log(4t2/δ)

+ 4
√
d log(4t2/δ) +

√
λB,

β̃t := 2D2
√
d log(1 + tD2/4dλ) log(4t2/δ)

+D2 log(4t2/δ) +
√
λB.

It can be verified that such a σ̄2
t satisfies both condi-

tions discussed above (i.e., larger than the true vari-
ance, strictly positive) simultaneously.

5 MAIN RESULTS

In this section, we present the regret analysis for Al-
gorithm 1 with both Hoeffding-type exploration bonus
(OPTION 1) and Bernstein-type bonus (OPTION 2).

Theorem 5.1. Setting λ = 1/B2, ε = 1/
√
T , then for

any initial state s1, with probability at least 1−2δ, the
regret of Algorithm 1 with Hoeffding-type is bounded
as follows:

Regret(T ) = Õ(dD
√
T ),

where the Õ(·) hides logarithmic terms of d,D, T , and
δ−1.

Theorem 5.1 shows that the regret of Algorithm 1 only
depends on the number of rounds T , the feature dimen-
sion d, and the diameter of the communicating MDP
D. Therefore, Algorithm 1 is statistically efficient for
linear mixture MDPs with a finite diameter but large
state and action spaces.

Remark 5.2. The UCRL2 algorithm proposed in
Jaksch et al. (2010) has an Õ(|S|D

√
|A|T ) regret

bound for tabular MDPs with finite state and ac-
tion spaces and diameter. As a comparison, our
UCRL2-VTR enjoys a better upper bound Õ(dD

√
T )

when d ≤ |S|
√
|A|, which suggests that RL with lin-

ear function approximation can be more advantageous
than vanilla RL algorithms when the underlying MDP
has certain nice structures (Modi et al., 2019; Yang
and Wang, 2019b).

Theorem 5.3. Set λ = 1/B2, ε = 1/
√
T , then for

any initial state s1, with probability at least 1−5δ, the
regret of Algorithm 1 with Bernstein bonus is bounded
as follows:

Regret(T ) = Õ
(
D
√
dT + d

√
DT +Dd7/4T 1/4

)
,

where the Õ(·) hides logarithmic terms of d,D, T , δ−1.

Suppose d ≥ D and T ≥ D2d3, then Theorem 5.3
suggests that by using the Bernstein-type exploration
strategy, the regret bound of Algorithm 1 can be fur-
ther improved by a factor of

√
D to be Õ(d

√
DT ).
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x1x01− δ − 〈ai,θ〉
δ + 〈ai,θ〉

x1x0 1− δ
δ

Figure 1: Illustration of the hard-to-learn linear mixture MDP considered in Theorem 5.5. The left figure
demonstrates the state transition probability starting from x0 with some specific action ai. The right figure
demonstrates the state transition probability starting from x1 with any action. For the detailed construction,
see Supplementary Section C.1.

Remark 5.4. It can be shown that the algorithm and
analysis can be easily modified to deal with an un-
known bounded diameter D. More specifically, we can
start from a small guess D′ and run the algorithm as
if it is a valid upper bound. The guess D′ will be re-
jected once EVI returns a value function uk(s) with a
span larger than D′ . Then we retry Line 9-11 with
a doubled guess 2D′. Meanwhile, if no violation hap-
pens and the algorithm ends, the proof will go through
for D′ . In the worst case, a guess of at most 2D will
ensure that EVI obtains a valid estimation, thus intro-
ducing a constant factor of up to 2.

Comparison with FOPO We would like to do
a comparison between UCRL2-VTR in Algorithm
1 and the recently proposed FOPO by Wei et al.
(2020a). While FOPO is originally proposed for linear
MDPs and our algorithm is designed for linear mix-
ture MDPs, since bilinear MDPs (Yang and Wang,
2019b) is a special class of both MDP classes, we
can choose the bilinear MDPs as a common ground
for comparison. More specifically, both UCRL2-VTR
and FOPO focus on using linear function approxima-
tion to learn an infinite-horizon average-reward MDP,
and both of them use the optimism-in-the-face-of-
uncertainty (OFU) principle to learn the optimal value
function among a class of plausible MDPs. However,
FOPO adapts the Bellman optimality equation as-
sumption and learns the optimal value function by
solving a constrained nonconvex optimization prob-
lem, which is hard to solve even in the tabular MDP
case. In sharp contrast, similar to Jaksch et al. (2010),
UCRL2-VTR adapts the finite-diameter assumption
and uses the EVI procedure to find the optimal value
function, which is computationally efficient for bilin-
ear MDPs (See Zhou et al. (2021b,a) for a detailed
discussion). In the setting of bilinear MDPs, we have

P(s′|s, a) =
∑d
j=1 θjψj(s

′)µj(s, a). We can rewrite the
transition probability as a linear mixture MDP (� de-
notes the Hadamard product):

P(s′|s, a) =
〈
θ,ψ(s)� µ(s, a)

〉
,

and as a linear MDP:

P(s′|s, a) =
〈
θ �ψ(s),µ(s, a)

〉
.

Therefore, the regret bound of UCRL2-VTR and
FOPO are O(d

√
DT ) and O(d3/2

√
span(h∗)T ), re-

spectively. The diameter D and the span span(h∗)
are closely related and are often of the same scale.
This immediately shows that UCRL2-VTR achieves a
smaller regret and is statistically more efficient than
FOPO for bilinear MDPs.

The following theorem presents a matching lower
bound of regret for infinite-horizon average-reward lin-
ear mixture MDPs.

Theorem 5.5. Suppose d ≥ 2, T ≥ 16d2D/2025 and
B > 1. Then for any algorithm A, there exists a B-
bounded MDP Mθ such that

E[Regret(Mθ, A, s, T )] ≥ d
√
DT/2025.

If we set δ = T−1 in Theorem 5.3, we can see the ex-
pected regret upper bound is of the order Õ(d

√
DT ),

which differs from the lower bound only by logarith-
mic factors. The dependence on d,D, T matches with
each other and thus implies the upper bound cannot
be improved.

Remark 5.6. An interesting observation is, Jaksch
et al. (2010) proved in the tabular setting that
for any algorithm, the regret is lower bounded by
Ω(
√
|S||A|DT ). Since tabular MDPs can be regarded

as a special case of linear mixture MDP with a d =
|S|2|A| dimensional feature mapping, Jaksch et al.
(2010)’s construction actually yields a slightly worse
lower bound Ω(

√
|S|2|A|DT ) = Ω(

√
dDT ), for the

general linear mixture MDPs. And while our con-
struction gains inspiration from Jaksch et al. (2010),
Ω(d
√
DT ) is tighter than the induced lower bound by

a factor of d1/2. This also indicates that our MDP
construction is nontrivial.

Remark 5.7. Our lower bound can also imply a lower
bound for the linear MDP setting studied by Wei et al.
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(2020a). By a similar construction of the hard-to-learn
MDP instance, we can prove an Ω(d

√
sp(h∗)T ) lower

bound for learning linear MDPs. The detailed reason-
ing is deferred to the appendix. This suggests that
there still exists a gap to be removed under the linear
MDP setting considered by Wei et al. (2020a).

6 CONCLUSION AND FUTURE
WORK

In this paper, we push the frontier of learning infinite-
horizon average-reward Markov Decision Process with
linear function approximation. We propose the first al-
gorithm that achieves nearly minimax optimal regret.
Our lower bound can also imply a lower bound for lin-
ear MDPs, which is of independent interest. Our cur-
rent algorithms and results are limited to MDPs with
finite diameter. In the future work, it is possible to re-
lax this constraint, and extend our algorithms to deal
with a milder assumption called finite span assump-
tion (Bartlett and Tewari, 2009; Zhang and Ji, 2019;
Wei et al., 2020a), while still achieving the minimax
optimality.

Acknowledgements

We thank the anonymous reviewers for their helpful
comments. Part of this work was done when DZ and
QG participated the Theory of Reinforcement Learn-
ing program at the Simons Institute for the Theory of
Computing in Fall 2020. YW, DZ and QG are partially
supported by the National Science Foundation CIF-
1911168, CAREER Award 1906169, IIS-1904183 and
AWS Machine Learning Research Award. The views
and conclusions contained in this paper are those of the
authors and should not be interpreted as representing
any funding agencies.

References

Abbasi-Yadkori, Y., Bartlett, P., Bhatia, K., Lazic,
N., Szepesvari, C., and Weisz, G. (2019a). Poli-
tex: Regret bounds for policy iteration using expert
prediction. In International Conference on Machine
Learning, pages 3692–3702. PMLR.

Abbasi-Yadkori, Y., Lazic, N., Szepesvari, C., and
Weisz, G. (2019b). Exploration-enhanced politex.
arXiv preprint arXiv:1908.10479.

Abbasi-Yadkori, Y., Pál, D., and Szepesvári, C.
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A Proof of Theorem 5.1

We use K(T ) − 1 to denote the value of the counter k when Algorithm 1 finishes, and tK(T ) = T + 1 for
convenience. By these notation, the learning process from t = 1 to t = T can be divided into K(T ) episodes.

