Dynamic Scheduling of Approximate Telemetry Queries

Chris Misa
University of Oregon

Reza Rejaie
University of Oregon

Abstract

Network telemetry systems provide critical visibility into
the state of networks. While significant progress has been
made by leveraging programmable switch hardware to scale
these systems to high and time-varying traffic workloads, less
attention has been paid towards efficiently utilizing limited
hardware resources in the face of dynamics such as the com-
position of traffic as well as the number and types of queries
running at a given point in time. Both these dynamics have
implications on resource requirements and query accuracy.

In this paper, we argue that this dynamics problem moti-
vates reframing telemetry systems as resource schedulers—a
significant departure from state-of-the-art. More concretely,
rather than statically partition queries across hardware and
software platforms, telemetry systems ought to decide on their
own and at runtime when and for how long to execute the set
of active queries on the data plane. To this end, we propose
an efficient approximation and scheduling algorithm that ex-
poses accuracy and latency tradeoffs with respect to query
execution to reduce hardware resource usage. We evaluate our
algorithm by building DynATOS, a hardware prototype built
around a reconfigurable approach to ASIC programming. We
show that our approach is more robust than state-of-the-art
methods to traffic dynamics and can execute dynamic work-
loads comprised of multiple concurrent and sequential queries
of varied complexities on a single switch while meeting per-
query accuracy and latency goals.

1 Introduction

Network telemetry systems provide users (e.g., network oper-
ators, researchers) with critical insights into the state of the
network by collecting information about individual packets
and processing this information into high-level features in
near real-time. Typically, these features are the results of user-
defined queries, where a query is expressed as a sequence of
high-level operations such as filter and reduce [22, 33, 43].
Generated query results drive management decisions such
as deploying defensive measures in the face of an attack or

Walt O’ Connor
University of Oregon

Ramakrishnan Durairajan
University of Oregon

Walter Willinger
NIKSUN, Inc.

updating routing to avoid congestion. A key functionality
of telemetry systems is to determine how best to leverage
available resources (e.g., network hardware resources, such as
switch ASICs or NICs; software-programmable resources,
such as general-purpose CPUs) to execute a given set of
queries. Due to massive traffic volumes and often stringent
timing requirements, state-of-the-art telemetry systems typi-
cally make use of programmable network hardware (e.g., pro-
grammable switch ASICs [2,4,5]) and also apply approxima-
tion techniques (e.g., sketches [24,38,39]).

In executing user-defined queries, telemetry systems must
cope with two independent and challenging sources of dy-
namics. First, the resources required to execute any given
query depend on the underlying distributions (i.e., composi-
tion) of network traffic. For example, a DDoS-detection query
that counts the number of sources contacting each destina-
tion might require a counter for each destination active on
the network, but the number of active destinations may vary
over time [38]. The accuracy guarantees of state-of-the-art
approximation techniques like sketches [39] likewise depend
on traffic distributions so that if these distributions change,
accuracy can no longer be guaranteed. Second, the number
and type of concurrent queries submitted by a user can vary
over the system’s deployment. For example, an operator might
need to submit followup queries to pinpoint the root cause of
increased congestion. Both these sources of dynamics affect
data plane resource usage implying that telemetry systems
must dynamically adjust resource allocations.

Several recent efforts [38,43] have made progress towards
coping with both of these sources of dynamics individually
and in isolation, but do not address challenges arising from
their simultaneous presence in network telemetry systems.
For example, ElasticSketch [38] presents a method for dy-
namically coping with changes in traffic rate and distribution.
However, this effort relies on a fixed flow key which forces
users to reload the switch pipeline to change queries. On
the other hand, Newton [43] describes a technique to update
query operations during runtime which enables users to dy-
namically add and remove queries as their monitoring needs

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 701

change. However, Newton does not consider the problem of
adjusting resource allocations between concurrent queries as
traffic composition changes. To the best of our knowledge, no
recent work addresses these simultaneous sources of dynam-
ics in an efficient switch hardware based system.

In this work, we argue that, in order to simultaneously ad-
dress these sources of dynamics, telemetry systems should
be reframed as active resource schedulers for query oper-
ations. In particular, telemetry systems must manage finite
switch hardware processing resources while adapting to vary-
ing numbers and types of queries as well as varying traffic
composition. To support this argument, we make the follow-
ing key contributions.

Time-division approximation method. Viewing telemetry
systems as online schedulers enables a new approximation
technique based on time-division approximation. At a high-
level, this technique observes that query operations do not
need to run all the time. Instead, operations can execute during
strategically placed sub-windows of the overall time window
(e.g., an operation could execute for 3 of 8 equal-duration
sub-windows of a 5 s overall time window). This technique
is grounded in cluster sampling theory which allows us to
estimate error and future resource requirements.

Adaptive scheduling algorithm. We provide a closed loop
adaptive scheduling algorithm which leverages time-division
approximation to execute operations from many user-defined
queries on a single switch ASIC. Our scheduling algorithm
leverages multi-objective optimization to balance between
multiple high-level goals such as prioritizing accuracy, latency,
or reduced volume of reported data across queries.

Evaluation in a functional hardware prototype. To eval-
uate our proposed techniques, we implement DynATOS,' a
telemetry operation scheduling system which leverages pro-
grammable switch hardware to answer dynamically submitted
queries. Our current implementation of DynATOS assumes
a single runtime programmable switch hardware capable of
executing a restricted number of primitive operations as sup-
ported by a telemetry module found in a widely available
off-the-shelf switch ASIC. We evaluate DynATOS on our
hardware prototype and through simulation showing that (i)
time-division approximation is more robust than sketches to
changes in traffic dynamics while offering a similar accuracy,
overhead tradeoff space, (ii) our adaptive scheduler is able
to meet query accuracy and latency goals in the presence
of traffic and query dynamics, and (iii) the overheads in our
scheduling loop are minimal and dominated by the time re-
quired to report and process intermediate results from the
switch—an overhead which can be mitigated significantly by
leveraging fully programmable switch hardware.

' DynATOS stands for Dynamic Approximate Telemetry Operation Sched-
uler.

2 Background & Motivation

2.1 Dynamic Telemetry Use Cases

Example 2.1. Consider a scenario where a telemetry system
is executing the DDoS and port scanning detection tasks de-
scribed in Sonata [22]°. The first stage of these tasks finds a
set of distinct elements in each time window or epoch (e.g.,
IPv4 source, destination pairs every epoch for DDoS). Sup-
pose traffic follows a stable pattern for several epochs with
only small changes in the number of distinct elements con-
sidered by both tasks and that the telemetry system adjusts
resource allocations for these two queries to achieve good
accuracy. Now, suppose at some later epoch traffic changes
so that a much larger number of sources are seen (either due
to a natural event like a flash crowd or due to an actual DDoS
attack). This larger number of sources increases the number
of pairs that both queries must keep track of and either more
resources will need to be allocated or accuracy will suffer.

While this example only considered a pair of queries, in
realistic settings operators likely need to monitor for a wide va-
riety of attacks simultaneously (e.g., the 11 queries described
in Sonata [22]). Moreover, features like number of sources
or destinations commonly overlap in these types of attack
detection queries so that an anomalous change in one feature
may upset the resource requirements of a large number of
simultaneous queries.

Example 2.2. Consider a scenario where a network operator
wants to understand the root cause of TCP latency on their
network. In this scenario, the operator would like to first run
queries to detect when latency increases and for which hosts or
subnets [18]. Once detected, the operator must submit a large
number of queries to test possible causes of high latency such
as re-transmissions or deep queues [33] with filter operations
so that these queries only apply to the flows experiencing
latency. Note that the debugging phase may require several
rounds of querying with tens of simultaneous queries in each
round before the root cause of the latency can be determined.

While the above examples focus on two particular tasks,
the underlying concepts—of dealing with large shifts in query
resource requirements caused by changes in traffic and of
executing multiple queries over time in a dependent manner—
are commonly encountered in network operations.

2.2 Ideal Telemetry System Requirements

In light of the above-mentioned examples, an ideal telemetry
system should support the following requirements.

R1: Query diversity. Marple [33] and Sonata [22] outline
how a small set of parameterized stream processing opera-
tors can enable a wide range of telemetry queries. Telemetry
systems must support these kinds of generic query descrip-
tion interfaces, allowing filtering over packet header values,

2The DDoS task finds destinations receiving from large numbers of
distinct sources and the port scanning task finds sources sending to a large
number of distinct destination ports.

702 19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Approach

Static switch-based
Runtime-programmable
Dynamic allocation
Sketch-based
Software-based
DynATOS

<2
R IRNRNENEF

NENEN
ANENENENEN

<
ANENEEENEN
<

Table 1: Summary of how different approaches relate to the
requirements of § 2.2.

grouping by arbitrary header fields, chaining operations, and
joining the results of multiple operation chains.

R2: Approximate execution. Executing telemetry queries
over the massive volumes of data flowing through networks
poses heavy resource requirements. Furthermore, many
telemetry queries are equally effective when computed ap-
proximately [30]. Therefore, telemetry systems should expose
approximation techniques that allow trading off reduced result
accuracy for lower resource requirements.

R3: Traffic dynamics. Composition of traffic changes over
time, and changes may be slow, regular, and easy to pre-
dict (e.g., daily cycles) or fast and hard to predict (e.g., flash
crowds). As discussed in Example 2.1, these changes in traf-
fic composition lead to changes in the resource requirements
for different groups of queries. Telemetry systems should
robustly handle these changes without compromising query
accuracy or latency [38].

