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Abstract

We consider the phenomenon of adversarial examples in ReLLU networks with
independent Gaussian parameters. For networks of constant depth and with a large
range of widths (for instance, it suffices if the width of each layer is polynomial in
that of any other layer), small perturbations of input vectors lead to large changes
of outputs. This generalizes results of Daniely and Schacham (2020) for networks
of rapidly decreasing width and of Bubeck et al (2021) for two-layer networks. Our
proof shows that adversarial examples arise in these networks because the functions
they compute are locally very similar to random linear functions. Bottleneck layers
play a key role: the minimal width up to some point in the network determines
scales and sensitivities of mappings computed up to that point. The main result is
for networks with constant depth, but we also show that some constraint on depth
is necessary for a result of this kind, because there are suitably deep networks that,
with constant probability, compute a function that is close to constant.

1 Introduction and Main Result

Since the phenomenon of adversarial examples was first observed in deep networks [SZS™'14],
there has been considerable interest in why this extreme sensitivity to small input perturbations
arises in deep networks [GSS15, SSRD19, BLPR19, DS20, BCGdC21] and how it can be detected
and avoided [CW17a, CW17b, FCSG17, MMS™18, QMG™19]. Building on the work of Shamir
et al [SSRD19], Daniely and Schacham [DS20] prove that small perturbations (measured in the
Euclidean norm) can be found for any fixed input and most Gaussian parameters in certain ReLU
networks—those in which each layer has vanishing width relative to the previous layer—and con-
jectured the same result without this strong constraint on the architecture. Bubeck, Cherapanamjeri,
Gidel and Tachet des Combes [BCGdC21] prove that the same phenomenon occurs in general
two-layer ReLU networks, and give experimental evidence of its presence in deeper ReLU networks.

In this paper, we prove that adversarial examples also arise in deep ReLU networks with random
weights for a wide variety of network architectures—those with constant depth and polynomially-
related widths. The key fact underlying this phenomenon was already observed in [DS20]: a
high-dimensional linear function f(z) = w ' = with input  # 0 and random parameter vector w with
a uniformly chosen direction will satisfy |V f(z)]| ||| > |f(z)| with high probability. This implies
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the existence of a nearby adversarial example for this linear function: a perturbation of x of size
If(@)]/IIV f(x)] < ||z|| in the direction — f(z)V f(x) will flip the sign of f(z). This observation
can be extended to nonlinear functions that are locally almost linear. Indeed, it is easy to show that
forall x,u € R4,

F@+u) — (F@) + (0, V@) < Jull sup {IVF(2) = V(@ +0)]| s € RY o]l < [ul},

and thus to demonstrate the existence of an adversarial example near x for a function f, it suffices to
show the smoothness property:

forall v € R with [[o]| < [f(@)I/IIVf (@), IVf(2) = VI +o)l| < [IVF@)]. D

We show that for a deep ReLU network with random parameters and a high-dimensional input vector
z, there is a relatively large ball around = where the function computed by the network is very likely
to satisfy this smoothness property. Thus, adversarial examples arise in deep ReL.U networks with
random weights because the functions that they compute are very close to linear in this sense.

It is important to notice that ReLU networks are not smooth in a classical sense, because the
nondifferentiability of the ReL.U nonlinearity implies that the gradient can change abruptly. But for
the smoothness condition (1), it suffices to have ||V f(z) — Vf(z + v)|| < € + ¢(]|v]|), for some
increasing function ¢ : R4 — Ry, provided that € + ¢(||v]|) < ||V f(x)||. We prove an inequality
like this for ReLU networks, where the € term decreases with width.

Consider a network with input dimension d, ¢+1 layers, a single real output, and complete connections
between layers. Let dy, . .., dy denote the dimensions of the layers. The network has independent
random weight matrices W; € Rixdi-1 for § € [¢ + 1], where we set dy = d and dy41 = 1. For
input z € RY, the network output is defined as follows:

f@) =W -c(We-o(Wi—y-0(---0(Wy - 2)--+))) where o(z); = max{x;,0}
Wis1 ~ N(0,1/dg) and Vi € [], (Wi);u " N(0,1/d;i_y). (NN-DEF)
Note that the scale of the parameters is chosen so that all the real-valued signals that appear throughout
the network have roughly the same scale. This is only for convenience: because the ReLU is positively
homogeneous (that is, for & > 0, o(ax) = ao(x)), the scaling is not important for our results; the

1/d;—1 in (NN-DEF) could be replaced by any constant without affecting the ratio between the norm
of an input vector and that of a perturbation required to change the sign of the corresponding output.

