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Abstract
In an out-of-distribution (OOD) detection problem, samples
of known classes (also called in-distribution classes) are used
to train a special classifier. In testing, the classifier can (1)
classify the test samples of known classes to their respective
classes and also (2) detect samples that do not belong to any
of the known classes (i.e., they belong to some unknown or
OOD classes). This paper studies the problem of zero-shot
out-of-distribution (OOD) detection, which still performs the
same two tasks in testing but has no training except using
the given known class names. This paper proposes a novel
and yet simple method (called ZOC) to solve the problem.
ZOC builds on top of the recent advances in zero-shot clas-
sification through multi-modal representation learning. It first
extends the pre-trained language-vision model CLIP by train-
ing a text-based image description generator on top of CLIP.
In testing, it uses the extended model to generate candidate
unknown class names for each test sample and computes a
confidence score based on both the known class names and
candidate unknown class names for zero-shot OOD detec-
tion. Experimental results on 5 benchmark datasets for OOD
detection demonstrate that ZOC outperforms the baselines by
a large margin.

Introduction
The primary assumption in conventional supervised learn-
ing is that the samples encountered at the test time are from
the same classes (called known or seen classes) that the
model has observed and learned during training. However,
this assumption, called the closed-world assumption (Fei
and Liu 2016), is often violated when a machine learning
model is deployed in the real world; i.e., in addition to
the seen classes, samples from unseen classes may appear
at test. The seen class samples are referred to as the in-
distribution samples while unseen class samples are called
out-of-distribution (OOD) samples. It is crucial for an intel-
ligent ML model to detect OOD samples specially in safety-
critical applications such as autonomous driving or health-
care since detecting OOD samples as in-distribution ones in
such applications can have catastrophic consequences.

There are different directions in the literature tackling the
OOD detection problem. The earlier methods are mainly
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based on SVMs (Scheirer et al. 2012; Scheirer, Jain, and
Boult 2014; Fei and Liu 2016). Recent methods are mainly
based on deep learning (Shu, Xu, and Liu 2017, 2018; Xu
et al. 2019; Shu et al. 2021; Liang, Li, and Srikant 2017; Per-
era et al. 2020; Miller et al. 2021) and try to solve the prob-
lem from different perspectives. Some discriminative mod-
els perform the detection by calibrating the confidence of
the closed-world classifier built using seen or in-distribution
classes (Bendale and Boult 2016). Liang, Li, and Srikant
(2017) proposed to use temperature scaling on the softmax
score and perform post-processing on the test data to detect
the OOD data. Lee et al. (2017) proposed a special training
method for building closed-world classifiers that can also
detect OOD samples at inference (Lee et al. 2017). Some
generative models synthesize samples to represent possible
unseen classes (Neal et al. 2018). These samples are then
used to learn a K + 1 classifier where the space of unseen
is assumed to be enclosed in the extra class. Other genera-
tive methods also exist (Andrews, Morton, and Griffin 2016;
Chen et al. 2017), which detect OOD samples based on the
reconstruction error of the trained generative model for un-
seen samples. Perera et al. (2020) is a recent hybrid model
based on generative-discriminative features.

Regardless of the approaches, the results on OOD detec-
tion benchmarks indicate that the OOD detection perfor-
mance is directly affected by the accuracy of the closed-
world classifier. Particularly, when the closed-world classi-
fier does not use pre-trained models, it is essential to train
an accurate classifier from scratch for a descent OOD detec-
tion performance. None of the aforementioned techniques
use pre-trained models as the backbone of their closed-world
classifiers. In fact, most of them essentially try to bound the
hidden space representing the in-distribution classes. Then,
the outer space can be considered as the OOD space.

This paper defines the zero-shot OOD detection problem
to take advantage of pre-trained models. Given a set of seen
class labels/names, Ys, the goal of zero-shot OOD detection
is to 1) classify each seen class test sample to one of the seen
classes and 2) detect samples that do not belong to any of the
seen classes. These are done based on only the names of the
seen classes in Ys. There is no given training data of the seen
classes and thus no closed-world classifier is built.