R4: Query dynamics. The queries a network operator needs
to run change over time. Some of these changes may be infre-
quent (e.g., adding new queries to monitor a newly deployed
service), while some of these changes may be rapid and time-
sensitive (e.g., adding new queries to debug a performance
anomaly or to pinpoint and block a network attack). Telemetry
systems should be able to handle these dynamic query arrivals
and removals, realizing updates within a few milliseconds and
without incurring network downtime [43].

RS: Switch hardware acceleration. Due to massive traffic
volumes, stringent timing requirements, and the limited speed
of a single CPU core, executing telemetry queries on CPU-
based systems is prohibitively expensive [22]. As a result,
telemetry systems must leverage resource-constrained hard-
ware targets [2,4,5] to accelerate query execution.

2.3 State-of-the-art and their Limitations

State-of-the-art approaches each satisfy a subset of the re-
quirements set forth above, but face limitations which hinder
their ability to satisfy all requirements simultaneously.
Static switch-based approaches. Marple [33] and
Sonata [22] compile traffic queries into static hardware
description languages like P4 [10], demonstrating the
efficiency of switch hardware in computing query results.
However, these approaches fail to satisfy R4 since changing
queries incurs seconds of network downtime (see [43]).

Runtime-programmable approaches. Recently, Beau-
Coup [14] and Newton [43] demonstrate techniques to allow
network operators to add and remove queries at runtime
without incurring downtime. These efforts lay a technical
foundation to address R4, but do not address the challenge of
R3.

Dynamic allocation approaches. DREAM [30] and
SCREAM [31] develop dynamic allocation systems for
telemetry operations addressing both R3 and R4. However,
these approaches do not satisfy R1 because they require query-
specific accuracy estimators.

Sketch-based approaches. Many telemetry efforts address
R2 by leveraging sketches [15,16,28,39,42] to gather approx-
imate query results under the stringent operation and memory
limitations faced in the data plane. However, the accuracy
of sketches is tightly coupled to both the resources allocated
(e.g., number of hash functions or number of counters) and
the underlying composition of traffic (e.g., number of flows)
making sketches insufficient for R3 and R4. An exception to
this is ElasticSketch [38] which addresses R3 head on by dy-
namically adapting to varying traffic compositions. However,
ElasticSketch fails to address R4 or R1 since flow keys are
fixed in the sketch’s implementation.

Software-based approaches. Several prior efforts leverage
the capabilities of general-purpose CPUs to process traffic
queries. For example, Trumpet [32] installs triggers on end
hosts, OmniMon [25] and switch pointer [37] share tables
between end hosts and switches in network, and SketchVi-
sor [23] and NitroSketch [27] tune sketch-based approxima-
tion techniques for virtual switches. While these approaches
work well in settings like data centers where all infrastructure
is under a single administrative domain, in many settings (e.g.,
campus or enterprise networks) it is too expensive (in terms of
infrastructure cost and/or latency) to pass all packets through
software and impractical to instrument end hosts.
Scheduling distributed stream processing operations.
Several efforts [26,34-36,41] address the challenge of effi-
ciently scheduling stream processing operations to maximize
resource utilization. However, these efforts do not consider the
particular types of accuracy and latency constraints encoun-
tered in scheduling telemetry operations on switch hardware.
Limitations of current hardware-based approaches. To il-
lustrate the limitations of current static approaches [22,33,43]
in dealing with R3 and R4, we implement the two queries
mentioned in Example 2.1 and run them over a traffic excerpt
from the MAWILab [17] data set which features pronounced
traffic dynamics. This excerpt starts with relatively stable
traffic, then suddenly, due to an actual DDoS attack or other
causes (which we do not claim to identify), around the 20" 5
s time window (or epoch) contains a large number of sources
sending regular pulses of traffic. As suggested in [22,43], we
use bloom filters tuned for the initial normal traffic to approx-
imate the lists of distinct pairs required by the first stage of
both queries.

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 703

—— DDoS Port Scan

o1 ooz
o
1%
0
=0 M
' i Baséline —ISketches ' '
é_ 105 - ,’---\»,_--\\/---\\'---\\/
S)
F 100 1 , : . . .
0 10 20 30 40 50
Epoch

Figure 1: Accuracy of concurrent DDoS and port scanning
queries under extreme traffic dynamics.

Figure | shows the F1 score’ of these approximate query
implementations along with the number of tuples returned to
the collector in each epoch. Before the change in number of
sources, the approximation methods for both queries return
highly accurate results while sending relatively few tuples.
However, when the number of sources increases, the approxi-
mation accuracy of both queries suffers since the actual num-
ber of ground truth tuples (the “Baseline” trace) far exceeds
the number each query was tuned for. Taking the static ap-
proach in this example shows that when certain events of
interest occur, the accuracy of multiple queries can be sig-
nificantly impacted due to fixed assumptions about traffic
composition. Of course, the telemetry system initially could
have tuned these queries for the anticipated number of sources,
but this would lead to significant wastage of resources under
normal traffic conditions and it is hard to know what to tune
for without prior knowledge of the anomaly.

2.4 Design Challenges

To elucidate why prior efforts fail to meet the requirements
put forth in § 2.2, we next describe the following high-level
design challenges.

D1: Approximating generic query results. Efforts like
Marple and Sonata develop expressive query description lan-
guages which map into data plane computation models. How-
ever, approximation of query operations is often necessary due
to limited data plane resources and massive traffic volumes.
It is unclear how state-of-the-art approximation methods can
be leveraged to work with queries expressed in languages
like Marple or Sonata. As illustrated in § 2.3, the currently
proposed baseline approach of simply replacing stateful reduc-
tions in Sonata queries with sketch-based primitives requires
prior knowledge of worse-case traffic situations and does not
perform well under dynamic traffic scenarios.

D2: Estimating accuracy of approximations. Approximate
query results must be accompanied with a sound estimate of
their accuracy. This is critical for operators to understand the
system’s confidence in detecting a particular event or report-
ing a particular metric and equally critical in dynamic teleme-
try systems to inform the balance of resources between ap-
proximate queries. Prior efforts have made progress towards

3Computed by comparing with ground truth, the F1 score is a measure of
query accuracy defined as the harmonic mean of precision and recall.

this goal [24,30,31], but none anticipate accuracy estimation
for current state-of-the-art generic query descriptions.

D3: Allocating finite hardware resources among variable
sets of queries under traffic dynamics. Very few prior ef-
forts address the need of a telemetry system to evaluate multi-
ple concurrent queries on finite hardware resources. In order
to handle traffic dynamics, such a system must dynamically
update resource allocations based on the estimated accuracy
of each query. Moreover, since it is possible that the given re-
sources will be insufficient to meet the accuracy of all queries,
such a system must enable operators to express query priori-
ties and allocate resources with respect to these priorities.

3 DynATOS System Design

3.1 Overview

To tackle the above-mentioned challenges, we build DynATOS.
At its core, DynATOS is composed of three main components
as shown in Figure 2. Network operators submit queries to the
scheduler through a high-level REST API which performs ini-
tial query validation and returns a status message along with a
description of the expected query result format. The scheduler
then translates queries into their primitive operations and con-
structs schedules for how these operations should be run on
switch hardware. These schedules are then handed to a run-
time component which communicates with switch hardware
to execute the primitive operations and collect intermediate
results. Once ready, the runtime component gathers all results
and passes them back to the scheduler and operators.

L4, LA L4
Operators .'?‘(.';(.’?‘(
Oueries\ l /
CoIIector

Epoch . . Epoch
0O mo —
Schedules unuu(3 = Results
Runtime
Subepoch " Subepoch
Operations & Q 7= Results

| Switch Hardware ‘

Figure 2: Architecture of DynATOS.

3.2 Preliminaries

Scheduling horizon. Since queries can arrive at any time, we
must decide when and for how far into the future resources
should be scheduled. We first examine several possible ap-
proaches to this problem, then describe our approach in the
next paragraph. One option is to compute the schedule each
time a new query arrives and adjust all existing queries to the
new schedule. While this option minimizes the time a query
has to wait before it can start executing, it complicates the
realization of accuracy and latency goals since the duration
of the scheduling horizon (i.e., until the next query arrives) is
unknown when forming the schedule. Alternatively, we could
compute the new schedule each time all queries in the prior

704 19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

schedule terminate. While this option ensures schedules can
be executed exactly as planned, newly submitted queries may
experience a longer delay.

We choose, instead, to make scheduling decisions at fixed
windows of time which we call epochs (e.g., every 5 s). This
allows a balance between the two schemes mentioned above:
queries must wait at most the duration of one epoch before
executing and during an epoch queries are ensured to exe-
cute according to the schedule. In particular, we divide the
scheduling epoch into N subepochs and our scheduler assigns
subsets of the submitted queries to each subepoch as shown
in Figure 3. Subepochs provide flexibility to schedule differ-
ent queries at different times while also providing concrete
resource allocation units. Queries submitted during an epoch
are checked for feasibility and only considered in the follow-
ing epoch. For example, in the figure, Q4 is added sometime
during epoch 2, but cannot be scheduled until epoch 3. During
the epoch, the scheduler collects intermediate results for each
subepoch in which a query is executed and aggregates these
subepoch results based on the query’s aggregation operation.
Once an epoch completes, results of complete queries are
returned, while new and incomplete queries are considered
for the next epoch. For example, in Figure 3 Q3 completes ex-
ecution in the second subepoch of epoch 2 and its results are
returned during the scheduler invocation before epoch 3. We
further assume that each query executes over traffic in a sin-
gle epoch and telemetry tasks requiring longer measurement
durations than our scheduling epoch can simply re-submit
queries.