The following theorem is the main result of the paper.

Theorem 1.1. Fix { € N. There are constants c1, co, cs that depend on ¢ for which the following
holds. Fix 6 € (0,1) and let f(-) be an (¢ + 1)-layer ReLU neural network defined by (NN-DEF)
with input dimension d and intermediate layers of width {d; }i_,. Suppose that the widths satisfy

dmin > ¢1(10g dimax)? log 1/ where dpyin = min {{di}le, d} , dmax = Max {{di}f:l, d} .
Then for any fixed input x # 0, with probability at least 1 — 6,
[f(z+nVf(@)| = |f(x)] and sign(f(z +nV [f(x))) # f(2),
for an n satisfying

IV f(2)| <e log1/4
[l d

It suffices to choose c; = (C1£)°2, co = Caf, c5 = Cg, for some absolute constants Cy, Cs, Cs3.

This theorem concerns networks of fixed depth, and the constants in the size of the perturbation and
in the requirement on the network width are larger for deeper networks. We also prove a converse
result that illustrates the need for some constraint on the depth. Theorem 3.1 shows that when the
depth is allowed to grow polynomially in the input dimension d, the function computed by a random
ReLU network is essentially constant, which rules out the possibility of adversarial examples.

The heart of the proof of Theorem 1.1 is to show a smoothness property like (1). It exploits a
decomposition of the change of gradient between two input vectors. Define H; : R? — R xd:



as Hi(xz)x = 1{j = k, vi(x); > 0} with v;(z) = Wjo(---o(Wiz)). For two input vectors
z,y € R we will see in Section 2.4 that we can decompose the change of gradient as

l J+1 1
V@) - V) =3 Wi (H HAx)Wi) (@)~ H )W - | ] Hww
j=1 i=0

i=j—1

(Here and elsewhere, indices of products of matrices run backwards, so Hf: y M; = I when j < k.)
For the jth term in the decomposition, we need to control the scale of: the gradient of the mapping
from the input to the output of layer 7, the change in the layer j nonlinearity H,;(z) — H;(y), and the
gradient from layer 5 to the output. It turns out that controlling these quantities depends crucially
on the width of the narrowest layer before layer j—we call this the bottleneck layer for layer j.
This width determines the dimension of the image at layer j of a ball in the input space. In proving
bounds on gradients and function values that hold uniformly over pairs of nearby vectors x and vy,
this dimension—the width of the bottleneck layer—dictates the size of a discretization (an e-net)
that is a crucial ingredient in the proof of these uniform properties. Our analysis involves working
separately with the segments between these bottleneck layers. We show that for an input = € R?
satisfying ||z|| = v/d and any y in a ball around x, with high probability ||V f(z) — V f(y)|| = o(1),
but | f ()| is no more than a constant and ||V f(x)|| is at least a constant. This implies the existence
of a small (o(||x||)) perturbation of x in the direction — f(z)V f(z) that flips the sign of f(x).

These results suggest several interesting directions for future work. First, our results show that
for high-dimensional inputs, adversarial examples are inevitable in random ReLU networks with
constant depth, and unlikely in networks with polynomial depth. Beyond this, we do not know
how the sensitivity to input perturbations decreases with depth. Similarly, both results are restricted
to networks with subexponential width, and it is not clear what happens for very wide networks.
Finally, we show that networks with random weights suffer from adversarial examples because their
behavior is very similar to that of random linear functions. It would be worthwhile to determine
whether randomly initialized trained networks retain this nearly linear behavior, and hence suffer
from adversarial examples for the same reason.

Related Work: Related theoretical work include the recent result of Bubeck and Sellke [BS21]
who, following up on Bubeck, Li and Nagaraj [BLN21], show that only mildly over-parameterized
networks when trained on random data have large Lipschitz constants. While these results apply to a
broader class of networks including those potentially trained on data, this weaker property on its own
does not suffice to explain the prevalence of adversarial examples and computational ease of finding
them. Indeed, establishing this fact requires understanding the behavior of the local landscape of the
function computed by the network which these approaches do not capture.

