
Adversarial Examples in Multi-Layer Random ReLU

Networks

Peter L. Bartlett

Department of Electrical Engineering and Computer Science

Department of Statistics

UC Berkeley

Sébastien Bubeck

Microsoft Research Redmond

Yeshwanth Cherapanamjeri

Department of Electrical Engineering and Computer Science

UC Berkeley

Abstract

We consider the phenomenon of adversarial examples in ReLU networks with

independent Gaussian parameters. For networks of constant depth and with a large

range of widths (for instance, it suffices if the width of each layer is polynomial in

that of any other layer), small perturbations of input vectors lead to large changes

of outputs. This generalizes results of Daniely and Schacham (2020) for networks

of rapidly decreasing width and of Bubeck et al (2021) for two-layer networks. Our

proof shows that adversarial examples arise in these networks because the functions

they compute are locally very similar to random linear functions. Bottleneck layers

play a key role: the minimal width up to some point in the network determines

scales and sensitivities of mappings computed up to that point. The main result is

for networks with constant depth, but we also show that some constraint on depth

is necessary for a result of this kind, because there are suitably deep networks that,

with constant probability, compute a function that is close to constant.

1 Introduction and Main Result

Since the phenomenon of adversarial examples was first observed in deep networks [SZS+14],

there has been considerable interest in why this extreme sensitivity to small input perturbations

arises in deep networks [GSS15, SSRD19, BLPR19, DS20, BCGdC21] and how it can be detected

and avoided [CW17a, CW17b, FCSG17, MMS+18, QMG+19]. Building on the work of Shamir

et al [SSRD19], Daniely and Schacham [DS20] prove that small perturbations (measured in the

Euclidean norm) can be found for any fixed input and most Gaussian parameters in certain ReLU

networks—those in which each layer has vanishing width relative to the previous layer—and con-

jectured the same result without this strong constraint on the architecture. Bubeck, Cherapanamjeri,

Gidel and Tachet des Combes [BCGdC21] prove that the same phenomenon occurs in general

two-layer ReLU networks, and give experimental evidence of its presence in deeper ReLU networks.

In this paper, we prove that adversarial examples also arise in deep ReLU networks with random

weights for a wide variety of network architectures—those with constant depth and polynomially-

related widths. The key fact underlying this phenomenon was already observed in [DS20]: a

high-dimensional linear function f(x) = w⊤x with input x != 0 and random parameter vector w with

a uniformly chosen direction will satisfy ‖∇f(x)‖ ‖x‖ ≫ |f(x)| with high probability. This implies

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

the existence of a nearby adversarial example for this linear function: a perturbation of x of size

|f(x)|/‖∇f(x)‖ ≪ ‖x‖ in the direction −f(x)∇f(x) will flip the sign of f(x). This observation

can be extended to nonlinear functions that are locally almost linear. Indeed, it is easy to show that

for all x, u ∈ R
d,

|f(x+ u)− (f(x) + 〈u,∇f(x)〉)| ≤ ‖u‖ sup
{
‖∇f(x)−∇f(x+ v)‖ : v ∈ R

d, ‖v‖ ≤ ‖u‖
}
,

and thus to demonstrate the existence of an adversarial example near x for a function f , it suffices to

show the smoothness property:

for all v ∈ R
d with ‖v‖ ! |f(x)|/‖∇f(x)‖, ‖∇f(x)−∇f(x+ v)‖ ≪ ‖∇f(x)‖. (1)

We show that for a deep ReLU network with random parameters and a high-dimensional input vector

x, there is a relatively large ball around x where the function computed by the network is very likely

to satisfy this smoothness property. Thus, adversarial examples arise in deep ReLU networks with

random weights because the functions that they compute are very close to linear in this sense.

It is important to notice that ReLU networks are not smooth in a classical sense, because the

nondifferentiability of the ReLU nonlinearity implies that the gradient can change abruptly. But for

the smoothness condition (1), it suffices to have ‖∇f(x)−∇f(x+ v)‖ ≤ ǫ + φ(‖v‖), for some

increasing function φ : R+ → R+, provided that ǫ+ φ(‖v‖) ≪ ‖∇f(x)‖. We prove an inequality

like this for ReLU networks, where the ǫ term decreases with width.