CLIP (Radford et al. 2021) is a recently proposed pre-
trained language-vision model from OpenAI for zero-shot



(closed-world) image classification. It is trained by directly
using the raw text for learning visual representations. CLIP
is a multi-modal (image and text) transformer model which
is trained by contrastive learning on a large set of 400 mil-
lion image and caption pairs collected from the Internet. The
rich feature space shared by both image and text data enables
zero-shot transfer to a range of down-stream tasks including
image classification. CLIP model has an image encoder and
a text encoder. Its zero-shot classification is done by match-
ing the features from the image encoder to a set of text fea-
tures from the text encoder. The text with the highest simi-
larity score to the image is its predicted label.

Although using CLIP eliminates the need for training a
closed-world classifier, it does not possess the OOD detec-
tion functionality in its original form. That is, it will match
any given image to one of the given seen class labels. There-
fore, to function in an OOD setting, we need to present an-
other set of candidate labels in addition to the seen class
labels/names. The proposed method, called ZOC (Zero-shot
OOD detection based on CLIP), does not need this set of
candidate labels to represent possible OOD labels as ZOC
can dynamically generate candidate OOD labels for infer-
ence. ZOC works based on comparing the similarity of the
semantic meaning of the given image to seen labels vs its
similarity to some generated candidate labels. For this to
work, we need a text generator to generate candidate labels,
which does not exist in CLIP. To the best of our knowl-
edge, existing OOD detection baselines either 1) need to
train a closed-world classifier on seen classes using their la-
beled training data or 2) have prior knowledge about unseen
classes for detection. ZOC requires neither of the two and
therefore it is the first work performing zero-shot OOD de-
tection. In this work, we propose to:

• Extend the CLIP model by training a textual description
generator on top of CLIP’s image encoder.

• Use the output of this generator as unseen candidate la-
bels for a given test image.

• Define an OOD confidence score based on the similarity
of the input test image to the union of the seen labels and
the generated labels.

Our experimental results show that this simple method out-
performs many state-of-the-art fully supervised OOD detec-
tion baselines trained using benchmark datasets. In addition
to the supervised baselines, ZOC also outperforms the base-
lines that use the same pre-trained backbone model as ZOC.

Related Work
General Out-of-Distribution Detection
The terms Out-Of-Distribution (OOD) detection, Open Set
Detection and Open World Classification are interchange-
ably used in the literature. In most papers about open set de-
tection or open world classification, seen and unseen classes
in evaluation are often two splits of the same dataset (Fei
and Liu 2016; Shu, Xu, and Liu 2017; Bendale and Boult
2016; Oza and Patel 2019; Perera et al. 2020; Miller et al.
2021; Pernici et al. 2018; Xu et al. 2019). For OOD detec-
tion, all seen classes (e.g., images of hand-written digits)

are regarded as a single or multiple in-distribution classes,
while the OOD data to be detected are from a different
dataset (e.g., images of animals) (Hendrycks and Gimpel
2016; Liang, Li, and Srikant 2017; Lee et al. 2018). That
is, the OOD classes are often visually completely dissimilar
to in-distribution classes. However, there is no fundamental
difference between OOD detection and open set detection
or open world classification. This paper refers all of them as
OOD detection.

We note that some OOD detection techniques are based
on the idea of outlier exposure. These methods either assume
the direct access to a small subset of the actual test OOD data
at training (Liang, Li, and Srikant 2017) or rely on a large
set of data points used as outliers at training (Hendrycks,
Mazeika, and Dietterich 2018). However, most OOD detec-
tion methods, including ours, do not see any samples from
unseen OOD classes before deployment. Recently, some au-
thors made a distinction between hard and easy OOD detec-
tion problems (Winkens et al. 2020). That is, detecting OOD
CIFAR100 from in-distribution CIFAR10 is considered as a
near-OOD (hard) problem as the two datasets contain visu-
ally similar categories. Likewise, detecting OOD CIFAR10
from in-distribution SVHN (photographed digits) is consid-
ered as a far-OOD (easy) problem because their categories
are visually and semantically very different. Despite this dis-
tinction, using a validation set from the OOD data to tune
the model parameters, is a common practice in many OOD
detection approaches. In this paper, we solve the near-OOD
(or hard) problem in the zero-shot setting without using any
validation OOD data.