Closely related empirical works include work by Madry, Makelov, Schmidt, Tsipras and Vladu
[MMS™18] and by Qin, Martens, Gowal, Krishnan, Dvijotham, Fawzi, De, Stanforth and Kohli
[QMG™19]. We note that both these works emphasize the importance of the interplay between the
local behavior of the function and the existence of adversarial perturbations. [MMS 18] identify local
near-linearity as a cause of adversarial examples and propose a robust training procedure attempting
to eliminate this property. On the other hand, [QMG™19] suggest an alternative robust training
procedure that retains local near-linearity but eliminates adversarial examples by ensuring that the
learnt network (despite being locally linear) is robust to single-step perturbations. Our work lends
theoretical grounding to this phenomenon showing that local linearity arises naturally at initialization.

2 Proof of Main Theorem

In this section, we provide an outline of the proof of Theorem 1.1. As described above, we will prove
our result first by showing that the gradient at  has large norm and changes negligibly in a large ball
around z. The first condition is established in Subsection 2.1. The second step is more intricate. First,
we prove the decomposition of the gradient differences in Subsection 2.2. Then, in Subsection 2.3, we
track the scale of the ball around x as it propagates through the network. Finally, in Subsection 2.4,



we use this result to bound the terms in the decomposition of the gradient differences to show that
our network is locally linear. For the rest of the proof, unless otherwise stated, we consider a fixed
x € R4, and we assume:

\ dmin
(£10g dypax )89¢
Additionally, we randomize the activations of neurons whenever they receive an input of 0. This

does not change the behavior of the neural network in terms of its output or the images of the input
through the layers of the network but greatly simplifies our proof. For z € R?, we let:

dinin > (CL10g dmax)?** log 1/5, ||z = Vd and R := = Q ((£10g dimax)*) .

1 W.p%ifj:k,yj:O,
zo =, fi(x) = Wifi1(x), (Di(y))je =41 ifj=k, y; >0, fi(x) = Di(fi(x)) fi(x).
0 otherwise,
Our first key observation is that the randomization in the activation units allows us the following
distributional equivalences, proved in Appendix A.1.

Lemma 2.1. Letm € N, {d;}", C R% and W; € R%*4i=1 pe distributed such that each entry of
W; is drawn iid from any symmetric distribution. Then, defining for x € R%:

ho(z) = , 1, ifj=kandy; >0
El(x) = W;hi_1(x) where (D;(y)):; = < 1, with probability % ifi=k y; =0
hi(x) = D;(hi(x))hs(x) 0, otherwise
we have the distributional equivalences for any x # 0 and fixed diagonal matrices By, ..., By,
1 1
Wn [] (D )+ BOW; £ W [
j=m—1 j=m—1

1

1 (D)) + By)w;|| = H(Dj + B;)W.

Jj=m

U

1 ith probability 1/2 if k =1
where(Dj)k,l:{’ with probability 1/2 if

0, otherwise

2.1 Concentration of Function Value and Gradient at a Fixed Point

We first present a simple lemma that shows that the gradient at z is at least a constant and that its
output value is bounded. The proof gives an illustration of how Lemma 2.1 will be used through the
more involved proofs in the paper.

Lemma 2.2. For some universal constant c, with probability at least 1 — § we have:
[f(2)] < c2*\/log 1/ and |V f ()] = 2€+1
Proof. Note that

1
V(@) = Werr [ [ Dilfi(2)W; and f(z) = V f()z.
i=0
And we have from Lemma 2.1, V f () 4 WZH Hi:e D;W;, where

1 with probability 1/2if j = k,
(Di)j,k; — p . Yy / J {W }erl a {W }erl
0 otherwise,

Therefore, it suffices to analyze the random vector WEH ]—Ll: ’ DZ-WZ-. We first condition on a
favorable event for the D;. Note that we have by the union bound and an application of Hoeffding’s
inequality (e.g., [BLM13, Theorem 2.8]) that:

di . o
Viell]: TrD; > 3 with probability at least 1 — /4,



since d; > clog(4£/§). We now condition on the D; and note that:

1 1
‘WM [1o:w: wi [Iwi!
=4 =4
Vi e {2 g} . WT c RTrDiXTrDi,l, WZTJ,-l e }RIX’I‘ng7 WlJf c RTrDlxd
(W) ~ N0, I/d) Wi~ N0, I/dg), Vi € {2, 0+ 1} (W), ~ N (0,1/d;i_y).