The following lemma, proved by Jaksch et al. (2010), states that EVI (Algorithm 2) always outputs a near-optimal
policy and an optimistic model.

Lemma A.1 (Theorem 7 and Equation (12) in Jaksch et al. 2010). Stopping the extended value iteration when

max
s∈S

{
u(i+1)(s)− u(i)(s)

}
−min

s∈S

{
u(i+1)(s)− u(i)(s)

}
< ε,

the greedy policy π̃ with respect to u(i) is ε-optimal, namely

ρ̃ := ρ(M̃, π̃) ≥ max
π,M∈M

ρ(M,π)− ε. (A.1)

Here, M̃ means the Markov Decision Process (MDP) determined by the parameterized transition probability,
e.g. Pk(·|s, a) = 〈φ(·|s, a),θk(s, a)〉. For each M ∈ M, M is an MDP with parameter from the confidence set.
M is assumed to contain the true transition model.

Moreover, we have ∀s ∈ S,

|u(i+1)(s)− u(i)(s)− ρ̃| ≤ ε. (A.2)

The next lemma describes that indeed, the confidence sets we constructed contain the true parameter with high
probability.

Lemma A.2. With probability at least 1 − δ, for all 0 ≤ k ≤ K(T )− 1, we have θ∗ ∈ Ĉtk .

Proof. See Section D.1.

The number of episodes in our algorithm turns out can be bounded as follows:

Lemma A.3. We have K(T ) ≤ d log[(2λ+ 2TD2)/λ].

Proof. See Section D.2.

The rest lemmas either is standard concentration inequalities or is from the works regarding linear bandit
problems.

Lemma A.4 (Azuma–Hoeffding inequality). Let {Xk}∞k=0 be a discrete-parameter real-valued martingale se-
quence such that for every k ∈ N, the condition |Xk −Xk−1| ≤ µ holds for some non-negative constant µ. Then
with probability at least 1 − δ, we have

Xn −X0 ≤ µ
√

2n log 1/δ.

Lemma A.5 (Lemma 11 in Abbasi-Yadkori et al. 2011). For any {xt}Tt=1 ⊂ Rd satisfying that ‖xt‖2 ≤ L, let

A0 = λI and At = A0 +
∑t−1
i=1 xix

>
i , then we have

T∑
t=1

min{1, ‖xt‖A−1
t−1
}2 ≤ 2d log

dλ+ TL2

dλ
.

Lemma A.6 (Lemma 12 in Abbasi-Yadkori et al. 2011). Suppose A,B ∈ Rd×d are two positive definite matrices
satisfying that A � B, then for any x ∈ Rd, ‖x‖A ≤ ‖x‖B ·

√
det(A)/ det(B).
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Proof of Theorem 5.1. We first split the regret into each episode. Denote the regret in episode k as ∆k, and we
have

∆k :=

tk+1−1∑
t=tk

[ρ∗ − r(st, at)]

≤ (tk+1 − tk)ε+

tk+1−1∑
t=tk

[ρk − r(st, at)]

≤ 2(tk+1 − tk)ε+

tk+1−1∑
t=tk

[ ∑
s′∈S

Pk(s′|st, at)uk(s′)− uk(st)
]

= 2(tk+1 − tk)ε+

tk+1−1∑
t=tk

[ ∑
s′∈S

Pk(s′|st, at)wk(s′)− wk(st)
]

= 2(tk+1 − tk)ε+

tk+1−1∑
t=tk

[
[Pkwk](st, at)− wk(st)

]
.

The first inequality is due to the ε−optimality of the EVI algorithm (Lemma A.1). The second inequality is due

to (A.2) and substitute the iteration rule u(i+1)(s) ← maxa∈A

{
r(s, a) + maxθ∈C∩B

{〈
θ,φu(i)(s, a)

〉}}
. Here,

notice that we denote Pk(s′|st, at) = 〈θk(st, at),φ(s′|st, at)〉 and θk(st, at) = argmaxθ∈C∩B

{〈
θ,φu(i)(s, a)

〉}
.

By the definition of πk, at achieves the outer maximum in the iteration rule of u(i+1). The second last equality
is due to the fact that adding a bias to uk won’t change the difference, as what has been done in Algorithm 1.
So we subtract (maxs uk(s) + mins uk(s))/2 from uk(s). The last equality is a shorthand. Notice that since the
span of uk(s) is D, we have |wk(s)| ≤ D/2.

Summing over all episodes, we further have

K(T )−1∑
k=0

∆k = 2Tε+

K(T )−1∑
k=0

tk+1−1∑
t=tk

[
[Pkwk](st, at)− [Pwk](st, at)

]
︸ ︷︷ ︸

I1

+

K(T )−1∑
k=0

tk+1−1∑
t=tk

[
[Pwk](st, at)− wk(st)

]
︸ ︷︷ ︸

I2

.

The first term can be controlled following the idea of bounding the regret of linear bandit. We have that with
probability 1− δ,

I1 =

K(T )−1∑
k=0

tk+1−1∑
t=tk

〈
θk − θ∗,φwk

(st, at)
〉

≤
K(T )−1∑
k=0

tk+1−1∑
t=tk

(
‖θk − θ̂k‖Σ̂t

+ ‖θ∗ − θ̂k‖Σ̂t

)∥∥φwk
(st, at)

∥∥
Σ̂−1

t

≤
K(T )−1∑
k=0

tk+1−1∑
t=tk

2
(
‖θk − θ̂k‖Σ̂tk

+ ‖θ∗ − θ̂k‖Σ̂tk

)∥∥φwk
(st, at)

∥∥
Σ̂−1

t

≤
K(T )−1∑
k=0

tk+1−1∑
t=tk

4β̂T
∥∥φwk

(st, at)
∥∥

Σ̂−1
t
.

The first inequality is due to first applying Cauchy-Schwartz inequality and then the triangle inequality. The
second inequality is due to Lemma A.6 and the fact that for tk ≤ t < tk+1 det(Σt) ≤ det(Σtk+1

) ≤ 2 det(Σtk).

The third inequality is due to Lemma A.2 and the fact that {β̂t}t is increasing.



Yue Wu, Dongruo Zhou, Quanquan Gu

Meanwhile, for each term in I1, we also have that due to the fact |wk(s)| ≤ D/2,

[Pkwk](st, at)− [Pwk](st, at) ≤ D.

Therefore, we have

I1 ≤
K(T )−1∑
k=0

tk+1−1∑
t=tk

min
{
D, 4β̂T

∥∥φwk
(st, at)

∥∥
Σ̂−1

t

}

≤ 4β̂T

K(T )−1∑
k=0

tk+1−1∑
t=tk

min
{

1,
∥∥φwk

(st, at)
∥∥

Σ̂−1
t

}

≤ 4β̂T

√√√√T

K(T )−1∑
k=0

tk+1−1∑
t=tk

min
{

1,
∥∥φwk

(st, at)
∥∥2

Σ̂−1
t

}

≤ 4β̂T

√
T · 2d log

(
dλ+ TD2

dλ

)

≤ 6β̂T

√
dT log

(
dλ+ TD2

dλ

)
.

The second inequality is due to the fact D ≤ 4β̂T . The third is due to Cauchy-Schwartz inequality. The fourth
is due to Lemma A.5.

The second term, can be controlled by the concentration of martingale. With probability 1 − δ,

I2 =

K(T )−1∑
k=0

tk+1−1∑
t=tk

[
[Pwk](st, at)− wk(st)

]
=

K(T )−1∑
k=0

[
tk+1−1∑
t=tk

(
[Pwk](st, at)− wk(st+1)

)
− wk(stk) + wk(stk+1

)

]

≤
K(T )−1∑
k=0

[
tk+1−1∑
t=tk

(
[Pwk](st, at)− wk(st+1)

)]
+D ·K(T )

≤ D
√

2T log(1/δ) +D ·K(T ),

where the first inequality holds because |wk(s)| ≤ D/2; the second inequality is due to Lemma A.4.

Therefore, the total regret is bounded by

Regret(T ) =

K(T )−1∑
k=0

∆k ≤ 2Tε+ 6β̂T

√
dT log

(
λ+ TD2

λ

)
+D

√
2T log(1/δ) +D ·K(T ).

If we set

β̂t = D

√
d log

(
λ+ tD2

δλ

)
+
√
λB,

and

ε =
1√
T
,

then by taking union bound we have with probability 1 − 2δ,

Regret(T ) ≤ 2
√
T +Dd

√
T · Õ(1) +B

√
λdT · Õ(1) +D

√
2T log(1/δ) +Dd log

(
2λ+ 2dTD2

λ

)
≤ Õ(Dd

√
T ),
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where Õ(1) hides the log factor, the last inequality holds since we set λ = 1/B2.