Consider a network with input dimension d, ℓ+1 layers, a single real output, and complete connections

between layers. Let d1, . . . , dℓ denote the dimensions of the layers. The network has independent

random weight matrices Wi ∈ R
di×di−1 for i ∈ [ℓ + 1], where we set d0 = d and dℓ+1 = 1. For

input x ∈ R
d, the network output is defined as follows:

f(x) = Wℓ+1 · σ(Wℓ · σ(Wℓ−1 · σ(· · ·σ(W1 · x) · · ·))) where σ(x)i = max{xi, 0}
Wℓ+1 ∼ N (0, I/dℓ) and ∀i ∈ [ℓ], (Wi)j,k

i.i.d
∼ N (0, 1/di−1). (NN-DEF)

Note that the scale of the parameters is chosen so that all the real-valued signals that appear throughout

the network have roughly the same scale. This is only for convenience: because the ReLU is positively

homogeneous (that is, for α > 0, σ(αx) = ασ(x)), the scaling is not important for our results; the

1/di−1 in (NN-DEF) could be replaced by any constant without affecting the ratio between the norm

of an input vector and that of a perturbation required to change the sign of the corresponding output.

The following theorem is the main result of the paper.

Theorem 1.1. Fix ℓ ∈ N. There are constants c1, c2, c3 that depend on ℓ for which the following

holds. Fix δ ∈ (0, 1) and let f(·) be an (ℓ + 1)-layer ReLU neural network defined by (NN-DEF)

with input dimension d and intermediate layers of width {di}ℓi=1. Suppose that the widths satisfy

dmin ≥ c1(log dmax)
c2 log 1/δ where dmin = min

{
{di}ℓi=1, d

}
, dmax = max

{
{di}ℓi=1, d

}
.

Then for any fixed input x != 0, with probability at least 1− δ,

|f(x+ η∇f(x))| ≥ |f(x)| and sign(f(x+ η∇f(x))) != f(x),

for an η satisfying

‖η∇f(x)‖
‖x‖ ≤ c3

√
log 1/δ

d
.

It suffices to choose c1 = (C1ℓ)
c2 , c2 = C2ℓ, c3 = Cℓ

3, for some absolute constants C1, C2, C3.

This theorem concerns networks of fixed depth, and the constants in the size of the perturbation and

in the requirement on the network width are larger for deeper networks. We also prove a converse

result that illustrates the need for some constraint on the depth. Theorem 3.1 shows that when the

depth is allowed to grow polynomially in the input dimension d, the function computed by a random

ReLU network is essentially constant, which rules out the possibility of adversarial examples.

The heart of the proof of Theorem 1.1 is to show a smoothness property like (1). It exploits a

decomposition of the change of gradient between two input vectors. Define Hi : Rd → R
di×di

2

as Hi(x)jk = 1{j = k, vi(x)j ≥ 0} with vi(x) = Wiσ(· · ·σ(W1x)). For two input vectors

x, y ∈ R
d, we will see in Section 2.4 that we can decompose the change of gradient as

∇f(x)−∇f(y) =

ℓ∑

j=1

Wℓ+1

(
j+1∏

i=ℓ

Hi(x)Wi

)
· (Hj(x)−Hj(y))Wj ·




1∏

i=j−1

Hi(y)Wi


 .

(Here and elsewhere, indices of products of matrices run backwards, so
∏k

i=j Mi = I when j < k.)

For the jth term in the decomposition, we need to control the scale of: the gradient of the mapping

from the input to the output of layer j, the change in the layer j nonlinearity Hj(x)−Hj(y), and the

gradient from layer j to the output. It turns out that controlling these quantities depends crucially

on the width of the narrowest layer before layer j—we call this the bottleneck layer for layer j.