Transformer Model for OOD Detection

The success of pre-trained transformer models (Vaswani
et al. 2017; Devlin et al. 2018) in the natural language
domain has motivated researchers to analyze their perfor-
mance for out-of-distribution or out-of-scope detection in
real world applications. Hendrycks et al. (2020) studies the
OOD generalization and OOD detection performance of
BERT for a range of NLP tasks. Their evaluation acknowl-
edges that a pre-trained transformer improves OOD detec-
tion upon conventional models which are merely as good as
a random detector for OOD detection.

The vision transformer model (ViT) (Dosovitskiy et al.
2020) works in a similar way to a language transformer,
i.e., it divides an image to consecutive patches and then
uses a regular transformer encoder to process these flat-
tened patches as a sequence. ViT achieves on par or bet-
ter performance than CNN-based methods like ResNets. A
recent study (Fort, Ren, and Lakshminarayanan 2021) ana-
lyzed the reliability of OOD detection in ViT models. The
authors show that ViT pre-trained models fine-tuned on an
in-distribution dataset significantly improve near OOD de-
tection tasks. In addition, this work is the most related work
to ours in the sense that it performs zero-shot OOD detection
through CLIP. However, Fort, Ren, and Lakshminarayanan
(2021) assumed that a set of unseen labels are given as some
weak information about OOD data which is not practical in
real world scenarios.



Method
We propose to solve the zero-shot OOD detection prob-
lem by extending zero-shot CLIP (Radford et al. 2021),
which is a closed-world zero-shot classification method, to
work in the OOD setting. As mentioned in the introduc-
tion, the zero-shot CLIP model is not equipped with a spe-
cialized technique for OOD detection. Although for any
given closed-world classifier, maximum softmax probabil-
ity (MSP) (Hendrycks and Gimpel 2016) is commonly used
as a baseline score for OOD detection, we show in our ex-
periments that our proposed method ZOC can significantly
improve the detection performance. ZOC detects an OOD
test sample by comparing the encoded image sample to two
sets of encoded label names. The first set is the set of seen la-
bels, and the second set is the set of unseen labels which are
unknown. ZOC trains a text description generator to obtain
the second set. In the following, we briefly explain CLIP’s
matching algorithm for closed-world zero-shot classification
and discuss its shortcomings for OOD detection.

For zero-shot closed-world classification in CLIP, we are
only given a set of textual words as class labels Ys =
{y1, y2, ..., yn}. For a test image, the multi-modal CLIP cal-
culates the cosine similarity of the encoded image to each
encoded textual description in the form of “{This is a photo
of a < yi >},” e.g., “This is a photo of a dog,” “This is a
photo of a cat,” etc. Taking the softmax over all the n simi-
larity scores gives a categorical probability distribution that
determines the label for the image. It is easily seen that any
given image can be matched to one of the given (possibly
irrelevant) labels based on the maximum softmax score. As
we can see, this method does not deal with zero-shot OOD
detection. To do so, we propose to present CLIP with an-
other set of possible labels Yu for each test image sample
for zero-shot matching. For this, we need a text-based im-
age description generator. We train such a generator and use
it to extract Yu from a given test image. The next question is
how the second set Yu can assist in detecting an OOD sam-
ple. We will show later how the seen (known) labels together
with the dynamic set Yu can be used to define a confidence
score per test image.

Since CLIP does not have a text generator that can gener-
ate Yu for a given image, we propose to train one on top
of CLIP’s image encoder using a large image captioning
dataset. We explain the training of the generator next. We
also call the text generator the image description generator.

Training the Image Description Generator
Since our image description generator uses the output fea-
tures from the CLIP image encoder for training, we briefly
describe the CLIP image encoder here. CLIP uses ResNet-
50 (He et al. 2016) and the recently proposed vision trans-
former (ViT) (Dosovitskiy et al. 2020) as its image encoder
backbone. We found that the ViT backbone is more com-
patible with the task of sequence generation from a given
image since it processes the image as a sequence of tokens
similar to the transformer model (Vaswani et al. 2017). The
ViT encoder in CLIP is a hybrid ViT architecture which uses
a convolutional layer in the beginning to extract image fea-