B Proof of Theorem 5.3

Most part of the proof resembles that of Theorem 5.1. The additional part is essentially about the new concen-
tration results from variance-aware linear bandit problem. As previously defined, we use K(T )− 1 to denote the
value of the counter k when Algorithm 1 finishes, and tK(T ) = T + 1 for convenience. By these notations, the
learning process from t = 1 to t = T can be divided into K(T ) episodes.

The first lemma provides a better confidence set given the information of the noise’s variance.

Lemma B.1 (Bernstein inequality for vector-valued martingales (Zhou et al., 2021a)). Let {Gt}∞t=1 be a fil-
tration, {xt, ηt}t≥1 a stochastic process so that xt ∈ Rd is Gt-measurable and ηt ∈ R is Gt+1-measurable. Fix
R,L, σ, λ > 0, µ∗ ∈ Rd. For t ≥ 1 let yt = 〈µ∗,xt〉+ ηt and suppose that ηt,xt also satisfy

|ηt| ≤ R, E[ηt|Gt] = 0, E[η2t |Gt] ≤ σ2, ‖xt‖2 ≤ L.

Then, for any 0 < δ < 1, with probability at least 1 − δ we have

∀t > 0,

∥∥∥∥ t∑
i=1

xiηi

∥∥∥∥
Z−1

t

≤ βt, ‖µt − µ∗‖Zt
≤ βt +

√
λ‖µ∗‖2, (B.1)

where for t ≥ 1, µt = Z−1t bt, Zt = λI +
∑t
i=1 xix

>
i , bt =

∑t
i=1 yixi and

βt = 8σ
√
d log(1 + tL2/(dλ)) log(4t2/δ) + 4R log(4t2/δ) .

The number of episodes is bounded almost in the same way as in Lemma A.3:

Lemma B.2. Let K(T ) be as defined above. Then, K(T ) ≤ 2d log(1 + Td/λ).

Proof. See Section D.3.

The variance term is defined as

[Vwk](st, at) := Es′∼P(·|st,at)[w
2
k(s′)]− Es′∼P(·|st,at)[wk(s′)]2.

The following lemma states that with high probability the estimated variance is close the the true variance.

Lemma B.3. With probability 1− 3δ, we have for all 1 ≤ t ≤ T ,

θ∗ ∈ Ĉt ∩ B,
∣∣[V̄twk](st, at)− [Vwk](st, at)

∣∣ ≤ Et.
We denote the event above by E0, and P(E0) ≥ 1− 3δ.

Proof. See Section D.4.

Now, we define other events:

E1 :=
{K(T )−1∑

k=0

tk+1−1∑
t=tk

[
Es′∼P(·|st,at)[wk(s′)2]− w2

k(st+1)
]
≤ (D2/4)

√
2T log(1/δ)

}

E2 :=
{K(T )−1∑

k=0

tk+1−1∑
t=tk

[
Es′∼P(·|st,at)[wk(s′)]− wk(st+1)

]
≤ (D/2)

√
2T log(1/δ)

}
By the Azuma-Hoeffding inequality(Lemma A.4), we have P(E1) ≥ 1− δ and P(E2) ≥ 1− δ.

The next lemma characterizes the total variance.
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Lemma B.4. Under the events E0 and E1, we have

K(T )−1∑
k=0

tk+1−1∑
t=tk

[Vwk](st, at) ≤ (D2/4)
√

2T log(1/δ) + (K(T ) + 1)(D2/4) + 2DT +D2β̂T
√
T2d log(1 + T/λ).

Proof. See Section D.5.

The following lemma serves as a wrapper of calculating the total estimation error.

Lemma B.5. Under the event E0, we have

T∑
t=1

Et ≤ β̃T
√

2Td log(1 + TD2/4dλ) +D2β̌T
√

2Td log(1 + T/λ).

Proof. See Section D.6.

Now we are ready to show the regret upper bound.

Proof. We first follow the same procedure as Jaksch et al. (2010) did to decompose the regret and tackle each
term respectively.

We have

Regret(T ) :=

K(T )−1∑
k=0

tk+1−1∑
t=tk

[ρ∗ − r(st, at)]

≤ Tε+

K(T )−1∑
k=0

tk+1−1∑
t=tk

[ρk − r(st, at)]

≤ 2Tε+

K(T )−1∑
k=0

tk+1−1∑
t=tk

[
Es′∼Pk(·|st,at)[uk(s′)]− uk(st)

]
= 2Tε+

K(T )−1∑
k=0

tk+1−1∑
t=tk

[
Es′∼Pk(·|st,at)[wk(s′)]− wk(st)

]
= 2Tε+

K(T )−1∑
k=0

tk+1−1∑
t=tk

[
[Pkwk](st, at)− wk(st)

]
.

The first inequality is due to the ε-optimality of the EVI algorithm. The second inequality is due to (12) in
Jaksch et al. (2010). The third inequality is due to the fact that add a bias to ut won’t change the difference, as
done in Algorithm 1. So we subtract (maxs ut(s) + mins ut(s))/2 from ut(s). The last equality is a shorthand.
It can be further decomposed into:

K(T )−1∑
k=0

tk+1−1∑
t=tk

[
[Pkwk](st, at)− wk(st)

]
=

K(T )−1∑
k=0

tk+1−1∑
t=tk

[
[Pkwk](st, at)− [Pwk](st, at)

]
︸ ︷︷ ︸

I1

+

K(T )−1∑
k=0

tk+1−1∑
t=tk

[
[Pwk](st, at)− wk(st)

]
︸ ︷︷ ︸

I2

.

We deal with the second term I2 first:



Nearly Minimax Optimal Regret for Learning Average-reward MDPs with Linear Approximation

The second term, can be controlled by the concentration of martingale. In fact, E2 defined above exactly
characterizes the concentration. Under event E2, we have

I2 =

K(T )−1∑
k=0

tk+1−1∑
t=tk

[
[Pwk](st, at)− wk(st)

]
=

K(T )−1∑
k=0

[
tk+1−1∑
t=tk

[
[Pwk](st, at)− wk(st+1)

]
− wk(stk) + wk(stk+1

)

]

≤
K(T )−1∑
k=0

tk+1−1∑
t=tk

[
[Pwk](st, at)− wk(st+1)

]
+K(T ) ·D

≤ D
√

2T log(1/δ) +K(T ) ·D

= Õ(D
√
T ) + Õ(Dd),

where the first inequality holds since |wk(·)| ≤ D/2, the second one holds due to the definition of E2. For term
I1,

I1 =

K(T )−1∑
k=0

tk+1−1∑
t=tk

[
[Pkwk](st, at)− [Pwk](st, at)

]
=

K(T )−1∑
k=0

tk+1−1∑
t=tk

〈
θk − θ∗,φwk

(st, at)
〉

≤
K(T )−1∑
k=0

tk+1−1∑
t=tk

(
‖θk − θ̂k‖Σ̂t

+ ‖θ∗ − θ̂k‖Σ̂t

)∥∥φwk
(st, at)

∥∥
Σ̂−1

t

≤ 2

K(T )−1∑
k=0

tk+1−1∑
t=tk

(
‖θk − θ̂k‖Σ̂tk

+ ‖θ∗ − θ̂k‖Σ̂tk

)∥∥φwk
(st, at)

∥∥
Σ̂−1

t

≤ 4

K(T )−1∑
k=0

tk+1−1∑
t=tk

β̂tk
∥∥φwk

(st, at)
∥∥

Σ̂−1
t

≤ 4

K(T )−1∑
k=0

tk+1−1∑
t=tk

β̂tσ̄t
∥∥φwk

(st, at)/σ̄t
∥∥

Σ̂−1
t
.

The first inequality is due to first applying Cauchy-Schwartz inequality and then the triangle inequality. The
second is due to det(Σ̂t) ≤ 2 det(Σ̂tk) and Lemma A.6. The third is due to event E0. The last is due to the fact

that {β̂t}t≥0 is increasing.

Meanwhile, for each term in I1, we also have that due to |wk(s)| ≤ D/2,

[Pkwk](st, at)− [Pwk](st, at) ≤ D.

Therefore, we have

I1 ≤
K(T )−1∑
k=0

tk+1−1∑
t=tk

min
{
D, 4β̂tσ̄t

∥∥φwk
(st, at)/σ̄t

∥∥
Σ̂−1

t

}

≤
K(T )−1∑
k=0

tk+1−1∑
t=tk

4β̂tσ̄t min
{

1,
∥∥φwk

(st, at)/σ̄t
∥∥

Σ̂−1
t

}

≤ 4β̂T

√√√√√√√
T∑
t=1

(σ̄t)
2

︸ ︷︷ ︸
J1

√√√√√√√
K(T )−1∑
k=0

tk+1−1∑
t=tk

{
1,
∥∥φwk

(st, at)/σ̄t
∥∥

Σ̂−1
t

}
︸ ︷︷ ︸

J2

.
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The second inequality is due to the fact D ≤ 4β̂tσ̄t. The third is due to Cauchy-Schwartz inequality.