This width determines the dimension of the image at layer j of a ball in the input space. In proving

bounds on gradients and function values that hold uniformly over pairs of nearby vectors x and y,

this dimension—the width of the bottleneck layer—dictates the size of a discretization (an ǫ-net)

that is a crucial ingredient in the proof of these uniform properties. Our analysis involves working

separately with the segments between these bottleneck layers. We show that for an input x ∈ R
d

satisfying ‖x‖ =
√
d and any y in a ball around x, with high probability ‖∇f(x)−∇f(y)‖ = o(1),

but |f(x)| is no more than a constant and ‖∇f(x)‖ is at least a constant. This implies the existence

of a small (o(‖x‖)) perturbation of x in the direction −f(x)∇f(x) that flips the sign of f(x).

These results suggest several interesting directions for future work. First, our results show that

for high-dimensional inputs, adversarial examples are inevitable in random ReLU networks with

constant depth, and unlikely in networks with polynomial depth. Beyond this, we do not know

how the sensitivity to input perturbations decreases with depth. Similarly, both results are restricted

to networks with subexponential width, and it is not clear what happens for very wide networks.

Finally, we show that networks with random weights suffer from adversarial examples because their

behavior is very similar to that of random linear functions. It would be worthwhile to determine

whether randomly initialized trained networks retain this nearly linear behavior, and hence suffer

from adversarial examples for the same reason.

Related Work: Related theoretical work include the recent result of Bubeck and Sellke [BS21]

who, following up on Bubeck, Li and Nagaraj [BLN21], show that only mildly over-parameterized

networks when trained on random data have large Lipschitz constants. While these results apply to a

broader class of networks including those potentially trained on data, this weaker property on its own

does not suffice to explain the prevalence of adversarial examples and computational ease of finding

them. Indeed, establishing this fact requires understanding the behavior of the local landscape of the

function computed by the network which these approaches do not capture.

Closely related empirical works include work by Madry, Makelov, Schmidt, Tsipras and Vladu

[MMS+18] and by Qin, Martens, Gowal, Krishnan, Dvijotham, Fawzi, De, Stanforth and Kohli

[QMG+19]. We note that both these works emphasize the importance of the interplay between the

local behavior of the function and the existence of adversarial perturbations. [MMS+18] identify local

near-linearity as a cause of adversarial examples and propose a robust training procedure attempting

to eliminate this property. On the other hand, [QMG+19] suggest an alternative robust training

procedure that retains local near-linearity but eliminates adversarial examples by ensuring that the

learnt network (despite being locally linear) is robust to single-step perturbations. Our work lends

theoretical grounding to this phenomenon showing that local linearity arises naturally at initialization.

2 Proof of Main Theorem

In this section, we provide an outline of the proof of Theorem 1.1. As described above, we will prove

our result first by showing that the gradient at x has large norm and changes negligibly in a large ball

around x. The first condition is established in Subsection 2.1. The second step is more intricate. First,

we prove the decomposition of the gradient differences in Subsection 2.2. Then, in Subsection 2.3, we

track the scale of the ball around x as it propagates through the network. Finally, in Subsection 2.4,

3

we use this result to bound the terms in the decomposition of the gradient differences to show that

our network is locally linear. For the rest of the proof, unless otherwise stated, we consider a fixed

x ∈ R
d, and we assume:

dmin ≥ (Cℓ log dmax)
240ℓ log 1/δ, ‖x‖ =

√
d and R :=

√
dmin

(ℓ log dmax)80ℓ
= Ω

(
(ℓ log dmax)

40ℓ
)
.

Additionally, we randomize the activations of neurons whenever they receive an input of 0. This

does not change the behavior of the neural network in terms of its output or the images of the input

through the layers of the network but greatly simplifies our proof. For x ∈ R
d, we let:

x0 := x, f̃i(x) := Wifi−1(x), (Di(y))j,k =





1 w.p 1
2 if j = k, yj = 0,

1 if j = k, yj > 0,

0 otherwise,

fi(x) = Di(f̃i(x))f̃i(x).