Q4 added [Q3 results returned
Subep?chs W
! ! ! Legend

Hl Omd, Om Q2
OO O0OM BEE Time | 503
. Epoch 1 | Epoch 2 | Epoch 3 [feY!

Scheduling decision points

Figure 3: Example of scheduling 4 queries with N = 3 sube-
pochs per epoch.

3.3 Key Ideas

We develop a novel approximation method to address the
challenge of gathering approximate results for generic queries
(D1). In particular, our method leverages cluster sampling the-
ory to estimate the results of the first aggregation operator in
multistage queries. For example, in the DDoS query we only
approximate computation of the distinct source, destination
pairs list and execute all subsequent operations exactly. The
intuition behind this is that each operator in a telemetry query
tends to reduce the volume of data passed to the next operator.
Therefore, reducing the resource requirements and volume of
data emitted from the first aggregation reduces the load on all
subsequent operators.

§ 4 describes how our approximation method can provide

sound estimates of result accuracy without prior assumptions
about traffic characteristics (addressing D2). Note that the
accuracy estimates used in many sketch methods are depen-
dent on traffic characteristics (which can be estimated by
auxiliary queries or offline analysis) [39]. Our method, on the
other hand, uses cluster sampling to estimate result accuracy
based on observations from a single epoch independently of
traffic characteristics. Moreover, by leveraging observations
of feature variance in prior epochs, we can predict resource
requirements for a desired accuracy level in future epochs.
This feedback loop allows our system to dynamically adjust
per-query allocations as traffic distributions change.

To address D3, we integrate our approximation technique
in a scheduler that determines how a number of concurrent
queries should be executed on a single switch hardware, bal-
ancing resources between queries to satisfy accuracy and
latency goals set by operators. As described in § 5, our sched-
uler uses a novel multi-objective optimization formulation of
the problem of when to run which queries given query pri-
orities and resource constraints. This formulation allows the
scheduler to balance between the goals of multiple concurrent
queries, sometimes allocating less than the exact number of
subepochs when queries have lower priority and resources
are scarce (e.g., due to a large number of concurrent queries).

Finally, we develop a runtime system leveraging these ideas
to efficiently execute schedules on switch hardware, gather
intermediate results, apply factors to correct for sampling,
and return results to network operators in a high-level format.
Operators can then decide to execute new queries in the sub-
sequent epoch, or to re-execute the current queries based on
these results.

3.4 Limitations and Assumptions

Monitoring problems addressed by DynATOS. The types

of traffic features which can be monitored by queries in Dy-

nATOS are subject to the following assumptions.

e Feature values do not fluctuate excessively over measure-
ment durations of one or two seconds.

e The monitoring task can be implemented using features
gathered at a single point in the network.

e Features are constructed from packet header fields and/or
other switch-parsable regions of the packet.

e Features can be computed using atomic filter, map, and
reduce operations.

Under these assumptions monitoring tasks like detecting mi-

crobursts [13], identifying global icebergs [19], and detecting

patterns in TCP payloads [9] cannot be efficiently executed

using DynATOS. However, as evidenced by the body of prior

efforts with similar assumptions (e.g., [22, 30, 33]) and the

concrete examples discussed in § 2.1, DynATOS can still be

used for a wide variety of useful tasks.

Switch hardware model. In the following, we assume a re-

stricted runtime programmable switch hardware model. In

this model, switch hardware is able to execute a fixed set

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 705

of Sonata [22] operators, in particular, a filter operator fol-
lowed by a reduce operator. However, similar to Newton [43],
our switch hardware allows arbitrary parameterization of
these operators at runtime. For example, switch hardware
could execute the filter and reduce commands required by the
Sonata TCP new connections queries for a period of time, then
quickly (e.g., within a few milliseconds) be re-programmed to
execute the filter and reduce commands required by the Sonata
DDoS query. We note that our scheduling methods are inde-
pendent of this particular switch hardware model and could
readily be applied to more fully programmable ASICs [5,10].
Network-wide scheduling. Ultimately, operators need to
query traffic across different logical or physical domains of
their network. This implies that telemetry systems should col-
lect information from a distributed set of switches (or other
monitoring points) and provide a global view of network traf-
fic. In this work, we consider only a single monitoring point
(e.g., a critical border switch) and leave the challenges of dis-
tributed scheduling of telemetry operations to future work.
Nonetheless, a single switch deployment on a enterprise or
data center border switch can still be highly effective in exe-
cuting the types of queries considered.

4 Time-Division Approximation in DynATOS

Accuracy tradeoff. Given fixed scheduling epochs, we can
trade off accuracy for reduced resource requirements by sam-
pling a subset of the subepochs in which to execute a particu-
lar query. We leverage cluster sampling theory [29] to expose
this tradeoff while maintaining accuracy goals. Cluster sam-
pling is a good fit for situations like dynamically scheduled
query operations where the cost of sampling large groups of
the population (i.e., subepochs) is significantly lower than
the cost of sampling individual population members (i.e.,
packets) [29]. In particular, we assume sending the aggregate
results (computed in switch hardware) of each sampled sube-
poch to software is cheaper than sending individual sampled
packets to software.

Consider the case where a particular query executes in n of
the N total subepochs and let #; ; be the query’s result in the i-
th subepoch of the j-th epoch, 7 be the number of subepochs
in which the query executed in the j-th epoch, E be the total
number of epochs in which the query is executed, and s,z_ be
the sample variance of the ; ;’s in the j-th epoch. We use the
unbiased estimator,”

ey

@)

4See § A for a full discussion of the derivation of these equations from
cluster sampling theory.

to estimate query results and determine when accuracy goals
have been fulfilled. We rearrange Equation 2 as

2 A2
siN

E-1
E262 — (Var(fj)> + Nsi.
=

acc __

3)

n

to estimate the number of subepochs in which a query should
execute in the E-th epoch to fulfill a given standard error target
© assuming the query has already executed in the previous
E — 1 epochs without fulfilling 6. Note that if 6 = 0, then
n“ = N and the query will be executed in all of the subepochs
in its first epoch. As G increases, n“““ decreases freeing more
of the subepochs for other queries.

Latency tradeoff. In addition to the accuracy tradeoff dis-
cussed above, we can tradeoff result latency for reduced re-
source requirements by executing a query’s operations across
several epochs. The key observation enabling this tradeoff is
that by spreading the sampled subepochs over several epochs,
the query can reduce its per-epoch requirements while still
attaining its accuracy goal. Operators leverage this tradeoff by
specifying larger latency goals on queries that do not require
fast returns.

Suppose a particular query has a latency goal of E epochs.
We need to estimate the number of subepochs in which the
query should be allocated n'“ in the e-th epoch with 1 < e <
E. First, we break the sum in Equation 2 into past (1 < j < e)
and future (e < j <E) components. We then have,

2 A2
SiyN

T E2%62—N? (past + future) + Ns?.,

lat

“4)

While the past component can be calculated directly using
observations from prior epochs, the future component must
be estimated based on the number of subepochs the query
expects to receive in future epochs. Operators can tune this
expected number of subepochs based on current and expected
query workloads.

Correcting distinct operators. While the previous sections
discuss foundations for making sound approximations of
packet/byte counts, many useful queries also involve iden-
tifying and counting distinct elements. We leverage the Chao
estimator without replacement’ to correct estimates of a com-
mon class of distinct count queries such as the DDoS query
considered in § 2.1. Similar to the cluster sampling estimators
described in this section, the Chao estimator can be used to
obtain point and standard error estimates based only on the
observed sample.

5 Scheduling in DynATOS

5.1 Optimization Formulation
We cast the task of generating query schedules as an optimiza-
tion problem and adapt well-known techniques to generate

5See § A.3 for details.

706 19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

schedules through this casting. While this section details our
casting of the problem, § 5.2 describes the challenges inher-
ent in applying optimization techniques in a real-time setting
such as ours.

We apply our optimization formulation every epoch to
determine which queries should execute in each of the N
subepochs as shown in Algorithm 1. First, in line 2 we use
the DISENTANGLE method of Yuan et al. [40] to break the
submitted queries Q into disjoint traffic slices K and save
the mapping between queries and slices in s; . Line 3 then
computes the minimum number of stateful update operations
required by the reduce operators of all queries in each partic-
ular slice. These steps are necessary given our single-stage
switch hardware model (§ 3.4). Next, lines 4 through 6 com-
pute estimates of the memory and subepoch requirements of
each query. Finally line 7 creates and solves the optimiza-
tion problem described below. If a feasible solution cannot
be found, line 9 falls back to a heuristic scheduling method
described in § 5.2.