Note that by Lemma A.5, it is clear that

J2 ≤ 2d log(1 + T/λ).

For term J1,

J1 =

K(T )−1∑
k=0

tk+1−1∑
t=tk

max{D2/d, [V̄twk](st, at) + Et}

≤ TD2/d+

K(T )−1∑
k=0

tk+1−1∑
t=tk

[V̄twk](st, at) +
T∑
t=1

Et

≤ TD2/d+

K(T )−1∑
k=0

tk+1−1∑
t=tk

[Vwk](st, at) + 2
T∑
t=1

Et

≤ TD2/d+ (D2/4)
√

2T log(1/δ) + (K(T ) + 1)(D2/4) + 2DT +D2β̂T
√
T2d log(1 + T/λ)

+ β̃T
√

2Td log(1 + TD2/4dλ) +D2β̌T
√

2Td log(1 + T/λ).

The second inequality uses Lemma B.1. The third uses Lemma B.4 and Lemma B.5.

Now, based on Lemma B.2 we have K(T ) = Õ(d). By definition, we have

β̂T = Õ(
√
d)

β̌T = Õ(d)

β̃T = Õ(D2
√
d),

if we set λ = B−2.

This means we can express I1 in Big-O notation term by term as:

J1 = Õ(TD2/d) + Õ(D2
√
T ) + Õ(D2d) + Õ(DT ) + Õ(D2d

√
T ) + Õ(D2d

√
T ) + Õ(D2d3/2

√
T )

= Õ(TD2/d) + Õ(DT ) + Õ(D2d3/2
√
T ).

We have

I1 = Õ(
√
d) ·

√
Õ(TD2/d) + Õ(DT ) + Õ(D2d3/2

√
T ) ·

√
Õ(d)

= Õ(D
√
dT ) + Õ(d

√
DT ) + Õ(Dd7/4T 1/4).

Finally, by setting ε = 1/
√
T , the regret is upper bounded as

Regret(T ) = O(
√
T ) + Õ(D

√
dT ) + Õ(d

√
DT ) + Õ(Dd7/4T 1/4) + Õ(D

√
T ) + Õ(Dd)

= Õ(D
√
dT ) + Õ(d

√
DT ) + Õ(Dd7/4T 1/4).

As long as d ≥ D and T ≥ D2d3, we have

Regret(T ) = Õ(d
√
DT ).

C Proof of Theorem 5.5

C.1 Construction of Hard-to-learn MDPs

Here we describe the construction of the hard-to-learn MDPs M(S,A, r,Pθ) for our lower bound proof (illustrated
in Figure 2). The state space S consists of two states x0, x1. The action space A consists of 2d−1 vectors a ∈ Rd−1
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x1x01− δ − 〈ai,θ〉
δ + 〈ai,θ〉

x1x0 1− δ
δ

Figure 2: Illustration of the hard-to-learn linear mixture MDP considered in Theorem 5.5. The left figure
demonstrates the state transition probability starting from x0 with some specific action ai. The right figure
demonstrates the state transition probability starting from x1 with any action.

whose coordinates are 1 or −1. The reward function r satisfies that r(x0,a) = 0 and r(x1,a) = 1 for any a ∈ A.
The probability transition function Pθ is parameterized by a (d− 1)-dimensional vector θ ∈ Θ, which is defined
as

Pθ(x0|x0,a) = 1− δ − 〈a,θ〉, Pθ(x1|x0,a) = δ + 〈a,θ〉,
Pθ(x0|x1,a) = δ, Pθ(x1|x1,a) = 1− δ,
Θ = {−∆/(d− 1),∆/(d− 1)}d−1,

where δ and ∆ are positive parameters that need to be determined in later proof. We set δ = 1/D, and ∆ as
∆ = (1/45

√
2 log 2/5)d/

√
DT . It can be verified that M is indeed a linear kernel MDP with the feature mapping

φ(s′|s, a) defined as follows:

φ(x0|x0,a) =

(
−αa

β(1− δ)

)
,φ(x1|x0,a) =

(
αa
βδ

)
,φ(x0|x1,a) =

(
0
βδ

)
,φ(x1|x1,a) =

(
0

β(1− δ)

)
,

where α =
√

∆/[(d− 1)(1 + ∆)], β =
√

1/(1 + ∆), and the vector θ̃ = (θ>/α, 1/β)> ∈ Rd. We can verify that

φ and θ̃ satisfy the requirements of B-bounded linear mixture MDP. In detail, we have

‖θ̃‖22 =
‖θ‖22
α2

+
1

β2
= (1 + ∆)2 ≤ B2,

as long as ∆ ≤
√
B − 1. In addition, for any function F : S → [0, 1], we have

‖φF (x0,a)‖22 = α2‖a‖22(F (x1)− F (x0))2 + (β(1− δ)F (x0) + βδF (x1))2 ≤ (d− 1)α2 + β2 = 1.

Therefore, our defined MDP is indeed a B-bounded linear mixture MDP.

Remark C.1. Similar to Zhou et al. (2021a), our lower bound can also imply a lower bound for a related MDP
class called linear MDPs (Yang and Wang, 2019a; Jin et al., 2019), which assumes that P(s′|s, a) = 〈ψ(s, a),µ(s′)〉
and r(s, a) = 〈ψ(s, a), ξ〉. We construct ψ, µ and ξ as follows:

ψ(s, a) =

{
(αa>, β, 0)> s = x0

(0, 0, 1) s = x1
,µ(s′) =

{
(−θ>/α, (1− δ)/β), δ)> s′ = x0

(θ>/α, δ/β, 1− δ)> s′ = x1
, ξ = (0>, 1)>.

It can be verified that such a feature mapping φ,µ and parameters ξ satisfy the requirements of a linear MDP
with (d+ 1)-dimension feature mapping. Meanwhile, the MDP 〈ψ(s, a),µ(s′)〉 has exactly the same form as the
linear mixture MDPs proposed in Theorem 5.5. Therefore, the lower bound in Theorem 5.5 can also be applied
to infinite-horizon average-reward linear MDPs, which are studied by Wei et al. (2020a). This also suggests that
there still exists a gap between the best upper bound (Wei et al., 2020a) and lower bound in the linear MDP
setting.

C.2 Proof of the Lower Bound in Theorem 5.5

Given the example we constructed above (shown in Figure 2), it is easy to see that the optimal policy is to
choose the action a satisfying 〈a,θ〉 = ∆, namely each coordinate of a has the same sign as θ’s.
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Given the optimal policy, it is clear that the stationary distribution is

µ =

[
δ

2δ + ∆

δ + ∆

2δ + ∆

]
,

and the optimal average reward is ρ∗ = (δ + ∆)/(2δ + ∆).

In the construction, we leave the two parameters δ and ∆ unspecified. Now we set δ = 1/D. From state x1 to
x0, it is clear that any policy has only one action and the expected travel time is 1/δ = D. From state x0 to x1,
there always exists an policy that chooses the action a that has the same sign coordinate-wise, and in that case
the transition probability from x0 to x1 is δ + ∆, which indicates the expected travel time is smaller then D.
From the argument above, we know the MDP has a diameter of D.

The choice of ∆ is ∆ = (1/45
√

2 log 2/5)d/
√
DT ; the motivation will be revealed later in the proof.

In the following, we use Regretθ(T ) to denote the regret Regret(Mθ, A, s, T ), where A is a deterministic algorithm.
As argued in Auer et al. (2002), it is sufficient to only consider deterministic policies. Let Pθ(·) denote the
distribution over ST , where s1 = x0, st+1 ∼ Pθ(·|st, at), at is decided by A. Let Eθ denote the expectation w.r.t.
distribution Pθ. Denote N1, N0, N

a
0 as the random variables of the times state x1 is visited, the times state x0

is visited and the times state x0 is visited and a is chosen. We further define NV0 for some subset V ⊂ A as the
random variable of the times state x0 is visited, and the action a belongs to V.

Lemma C.2. Suppose 2∆ < δ and (1− δ)/δ < T/5, then for EθN1 and EθN0, we have

EθN1 ≤
T

2
+

1

2δ

∑
a

〈a,θ〉EθN
a
0 , EθN0 ≤ 4T/5.

Proof. See Section D.7.

Lemma C.3 (Pinsker’s inequality, in Jaksch et al. (2010)). Denote s = {s1, . . . , sT } ∈ ST as the observed states
from step 1 to T . Then for any two distributions P1 and P2 over ST and any bounded function f : ST → [0, B],
we have

E1f(s)− E2f(s) ≤
√

log 2/2B
√

KL(P2‖P1),

where E1 and E2 are expectations with respect to P1 and P2.

Lemma C.4. Suppose that θ and θ′ only differs from j-th coordinate, 2∆ < δ ≤ 1/3. Then we have the
following bound for the KL divergence between Pθ and Pθ′ :

KL(Pθ′‖Pθ) ≤ 16∆2

(d− 1)2δ
EθN0.