Our first key observation is that the randomization in the activation units allows us the following

distributional equivalences, proved in Appendix A.1.

Lemma 2.1. Let m ∈ N, {di}mi=0 ⊂ R
d and Wi ∈ R

di×di−1 be distributed such that each entry of

Wi is drawn iid from any symmetric distribution. Then, defining for x ∈ R
d0 :

h0(x) = x,

h̃i(x) = Wihi−1(x)

hi(x) = Di(h̃i(x))h̃i(x)

where (Di(y))i,j =





1, if j = k and yj > 0

1, with probability 1
2 if j = k, yj = 0

0, otherwise

we have the distributional equivalences for any x != 0 and fixed diagonal matrices B1, . . . , Bm:

Wm

1∏

j=m−1

(Dj(h̃j(x)) +Bj)Wj
d
= Wm

1∏

j=m−1

(Dj +Bj)Wj

∥∥∥∥∥∥

1∏

j=m

(Dj(h̃j(x)) +Bj)Wj

∥∥∥∥∥∥
d
=

∥∥∥∥∥∥

1∏

j=m

(Dj +Bj)Wj

∥∥∥∥∥∥

where (Dj)k,l =

{
1, with probability 1/2 if k = l

0, otherwise

2.1 Concentration of Function Value and Gradient at a Fixed Point

We first present a simple lemma that shows that the gradient at x is at least a constant and that its

output value is bounded. The proof gives an illustration of how Lemma 2.1 will be used through the

more involved proofs in the paper.

Lemma 2.2. For some universal constant c, with probability at least 1− δ we have:

|f(x)| ≤ c2ℓ
√
log 1/δ and ‖∇f(x)‖ ≥ 1

2ℓ+1
.

Proof. Note that

∇f(x) = Wℓ+1

1∏

i=ℓ

Di(f̃i(x))Wi and f(x) = ∇f(x)x.

And we have from Lemma 2.1, ∇f(x)
d
= W̃ℓ+1

∏1
i=ℓ DiW̃i, where

(Di)j,k =

{
1 with probability 1/2 if j = k,

0 otherwise,
{Wi}ℓ+1

i=1
d
= {W̃i}ℓ+1

i=1 .

Therefore, it suffices to analyze the random vector W̃ℓ+1

∏1
i=ℓ DiW̃i. We first condition on a

favorable event for the Di. Note that we have by the union bound and an application of Hoeffding’s

inequality (e.g., [BLM13, Theorem 2.8]) that:

∀i ∈ [ℓ] : TrDi ≥
di
3

with probability at least 1− δ/4,

4

since di ≥ c log(4ℓ/δ). We now condition on the Di and note that:∥∥∥∥∥W̃ℓ+1

1∏

i=ℓ

DiW̃i

∥∥∥∥∥
d
=

∥∥∥∥∥W
†
ℓ+1

1∏

i=ℓ

W †
i

∥∥∥∥∥ where

∀i ∈ {2, . . . , ℓ} : W †
i ∈ R

TrDi×TrDi−1 , W †
ℓ+1 ∈ R

1×TrDℓ , W †
1 ∈ R

TrD1×d

(W †
1)j,: ∼ N (0, I/d), W †

ℓ+1 ∼ N (0, I/dℓ), ∀i ∈ {2, . . . , ℓ+ 1} : (W †
i)j,: ∼ N (0, I/di−1) .

From the above display, we obtain from Theorem C.3 and its corollary C.4,∥∥∥∥∥W
†
ℓ+1

1∏

i=ℓ

W †
i

∥∥∥∥∥ ≥ 1

2
·
∥∥∥∥∥W

†
ℓ+1

2∏

i=ℓ

W †
i

∥∥∥∥∥ with probability at least 1− δ/(4ℓ)

≥ 1

2ℓ+1
with probability at least 1− δ/4 by induction,

since min0≤i≤ℓ di ≥ c log(4ℓ/δ). Through a similar argument, we obtain:
∥∥∥∥∥W̃ℓ+1

1∏

i=ℓ

DiW̃i

∥∥∥∥∥ ≤ 2ℓ+1 (2)

with probability at least 1− δ/4. We also have:
(
W̃ℓ+1

1∏

i=ℓ

DiW̃i

∣∣∣∣∣

∥∥∥∥∥W̃ℓ+1

1∏

i=ℓ

DiW̃i

∥∥∥∥∥ = m

)
d
= Unif

(
mS

d−1
)
.