tures. Then, N feature maps are used as N embedding vec-
tors to represent the image as a sequence of embeddings. A
classification embedding vector is concatenated to the image
embeddings similar to the CLS token in BERT model (De-
vlin et al. 2018). Then, positional embeddings are added and
the output is passed to a transformer encoder (Vaswani et al.
2017) with L1 layers. The hidden state zout in the output
is treated as the semantic representation of the whole im-
age. We train the text generator on a large image captioning
data which is a set of image and caption pairs. Text genera-
tor, which is a decoder, attends to the encoder output feature
zout in every layer of the decoder (see below). Please refer
to Figure 1 for architecture details. Text decoder consists of
L2 stacked transformer layers. In each layer, the multi-head
cross-attention sub-layer takes zout as key and value for the
scaled dot product attention mechanism. The output from
the final layer of the decoder is projected through a linear
layer to the vocabulary space of the decoder. Assuming the
text decoder is parameterized with θ, the objective that we
optimize is the cross-entropy loss at each position t in the
sequence, conditioned on all previous positions:

LCE(θ) = −
T∑
t=1

log(pθ(y
∗
t |y∗1:t−1; zout)) (1)

This objective is optimized by forcing the predictions to
stay close to the ground-truth sentence, which is the basic
teacher forcing algorithm (Williams and Zipser 1989), i.e.,
the model simply conditions its next word prediction on pre-
vious ground-truth words (not previous predicted words). As
we will explain in the next section, the output description
from the decoder will eventually be processed to be used at
the second step of inference. Therefore, a generated descrip-
tion with relevant words to the image is sufficient for our
purpose. We refer to the decoder as Decodertext in the rest
of the paper. Decodertext outputs a textual description for a
given image based on the hidden state of the CLIP image
encoder which we refer to as CLIPimage. In this regard, the
image to sequence architecture is a full transformer model
which has CLIPimage on the encoder side and Decodertext on
the decoder side (see Figure 1).

Inference in Testing
Decodertext is the central component for inference (testing)
in our ZOC. The inference is performed in lines 4-18 in Al-
gorithm 1 which is composed of two steps. In the first step,
Decodertext generates the image description for the given test
image by attending to the image semantic representation in
the output of CLIPimage. The generation follows the standard
procedure of sequence to sequence models (predicting the
next word based on the output of the model for the previous
words until the maximum length is reached). ZOC needs to
retrieve candidate unseen labels Yu from the generated de-
scription.1 Since Yu is eventually used to define the confi-
dence score for OOD detection, we would like the retrieved

1The generated description may contain stopwords, function
words, etc. Since these words are present in every description, ex-
cluding/including them in Yu does not affect the AUROC score
which is calculated based on the ranking of confidence scores.



Figure 1: The diagram illustrates the inference steps of ZOC for a sample from an unseen class ‘boat’. The available seen class
labels (shown in green) are Ys={‘airplane’, ‘automobile’, ‘bird’, ‘cat’, ‘deer’, ‘dog’}. In the first step, the image is encoded
through CLIPimage and then image description is generated in the output of Decodertext. The description is in fact a set of
candidate unseen labels Yu (shown in orange). In the second step, Ys ∪ Yu are encoded through CLIPtext on the right. The
purple ellipsoid shows CLIP’s feature space where the relevant labels are aligned with the image. CLIP quantifies the alignment
by calculating the cosine similarity of each encoded label to the encoded image. Then S(x) is obtained according to 2. The
score is high for this image as it is more similar to the set of Yu than Ys. The inference relies on CLIP pre-trained encoders as
well as Yu generated by Decodertext.

words to be diverse and relevant to the input image. i.e, di-
versity results in a more reliable confidence score for detec-
tion. However, canonical inference methods such as greedy
generation, beam search, nucleus sampling (Holtzman et al.
2019) or top-k sampling (Fan, Lewis, and Dauphin 2018)
targets to generate the best description rather than diverse
descriptions. Since we need a holistic description of the im-
age in general, the best description does not suit our purpose
as it is not diverse enough. Thus, we do not limit the set of
candidate labels Yu to be the same as the best generated de-
scription. Instead, we form Yu with some post-processing as
follows: assuming the maximum generation length is T , at
each position pi of {p1, p2, ..., pT }, we pick the top k words
from the vocabulary with highest probabilities. The union
of all these words is Yu (line 8 in Algorithm 1). We fix k
for all of our experiments. Then, we form the union of seen
labels Ys and candidate unseen labels Yu (line 9).