Proof. See Section D.8.

Proof of Theorem 5.5. We have

Eθ[Regretθ(T )] := Tρ∗ − Eθ

[ T∑
t=1

r(st, at)

]
= Tρ∗ − Eθ[N1].

Averaging over all possible choice of θ ∈ Θ, we have

1

|Θ|
∑
θ

Eθ[Regretθ(T )] = Tρ∗ − 1

|Θ|
∑
θ

Eθ[N1].
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Following Lemma C.2, we first have

1

|Θ|
∑
θ

Eθ[N1] ≤ T

2
+

1

2δ|Θ|
∑
θ

∑
a

〈a,θ〉EθN
a
0

=
T

2
+

1

2δ|Θ|
∑
θ

∑
a

∆

d− 1

d−1∑
j=1

1{sign(aj) = sign(θj)}EθN
a
0

=
T

2
+

1

2δ|Θ|
∆

d− 1

d−1∑
j=1

∑
θ

∑
a

Eθ

[
1{sign(aj) = sign(θj)}Na

0

]
. (C.1)

For a fixed coordinate j, consider θ′ that only differs with θ at its j-th coordinate. We have

Eθ

[
1{sign(aj) = sign(θj)}Na

0

]
+ Eθ′

[
1{sign(aj) = sign(θ′j)}Na

0

]
= Eθ′

[
Na

0

]
+ Eθ

[
1{sign(aj) = sign(θj)}Na

0

]
− Eθ′

[
1{sign(aj) = sign(θj)}Na

0

]
,

since 1{sign(aj) = sign(θ′j)} = 1− 1{sign(aj) 6= sign(θj)}.

Summing the equation above over Θ and A, we have

2
∑
θ

∑
a

Eθ

[
1{sign(aj) = sign(θj)}Na

0

]
=
∑
θ

∑
a

Eθ′
[
Na

0

]
+
∑
θ

[
Eθ

[∑
a

1{sign(aj) = sign(θj)}Na
0

]
− Eθ′

[∑
a

1{sign(aj) = sign(θj)}Na
0

]]
=
∑
θ

Eθ′
[
N0

]
+
∑
θ

[
Eθ

[
N
Aj

0

]
− Eθ′

[
N
Aj

0

]]
≤
∑
θ

Eθ′
[
N0

]
+
∑
θ

√
log 2/2T

√
KL(Pθ′‖Pθ)

≤
∑
θ

Eθ′
[
N0

]
+
∑
θ

2
√

2 log 2
T∆

d
√
δ

√
Eθ[N0], (C.2)

where Aj is the set of all a which satisfy 1{sign(aj) = sign(θj)}. The first equality is by matching each θ with
θ′ that differs from θ in its j-th coordinate, and moving

∑
a inside. The second equality applies the shorthand

Aj . The first inequality is due to Lemma C.3. The last is due to Lemma C.4.

Substituting (C.2) into (C.1), we have

1

|Θ|
∑
θ

Eθ[N1] ≤ T

2
+

1

4δ|Θ|
∆

d− 1

d−1∑
j=1

∑
θ

[
Eθ′
[
N0

]
+ 2
√

2 log 2
T∆

d
√
δ

√
Eθ[N0]

]

=
T

2
+

∆

4δ|Θ|
∑
θ

[
Eθ′
[
N0

]
+ 2
√

2 log 2
T∆

d
√
δ

√
Eθ[N0]

]

≤ T

2
+

∆

4δ

[
4T

5
+ 2
√

2 log 2
T∆

d
√
δ

2
√
T√
5

]
=
T

2
+

∆T

5δ
+
√

2 log 2/5
∆2T 3/2

dδ3/2
,

where the second inequality is due to Lemma C.2.
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This further leads to

1

|Θ|
∑
θ

Eθ[Regretθ(T )] = Tρ∗ − 1

|Θ|
∑
θ

Eθ[N1]

≥ T · δ + ∆

2δ + ∆
− T

2
− ∆T

5δ
−
√

2 log 2/5
∆2T 3/2

dδ3/2

=
∆(δ − 2∆)

5δ(4δ + 2∆)
· T −

√
2 log 2/5

∆2T 3/2

dδ3/2

≥ 2

45δ
·∆T −

√
2 log 2/5 · ∆2T 3/2

dδ3/2

=
1

2025
√

2 log 2/5
· d
√
DT

>
1

2025
· d
√
DT,

where the second inequality requires 0 < 4∆ ≤ δ; the last equality is due to the setting δ = D−1 and ∆ =
(1/45

√
2 log 2/5)d/

√
DT . This further requires that T ≥ 16d2D/2025.

D Proof of Supporting Lemmas

D.1 Proof of Lemma A.2

Proof of Lemma A.2. Recall the definition of θk in Algorithm 1, we have

θk =

(
λI +

k−1∑
j=0

tj+1−1∑
i=tj

φwj (si, ai)φwj (si, ai)
>
)−1( k−1∑

j=0

tj+1−1∑
i=tj

φwj (si, ai)w(si+1)

)
.

It is worth noting that for any 0 ≤ j ≤ k − 1 and tj ≤ i ≤ tj+1 − 1,

[Pwj ](si, ai) =

∫
s′
P(s′|si, ai)wj(si, ai)ds′

=

∫
s′
〈φ(s′|si, ai),θ∗〉wj(s′)ds′

=
〈∫

s′
φ(s′|si, ai)wj(s′),θ∗

〉
= 〈φwj

(si, ai),θ
∗〉, (D.1)

thus {wj(si+1)−〈φwj
(si, ai),θ

∗〉} forms a martingale difference sequence. Besides, since |w(s)| ≤ D/2 for any s,
then wj(si+1)− 〈φwj (si, ai),θ

∗〉 is a sequence of D-subgaussian random variables with zero means. Meanwhile,
we have ‖φwj (si, ai)‖2 ≤ D and ‖θ∗‖2 ≤ B by Definition 3.2. By Theorem 2 in Abbasi-Yadkori et al. (2011),
we have that with probability at least 1 − δ, θ∗ belongs to the following set for all 1 ≤ k ≤ K:

{
θ :
∥∥∥Σ1/2

tk
(θ − θ̂k)

∥∥∥
2
≤ D

√
log

(
λ+ tkD2

δλ

)
+
√
λB

}
. (D.2)

Finally, by the definition of β̂t and the fact that 〈θ∗,φ(s′|s, a)〉 = P(s′|s, a) for all (s, a), we draw the conclusion

that θ∗ ∈ Ĉtk for 1 ≤ k ≤ K.
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D.2 Proof of Lemma A.3

Proof of Lemma A.3. For simplicity, we denote K = K(T ). Note that det(Σ0) = λd. We further have

‖ΣT ‖2 =

∥∥∥∥λI +
K−1∑
k=0

tk+1−1∑
t=tk

φwk
(st, at)φwk

(st, at)
>
∥∥∥∥
2

≤ λ+
K−1∑
k=0

tk+1−1∑
t=tk

∥∥φwk
(st, at)

∥∥2
2

≤ λ+ TD2, (D.3)

where the first inequality holds due to the triangle inequality, the second inequality holds due to the fact
wk(s) ≤ D/2 and Definition 3.2. (D.3) suggests that det(ΣT ) ≤ (λ+ TdD2)d. Therefore, we have

(λ+ TD2)d ≥ det(ΣT ) ≥ det(ΣtK−1−1) ≥ 2K−1 det(Σt0−1) = 2K−1λd, (D.4)

where the second inequality holds since ΣT � ΣtK−1−1, the third inequality holds due to the fact that
det(Σtk−1) ≥ 2 det(Σtk−1−1) by the update rule in Algorithm 1. (D.4) suggests

K ≤ d log
2λ+ 2TD2

λ
.

D.3 Proof of Lemma B.2

Proof of Lemma B.2. For simplicity, we denote K = K(T ). Note that det(Σ̂1) = λd. We further have

‖Σ̂tK‖2 =

∥∥∥∥λI +
T∑
t=1

φwk
(st, at)φwk

(st, at)
>/σ̄2

t

∥∥∥∥
2

≤ λ+
T∑
t=1

∥∥φwk
(st, at)/σ̄t

∥∥2
2
≤ λ+ Td,

where the first inequality holds due to the triangle inequality, the second inequality holds because wk(s) ≤ D

and σ̄t ≥ D/
√
d. This suggests that det(Σ̂tK ) ≤ (λ+ Td)d. Therefore, we have

(λ+ Td)d ≥ det(ΣtK ) ≥ det(ΣtK−1
) ≥ 2K−1 det(Σt0) = 2K−1λd,

where the second inequality holds since ΣT � ΣtK−1−1, the third inequality holds due to the fact that
det(Σtk−1) ≥ 2 det(Σtk−1−1) by the update rule in Algorithm 1 with OPTION 2. This suggests

K ≤ 2d log(1 + dT/λ).