Algorithm 1 Method for determining subepoch schedule

1: procedure GET-SCHEDULE(Q, u, SE)
2: K,s < DISENTANGLE(Q)

3 U < COMBINE-UPDATES (#, K, 5)
4: m < ESTIMATE-MEMORY

5: n*c < EQUATION 3(0)

6 n'@ « EQUATION 4(c,E)

7 d < SOLVE-OPTIMIZATION

8 if d is infeasible then

9: d < GET-HEURISTIC-SCHEDULE
10: end if
11: end procedure

Inputs. Table 2 shows the particular inputs and outputs of
this optimization problem. Of the input variables, , u;, s; .
T, A, and M are known exactly based on submitted query re-
quirements and available switch resources, while m;, n{““, and
nf“t must be estimated based on observation of past epochs.
Our current implementation uses EWMA to estimate m; and
s7. (as required by n{* and n!') independently for all update
operation types. We leave exploration of more sophisticated
estimation approaches to future work. Scheduling decisions
are encoded in the d; ; indicator variables which determine
which queries should execute in each subepoch. We do not
consider the division of switch memory between queries since
memory is dynamically allocated during the aggregation op-
eration (see § 3.4).

Constraints. We impose the constraints shown in Table 3 to
satisfy two high-level requirements: (i) respecting switch re-
source limits (C1, C2, C3) and (ii) forcing minimal progress in
each query and ensuring variance estimates are well-defined
(C4). Note that C2 captures the fact that if two queries rely on
the same update operation, they can be merged to use a single
ALU. In the case that the estimated quantity m; turns out to

Variable | Description
(0] index set of queries ready for execution
SE index set of subepochs
K index set of all disjoint traffic slices
Ui index set of all update operations in slice k
1 number of TCAM entries required by slice k
u; index of update operation required by query i
Sik indicator that query i requires slice k
m; memory required in each subepoch by query i

number of subepochs required for accuracy
goal for query i (§ 4)

n: number of subepochs required for latency goal
for query i (§ A.2)

T total available TCAM entries

A total number of available switch ALUs

M total available SRAM counters

d; j indicator that query i executes in subepoch j

Table 2: Variables used in optimization formulation of
scheduling problem. The sole outputs d; ; determine the sched-
ule for the next epoch.

C1: VjGSE, Y 4l vdi,jsi,k:1:| <T
kek i€Q

<A
uclUy i€Q

C2: V_]-ESE,]CEK, Yy I|:\/d,-_,js,~7kl[u,-:u]=1

C3: V‘] eSE, Y, d,-,_,-ml- <M
i€Q
C4: ViEQ, Z dl“jzz
JESE
Table 3: Scheduling problem constraints to respect (C1)
TCAM capacity requirement, (C2) switch ALU capacity, (C3)
SRAM capacity, and (C4) query minimal progress require-
ment. I[] is the indicator function.

O1: minimize AZ .Z dij | —n{c
i€Q| \ JeSE

. s . lat

02: minimize AZ .Z dij | —n®
i€Q| \ JeSE

03: minimize Y d;m;
i€Q,jeSE

Table 4: Objective functions considered in the multi-objective
formulation.

be violated by traffic conditions in the subsequent epoch, we
simply drop new aggregation groups once the available switch
memory is totally consumed.

Objectives. In computing the schedule of each epoch, we
consider the objective functions listed in Table 4. O1 seeks
to satisfy accuracy goals by minimizing the distance to the
value of n*“ computed in Equation 3, O2 seeks to satisfy
latency goals by minimizing the distance to the value of n/®
computed in Equation 4, and O3 seeks to limit the maximum
volume of data that needs to be returned from the switch in a
single subepoch. We expose the Pareto front of these objective
functions using linear scalarization which allows operators
to express the importance of each objective by submitting
weights and is computationally efficient.

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 707

5.2 Challenges of Online Optimization

Unlike prior work (e.g., [22]), the inputs to our optimization
problem are dependent on task dynamics (e.g., the set Q can
vary each epoch) and traffic dynamics (e.g., the suggested
nf° could increase in response to increased traffic variability).
Hence, we must solve the optimization problem independently
in each epoch. However, invoking an optimization solver in
an online scheduling method is fraught with challenges. First,
certain combinations of inputs and constraints can lead to
infeasible problems where it is impossible to satisfy all con-
straints. Second, since integer programming is a well known
NP-complete problem, finding an optimal solution can take
exponential time in the worst case. In what follows, we de-
scribe several precautions that we take in the design of our
scheduler to ensure these challenges do not adversely affect
the performance of the telemetry system.

Dealing with infeasible queries. Our first strategy to deal
with infeasible optimization problems is to require that all
submitted queries can be executed on the given switch re-
sources in the absence of other queries. In particular, if a
query requires more than 7 TCAM entries, A ALUs, or M
counters, the scheduler must reject that query outright, since it
will not be able to execute on the given switch hardware. This
ensures that our scheduler can always make progress on the
current pool of submitted queries by selecting a single query
and allocating the full switch resources for all subepochs. We
note that a query partition scheme similar to Sonata [22] could
be added to our system to handle this case more elegantly, but
leave this to future work.

Dealing with slow optimizations. To deal with the poten-
tially exponential time that could be required to converge to
an optimal solution, we limit the duration of time spent in
the optimization algorithm to an acceptable fraction of to-
tal epoch time. This method, known as early stopping, is a
well-known technique to gather feasible, good, if not fully
optimal solutions. When the optimization process stops due
to this time limit, the current solution must still be checked for
feasibility and only allowed to execute if it is, in fact, feasible.
Fail-safe. In cases where the optimization problem is either
proven infeasible or times out before converging, we fall
back to a simple heuristic “fail-safe” mode of scheduling. We
also deny all new query submissions when in fail-safe mode
to notify the operator that the system is currently saturated
and to prevent the accumulation of a large backlog which
could cause the optimization problem to remain infeasible
in future epochs. Our simple heuristic fail-safe scheduling
scheme greedily selects the query closest to its deadline and
allocates this query fully to switch resources. To increase
progress in fail-safe mode, we also add other queries that use
the same or a subset of the selected query’s traffic slices until
either the memory or ALU limit is reached. Since queries
scheduled in this mode execute for each subepoch, n;/N =0
for that epoch ensuring progress towards accuracy targets,
though some queries may suffer increased latency.

Another approach to dealing with situations where a fea-
sible schedule cannot be found is to send slices of traffic to
the collector and compute query results in software. In this
approach queries running during fail-safe mode could still
meet tight latency goals at the expense of increased load on
the collector. Depending on the nature of situation trigger-
ing fail-safe mode, this could impose infeasible processing
loads on the collector or lead to excessive congestion between
switch and collector. In future work, we plan to investigate
solutions to this problem including combinations of heuristic
scheduling and moving query operations to software.

6 Evaluation

In this section, we describe our evaluation of DynATOS and

demonstrate the following key results.

e The time-division approximation technique in DynATOS
is more robust than state-of-the-art in the face of traffic
dynamics and offers comparable performance to state-of-
the-art sketch-based approximate techniques (§ 6.2).

e The scheduling method in DynATOS handles dynamic
query workloads with up to one query every second and
leverages specific accuracy and latency goals to reduce
per-query resource usage (§ 6.3).

e Latency overheads in DynATOS are minimal and dependent
on the load on the collector and the number of queries
which must be updated in switch hardware (§ 6.4).

6.1 Experimental Setup

Setting. We evaluate DynATOS on a BCM 56470 series [8]
System Verification Kit (SVK) switch running BroadScan [1]
which implements the telemetry operations described in § 3.4.
Our version of BroadScan has A = 8 parallel ALU operators,
and a flow table with M ~ 9MB of memory. A software agent
on the switch’s CPU manages reconfiguration of hardware
in response to requests from the collector. Our collector and
scheduling software runs on a server with an Intel Xeon Gold
5218 CPU at 2.3Ghz and 383GB memory. This server is
equipped with a 40Gb Mellanox MT27700-family network
card connected directly to the SVK’s data plane. A separate
10Gb Intel X550T network card on the same server connects
to the SVK’s management interface to manage updates to
hardware configuration as schedules execute.

Traces. Unless otherwise stated, we replay a trace from
the MAWILab traffic data set (Sept. 1st, 2019) [17] using
tcpreplay [7]. We selected this trace as a baseline because
some of its features are static while others are more dynamic.
Default parameters. We use five-second scheduling epochs
to allow sufficient measurement duration without incurring
excessive delay of results which must wait for epoch bound-
aries. We divide epochs into N = 8 subepochs so that the
schedule has sufficient options for arranging queries without
making subepochs too short to generate useful samples. We
set objective weights to balance between priorities and sup-
pose queries will get all future subepochs when evaluating

708 19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Equation 4. Queries are submitted with realistic values of
¢ based on baseline measurements of their variances in the
trace. We set o = 1/2 in the EWMA estimation described
in § 5.1. Bars show median and error bars show 5" and 95"
percentiles over all epochs of the trace.