The second step follows the CLIP zero-shot classifica-
tion technique based on zero-shot labels Ys ∪ Yu. Each
yi ∈ Ys ∪ Yu is put in the template (i.e., “This is a photo
of a < yi >) required by CLIP. The text and the image
are encoded through CLIPtext and CLIPimage and the cosine
similarity of the encoded image and encoded label (in tem-

plate) is calculated (lines 11-15). The softmax of all calcu-
lated similarities gives a probability distribution overYs∪Yu
(line 16). We define the OOD confidence score (line 17) as
follows:

S(x) = 1−
∑
y∈Ys

P (y|x) (2)

where P (y|x) is the softmax probability for label y. Thus,
S(x) is the accumulative probability of labels Yu. Even
though ZOC inference is done in two steps, the implemen-
tation and usage of our technique is straightforward as the
second step is done by querying the CLIP encoders.

Figure 1 is a graphical illustration of the inference pro-
cedure of ZOC. The used example describes how ZOC de-
tects a sample as OOD. The input image is from class ‘boat’
which is not among the seen labels and therefore it is an un-
seen class or OOD sample. It is interesting to note that the
actual unseen label ‘boat’ is not among the set of candidate
unseen labels, and yet ZOC uses other candidate unseen la-
bels to come to the correct conclusion.



Algorithm 1: Zero-shot Open-Set Detection

Require: set of seen labels Ys, CLIPtext, CLIPimage,
Decodertext, COCO dataset, set of test images Dtest.

1: Training
2: initialize Decodertext model for sequence generation
3: fine-tune Decodertext on COCO captioning dataset
4: Inference
5: for xtest ∈ Dtest do
6: labels=Ys
7: description = Decodertext(xtest).
8: Yu = topk(description)
9: labels = Ys ∪ Yu

10: logits← ∅
11: for label ∈ labels do
12: desc = ‘This is a photo of a label.’
13: sim = cosine(CLIPimage(xtest), CLIPtext(desc))
14: logits =logits ∪ sim
15: end for
16: P = Softmax(logits)
17: S(xtest) = 1−

∑
y∈Ys

P (y|x)
18: end for

Experiments
Model Architecture and Training Details
Recall that ZOC consists of 3 modules. The two encoders
CLIPimage and CLIPtext are pre-trained transformer models
for image and text (Radford et al. 2021), respectively. We
do not change or fine-tune the encoders. CLIPtext is a base
transformer model with 12 stacked layers and hidden size of
768. The final linear projection layer outputs a representa-
tion of size 512. CLIPimage is a hybrid ViT-base model us-
ing a convolutional layer in the beginning for feature ex-
traction. The images are center-cropped and resized to size
224*224. A total of 7*7=49 embedding vectors with hidden
size of 768 are generated from a given image. The trans-
former encoder in ViT also has 12 stacked layers. The out-
put hidden state is projected from 768 to 512 dimensions to
have the same size as CLIPtext. For the proposed Decodertext,
we choose the BERT large model from huggingface (Wolf
et al. 2020) with 24 layers and hidden size of 1024. We train
Decodertext using Adam optimizer (Kingma and Ba 2017)
with a constant learning rate of 10−5 for 25 epochs. Batch
size is 128. The training data for fine-tuning is the training
split of MS-COCO (2017 release) (Lin et al. 2014)2 which
is a commonly used dataset for image captioning. We used
MS-COCO validation dataset to choose the k value. We em-
pirically found that the meaningful candidate unseen labels
are present at top 35 level of the annotations. We used the
basic teacher forcing method to train Decodertext as it is suf-
ficient for our purpose. There are other principled sampling
approaches such as scheduled sampling (Bengio et al. 2015),
professor forcing (Lamb et al. 2016), and self-critical train-
ing (Rennie et al. 2017) for training a sequence generation
model. These approaches try to alleviate the exposure bias
in testing, which is not our concern.