Combining this, Eq. (2) and Lemma C.6, we get that:

|f(x)| ≤ c2ℓ
√
log 1/δ

with probability at least 1− δ/2, for some absolute constant c. A union bound over all the preceeding

events concludes the lemma.

2.2 A Decomposition of Local Gradient Changes

The following decomposition allows us to reason about deviations layer by layer:

∇f(x)−∇f(y) = Wℓ+1

(
1∏

i=ℓ

Di(f̃i(x))Wi −
1∏

i=ℓ

Di(f̃i(y))Wi

)

= Wℓ+1

(
1∏

i=ℓ

Di(f̃i(x))Wi −
(
Dℓ(f̃ℓ(x)) + (Dℓ(f̃ℓ(y))−Dℓ(f̃ℓ(x)))

)
Wℓ

1∏

i=ℓ−1

Di(f̃i(y))Wi

)

= Wℓ+1

(
Dℓ(f̃ℓ(x))Wℓ

(
1∏

i=ℓ−1

Di(f̃i(x))Wi −
1∏

i=ℓ−1

Di(f̃i(y))Wi

)

+ (Dℓ(f̃ℓ(x))−Dℓ(f̃ℓ(y)))Wℓ

1∏

i=ℓ−1

Di(f̃i(y))Wi

)

=

ℓ∑

j=1

Wℓ+1

(
j+1∏

i=ℓ

Di(f̃i(x))Wi

)
· (Dj(f̃j(x))−Dj(f̃j(y)))Wj ·




1∏

i=j−1

Di(f̃i(y))Wi




︸ ︷︷ ︸
∆j

.

(GD-DECOMP)

We use this decomposition to show that the gradient is locally constant. Concretely, consider a fixed

term in the above decomposition and let i∗ = argmini<j di. Letting Mi∗ =
∏1

i=i∗ Di(f̃i(y))Wi,

we can bound a single term, ∆j , as follows:

‖∆j‖ ≤

∥∥∥∥∥∥
Wℓ+1

(
j+1∏

i=ℓ

Di(f̃i(x))Wi

)
(Dj(f̃j(x))−Dj(f̃j(y)))Wj




i∗+1∏

i=j−1

Di(f̃i(y))Wi



∥∥∥∥∥∥
‖Mi∗‖.

5

We bound the above by bounding both of the two factors on the right-hand-side. In the above

expression, the length of ∆j is bounded by a product of the length of the corresponding factor in a

truncated network starting at the output of layer i∗ and a product of masked weight matrices up to

layer i∗ corresponding to the activation patterns of y. Intuitively, the first factor is expected to be

small if the images of x and y at layer i∗ are close and hence, we show that an image of a suitably

small ball around x remains close to the image of x through all the layers of the network (Lemma 2.3).

We then prove a spectral norm bound on Mi∗ in Lemma 2.6 and finally, establish a bound on ‖∆j‖
in Lemma 2.8 where we crucially rely on the scale preservation guarantees provided by Lemma 2.3.

Finally, combining these results with those of Subsection 2.1 completes the proof of Theorem 1.1.

2.3 Scale Preservation of Local Neighborhoods

In this section, we show that the image of a ball around x remains in a ball of suitable radius around

the image of x projected through the various layers of the network. Here, we introduce additional

notation used in the rest of the proof:

∀j ∈ {0} ∪ [ℓ+ 1] : fj,j(x) = x, ∀i > j : f̃i,j(x) = Wifi−1,j(x), fi,j(x) = Di(f̃i,j(x))f̃i,j(x).