Query workloads. We use DynATOS to implement four of
the telemetry queries originally introduced by Sonata [22]
and used in several recent efforts. Our hardware model han-
dles a fixed sequence of filter and reduction operations so
we implement the remaining query operations in software.
This scenario is equivalent to Sonata with a limited num-
ber of switch hardware stages. We report the accuracy of
approximate implementations of these queries as F1 score
(the harmonic mean of precision and recall) by comparing
against ground truth computed offline. In addition to static
queries, we generate dynamic query workloads based on ran-
dom processes to evaluate DynATOS (see § 6.3). To the best
of our knowledge, there is no comparable publicly-available
dynamic query workload benchmark. Our workloads are pub-
licly released at [6] to support validation of our results and to
facilitate benchmarking of similar systems in the future.
Implementation. We implement the DynATOS scheduler in
~14k lines of C and C++. Following ProgME [40], we use
BDDs to represent query filter conditions in our implementa-
tion of the DISENTANGLE algorithm (§ 5.1). We use the open
source CBC implementation [3] to solve the optimization
problems described in § 5.1. Our implementation also defers
some result processing operations to the time spent waiting
for results from switch hardware to improve efficiency.
Comparisons. We compare DynATOS with ElasticS-
ketch [38], Newton [43], and SketchLearn [24]. We modi-
fied the implementations of both ElasticSketch and Sketch-
Learn to support the filter and reduce operations required
by several of the Sonata [22] queries. Though we were un-
able to locate a publicly available implementation of Newton,
we implemented its sketch-based approach to approximating
Sonata’s primitive operators. In particular, we use count-min
sketch [15] to approximate the reduce operator and a bloom
filter [20] to approximate the distinct operator.

6.2 Performance of Time-Division Approxi-
mation

Robustness in the face of traffic dynamics. To address the
question of what happens when traffic composition changes
significantly we consider an excerpt from the MAWILab
dataset taken on Nov. 14th, 2015. As shown in Figure 4,
this excerpt features nominally static traffic followed by a
dramatic surge in the number of sources around 100 seconds
into the trace.

To understand how different methods handle this change
in traffic dynamics, we first tune each method’s parameters
to achieve high accuracy (F1 > 0.9) on the first 100 seconds
of the excerpt, then run the method with these parameters
over the entire excerpt. Since it is possible that this anomaly

€ 105 4 — Sources V \VA \VA A\
> - ’
5] Destinations
© 104 L T T T T T T
0 50 100 150 200 250
Time (s)

Figure 4: Number of distinct sources and destinations in ex-
cerpt from MAWILab data on Nov. 14th, 2015.

was cause by some form of DDoS attack, we run the DDoS
query in this scenario to locate the victim of the attack. This
is intended to reflect a realistic situation where a method was
deployed and tuned for a particular traffic composition, which
then changes. In real deployments, such changes could be
caused by attacks or performance anomalies and represent
the moments when data collected from a telemetry system is
most critical.

—— DynATOS Newton
1.0 A

== ElasticSketch == SketchLearn

0.5 1

F1 Score

0.0 -

105 .

104 +

Tuples

103 4

0 10 20 30 40 50
Epoch

Figure 5: Performance of different methods on the 2015
MAWILab excerpt shown in Figure 4.

Figure 5 shows the F1 score and number of tuples returned
to the collector in each epoch over the trace excerpt. All meth-
ods achieve high accuracy for the first 20 epochs, but then
when the number of sources increases after the 20" epoch,
they diverge significantly. First, we note that DynATOS is
able to maintain high accuracy where other methods suffer by
dynamically increasing the load on the collector. This is a re-
sult of the natural robustness of our non-parametric sampling
method: when the underlying traffic composition changes,
those changes are reflected in each sampled subepoch causing
the volume of data reported for each subepoch to increase to
ensure steady accuracy.

The sketch-based methods in ElasticSketch and Newton, on
the other hand, are limited by the static table sizes configured
for the first 20 epochs: once the traffic composition changes,
these tables become saturated and excessive hash collisions
lead to F1 scores below 0.5. We confirm that the average
number of hash collisions per epoch jumps by 2x when the
traffic distribution changes in epoch 21. We note that these
sketch-based methods also offer no easy way to estimate the
accuracy of returned results, so while an operator may become
suspicious due to the slight increase in load on the collector,
they would have no way to verify that the accuracy of these
methods is compromised.

Sketchlearn differs from other methods in that it recon-
structs flow keys based on data stored in a multi-level sketch.

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 709

Sketchlearn guarantees only that it will be able to extract all
flows that make up more than 1/c of the total traffic where
c is the fixed number of columns in the sketch. We confirm
that in this trace, the increased number of sources is caused
by a large number of small flows (one to two packets). As
such, the threshold to be extracted increases, but none of the
added flows are able to meet it and so SketchLearn is unable
to extract existing as well as new flows with high enough con-
fidence. SketchLearn does associate accuracy estimates with
these results so an operator could be notified of this situation,
but would have to reload their switch’s pipeline with a larger
value of ¢ in order to achieve acceptable accuracy.

Overall accuracy-load tradeoff. As in previous efforts [22],
we consider the volume of data returned from switch hard-
ware to the collector (i.e., load on the collector) as a critical
resource. Each approximation method can reduce this load
while reducing accuracy of query results, leading to a per-
formance curve in accuracy vs. load space. To empirically
estimate this curve, we determine several different parameter-
izations of each method, execute the method with each param-
eterization over all epochs of the trace, then compute the ac-
curacy and load on collector in each epoch. For some queries
the sketch-based methods must export their full sketches to
the collector so we report load in terms of both tuples (the
number of records or events) and bytes (the total size of data).
We use the median of each value over all epochs to estimate
the empirical performance curves.

—— DynATOS Newton ——- Elastic Sketch ——- Sketch Learn
80000
»n 100000 A 0 -
(] (] 2.
a o 75000 A ez
= > P
= - z
50000 A 70000
6x10° =
§ 107 4 9
s S 4x10°
o o
108 {p | 3x10°
0.90 0.95 1.00 0.90 0.95 1.00
F1 Score F1 Score
(a) DDoS (b) TCP New Connections

Tuples

0.90 0.95 1.00 0.90 0.95 1.00
F1 Score F1 Score
(c) Port Scan
Figure 6: Accuracy vs. overhead curves.
Figure 6 shows performance curves for four different
queries with two plots for each query showing overhead as
tuples and bytes on the y-axis. Here we use the baseline

(d) Super Spreader

MAWILab trace so these results represent a mostly static traf-
fic scenario. Note that the lower right-hand corner of these
plots is ideal with maximal accuracy and minimal load. We
observe that DynATOS’ novel approximation method (§ 4)
performs as well as, if not better than other methods. The
sketch-based method proposed by Newton achieves slightly
better performance in terms of total data volume on the DDoS
and Super Spreader queries because it only sends flow keys
from the first distinct operator whereas other methods also
return a counter. SketchLearn requires relatively large multi-
level sketches to be exported each epoch in order to achieve
comparable accuracy on these queries despite it’s lower tu-
ple counts. In the case of TCP new connections, we were
unable to run a large enough sketch to reach the accuracy
range shown here for other methods. We observe that for the
TCP new connections query Newton’s count-min sketch is
highly sensitive to sketch size. For example, adding a single
additional counter moves the F1 score across the entire range
shown in the plot. DynATOS, on the other hand, achieves com-
parable if not higher performance and offers a wider range of
load savings.

6.3 Performance of Scheduling Algorithm

Dynamic query workload. Real telemetry system deploy-
ments must deal with dynamics in the number and types of
queries submitted to the network over time. Since, to the best
of our knowledge, no representative dynamic query workloads
are available, we synthesize such workloads based on the fol-
lowing scheme. First, we generate a series of base queries with
random aggregation keys and granularities and arrival times
based on a Poisson process with rate . We suppose these
base queries are submitted by a human operator or automated
process which then submits followup queries based on base
query results. In particular, when each base query terminates,
we submit between 0 and 3 followup queries with the same ag-
gregation as the base query, but filters added to select a single
aggregation group from the base query’s results. For example,
if a base query with aggregation key source IP address at 8
bit granularity returned results for 0.0.0.0/8, 10.0.0.0/8, and
192.0.0.0/8, we might submit followup queries to monitor just
10.0.0.0/8 and 192.0.0.0/8. To provide contrasting accuracy
and latency goals, base queries are submitted with looser ac-
curacy goals (¢ = 100) and latency goals randomly chosen
within a range of 1 to 5 epochs, while followup queries are
submitted with tighter accuracy goals (¢ = 50) and a latency
goal of 1 epoch.

Figure 7 shows the evolution of the number of queries
submitted by one of our dynamic query workloads (top plot)
and traces of different operating metrics (lower three plots). In
this workload, the maximum number of queries is submitted in
epoch 8 which leads to an infeasible schedule since too many
TCAM entries are required to keep track of all filter groups of
followup queries. This causes our scheduler to enter fail-safe
mode for two epochs to dispatch with the excess queries. Note

710 19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Queries
N
o O
I

Mode TcaM Tuples
-
o
o
o o

0 5 10 15 20 25 30 35 40
Epoch
Figure 7: Example time-series of a dynamic query workload

(3/5 queries per second).

that the heuristic algorithm currently used to select queries
in fail-safe mode only selects a few queries based on fully
disjoint traffic slices leading to reduction of load on collector
and TCAM utilization. Under the software-based fail-safe
mode mentioned in § 5.2, the load on collector would continue
increasing here while TCAM utilization would drop.

To understand how DynATOS scales with the rate of dy-
namic query workloads, we generate a set of five workloads
with different base query arrival rates. Figure 8 shows how
these different workload intensities affect the performance of
DynATOS in terms of queries served (Queries), tuples emit-
ted to the collector (Tuples), TCAM entries used (TCAM),
epochs spent in fail-safe mode (% Fail-s.), and the percent-
age of satisfied queries (% Sat.) all per-epoch. We count the
number of queries satisfied as the total number of queries that
received valid results during the workload run. Note that some
queries submitted when the scheduler is in fail-safe mode are
denied at submission time allowing an operator to re-submit
these queries later. In these experiments we observe that all
successfully submitted queries receive results within their
target accuracy and latency goals.