2https://cocodataset.org

Datasets
We evaluate the performance of our proposed method ZOC
on splits of CIFAR10, CIFAR100, CIFAR+10, CIFAR+50,
and TinyImagenet. The difficulty level of an OOD detection
task is commonly measured by the openness metric defined
in (Scheirer et al. 2012). A task is harder when more unseen
classes are presented to the model at the test time. Openness
is defined as follows

Openness = (1−

√
2 ∗Ntrain

Ntest +Ntarget
) ∗ 100 (3)

where Ntrain is the number of seen classes, Ntarget is
the number of seen classes at testing and Ntest is the to-
tal number of seen and unseen classes at test. For CI-
FAR10 (Krizhevsky, Hinton et al. 2009)3 6 classes are
used as in-distribution (or seen) classes. The 4 remaining
classes are used as OOD (unseen) classes. The reported
score is averaged over 5 splits (Openness = 13.39%). For
CIFAR+10 (Krizhevsky, Hinton et al. 2009)4 4 non-animal
classes of CIFAR10 are used as in-distribution (or seen)
classes. 10 animal classes are chosen from CIFAR100 as the
OOD (unseen) classes. The reported score is averaged over
5 splits (Openness = 33.33). For CIFAR+50 (Krizhevsky,
Hinton et al. 2009)5 4 non-animal classes from CIFAR10
are in-distribution (or seen). All 50 animal classes from CI-
FAR100 are used as the OOD classes (Openness = 62.86%).
For TinyImagenet. (Le and Yang 2015)6 20 classes are used
as the in-distribution (or seen) classes. The remaining 180
classes are used as OOD (unseen) classes. The reported
score is averaged over 5 splits (Openness = 57.35%). For
CIFAR100 (Krizhevsky, Hinton et al. 2009) 7 20 classes are
used as in-distribution (or seen). The 80 remaining classes
are used as OOD classes. The reported score is averaged
over 5 splits. In each split, 20 consecutive classes are used
as seen and the rest of classes used as unseen (Openness =
42.26%).

The class splits that we have used are publicly available
in the github repository of (Miller et al. 2021) 8 for all
datasets except for CIFAR100. We generated the splits for
CIFAR100 as explained above.

Baselines
We compare our method with 11 OOD detection baselines.
Each baseline either requires to train a closed-world clas-
sifier or works based on a pre-trained model as its back-
bone. In both cases, labeled training data is required. We are
not aware of any existing zero-shot OOD detection model
except (Fort, Ren, and Lakshminarayanan 2021) which re-
quires unseen class labels to be given for detection (the pa-
per’s main focus is not zero-shot OOD detection). Therefore,
it is unsuitable for our OOD detection setting, and thus is not
included as a baseline.

3https://www.cs.toronto.edu/ kriz/cifar.html
4https://www.cs.toronto.edu/ kriz/cifar.html
5https://www.cs.toronto.edu/ kriz/cifar.html
6http://cs231n.stanford.edu/tiny-imagenet-200.zip
7https://www.cs.toronto.edu/ kriz/cifar.html
8https://github.com/dimitymiller/cac-openset



CIFAR10 CIFAR100 CIFAR+10 CIFAR+50 TinyImageNet Average

Original baselines→
OpenMax (Bendale and Boult 2016) 69.5±4.4 NR 81.7±NR 79.6±NR 57.6±NR 75.6
DOC (Shu, Xu, and Liu 2017) 66.5±6.0 50.1±0.6 46.1±1.7 53.6±0.0 50.2±0.5 58.2
G-OpenMax (Ge et al. 2017) 67.5±4.4 NR 82.7±NR 81.9 ±NR 58.0 ±NR 75.9
OSRCI (Neal et al. 2018) 69.9±3.8 NR 83.8±NR 82.7±0.0 58.6±NR 77.2
C2AE (Oza and Patel 2019) 71.1±0.8 NR 81.0±0.5 80.3±0.0 58.1±1.9 75.9
GFROR (Perera et al. 2020) 80.7±3.0 NR 92.8±0.2 92.6±0.0 60.8±1.7 84.0
CSI (Tack et al. 2020) 87.0±4.0 80.4±1.0 94.0±1.5 97.0±0.0 76.9±1.2 87.0
CAC (Miller et al. 2021) 80.1±3.0 76.1±0.7 87.7±1.2 87.0±0.0 76.0±1.5 84.9
Three baselines with CLIP backbone/initialization→
CLIP+CAC (Miller et al. 2021) 89.3±2.0 83.5±1.2 96.5±0.5 95.8±0.0 84.6±1.7 89.9
CLIP+G-ODIN (Hsu et al. 2020) 63.4±3.5 79.9±2.3 45.8±1.9 92.4±0.0 67.0±7.1 69.8
CLIP+MSP (Hendrycks and Gimpel 2016) 88.0±3.3 78.1±3.1 94.9±0.8 95.0±0.0 80.4±2.5 87.3
ZOC (ours) 93.0±1.7 82.1±2.1 97.8±0.6 97.6±0.0 84.6±1.0 91.0