From the above display, we obtain from Theorem C.3 and its corollary C.4,

where

1 2
HWJ L[ Wi, JIW|  with probability at least 1 — §/(4¢)
i=0 i=0
1
> pYas) with probability at least 1 — /4 by induction,
since ming<;<¢ d; > clog(4¢/§). Through a similar argument, we obtain:
1
Wi H D,W;|| < 2¢F1 2
i=0

with probability at least 1 — §/4. We also have:

1 1

(WZJrl H DZWZ Wg+1 H DlWl ‘ = m) i Unif (de_l) .
i=0 i=t

Combining this, Eq. (2) and Lemma C.6, we get that:

F(@)] < 2’ \/log 1/0

with probability at least 1 — /2, for some absolute constant c. A union bound over all the preceeding
events concludes the lemma. O

2.2 A Decomposition of Local Gradient Changes

The following decomposition allows us to reason about deviations layer by layer:

V(@) =V f(y) =W (H D;(fi(x))Wi — HDi(ﬁ'(y))Wi>

it it
W (HD F)W: - (DuFale)) + (DiFw) - D)) Wi T Di@(y))vvi)
=4 i=4—1
=Wt <De folx ( H Di(fi(z))W; — H Di(f; )
i=L—1 i=£—1
+ (De(fe(x)) — De(fe(y))We H Dy(f; )
i=L—1

(GD-DECOMP)

We use this decomposition to show that the gradient is locally constant. Concretely, consider a fixed
term in the above decomposition and let i* = argmin, _; d;. Letting M;- = Hll:l D;(fi(y))W,
we can bound a single term, A ;, as follows:

Jj+1 _ _ _ P41 _
A1 < || Weta (HDi(fi(x))Wi> (D;(fi(@) = D; (oW | TT Dilflw)w HIMi* -
i=4 i=j—1



We bound the above by bounding both of the two factors on the right-hand-side. In the above
expression, the length of A; is bounded by a product of the length of the corresponding factor in a
truncated network starting at the output of layer :* and a product of masked weight matrices up to
layer i* corresponding to the activation patterns of y. Intuitively, the first factor is expected to be
small if the images of = and y at layer ¢* are close and hence, we show that an image of a suitably
small ball around = remains close to the image of = through all the layers of the network (Lemma 2.3).
We then prove a spectral norm bound on M, in Lemma 2.6 and finally, establish a bound on ||A||
in Lemma 2.8 where we crucially rely on the scale preservation guarantees provided by Lemma 2.3.
Finally, combining these results with those of Subsection 2.1 completes the proof of Theorem 1.1.

2.3 Scale Preservation of Local Neighborhoods

In this section, we show that the image of a ball around x remains in a ball of suitable radius around
the image of x projected through the various layers of the network. Here, we introduce additional
notation used in the rest of the proof:

Vi€ {0yUL+1]: fi5(z) =2, Vi> g fij(a) = Wifio1(2), fij(x) = Di(fij(x)) fij(2).

We now describe the decomposition of the neural network into segments, which are bounded by what
we call bottleneck layers, and our analysis works separately with these segments. This decomposition
is crucial for reducing the sizes of the e-nets that arise in our proofs. Intuitively, when we construct
an e-net to prove that some property holds uniformly over a ball, it is crucial to work with the lowest-
dimensional image of that ball, which appears in a bottleneck layer. These bottleneck layers are
denoted by indices {i; };":1, defined recursively from the output layer backwards with the convention
that dg = d:

i1 = argmind;, Vj > 1s.ti; >1, 441 :=argmind;, d.;, =mind;. (NN-DECOMP)

mi
i<l 3<ij A

Note, that 4,,, = 0, forall j € [m — 1], d;; < d andforall k € {i;41,...,4; —1},dx, > d

41 L1t

The following technical lemma bounds the scaling of the images at a layer in the network of an input
z and of a ball around x. The crucial properties we will exploit are that these images avoid the origin,
and that the radius of the image of the ball is not too large. The full proof is deferred to Appendix A.2.
In the proof sketch, we carry out the section of the proof where we transition between bottleneck

layers in full as it is a simple illustration of how such ideas are used through the rest of the proof.