D.4 Proof of Lemma B.3

Proof of Lemma B.3. In fact we are able to prove a stronger result:

θ∗ ∈ Ĉt ∩ Čt ∩ C̃t ∩ B,

where the two additional sets are defined as

Čt :=

{
θ :
∥∥∥Σ̌1/2

t (θ − θ̌t)
∥∥∥ ≤ β̌t}

C̃t :=

{
θ :
∥∥∥Σ̃1/2

t (θ − θ̃t)
∥∥∥ ≤ β̃t}.
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For any 1 ≤ t ≤ T , we always have k such that tk ≤ t < tk+1. We start with the following inequality:∣∣[V̄twk](st, at)− [Vwk](st, at)
∣∣ =

∣∣∣∣min
{
D2/4,

〈
φw2

k
(st, at), θ̃t

〉}
−
〈
φw2

k
(st, at),θ

∗〉
+
〈
φwk

(st, at),θ
∗〉2 − [min

{
D/2,

〈
φwk

(st, at),θt
〉}]2∣∣∣∣

≤
∣∣∣∣min

{
D2/4,

〈
φw2

k
(st, at), θ̃t

〉}
−
〈
φw2

k
(st, at),θ

∗〉∣∣∣∣︸ ︷︷ ︸
I1

+

∣∣∣∣〈φwk
(st, at),θ

∗〉2 − [min
{
D/2,

〈
φwk

(st, at),θt
〉}]2∣∣∣∣︸ ︷︷ ︸

I2

,

where the inequality is by the triangle inequality.

For I1, we have

I1 ≤
∣∣∣〈φw2

k
(st, at), θ̃t

〉
−
〈
φw2

k
(st, at),θ

∗〉∣∣∣
=
∣∣∣〈φw2

k
(st, at), θ̃t − θ∗

〉∣∣∣
≤
∥∥∥Σ̃−1/2t φw2

k
(st, at)

∥∥∥ · ∥∥∥Σ̃1/2
t (θ̃t − θ∗)

∥∥∥,
where the first inequality is due to

〈
φw2

k
(st, at),θ

∗〉 = Es′∼P(·|st,at)[w2
k(s′)] ∈ [0, D2/4], and the last inequality is

due to Cauchy-Schwartz inequality. Also, it is clear I1 ≤ D2/4.

Similarly, for I2, we have

I2 =

∣∣∣∣〈φwk
(st, at),θ

∗〉+ min
{
D/2,

〈
φwk

(st, at),θt
〉}∣∣∣∣

·
∣∣∣∣〈φwk

(st, at),θ
∗〉− [min

{
D/2,

〈
φwk

(st, at),θt
〉}]∣∣∣∣

≤ D ·
∣∣∣〈φwk

(st, at),θ
∗〉− 〈φwk

(st, at),θt
〉∣∣∣

= D ·
∣∣∣〈φwk

(st, at),θ
∗ − θt

〉∣∣∣
≤ D ·

∥∥∥Σ̂−1/2t φwk
(st, at)

∥∥∥ · ∥∥∥Σ̂1/2
t (θ∗ − θt)

∥∥∥,
where the first equality is by a2 − b2 = (a + b)(a − b), and the following reasoning is the same as I1. The
only additional fact used in the first inequality is

〈
φwk

(st, at),θ
∗〉 ∈ [0, D/2] and min

{
D/2,

〈
φwk

(st, at),θt
〉}
∈

[0, D/2]. Also, it is clear I2 ≤ D2/4.

The two terms combined together gives∣∣[V̄twk](st, at)− [Vwk](st, at)
∣∣ ≤ min

{
D2/4,

∥∥∥Σ̃−1/2t φw2
k
(st, at)

∥∥∥ · ∥∥∥Σ̃1/2
t (θ̃t − θ∗)

∥∥∥}
+ min

{
D2/4, D ·

∥∥∥Σ̂−1/2t φwk
(st, at)

∥∥∥ · ∥∥∥Σ̂1/2
t (θ∗ − θt)

∥∥∥}. (D.5)

Now, we first show that with probability 1 − δ, for all t, θ∗ ∈ Čt. To show this, we apply Lemma B.1. By
setting xt = σ̄−1t φwk

(st, at) and ηt = σ̄−1t wk(st+1)− σ̄−1t 〈φwk
(st, at),θ

∗〉, Gt = Ft, µ∗ = θ∗, yt = 〈µ∗,xt〉+ ηt,

Zt = λI +
∑t
i=1 xix

>
i , bt =

∑t
i=1 xiyi and µt = Z−1t bt, we have yt = σ̄−1t wk(st+1) and µt = θ̂t. Moreover, we

have

‖xt‖2 ≤
√
d/2, |ηt| ≤

√
d,E[ηt|Gt] = 0,E[η2t |Gt] = d.

Therefore, by Lemma B.1, we have with probability 1 − δ, for all t ∈ [T ],

‖Σ̂1/2
t (θ̂t − θ∗)‖2 ≤ 8d

√
log(1 + t/4λ) log(4t2/δ) + 4

√
d log(4t2/δ) +

√
λB = β̌t.
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This means that with probability 1 − δ, for all t, θ∗ ∈ Čt.

The same argument can be applied again, except that now we focus on the squared function w2
k. This gives

‖Σ̃1/2
t (θ̃t − θ∗)‖2 ≤ 8(D2/4)

√
d log(1 + tD2/4λdλ) log(4t2/δ) + 4(D2/4) log(4t2/δ) +

√
λB = β̃t.

This means that with probability 1 − δ, for all t, θ∗ ∈ C̃t.

Now we show that θ∗ ∈ Ĉt with high probability. Let xt = σ̄−1t φwk
(st, at), and

ηt = σ̄−1t 1{θ∗ ∈ Čt ∩ C̃t}
[
wk(st+1)− 〈φwk

(st, at),θ
∗〉
]
.

In this case, it is clear that still we have E[ηt|Gt] = 0, |ηt| ≤
√
d, ‖xt‖2 ≤

√
d. Also,

E[η2t |Gt] = σ̄−2t 1{θ∗ ∈ Čt ∩ C̃t}[Vwt](st, at)

≤ σ̄−2t 1{θ∗ ∈ Čt ∩ C̃t}
[
[V̄twt](st, at)

+ min
{
D2/4,

∥∥∥Σ̃−1/2t φw2
k
(st, at)

∥∥∥ · ∥∥∥Σ̃1/2
t (θ̃t − θ∗)

∥∥∥}
+ min

{
D2/4, D ·

∥∥∥Σ̂−1/2t φwk
(st, at)

∥∥∥ · ∥∥∥Σ̂1/2
t (θ∗ − θt)

∥∥∥}]
≤ σ̄−2t

[
[V̄twt](st, at) + min

{
D2/4,

∥∥∥Σ̃−1/2t φw2
k
(st, at)

∥∥∥β̃t}
+ min

{
D2/4, Dβ̌t ·

∥∥∥Σ̂−1/2t φwk
(st, at)

∥∥∥}]
= 1,

where the first inequality is due to (D.5) and the second inequality is due to first, the event that θ∗ ∈ Čt ∩ C̃t.
The last equality is by the definition of σ̄t.

Again by Lemma B.1, we have that for all t ∈ [T ],

‖µt − µ∗‖Zt ≤ 8
√
d log(1 + t/4λ) log(4t2/δ) + 4

√
d log(4t2/δ) +

√
λB = β̂t.

Now, denote the event when
{
∀t ∈ [T ],θ∗ ∈ Čt ∩ C̃t

}
and the inequality above holds as E0. By union bound, we

have P(E0) ≥ 1− 3δ.

It is clear that under E0, we have θ∗ ∈ Ĉt for all t because under event E0,

yt = 〈σ̄−1t φwk
(st, at),θ

∗〉+ σ̄−1t 1{θ∗ ∈ Čt ∩ C̃t}
[
wk(st+1)− 〈φwk

(st, at),θ
∗〉
]

= σ̄−1t wk(st+1),

so indeed we have ‖θ̂t − θ∗‖Σ̂t
≤ β̂t.

Also, by the definition of Et, it is clear that under event E0,∣∣[V̄twk](st, at)− [Vwk](st, at)
∣∣ ≤ Et.

D.5 Proof of Lemma B.4

Proof of Lemma B.4. Part of the proof is inspired by Fruit et al. (2020). We will use VP (w) to denote
Es′∼P (·)[w(s′)2] − (Es′∼P (·)[w(s′)])2, namely the variance of the random variable w(s′) where s′ ∼ P (·). Some
examples are

VP(·|st,at)(wk) = Es′∼P(·|st,at)[wk(s′)2]− (Es′∼P(·|st,at)[wk(s′)])2,

VPk(·|st,at)(wk) = Es′∼Pk(·|st,at)[wk(s′)2]− (Es′∼Pk(·|st,at)[wk(s′)])2.
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When the context is clear, we may also use short-hands like Ep[w(s′)] to indicate expectation under p(·).