Table 1: OOD detection performance in AUROC. The first 8 rows give the results of the original versions of the supervised
baselines which train a separate classifier for each set of in-distribution classes. We have also combined CLIP with three systems,
denoted by CLIP+X. We initialized the weights of CAC and G-ODIN and then fine-tuned their closed-world classifiers. For
MSP, we simply used the pre-trained CLIP encoder to generate softmax scores. Each result in the table is the average of 5 splits
of each dataset (± standard deviation).

DOC (Shu, Xu, and Liu 2017) is an early method orig-
inally proposed for OOD detection (or recognition) of text
data. It uses one-vs-rest sigmoid function in the output layer.
It compares the maximum score over sigmoid outputs to a
predefined threshold to reject or accept a test sample.

OpenMax (Bendale and Boult 2016) is an early technique
for OOD image recognition. It does calibration on the penul-
timate layer of the network to bound the open space risk.

G-OpenMax and OSRCI (Ge et al. 2017; Neal et al. 2018)
are both generative models that use a set of generated sam-
ples to learn an extra class. So, the model is a K + 1 class
classifier of seen and pseudo-unseen.

C2AE (Oza and Patel 2019) is a class-conditioned genera-
tive method that uses the reconstruction error of test samples
as the detection score.

CAC (Miller et al. 2021) is a latest method that uses an-
chored class centers in the logit space to encourage forming
of dense clusters around each known/seen class. Detection is
done based on the distance of the test sample to the anchored
seen class centers in the logit space.

GFROR (Perera et al. 2020) combines the advantage
of generative models with the recent advances in self-
supervision learning methods.

G-ODIN (Hsu et al. 2020) is a recent method that uses a
decomposed confidence score on top of its feature extractor
for OOD detection. The hyperparameters of the algorithm
are tuned only on closed-world classes.

CSI (Tack et al. 2020) combines contrastive learning, self-
supervised learning, and various data augmentation tech-
niques to train its model. It is a latest strong baseline.

MSP (Hendrycks and Gimpel 2016) uses maximum soft-
max probability as the natural OOD detection score which
can be used on top of any closed-world classifier. Ideally,
MSP is high on in-distribution (or closed-world) classes and
low for OOD classes.

The results for OpenMax, G-OpenMax, C2AE and CAC
are taken from (Miller et al. 2021). We adapted DOC’s code
for images to generate its results. We ran the official code of

CAC for CIFAR100. All these baselines use a CNN encoder
architecture introduced in (Neal et al. 2018). We ran CSI’s
official code to produce its results.

We also tried to combine CLIP and some baselines. Since
the code of G-ODIN is not released, we implemented it fol-
lowing its algorithm and hyper-parameters. For fair compar-
ison with ZOC, we used the image encoder of CLIP as G-
ODIN’s backbone (denoted by CLIP+G-ODIN). We further
created a version of CAC using CLIP to initialize its weights
and then fine-tuned its classifier (denoted by CLIP+CAC).
CAC was chosen as it is compatible with CLIP and is on
average the second best performing baseline after CSI. For
MSP, which can be used on top of any trained classifier, we
used CLIP zero-shot classification pipeline to generate the
results. For CSI, since it learns a specific feature extractor
based on 0, 90, 180, 270 degree rotations of every sample, it
is incompatible with the pre-trained model CLIP.

Results and Discussion
The experimental results9 are summarized in Table 1. We
use AUROC (Area Under the ROC curve) as the evaluation
measure as it is the most commonly used measure for OOD
detection. ZOC outperforms all baselines by a large margin.
A significant difference between ZOC and the baselines is
that ZOC inference is based on dynamically generated can-
didate unseen labels for each sample, which gives ZOC a
better detection capability.