We observe that, as expected, the number of queries ser-
viced, load on collector, and number of TCAM entries re-
quired all scale linearly with the base query rate. As also
expected, the number of queries satisfied decreases as more
epochs are spent in fail-safe mode. We observe that the main
contributor to infeasible scheduling problems in this scenario
is the number of TCAM entries required to satisfy followup
queries’ filter conditions. We plan to investigate integration
of more efficient TCAM allocation algorithms in future work
to address this bottleneck.

Relaxation of accuracy & latency goals. Next, we evaluate
how our approximation and scheduling method is able to
reduce the per-query resource requirements in response to
relaxed accuracy and latency goals. We execute the TCP new
connections query with varying accuracy and latency goals
and measure resource usage over 10 epochs at each setting.
Here we report ALU-seconds and counter-seconds which
combine both the number of ALUs (or counters) used by the
query and the duration for which these resources were used.

Figure 9 show the resulting resource usages as both accu-

racy and latency goals vary in the form of heatmaps. These

3 20 A I I
8 oL et o v TATA TN
% 50000 [|
Qo
= 0L I ¥ 7 v | 1V
= 1000
< | |
S ' | | . P 1
»
<10
©
< 0 , , [2 V71 ,
45 100
s LAV vt
15 2/5 3/5 4/5 5/5

Mean Query Rate (per second)
Figure 8: Performance of DynATOS on dynamic query work-
loads.

- 5.0
1.2 - 4.5
0.8 -4.0
0.4 _35
0.0
-3.0
1 3 5 7 9

Target Number of Epochs

- 5000

-
N

- 4500

o
©

- 4000

o
>

- 3500

o
)

Fraction of baseline o
Fraction of baseline o

- 3000

1 3 5 7 9
Target Number of Epochs

(a) ALU-seconds
Figure 9: Evaluation of median resource usages for selected
accuracy (y-axis) and latency (x-axis) targets for a single
query. Lighter colors indicate lower resource usages.

(b) counter-seconds

results demonstrate that both accuracy and latency goals can
help DynATOS leverage our time-division approximation
method to reduce resource requirements.

6.4 Scheduling loop overheads

Closed-loop systems like DynATOS must quickly gather re-
sults and update switch hardware configurations between each
subepoch in order to avoid missing potentially critical traffic.
We define the inter-epoch latency as the total time spent not
waiting for results from switch hardware. In other words, the
inter-epoch latency is the total time taken by our system to
gather results, reconfigure hardware operations, and decide
which operations to execute in the next epoch. We observe
two distinct factors that contribute to the inter-epoch latency:
the load on the collector and the number of queries installed
in switch hardware.
Latency vs. load on collector. The first factor contributing to
inter-epoch latency is the volume of data that must be returned
and processed after each subepoch. To isolate this effect, we
generate synthetic traffic consisting of a certain number of
sources each sending a steady stream of packets controlled
by a Poisson process. We then run a query that returns a
single record for each source so that by varying the number
of sources in the traffic, we directly control the number of
records returned and hence the load on collector.

Figure 10 shows the distribution of total latency for two
different loads. We observe that the median inter-epoch la-

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 711

1.0 4 1.0 4
w w
8 0.5 8 0.5
8 0.5 8
0.0 14 . . . 001 -
130 135 140 145 107 10°

Inter-epoch latency (ms) Inter-epoch latency (ms)

(a) 10 Records (b) 10° Records
Figure 10: Distribution of inter-epoch latency in our testbed
system for different loads on the collector.

tency in both cases is less than 130 ms, but that with higher
load the tail latencies grow to over a second. This is likely
due to that fact that the collector code must allocate larger
memory blocks to process the increased number of tuples
returned from the switch. We leave a full investigation of the
performance of our software collector to future work.

102 F—1 Schedule Gen. Proc. Results [Z] Result De[lvery

10! 4

;ﬁmmmﬂmmmmm

10! 102 103 104
Records
Figure 11: Software overheads as function of tuples exported.

Time (ms)

We further investigate how the different components of

our query scheduler impact this overall inter-epoch latency
by instrumenting the scheduler. Figure |1 shows the latency
break down as a function of the number of records processed
for three key components: the time to generate a schedule for
the epoch (Schedule Gen.), the time spent processing inter-
mediate results at the end of the epoch (Proc. Results), and
the time spent sending results back to the query-submitting
process (Result Delivery). The results demonstrate that the
main variable software latency is the time to process results
which scales nearly linearly with the number of records. A
more significant bottleneck is imposed by the result delivery
time due to the use of a simple REST protocol which requires
new TCP connections and data marshaling via JSON. We
leave exploration of more efficient IPC mechanisms for this
interface to future work.
Latency vs. number of queries. The second main factor
contributing to inter-epoch latency is the time required to
install and remove query operations on switch hardware. This
factor is influenced primarily by the amount of state which
must be written into hardware memory which is a function of
the number of queries to be installed or removed. We generate
synthetic workloads containing different numbers of disjoint
queries based again on the TCP new connections query and
instrument our switch agent to measure the time taken by
writes into hardware memory.

Figure 12 shows the time taken by the hardware writes
to add and remove operations (Add Hw. and Remove Hw.)
as well as the total time taken by the switch agent (Add Tot.
and Remove Tot.) which includes the time to deserialize and
validate configurations sent from the collector. These results
show that up to 100 queries can be added or removed on our

I P AP NP P (N ER AT
Az N Ni7N N7 R NIARG MARGNIZNEN

Num. Queries
Figure 12: Hardware overheads as function of number of
queries.

prototype in ~10 ms (comparable to latencies reported in
prior efforts [30,43]). We also observe that the deserializa-
tion and validation conducted by the switch agent imposes
minimal overhead. Finally, the total contribution of switch
hardware to the overall inter-epoch latency is dominated by
operation removal. This is because when removing operations,
the switch agent must also reset the entire flow table used by
these operations so as to avoid future operations anomalously
reporting leftover results.

7 Conclusion and Future Work

Current approaches to telemetry system design struggle to
efficiently satisfy dynamism in query workloads and traffic
workload composition. By reframing telemetry systems as
resource schedulers, in this work, we propose an efficient
approximation and scheduling algorithm that exposes accu-
racy and latency tradeoffs with respect to query execution to
reduce hardware resource usage. We evaluate our algorithm
by building DynATOS and show that our approach is more
robust than state-of-the-art methods to traffic dynamics and
dynamic query workloads.

While we investigate the common sources of dynamics,
both a horizontal scheduling problem (i.e., how to design a
scheduler to deal with those dynamics for multiple switch
hardware stages or multiple distributed switches) and a ver-
tical scheduling problem (i.e., incorporation of computing
resources, such as stream processing clusters and GPUs—
both locally and at remote cloud data centers—into the pool
of resources schedulable for telemetry tasks) remain. This
opens up a wider question of where, not just when and for
how long, telemetry queries should be executed. We plan to
investigate this question as part of future work.

Acknowledgments

We thank our shepherd (Behnaz Arzani) and the anonymous
reviewers for their constructive feedback. We also thank
Shahram Davari and Broadcom, Inc. for providing hardware
and technical support for our testbed evaluation. This work is
supported by the National Science Foundation through CNS
1850297, a Ripple faculty fellowship, and a Ripple graduate
fellowship. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessar-
ily representing the official policies or endorsements, either
expressed or implied, of NSF, Ripple, or Broadcom.

712 19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

BCMS56275 Gb/s Programmable Multilayer Switch
Product Brief. https://docs.broadcom.com/doc/
56275-PB.

BCM56870 series. https://www.broadcom.com/
products/ethernet-connectivity/switching/
strataxgs/bcm56870-series.

COIN-OR Branch-and-cut MIP solver. https://
zenodo.org/badge/latestdoi/30382416.

Intel ethernet switch FM6000 series product brief.
https://www.intel.com/content/dam/www/
public/us/en/documents/product-briefs/
ethernet-switch-fm6000-series-brief.pdf.

Intel Tofino. https://www.intel.com/
content/www/us/en/products/network-1io/
programmable-ethernet-switch.html.

ONRG: DynATOS.
projects/dynatos/.

https://onrg.gitlab.io/

Tcpreplay - Pcap editing and replaying utilities. https:
//tcpreplay.appneta.com/.

Trident3-X4 / BCM56470
https://www.broadcom.com/products/
ethernet-connectivity/switching/strataxgs/
bcmb56470-series.

Series.

Kevin Borders, Jonathan Springer, and Matthew Burn-
side. Chimera: A declarative language for streaming
network traffic analysis. In Proceedings of the USENIX
Security Symposium, pages 365-379, 2012.

Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick
McKeown, Jennifer Rexford, Cole Schlesinger, Dan
Talayco, Amin Vahdat, George Varghese, et al. P4:
Programming protocol-independent packet processors.
ACM SIGCOMM Computer Communication Review,
44(3):87-95, 2014.

Anne Chao and Chun-Huo Chiu. Species richness: es-
timation and comparison. Wiley StatsRef: Statistics
Reference Online, pages 1-26, 2014.

Anne Chao and Chih-Wei Lin. Nonparametric lower
bounds for species richness and shared species rich-
ness under sampling without replacement. Biometrics,
68(3):912-921, 2012.

Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jennifer
Rexford, and Ori Rottenstreich. Catching the microburst
culprits with snappy. In Proceedings of the ACM Work-
shop on Self-Driving Networks, pages 22-28, 2018.

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman,
and Jennifer Rexford. Beaucoup: Answering many net-
work traffic queries, one memory update at a time. In
Proceedings of the conference of the ACM Special Inter-
est Group on Data Communication (SIGCOMM), pages
226-239, 2020.

Graham Cormode and Shan Muthukrishnan. An im-
proved data stream summary: the count-min sketch and
its applications. Journal of Algorithms, 55(1):58-75,
2005.

Cristian Estan, George Varghese, and Mike Fisk. Bitmap
algorithms for counting active flows on high speed links.
In Proceedings of the ACM SIGCOMM conference on
Internet measurement (IMC), pages 153-166, 2003.

Romain Fontugne, Pierre Borgnat, Patrice Abry, and
Kensuke Fukuda. MAWILab: Combining Diverse
Anomaly Detectors for Automated Anomaly Labeling
and Performance Benchmarking. In Proceedings of the
ACM Conference on emerging Networking EXperiments
and Technologies (CoNEXT), 2010.

Sriharsha Gangam, Jaideep Chandrashekar, ftalo Cunha,
and Jim Kurose. Estimating TCP latency approximately
with passive measurements. In Proceedings of the In-
ternational Conference on Passive and Active Measure-
ment (PAM), pages 83-93. Springer, 2013.

Sriharsha Gangam, Puneet Sharma, and Sonia Fahmy.
Pegasus: Precision hunting for icebergs and anomalies
in network flows. In Proceedings of the IEEE Interna-
tional Conference on Computer Communications (IN-
FOCOM), pages 1420-1428, 2013.

Shahabeddin Geravand and Mahmood Ahmadi. Bloom
filter applications in network security: A state-of-the-art
survey. Computer Networks, 57(18):4047-4064, 2013.

Nicholas J Gotelli and Robert K Colwell. Estimating
species richness. Biological diversity: frontiers in mea-
surement and assessment, 12:39-54, 2011.

Arpit Gupta, Rob Harrison, Marco Canini, Nick Feam-
ster, Jennifer Rexford, and Walter Willinger. Sonata:
Query-driven streaming network telemetry. In Proceed-
ings of the conference of the ACM Special Interest Group
on Data Communication (SIGCOMM), pages 357-371,
2018.

Qun Huang, Xin Jin, Patrick PC Lee, Runhui Li,
Lu Tang, Yi-Chao Chen, and Gong Zhang. Sketchvi-
sor: Robust network measurement for software packet
processing. In Proceedings of the conference of the
ACM Special Interest Group on Data Communication
(SIGCOMM), pages 113-126, 2017.

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation

713

https://docs.broadcom.com/doc/56275-PB
https://docs.broadcom.com/doc/56275-PB
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series
https://zenodo.org/badge/latestdoi/30382416
https://zenodo.org/badge/latestdoi/30382416
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switch-fm6000-series-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switch-fm6000-series-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switch-fm6000-series-brief.pdf
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://onrg.gitlab.io/projects/dynatos/
https://onrg.gitlab.io/projects/dynatos/
https://tcpreplay.appneta.com/
https://tcpreplay.appneta.com/
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56470-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56470-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56470-series

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

Qun Huang, Patrick PC Lee, and Yungang Bao. Sketch-
learn: Relieving user burdens in approximate measure-
ment with automated statistical inference. In Proceed-
ings of the conference of the ACM Special Interest Group
on Data Communication (SIGCOMM), pages 576-590,
2018.

Qun Huang, Haifeng Sun, Patrick PC Lee, Wei Bai, Feng
Zhu, and Yungang Bao. Omnimon: Re-architecting
network telemetry with resource efficiency and full ac-
curacy. In Proceedings of the conference of the ACM
Special Interest Group on Data Communication (SIG-
COMM), pages 404-421, 2020.

Teng Li, Jian Tang, and Jielong Xu. Performance model-
ing and predictive scheduling for distributed stream data
processing. IEEE Transactions on Big Data, 2(4):353—
364, 2016.

Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kass-
ner, Vladimir Braverman, Roy Friedman, and Vyas
Sekar. Nitrosketch: Robust and general sketch-based
monitoring in software switches. In Proceedings of the
conference of the ACM Special Interest Group on Data
Communication (SIGCOMM), pages 334-350. 2019.

Zaoxing Liu, Antonis Manousis, Gregory Vorsanger,
Vyas Sekar, and Vladimir Braverman. One sketch to
rule them all: Rethinking network flow monitoring with
univmon. In Proceedings of the 2016 ACM SIGCOMM
Conference, pages 101-114. ACM, 2016.

Sharon L Lohr. Sampling: Design and Analysis: Design
And Analysis. CRC Press, 2019.

Masoud Moshref, Minlan Yu, Ramesh Govindan, and
Amin Vahdat. DREAM: Dynamic resource alloca-
tion for software-defined measurement. ACM SIG-
COMM Computer Communication Review, 44(4):419—
430, 2014.

Masoud Moshref, Minlan Yu, Ramesh Govindan, and
Amin Vahdat. SCREAM: Sketch resource allocation for
software-defined measurement. In Proceedings of the
ACM Conference on emerging Networking EXperiments
and Technologies (CoNEXT), page 14, 2015.

Masoud Moshref, Minlan Yu, Ramesh Govindan, and
Amin Vahdat. Trumpet: Timely and precise triggers in
data centers. In Proceedings of the conference of the

ACM Special Interest Group on Data Communication
(SIGCOMM), pages 129-143, 2016.

Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan,
Prateesh Goyal, Venkat Arun, Mohammad Alizadeh, Vi-
malkumar Jeyakumar, and Changhoon Kim. Language-
directed hardware design for network performance mon-
itoring. In Proceedings of the conference of the ACM

[34]

[35]

(36]

(37]

(38]

[39]

[40]

[41]

[42]

Special Interest Group on Data Communication (SIG-
COMM), pages 85-98, 2017.

Boyang Peng, Mohammad Hosseini, Zhihao Hong, Reza
Farivar, and Roy Campbell. R-storm: Resource-aware
scheduling in storm. In Proceedings of the Annual
Middleware Conference, pages 149-161, 2015.

Hooman Peiro Sajjad, Ken Danniswara, Ahmad Al-
Shishtawy, and Vladimir Vlassov. Spanedge: Towards
unifying stream processing over central and near-the-
edge data centers. In Proceedings of the IEEE/ACM
Symposium on Edge Computing (SEC), pages 168—178,
2016.

Anshu Shukla and Yogesh Simmhan. Model-driven
scheduling for distributed stream processing systems.
Journal of Parallel and Distributed Computing, 117:98—
114, 2018.

Praveen Tammana, Rachit Agarwal, and Myungjin Lee.
Distributed network monitoring and debugging with
SwitchPointer. In Proceedings of the USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), pages 453-456, 2018.

Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi
Gong, Yang Zhou, Rui Miao, Xiaoming Li, and Steve
Uhlig. Elastic sketch: Adaptive and fast network-wide
measurements. In Proceedings of the conference of the
ACM Special Interest Group on Data Communication
(SIGCOMM), pages 561-575. ACM, 2018.

Minlan Yu, Lavanya Jose, and Rui Miao. Software de-
fined traffic measurement with OpenSketch. In Proceed-
ings of the USENIX Symposium on Networked Systems
Design and Implementation (NSDI), pages 29-42, 2013.

Lihua Yuan, Chen-Nee Chuah, and Prasant Mohapa-
tra. ProgME: towards programmable network mea-
surement. [EEE/ACM Transactions on Networking,
19(1):115-128, 2011.

Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik,
Matthai Philipose, Paramvir Bahl, and Michael J Freed-
man. Live video analytics at scale with approximation
and delay-tolerance. In Proceedings of the USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI), pages 377-392, 2017.

Haiquan Chuck Zhao, Ashwin Lall, Mitsunori Ogihara,
Oliver Spatscheck, Jia Wang, and Jun Xu. A data stream-
ing algorithm for estimating entropies of OD flows. In
Proceedings of the ACM SIGCOMM conference on In-
ternet measurement (IMC), pages 279-290, 2007.

714

19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

[43] Yu Zhou, Dai Zhang, Kai Gao, Chen Sun, Jiamin Cao,
Yangyang Wang, Mingwei Xu, and Jianping Wu. New-
ton: Intent-driven network traffic monitoring. In Pro-
ceedings of the ACM Conference on emerging Network-
ing EXperiments and Technologies (CoNEXT), pages
295-308, 2020.

A Appendix: Application of Cluster Sampling

In this section, we discuss details of key equations enabling
our scheduling approach’s accuracy and latency tradeoffs. To
maintain a self-contained discussion, some content is repeated
from § 4.

A.1 Trading Off Accuracy

Given fixed scheduling epochs, we can trade off accuracy
for reduced resource requirements by sampling a subset of
the subepochs in which to execute a particular query. We
leverage cluster sampling theory [29] to expose this tradeoff
while maintaining accuracy goals. To simplify our discussion,
we first consider the case where a query is executed in a single
epoch and then expand to the case where a query is executed
across multiple epochs.