Lemma 2.3. We have with probability at least 1 — 6,

i e [0: 1@ > 5V

Vo'~ < B || i) = fila)]| < (Clog )’ (” 2 ) -

Vlla! = ol < R [ filw) = i)l < (Clogdmax)"* <H 7 >'R'

Proof Sketch. The proof of the first claim is nearly identical to that of Lemma 2.2.

For the second claim, we use a gridding argument with some subtleties. Concretely, we construct a
new grid over the image of B(z, R) whenever the number of units in a hidden layer drops below all
the previous layers in the network starting from the input layer. These layers are precisely defined by
the indices 4; in NN-DECOMP. We now establish the following claim inductively where we adopt
the convention iy = £ + 1.

Claim 2.4. Suppose for j > 1 and R < dmax * R:

Vy € B(x, R) : || fi, (@) = fi, (W)l < R.



Then:

e {i ; 7 7 i—i di =
Vi € fij Lt = Uy € B B) 1) = )l < (Ollog )™ [71 - R

Wy € Bla, R) : [1fi;-, (2) = fiy s )] < (Cllog dma) ™™ 792 R
with probability at least 1 — ¢/8l.

Proof Sketch. We start by constructing an e-net [Ver18, Definition 4.2.1], G, of f;, (B(x, R)) with
e =1/(d’,.)2. Note that we may assume |G| < (10R/c)%s. We will prove the statement on the

max

grid and extend to the rest of the space. For layer i 4- 1, defining = f;, (), we have Vy € G:
[ fit1,6;(@) = firri; @D = Wit (fii; (@) — fia; @)l

~ dz 1 1 5/
< i, @ = fit, DI \/7 | (1 ’ §/>

with probability at least 1 — ¢’ as before by Theorem C.3. By setting 6’ = 6/(16/G|¢?) and noting
that d; > d;, the conclusion holds for layer i + 1 < i; on G with probability at least 1 — §/ (16¢02).
By induction and the union bound, we get:

o _ _ ~ ~ L [d; ~
Vie{ij+1,..,i 10 =155 €G : |fii, @) = fii, @] < (Cllog dax) )72 TR
Vyeg: ||]§j,1,z‘j ) - ﬁjflaij @) < (CmOgdmmam)(iFIﬂ.j)/2 ‘R
with probability at least 1 — §/(16¢2). To extend to all y € f; (B(x, R)), we condition on the
bound on [|[W;|| given by Lemma C.1 for all i < i;_; and note that Vy € f; (B(x, R)), for

y = argmin_cg|lz —y|, and fori; + 1 <i <i;_1,

171, @) = Foi, I < Wiy @) = Fo, @I + 1 oy (0) = Frs, D)
<N Fiiy @ = Foa, @I+ ly =3l TT 1l

k:ij+1

<\ fii; (@) = fii; @)+ H (C’ dkl)

k=i;+1
£oAF) = f i—i, | i
= fii; (@) = fis; @) +eC*™" o
vj
using that d; > d;,. Similarly, for ¢ = i;_;, we have

1 Fis i, @) = Foyrty D < M Fiy i, @) = Fipy i, @)+ 2C

Our setting of € concludes the proof of the claim. O

An inductive application of Claim 2.4, a union bound and the observation that:

1fi@) = i) < 1 fa@) = iw)ll

concludes the proof of the lemma. O

The following lemma shows that few neurons have inputs of small magnitude for network input z.
Lemma 2.5. With probability at least 1 — §, for all i € [{], we have:

4 {j (W) fil@))] > af(j)'} > (1 - 2\/;1) disn.

Proof. Follows from the fact that Pr(|Z| < ¢) < ¢y/2/7 for Z ~ N(0, 1), plus a simple application
of Hoeffding’s Inequality. O



2.4 Proving Local Gradient Smoothness

In this section, we show that the gradient is locally constant, and thus complete the proof of Theo-
rem 1.1. In our proof, we will bound each of the terms in the expansion of the gradient differences
(GD-DECOMP). First, we prove a structural lemma on the spectral norm of the matrices appearing
in the right-hand-side of (GD-DECOMP), allowing us to ignore the portion of the network till the
last-encountered bottleneck layer. Define, for all i > j, M, ;(y) = Hig Dy (fr(y)) W

Lemma 2.6. With probability at least 1 — 0 over the {W},}, we have:
Vly—all £ Boj € =115 Pip, .00y 1My @] < (C - £ Tog da) (575502 = 1,
where the probability is taken with respect to the random choices in the definition of the Dy (-).