The following decomposition is useful:

K(T )−1∑
k=0

tk+1−1∑
t=tk

VP(·|st,at)(wk)

=

K(T )−1∑
k=0

tk+1−1∑
t=tk

Es′∼P(·|st,at)[wk(s′)2]− (Es′∼P(·|st,at)[wk(s′)])2

=

K(T )−1∑
k=0

tk+1−1∑
t=tk

[
Es′∼P(·|st,at)[wk(s′)2]− w2

k(st+1)
]

+

K(T )−1∑
k=0

tk+1−1∑
t=tk

[
w2
k(st+1)− (Es′∼P(·|st,at)[wk(s′)])2

]
=

K(T )−1∑
k=0

tk+1−1∑
t=tk

[
Es′∼P(·|st,at)[wk(s′)2]− w2

k(st+1)
]

+

K(T )−1∑
k=0

[
tk+1−1∑
t=tk

[
w2
k(st)− (Es′∼P(·|st,at)[wk(s′)])2

]
+ w2

k(stk+1
)− w2

k(stk)

]

≤
K(T )−1∑
k=0

tk+1−1∑
t=tk

[
Es′∼P(·|st,at)[wk(s′)2]− w2

k(st+1)
]

︸ ︷︷ ︸
I1

+

K(T )−1∑
k=0

tk+1−1∑
t=tk

[
w2
k(st)− (Es′∼P(·|st,at)[wk(s′)])2

]
︸ ︷︷ ︸

I2

+K(T ) ·D2/4.

For term I1, since the event E1 holds, we have

I1 ≤ (D2/4)
√

2T log(1/δ).

For term I2, we have

I2 =
T∑
t=1

[
w2
k(st)− (Es′∼P(·|st,at)[wk(s′)])2

]
≤

T∑
t=1

∣∣wk(st)− Es′∼P(·|st,at)[wk(s′)]
∣∣ · ∣∣wk(st) + Es′∼P(·|st,at)[wk(s′)]

∣∣
≤ D

T∑
t=1

∣∣wk(st)− (Es′∼P(·|st,at)[wk(s′)])
∣∣.

Note that, wk, as the output of the Extended Value Iteration, satisfies the following condition(Lemma A.1):

|r(st, at) + Es′∼Pk(·|st,at)[wk(s′)]− wk(st)− ρk| ≤ ε.



Nearly Minimax Optimal Regret for Learning Average-reward MDPs with Linear Approximation

Therefore, we can further bound each term in I2 as follows:

∣∣wk(st)− EP[wk(s′)]
∣∣ =

∣∣wk(st)− EPk
[wk(s′)] + EPk

[wk(s′)]− EP[wk(s′)]
∣∣

≤ |r(st, at) + EPk
[wk(s′)]− wk(st)− ρk|+ |r(st, at)− ρk|

+
∣∣EPk

[wk(s′)]− EP[wk(s′)]
∣∣

≤ rmax + rmax +
∣∣EPk

[wk(s′)]− EP[wk(s′)]
∣∣

= 2rmax +
∣∣〈φwk

(st, at),θk − θ∗〉
∣∣

≤ 2rmax +
∥∥φwk

(st, at)
∥∥

Σ̂−1
t
·
∥∥θk − θ∗∥∥Σ̂t

≤ 2rmax + 2β̂t
∥∥φwk

(st, at)
∥∥

Σ̂−1
t
.

Here, the first inequality is due to triangle inequality. The second inequality is due to 1) the reward function( so
should the average reward) should lie in [0, rmax] as assumed, and in this paper’s setting actually rmax = 1. The
third inequality is due to Cauchy-Schwartz inequality. The last inequality is due to the assumption E0 holds.
For the second equality, note that EP[w(s′)] = 〈φw(s′|st, at),θ∗〉.

Also, it is clear that
∣∣EPk

[wk(s′)]− EP[wk(s′)]
∣∣ ≤ D. Therefore, term I2 can be bounded as

I2 ≤ D
K(T )−1∑
k=0

tk+1−1∑
t=tk

[
2rmax + min

{
D, β̂t

∥∥φwk
(st, at)

∥∥
Σ̂−1

t

}]

= 2DT +D

K(T )−1∑
k=0

tk+1−1∑
t=tk

min
{
D, β̂t

∥∥φwk
(st, at)

∥∥
Σ̂−1

t

}

≤ 2DT +D

K(T )−1∑
k=0

tk+1−1∑
t=tk

β̂tσ̄t min
{

1,
∥∥φwk

(st, at)/σ̄t
∥∥

Σ̂−1
t

}

≤ 2DT +D2β̂T

K(T )−1∑
k=0

tk+1−1∑
t=tk

min
{

1,
∥∥φwk

(st, at)/σ̄t
∥∥

Σ̂−1
t

}

≤ 2DT +D2β̂T
√
T

√√√√K(T )−1∑
k=0

tk+1−1∑
t=tk

min
{

1,
∥∥φwk

(st, at)/σ̄t
∥∥2

Σ̂−1
t

}
≤ 2DT +D2β̂T

√
T2d log(1 + T/λ).

The second inequality holds because β̂t ≥
√
d and σ̄t ≥ D/

√
d.The third inequality holds because β̂t ≤ β̂T and

σ̄t ≤ D. The fourth inequality is due to Cauchy-Schwartz inequality. The last inequality is from Lemma A.6.

Collecting I1 and I2 gives

K(T )−1∑
k=0

tk+1−1∑
t=tk

[Vwk](st, at) ≤ (D2/4)
√

2T log(1/δ) + (K(T ) + 1)(D2/4) + 2DT +D2β̂T
√
T2d log(1 + T/λ),

given that E0 and E1 hold. Using big-O notation we have

K(T )−1∑
k=0

tk+1−1∑
t=tk

[Vwk](st, at) = Õ(DT ) + Õ(D2d
√
T ).
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D.6 Proof of Lemma B.5

Proof of Lemma B.5. Directly unroll the definition of Et:

T∑
t=1

Et =

K(T )−1∑
k=0

tk+1−1∑
t=tk

min
{
D2/4, β̃t

∥∥∥Σ̃−1/2t φw2
k
(st, at)

∥∥∥}︸ ︷︷ ︸
I1

+

K(T )−1∑
k=0

tk+1−1∑
t=tk

min
{
D2/4, Dβ̌t

∥∥∥Σ̂−1/2t φwk
(st, at)

∥∥∥}︸ ︷︷ ︸
I2

.

For term I1,

I1 ≤ β̃T
K(T )−1∑
k=0

tk+1−1∑
t=tk

min
{

1,
∥∥∥Σ̃−1/2t φw2

k
(st, at)

∥∥∥}

≤ β̃T
√
T

√√√√K(T )−1∑
k=0

tk+1−1∑
t=tk

min
{

1,
∥∥∥Σ̃−1/2t φw2

k
(st, at)

∥∥∥2}
≤ β̃T

√
2Td log(1 + TD2/4dλ),

where the first inequality is due to β̃t ≤ β̃T and β̃t ≥ D2/4. The second inequality is due to Cauchy-Schwartz
inequality. The third is due to Lemma A.5.

Similarly, for I2, we have

I2 =

K(T )−1∑
k=0

tk+1−1∑
t=tk

min
{
D2/4, Dβ̌tσ̄t

∥∥∥Σ̂−1/2t φwk
(st, at)/σ̄t

∥∥∥}

≤ D2β̌T

K(T )−1∑
k=0

tk+1−1∑
t=tk

min
{

1,
∥∥∥Σ̂−1/2t φwk

(st, at)/σ̄t

∥∥∥}

≤ D2β̌T

√√√√T

K(T )−1∑
k=0

tk+1−1∑
t=tk

min
{

1,
∥∥∥Σ̂−1/2t φwk

(st, at)/σ̄t

∥∥∥2}
≤ D2β̌T

√
2Td log(1 + T/λ),

where the first inequality is due to β̌tσ̄t ≥ D, β̌t ≤ β̌T and σ̄t ≤ D(all can be verified by the definitions).

To summarize,

T∑
t=1

Et ≤ β̃T
√

2Td log(1 + TD2/4dλ) +D2β̌T
√

2Td log(1 + T/λ).

We can also conclude that

T∑
t=1

Et = Õ(D2d3/2
√
T ).
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D.7 Proof of Lemma C.2

Proof of Lemma C.2. We have

EθN1 =
T∑
t=2

Pθ(st = x1)

=
T∑
t=2

Pθ(st = x1|st−1 = x1)Pθ(st−1 = x1)︸ ︷︷ ︸
I1

+
T∑
t=2

Pθ(st = x1, st−1 = x0)︸ ︷︷ ︸
I2

. (D.6)

For I1, since Pθ(st = x1|st−1 = x1) = 1− δ no matter which action is taken, thus we have

I1 = (1− δ)
T∑
t=2

Pθ(st−1 = x1) = (1− δ)EθN1 − (1− δ)Pθ(sT = x1). (D.7)

Next we bound I2. We can further decompose I2 as follows.