Since ZOC uses CLIP’s pre-trained encoder for inference,
one might attribute the performance gain to the rich feature
space of CLIP. To investigate the gain, we set up an experi-
ment with MSP (Hendrycks and Gimpel 2016) for CLIP. As
mentioned earlier, MSP uses the maximum softmax score
of zero-shot CLIP as the OOD confidence score. This ex-
perimental setup assesses CLIP’s inherent ability for OOD
detection compared to ZOC’s inference technique. ZOC’s
consistent performance gain over MSP on all datasets (Table

9https://github.com/sesmae/ZOC.git



Figure 2: A summary of the generated labels for a seen
class ‘espresso’ and an unseen class ‘guacamole’ from the
TinyImagenet dataset are shown. The generated labels are
ranked based on their contribution to S(x). The labels with
(P (y|x) > 0.1) are in boldface. For class ‘espresso’, we
expect the model to output a relatively low S(x) as the ac-
tual label is present among seen labels (first two images).
The third image is an error case. The set of generated labels
and the label ‘coffee’ produce a high S(x). For the unseen
class ‘guacamole’, S(x) is high for the first two images as
expected since ZOC correctly associates the generated la-
bels with the images. The third image is again an error case
when a seen label ‘frying pan’ contributes to S(x) more than
the generated unseen labels.

1) confirms that the proposed confidence score based on dy-
namic generation of unseen labels is better than MSP which
uses identical inference procedure for all samples.

Note that we do not have an ablation study on ZOC as no
part of the algorithm can be dropped for it to function.

Case study and error analysis. Figure 2 is a case study il-
lustrating the actual seen and candidate unseen labels (gen-
erated for each sample) used in calculating the confidence
score S(x). We picked one seen and one unseen class for
comparison. Note that the actual label for a given image
might/might not be among the generated labels. Particularly,
this can happen when the unseen label is fine-grained and
not present in the training corpus of MS-COCO. As a result,
for an image with label ‘espresso’, the decoder generates rel-
evant words such as ‘coffee’ rather than the label ‘espresso’
itself. Nevertheless, ZOC comes to the correct conclusion
based on accumulative confidence score S(x). Figure 3 il-
lustrates the statistics of the calculated confidence score for
4 unseen and 2 seen classes from tinyimagenet. We plan to
use a larger corpus to train the image description generator
in the future. In addition, since ZOC compares standalone

Figure 3: 20 seen labels form tinyimagenet are listed at the
top. 4 classes ‘skirt’, ‘teddy’, ‘tractor’ and ‘koala’ are a sub-
set of unseen classes. Each subplot shows the histogram of
the confidence score S(x). For instance, in the histogram
for unseen class ‘skirt’, we can clearly see that more than
40 samples have confidence scores between 0.8 and 1 which
is desirable for good detection performance. S(x) tends to
have a higher variance for the other 3 unseen class plots. It
is interesting to note that for the samples from class ‘tractor’,
the confidence score is relatively low because it is confused
with semantically similar seen labels ‘school bus’ and ‘go-
kart’. Similarly, low S(x) for ‘koala’ mostly happen when
the model associates the image with seen labels ‘orangutan’
and ‘German shepherd’. The confidence score for two seen
classes ‘school bus’ and ‘vestment’ is distributed in lower
ranges as expected.

candidate labels to the image, it does not account for rela-
tions between the unseen labels. Such relations might be an
important tool for detecting more sophisticated OOD sam-
ples. We will address this limitation in our future work.

Conclusion
In this paper, we introduced the new task of zero-shot OOD
detection based on the recent advances in zero-shot closed-
world classification using the pre-trained model CLIP (Rad-
ford et al. 2021). Since it is a zero-shot problem, 1) no con-
crete samples are given for training except the known or seen
class label names, and 2) samples from unseen OOD classes
may appear at the test time. To solve the problem, we ex-
tended the CLIP model so that it can dynamically generate
candidate unseen labels for each test image, and also defined
a novel confidence score calculated based on the similarity
of the test image to seen and generated candidate unseen la-
bels in the feature space. Experimental results confirmed that
the proposed system ZOC is superior to the traditional super-
vised models. In addition, it also outperforms the baselines
which use pre-trained CLIP backbone as their encoders.
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