Single Epoch Case. Consider the case where a particular
query executes in n of the N total subepochs. Our goal is to
estimate the value that would have resulted from running the
query in all subepochs based only on these n subepoch results.
First, we note that each subepoch defines a cluster of packets
that traverse the switch during that subepoch. Next, since each
query executes over every packet of the subepochs in which
it is scheduled, we note that the subepoch results represent a
sample of n of the N total subepoch clusters. To ensure that
each subepoch has an equal probability of being sampled by
a particular query, we shuffle subepochs prior to execution.
Cluster sampling theory [29] then lets us estimate the results
of these queries over the entire N subepochs as well as the
error of this estimator based on the variance between the
observed subepochs. For example, we can estimate a query
that maintains a sum by

f:

S|z

y
ieS

which has standard error

2
SE(f) =N (1—ﬁ)i’
N/ n

where S is the index set of which subepochs have been sam-
pled, #; is the query’s result in the i-th subepoch, and s? is
the sample variance of the #;’s. Clearly, executing a query
for fewer subepochs leads to greater sampling error while
executing a query in each subepoch leads to zero sampling

error. This equation also shows that, if n is set to a fixed ratio
of N, error grows as a function of N so we do not expect
to increase accuracy by dividing epochs into larger numbers
of subepochs. Corresponding theory and equations exist for
other update operations such as averages and extreme values.
Multiple Epoch Case. Due to changing traffic distributions
or large query workloads, a query may not be able to fulfil
its accuracy goal in a single epoch and the scheduler must
form results based on the estimates from multiple epochs.
Considering again the sum example, let #; ; be the query’s
result in the i-th subepoch of the j-th epoch, 7 be the number
of subepochs in which the query executed in the j-th epoch,
and E be the total number of epochs in which the query is
executed. By the self-weighting property of 7, we can take a
simple mean of the 7;’s to get an unbiased estimator of the
query’s result over the E epochs,

1 E

A N
lE:Ej;lj:EZ*Zli,j @)

j=1"7i€S;

which has standard error

(6)

because subepochs are chosen independently in each epoch
(i.e., the sampled index sets S, which are the only random
variables in this formulation, are independent).
Application to Scheduling. Our system uses the point esti-
mates provided by Equation 5 to calculate estimated query
results. We also utilize Equation 6 for two purposes: (i) de-
termining when accuracy goals have been fulfilled and (ii)
estimating the number of subepochs in which the scheduler
must execute particular queries. Since the first item can be
evaluated with a simple threshold check, the rest of this sec-
tion explains the second item. We assume that each query
executes a single update operation (e.g., a sum) in its reduc-
tion and note that multiple operations could be expressed in
multiple queries.

Note that for a given standard error target (SE(fg) = 6) we
can rearrange Equation 6 to solve for the number of subepochs
that must be sampled in the E-th epoch as follows,

2 A2
SN

E—1
E%0% — < r Var(fj)> +Ns?.

acc __

)

j=1

Given a query’s target standard error G, observed values of
s,zj and n; from prior epochs, and an estimate of s,zE (based

on the stj’s), we can use Equation 7 to determine a lower
bound on the number of subepoch in which a query should
execute. Note that if 6 = 0, then n“““ = N and the query will
be executed in all of the subepochs in its first epoch. As ¢

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 715

increases, n“““ decreases freeing more of the subepochs for
other queries. For example, Figure A.la shows the result of
evaluating Eq. 7 for the first epoch of a query, indicating that
if the accepted standard error is large enough, the scheduler
only needs to execute the query in a single subepoch.

Limitations. We note that Equation 7 can become unstable
when the accuracy goal 6 cannot be obtained in a single epoch
given the results of prior epochs. This condition results when
E?6” +Nsj, < Y'_| Var(f}) causing the value of n“ to be
negative or undefined. Moreover, when n““ is negative, its
magnitude has the wrong sense with respect to 6: smaller
(tighter) values of ¢ reduce the magnitude of n““. Rather
than dropping the query, we make a maximum allocation
choice (n“““ = N) and retain the query for future epochs until
its accuracy target is met. So long as Var (f;) < 62 for enough
of those future epochs, n““ will eventually stabilize.

10 20 30 0 3 6
g e

(b) n'® increases as deadline
E = 6 approaches.

(a) Increasing o reduces n%“
in the first epoch.

Figure A.1: Numeric evaluations of Eqs. 7 and 8 assuming
fixed variance s> = 8, N = 5, and queries get 3/5'" of the
subepochs.

A.2 Trading Off Latency

In addition to the accuracy tradeoff discussed above, we can
tradeoff result latency for reduced resource requirements by
executing a query’s operations across several epochs. The
key observation enabling this tradeoff is that by spreading the
sampled subepochs over several epochs, the query can reduce
its per-epoch requirements while still attaining its accuracy
goal. Operators leverage this tradeoff by specifying larger

latency goals on queries which do not require fast returns.

We then adapt Equation 6 to estimate how many subepochs
should be executed in the current epoch based on both past
and anticipated future results.
Accounting for Past and Future Results. Under the latency
tradeoff, we approach the problem of determining how many
subepochs to execute from the perspective of the point in the
future when the query completes. At this point Equation 5
will be used to estimate the query’s result and Equation 6
must satisfy the query’s accuracy goal. Moreover, assuming
we are satisfying the query’s latency goal, E is equal to the
target number of epochs.

Now we consider the task of estimating the number of
subepochs to execute during some epoch e before the query’s
final epoch E. Note that the sum in Equation 6 can be split

around epoch e into a past component

e—1 . 52

n;\ 5t

ast = (1 - —]) £

! Z’l N/ n;

.17 v

and a future component
E Y,
n ti
Sfuture = Z (17—1) .

Jj=e+l1 N nj

We can then directly adapt Equation 7 to provide the required
number of subepoch in epoch e accounting for both past and
future components as

B s,zEN2
~ E26%— N2 (past + future) +Ns?,

lat

®)

Figure A.1b shows the result of evaluating Equation 8 in each
epoch leading up to a query’s target latency of e = 6 assuming
that the operation gets 3/5" of the number of subepochs
requested in each epoch. Since in this case, the query is not
given its full requested number of subepochs, the target n/®
increases dynamically to meet the deadline. This indicates that
Equation 8 can dynamically drive scheduling decisions even
when its results are not taken literally in each epoch (as may
be the case when multiple queries compete for resources).
Limitations. Equation 8 faces the same issues as Equation 7
in that it may still be infeasible to satisfy ¢ given past results
and the anticipated gains of future results. In such cases we
again take n; = N and count on gaining sufficient resources
in future epochs to satisfy the accuracy goal. To understand
the dynamics of this decision, Figure A.2 shows the relation
between target and actual number of epochs for a number
of accuracy goals. We assume here that queries anticipate
getting 3 /5" of the subepochs, actually receive 3/5" of what
they ask for, and all other settings are as in Figure A.1. As
can be seen when the accuracy target is too tight (e.g., 6 = 6)
executing in less than a certain number of epochs (e = 5) is
infeasible and the query’s latency goal cannot be met.

104 — 0=6 g=8 - 0=1(')/

Actual

Target

Figure A.2: Relation between target number of epochs and
the actual required number of epochs.

A.3 Correcting Distinct Operators

Many useful queries also involve identifying and counting
distinct elements. We consider the particularly prominent

716 19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

query structure where the results of a distinct operator are fed
through a reduce operator with a slightly coarser granularity
key. For example the DDoS query considered in § 2.1 con-
tains two main stateful operators: (i) finding distinct source,
destination pairs and (ii) reducing with destination as the key
to count the number of unique sources contacting each des-
tination. The key problem is that, while the methods above
provide sound estimators for packet and byte counts, they
do not correct for elements which may have been entirely
missed in the distinct operator due to sampling. Such errors
lead to a downward bias on distinct counts based on sampling
which could cause key events like DDoS attacks to go unno-
ticed. To correct for this source of error, we leverage the Chao
estimator without replacement when performing reductions
after distinct operators impacted by sampling. Chao estima-
tors [11,12] are commonly used by “species richness” studies
in the biological sciences to solve a related type of distinct
count problem [21]
This estimator is given by

17

_ 9
ﬁzfﬂ-%qfl ©)

SChaol,wor = Sops +

where S, is the number of elements observed in the sample,
f1 is the number of elements observed only once, f> is the
number of elements observed only twice, n is the total number
of elements in the sample, and ¢ is the sampling rate. To
use this estimator, we modify distinct operators executed in
the data plane to additionally count the number of packets
observed for each distinct element (essentially transforming
them into normal count reduction operators). After gathering
results, we can then easily compute the inputs required by
Equation 9. Note that the variance of §Cha1,wo, can also be
easily obtained from the same information as shown in the
original description of this estimator [12], providing network
operators with approximate accuracy of these results as well.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation

717

	Introduction
	Background & Motivation
	Dynamic Telemetry Use Cases
	Ideal Telemetry System Requirements
	State-of-the-art and their Limitations
	Design Challenges

	DynATOS@let@token System Design
	Overview
	Preliminaries
	Key Ideas
	Limitations and Assumptions

	Time-Division Approximation in DynATOS@let@token
	Scheduling in DynATOS@let@token
	Optimization Formulation
	Challenges of Online Optimization

	Evaluation
	Experimental Setup
	Performance of Time-Division Approximation
	Performance of Scheduling Algorithm
	Scheduling loop overheads

	Conclusion and Future Work
	Appendix: Application of Cluster Sampling
	Trading Off Accuracy
	Trading Off Latency
	Correcting Distinct Operators