I2 =
T∑
t=2

∑
a

Pθ(st = x1|st−1 = x0, at−1 = a)Pθ(st−1 = x0, at−1 = a)

=
T∑
t=2

∑
a

(δ + 〈a,θ〉)Pθ(st−1 = x0, at−1 = a)

=
∑
a

(δ + 〈a,θ〉)
[
EθN

a
0 − Pθ(sT = x0, aT = a)

]
. (D.8)

Substituting (D.7) and (D.8) into (D.6) and rearranging it, we have

EθN1

=
∑
a

(1 + 〈a,θ〉/δ)EθN
a
0 −

[
1− δ
δ
Pθ(sT = x1) +

∑
a

(1 + 〈a,θ〉/δ)Pθ(sT = x0, aT = a)

]
︸ ︷︷ ︸

ψθ

= EθN0 + δ−1
∑
a

〈a,θ〉EθN
a
0 − ψθ, (D.9)

which suggests that

EθN1 ≤ T/2 + δ−1
∑
a

〈a,θ〉EθN
a
0 /2. (D.10)

We now bound EθN0. By (D.9), we have

EθN1 ≥ EθN0 + δ−1
∑
a

〈a,θ〉EθN
a
0 − ψθ

≥ EθN0 −
∆

δ
EθN0 −

1− δ
δ
Pθ(sT = x1)− Pθ(sT = x0)− ∆

δ
Pθ(sT = x0)

= (1−∆/δ)EθN0 − (1− δ)/δ +
1−∆

δ
Pθ(sT = x0)

≥ (1−∆/δ)EθN0 − (1− δ)/δ, (D.11)

where the first inequality holds due to (D.9), the second inequality holds due to the fact that 〈a,θ〉 ≤ ∆, the
last inequality holds since Pθ(sT = x0) > 0. (D.11) suggests that

EθN0 ≤
T + (1− δ)/δ

2−∆/δ
≤ 4

5
T,

where the last inequality holds due to the fact that 2∆ ≤ δ and (1− δ)/δ < T/5.
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D.8 Proof of Lemma C.4

We need the following lemma:

Lemma D.1 (Lemma 20 in Jaksch et al. (2010)). Suppose 0 ≤ δ′ ≤ 1/2 and ε′ ≤ 1− 2δ′, then

δ′ log
δ′

δ′ + ε′
+ (1− δ′) log

(1− δ′)
1− δ′ − ε′

≤ 2(ε′)2

δ′
.

Proof of Lemma C.4. Let st denote {s1, . . . , st}. By the Markovnian property of MDP, we can first decompose
the KL divergence as follows:

KL(Pθ′‖Pθ) =
T−1∑
t=1

KL
[
Pθ′(st+1|st)

∥∥∥Pθ(st+1|st)
]
,

where the KL divergence between Pθ′(st+1|st),Pθ(st+1|st) is defined as follows:

KL
[
Pθ′(st+1|st)

∥∥∥Pθ(st+1|st)
]

=
∑

st+1∈St+1

Pθ′(st+1) log
Pθ′(st+1|st)
Pθ(st+1|st)

.

Now we further bound the above terms as follows:∑
st+1∈St+1

Pθ′(st+1) log
Pθ′(st+1|st)
Pθ(st+1|st)

=
∑

st∈St

Pθ′(st)
∑
x∈S
Pθ′(st+1 = x|st) log

Pθ′(st+1 = x|st)
Pθ(st+1 = x|st)

=
∑

st−1∈St−1

Pθ′(st−1)
∑

x′∈S,a∈A
Pθ′(st = x′, at = a|st−1)

·
∑
x∈S
Pθ′(st+1 = x|st−1, st = x′, at = a) log

Pθ′(st+1 = x|st−1, st = x′, at = a)

Pθ(st+1 = x|st−1, st = x′, at = a)︸ ︷︷ ︸
I1

,

When x′ = x1, Pθ′(st+1 = x|st−1, st = x′, at = a) = Pθ(st+1 = x|st−1, st = x′, at = a) for all θ′,θ since the
transition probability at x1 is irrelevant to θ due to the MDP we choose. That implies when x′ = x1, I1 = 0.
Therefore, ∑

st+1∈St+1

Pθ′(st+1) log
Pθ′(st+1|st)
Pθ(st+1|st)

=
∑

st−1∈St−1

Pθ′(s
t−1)

∑
a

Pθ′(st = x0, at = a|st−1)

·
∑
x∈S
Pθ′(st+1 = x|st−1, st = x0, at = a) log

Pθ′(st+1 = s|st−1, st = x0, at = a)

Pθ(st+1 = s|st−1, st = x0, at = a)

=
∑
a

Pθ′(st = x0, at = a)

·
∑
x∈S
Pθ′(st+1 = s|st = x0, at = a) log

Pθ′(st+1 = x|st = x0, at = a)

Pθ(st+1 = x|st = x0, at = a)︸ ︷︷ ︸
I2

. (D.12)

To bound I2, due to the structure of the MDP, we know that st+1 follows the Bernoulli distribution over x0 and
x1 with probability 1− δ − 〈a,θ′〉 and δ + 〈a,θ′〉, then we have

I2 = (1− 〈θ′,a〉 − δ) log
1− 〈θ′,a〉 − δ
1− 〈θ,a〉 − δ

+ (〈θ′,a〉+ δ) log
〈θ′,a〉+ δ

〈θ,a〉+ δ
≤ 2〈θ′ − θ,a〉2

〈θ′,a〉+ δ
, (D.13)
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where the inequality holds due to Lemma D.1 with δ′ = 〈θ′,a〉+ δ and ε′ = 〈θ − θ′,a〉. It can be verified that

δ′ = 〈θ′,a〉+ δ ≤ ∆ + δ ≤ 1/2, (D.14)

where the first inequality holds due to the definition of θ′, the second inequality holds since ∆ < δ/2 ≤ 1/6. It
can also be verified that

ε′ = 〈θ − θ′,a〉 ≤ 2∆ ≤ 1− 2(∆ + δ) ≤ 1− 2δ′, (D.15)

where the first inequality holds due to the definition of θ′,θ, the second inequality holds since ∆ < δ/4 ≤ 1/12,
the last inequality holds since δ′ = 〈θ′,a〉+ δ ≤ ∆ + δ due to the definition of θ′. (D.14) and (D.15) suggest that
we can apply Lemma D.1 onto (D.13). I2 can be further bounded as follows:

I2 ≤
4〈θ′ − θ,a〉2

δ
=

16∆2

(d− 1)2δ
, (D.16)

where the inequality holds due to (D.13) and the fact that δ + 〈θ′,a〉 ≥ δ − ∆ ≥ δ/2. Substituting (D.16)
into (D.12), taking summation from t = 1 to T − 1, we have

KL(Pθ′‖Pθ) =
T−1∑
t=1

∑
st+1∈St+1

Pθ′(st+1) log
Pθ′(st+1|st)
Pθ(st+1|st)

≤ 16∆2

(d− 1)2δ

T−1∑
t=1

∑
a

Pθ′(st = x0, at = a)

=
16∆2

(d− 1)2δ

T−1∑
t=1

Pθ′(st = x0)

≤ 16∆2

(d− 1)2δ
Eθ′N0,

where the last inequality holds due to the definition of N0.

E Experiments

In this section, we conduct experiments to empirically study the performance of the proposed algorithm.

Figure 3: Regret comparison of different algorithms. UCRL2-VTR performs better than the tabular Q-learning
by utilizing the given linear structure.

The MDP is constructed as described in Section C.1. We choose d = 8, and thus |S| = 2 and |A| = 2d−1 = 128.

We compare the following algorithms:
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1. Randomly choose an action (Random action).

2. Q-learning with an ε-greedy, uniformly random exploration (ε-greedy QL).

3. Q-learning with a confidence bonus (Optimistic QL by Wei et al. (2020b)).

4. An Exploration Enhanced Q-learning algorithm (EE-QL by Jafarnia-Jahromi et al. (2020)).

5. A Thompson sampling-based algorithm (TSDE by Ouyang et al. (2017)).

6. A tabular model-based algorithm (UCRL by Jaksch et al. (2010)).

7. A tabular model-based algorithm that relies on the span of the MDP rather than the diameter (SCAL by
Fruit et al. (2018b)).

8. Our algorithm with the Hoeffding bonus (Ours).

In our experiments, the parameters of each algorithm are tuned properly. For each algorithm, the experiment is
replicated for 10 times and the averaged regret is plotted in Figure 3 for comparison. We can see that model-
based algorithms (UCRL, SCAL, Ours) are generally better than the model-free ones (Q-learning algorithms and
TSDE). Our proposed algorithm outperforms other model-based algorithms due to utilizing the linear structure
of the underlying MDP.