We provide the first part of the proof in full as the simplest application of ideas that find further appli-
cation in the subsequent result establishing bounds on terms in (GD-DECOMP); see Appendix A.3.

Proof Sketch. To start, consider a fixed j € [m] and condition on the conclusion of Lemma 2.3 up to
level i;41. Now, consider an e-net of f; ., (B(z, R)), G, with resolution e = 1/(d¥,,,)2. As before,

|G| < (Cdmax)4gldij+1 for some constant C. We additionally will consider subsets
S = {5 S C (], ISk] < 4diy, }

Note that |G| - |S|2 < (dimax)**¥5+1. Fory € G, S', 52 € S, consider the following matrix:

iy vt = l,ifi=jandi € S,
M)l g = H (Dr(fr,ije1 (1)) +(Ds2 —Ds2) )Wy, where (Ds);,; = 0. otherwise
k=i, J :
We will bound the spectral norm of M;’ Szf ‘42 First, note that:
. . —~— . — . 1:‘7+1+1 o~
[agiva| < 28| where 72557 = W, TT (Dl @) + (Ds; — D)W
k=i —1
and observe that from Lemma 2.1:
iy d et 1 wplifi=j
ijij41 dorrr _ L P 3 =7
Mysts =W k:lzlq(Dk i (Dst DS’%))Wk) where (De)i.j = 0 otherwise.

To bound the spectral norm, let 3 be a 1/3-net of S% ! and v € B. Applying Theorem C.3,

T artii+ T Ry log 1/¢’
H” Mgl g || < |o™Ws, T] (Dk+(Dsp = Dsp))Wi) | - [ 1+ di;.,
k=i;—1 i

541
log1/¢’
< 1 —_—
- H - dp,
k:’L]'
with probability at least £5’. But setting &' = 6/(16¢* - |G| - |S|?) yields with probability at least
1-6/16:

Vy€G, 5,5 €S HM”J"W

el < (C-L- 108 Aoy ) (49~ 4+1)/2,

On the event in the conclusion of Lemma 2.3, we have that f;(y) # 0 foralli € [{],y € G and
therefore, we have by a union bound over the discrete set G:

vy € gak € {ij+17~--7ij}am € [dk] : (ﬁ,lj(y»m # 0

proving the lemma for y € G as the activations are deterministic. For y ¢ G, the following claim
concludes the proof of the lemma. The claim is essentially a generalization of [BCGdC21, Eq. (18)]
and its proof is deferred to the appendix.



Claim 2.7. With probability at least 1 — &’ /¢? over the {W} }, we have forall m € {ij11+1,...,i;}
and Yy e fij+1 (]B(LC, R))

P DL (Fry 1y ) Di Py, ()} {Tf|Dm(fm,ij+1(y)) = Din(fmizn @) < 4di,~+1} =1

where § = arg min, ||z — y||, and the probability is taken with respect to the random choices in
the definition of the Dy(+).

The previous claim along with our previously established bounds establish the lemma. O

Our final technical result establishes the near-linearity of f in a ball around z. The full proof is
deferred to Appendix A.4 but in our proof sketch we identify sections which involve considerations
unique to this lemma.

Lemma 2.8. For some absolute constant C, with probability at least 1 — § over the {W},}:

. C*
Vile =yl < R.jeld: P{Dk(fk(z)),Dk(ﬂ(y))} {Wf(x) - Vil < (k)gedma)()} =1,

where the probability is taken with respect to the random choices in the definition of the Dy((+).

Proof Sketch. Consider a fixed term from (GD-DECOMP); that is, consider:

Jj+1 ~ ~ _ 1 ~
Diff;(y) == Wit (H Di(fi(fc))Wi) (D (f;() = D (@)W - | [T Difiw)ws
i=2 i=j—1

We will show with high probability that Diff; (y) is small for all y € B(x, R). This will then imply
the lemma by a union bound and (GD-DECOMP). Let k be such that iy, = arg min,, . ; d,,. We will
condition on the weights of the network up to layer 7. Specifically, we will assume the conclusions
of Lemmas 2.3 and 2.6 up to layer i;,. We may now focus our attention solely on the segment of the
network beyond layer ¢, as a consequence of the following observation and Lemma 2.6:

[Diff; (y) || < IDiff; (2, y)| - || Mi, 0(y)|| where 3)
Jj+1 N _ _ igp+1 ~

Diff; (z,y) = Wit (H Dz'(fz‘(fﬂ))Wz‘) (D;(£;(w) = Di (@MW, | I Di(fitw))Ws
i=0 i=j—1

We will show for all y such that ||y — z|| < R:

. ct
]P){Dm(me(l)),Dm(fm(y))} {”Dlﬂ‘],k‘(xay)' 2 (ﬂlog dmax)?)e} =0
with probability at least 1 — &/(16£2).

We have from Lemma 2.1 that the random vector H defined below is spherically symmetric and
satisfies || H || < 2¢ with probability at least 1 — §/(16¢%):

g+ LoaE
Wet1 H Di(fi(z))Wi =W H D;W; = H.
i=¢ i=£

As in the proof of Lemma 2.6, let G be an e-net of f;, (B(z, R)) with ¢ as in the proof of Lemma 2.6.
We now break into two cases depending on how d; compares to d;, and handle them separately. At
this point, we have effectively reduced the multi-layer proof to the problem of analyzing deviations
of activations at a fixed layer. For the remaining proof, we generalize approaches in [DS20] for the
small width case and [BCGdC21] for the large width case.

Case 1: d; < d;, (Clog dmax)zoe. In this case, the key observation already made in [DS20]
is that under Lemma 2.3, the number of neurons that may actually differ at layer j is at
most d;/poly(£1log dmax) between y € B(z,R) and z. Since, H is spherically distributed,

|IH(D;(f;(z)) — D;(fj(y)))] is very small and consequently the whole term is small.



Case2: d; > d;, (¢log dmax)zoe . This case is analogous to [BCGdC21]. The proof is technically

involved and requires careful analysis of the random vector H (D, (f;(x)) — D;(f;(y)))W;, which
is complicated in our setting due to the matrices preceeding it in (GD-DECOMP). It involves the
distributional equivalence in Lemma 2.1.

A union bound and an application of the triangle inequality now imply the lemma. O

Proof of Theorem 1.1. On the intersection of the events in the conclusions of Lemmas 2.2, 2.3
and 2.8, we have that V f () is deterministic and furthermore, we have:

1
V@)l 2 5z, 1f(@)l < c2°\/log 1/6

1
Vyst|y—z|| < R: ||V -V < ———— =0(1).
ystlly =l < R IV@) = VIW < oy = o)
e Moo
Assume f(z) > 0 (the alternative is similar) and let 7 = —W, we have for the point

x + nV f(z), defining the function g(t) = f(x + tnV f(x)):

fla+nV @) = fx)+ /0 g'(t)dt = f(x) + /O (Y f(@)) TV f(x + VY f(x))dt
= f(z) — (1 —0(1))2 logd\/log 1/6 < — f(x).

Our lower bounds on V f(x) ensure |V f(x)| < R, concluding the proof of the theorem. O

3 The Impact of Depth

Theorem 1.1 relies on the depth being constant. In this section, we show that some constraint on
the depth is necessary in order to ensure the existence of adversarial examples. In particular, the
following result gives an example of a sufficiently deep network for which, with high probability, the
output of the network will have the same sign for all input patterns.

Theorem 3.1. Fix a sufficiently large d € N, an £ > d° and (¢d)*° < k < exp(v/€), and consider
the randomly initialized neural network (NN-DEF) with dy = --- = dy = k. There is a universal
constant C' such that with probability at least 0.9,

f@)— f)| _ ., [logd
@ SN Ta

Va,y e S

The proof involves showing that the image of S¢~! is bounded away from 0, and that the inner
products between images of two input vectors throughout the network converge. The following
lemma shows how the expected inner products evolve through the network. The lemma follows from
computing a double integral; see [CS09, Eq. (6)]. The proof of Theorem 3.1 is in Appendix B.

Lemma 3.2. Letd € N. Fix x,y € R% with x,y # 0. Then for g ~ N(0,1):

T T i
E [max {g"=,0} max {g"y,0}] B s1n9+ (1_i> cos 6

VE(max{g7z,0})? E(max{g7y,0})? 7

where 6 = arccos(z T y/([[z||[|y]))-
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