We now describe the decomposition of the neural network into segments, which are bounded by what

we call bottleneck layers, and our analysis works separately with these segments. This decomposition

is crucial for reducing the sizes of the ǫ-nets that arise in our proofs. Intuitively, when we construct

an ǫ-net to prove that some property holds uniformly over a ball, it is crucial to work with the lowest-

dimensional image of that ball, which appears in a bottleneck layer. These bottleneck layers are

denoted by indices {ij}mj=1, defined recursively from the output layer backwards with the convention

that d0 = d:

i1 := argmin
i≤ℓ

di, ∀j > 1 s.t ij ≥ 1, ij+1 := argmin
j<ij

dj , dimin = min
j<i

dj . (NN-DECOMP)

Note, that im = 0, for all j ∈ [m− 1], dij < dij+1
and for all k ∈ {ij+1, . . . , ij − 1}, dk ≥ dij+1

.

The following technical lemma bounds the scaling of the images at a layer in the network of an input

x and of a ball around x. The crucial properties we will exploit are that these images avoid the origin,

and that the radius of the image of the ball is not too large. The full proof is deferred to Appendix A.2.

In the proof sketch, we carry out the section of the proof where we transition between bottleneck

layers in full as it is a simple illustration of how such ideas are used through the rest of the proof.

Lemma 2.3. We have with probability at least 1− δ,

∀i ∈ [ℓ] : ‖fi(x)‖ ≥ 1

2i
·
√
di,

∀‖x′ − x‖ ≤ R : ‖f̃i(x)− f̃i(x
′)‖ ≤ (C log dmax)

i/2 ·
(
1 +

√
di

dimin

)
·R,

∀‖x′ − x‖ ≤ R : ‖fi(x)− fi(x
′)‖ ≤ (C log dmax)

i/2 ·
(
1 +

√
di

dimin

)
·R.

Proof Sketch. The proof of the first claim is nearly identical to that of Lemma 2.2.

For the second claim, we use a gridding argument with some subtleties. Concretely, we construct a

new grid over the image of B(x,R) whenever the number of units in a hidden layer drops below all

the previous layers in the network starting from the input layer. These layers are precisely defined by

the indices ij in NN-DECOMP. We now establish the following claim inductively where we adopt

the convention i0 = ℓ+ 1.

Claim 2.4. Suppose for j ≥ 1 and R̃ ≤ dmax ·R:

∀y ∈ B(x,R) : ‖fij (x)− fij (y)‖ ≤ R̃.

6

Then:

∀i ∈ {ij + 1, . . . , ij−1 − 1}, y ∈ B(x,R) : ‖f̃i(x)− f̃i(y)‖ ≤ (Cℓ log dmax)
(i−ij)/2 ·

√
di
dij

· R̃,

∀y ∈ B(x,R) : ‖f̃ij−1
(x)− f̃ij−1

(y)‖· ≤ (Cℓ log dmax)
(ij−1−ij)/2 · R̃

with probability at least 1− δ/8l.

Proof Sketch. We start by constructing an ε-net [Ver18, Definition 4.2.1], G, of fij (B(x,R)) with

ε = 1/(dℓmax)
32. Note that we may assume |G| ≤ (10R̃/ε)dij . We will prove the statement on the

grid and extend to the rest of the space. For layer i+ 1, defining x̃ = fij (x), we have ∀ỹ ∈ G:

‖f̃i+1,ij (x̃)− f̃i+1,ij (ỹ)‖ = ‖Wi+1(fi,ij (x̃)− fi,ij (ỹ))‖

≤ ‖fi,ij (x̃)− fi,ij (ỹ)‖ ·
√

di+1

di
·
(
1 +

√
log 1/δ′

di+1

)

with probability at least 1− δ′ as before by Theorem C.3. By setting δ′ = δ/(16|G|ℓ2) and noting

that di ≥ dij , the conclusion holds for layer i+ 1 ≤ ij on G with probability at least 1− δ/(16ℓ2).
By induction and the union bound, we get:

∀i ∈ {ij + 1, . . . , ij−1 − 1}, ỹ ∈ G : ‖f̃i,ij (ỹ)− f̃i,ij (x̃)‖ ≤ (Cℓ log dmax)
(i−ij)/2 ·

√
di
dij

· R̃

∀ỹ ∈ G : ‖f̃ij−1,ij (ỹ)− f̃ij−1,ij (x̃)‖ ≤ (Cℓ log dmax)
(ij−1−ij)/2 · R̃

with probability at least 1 − δ/(16ℓ2). To extend to all y ∈ fij (B(x,R)), we condition on the

bound on ‖Wi‖ given by Lemma C.1 for all i ≤ ij−1 and note that ∀y ∈ fij (B(x,R)), for

ỹ = argminz∈G‖z − y‖, and for ij + 1 ≤ i < ij−1,

‖f̃i,ij (x̃)− f̃i,ij (y)‖ ≤ ‖f̃i,ij (x̃)− f̃i,ij (ỹ)‖+ ‖f̃i,ij (y)− f̃i,ij (ỹ)‖

≤ ‖f̃i,ij (x̃)− f̃i,ij (ỹ)‖+ ‖y − ỹ‖
i∏

k=ij+1

‖Wk‖

≤ ‖f̃i,ij (x̃)− f̃i,ij (ỹ)‖+ ε

i∏

k=ij+1

(
C

√
dk

dk−1

)

= ‖f̃i,ij (x̃)− f̃i,ij (ỹ)‖+ εCi−ij

√
di
dij

,

using that di ≥ dij . Similarly, for i = ij−1, we have

‖f̃ij−1,ij (x̃)− f̃ij−1,ij (y)‖ ≤ ‖f̃ij−1,ij (x̃)− f̃ij−1,ij (ỹ)‖+ εCij−1−ij

√
dij−1−1

dij
.

Our setting of ε concludes the proof of the claim.

An inductive application of Claim 2.4, a union bound and the observation that:

‖fi(x)− fi(y)‖ ≤ ‖f̃i(x)− f̃i(y)‖
concludes the proof of the lemma.

The following lemma shows that few neurons have inputs of small magnitude for network input x.

Lemma 2.5. With probability at least 1− δ, for all i ∈ [ℓ], we have:

#

{
j : |〈(Wi+1)j , fi(x)〉| ≥ αi

‖fi(x)‖√
di

}
≥

(
1− 2

√
2

π
αi

)
di+1.

Proof. Follows from the fact that Pr(|Z| ≤ c) ≤ c
√
2/π for Z ∼ N(0, 1), plus a simple application

of Hoeffding’s Inequality.

7

2.4 Proving Local Gradient Smoothness

In this section, we show that the gradient is locally constant, and thus complete the proof of Theo-

rem 1.1. In our proof, we will bound each of the terms in the expansion of the gradient differences

(GD-DECOMP). First, we prove a structural lemma on the spectral norm of the matrices appearing

in the right-hand-side of (GD-DECOMP), allowing us to ignore the portion of the network till the

last-encountered bottleneck layer. Define, for all i > j, Mi,j(y) =
∏j+1

k=i Dk(f̃k(y))Wk.

Lemma 2.6. With probability at least 1− δ over the {Wk}, we have:

∀‖y−x‖ ≤ R, j ∈ [m−1] : P{D1(·),...,Dℓ(·)}

{∥∥Mij ,ij+1
(y)

∥∥ ≤ (C · ℓ · log dmax)
(ij−ij+1)/2

}
= 1,

where the probability is taken with respect to the random choices in the definition of the Dk(·).

We provide the first part of the proof in full as the simplest application of ideas that find further appli-

cation in the subsequent result establishing bounds on terms in (GD-DECOMP); see Appendix A.3.

Proof Sketch. To start, consider a fixed j ∈ [m] and condition on the conclusion of Lemma 2.3 up to

level ij+1. Now, consider an ε-net of fij+1
(B(x,R)), G, with resolution ε = 1/(dℓmax)

32. As before,

|G| ≤ (Cdmax)
48ℓdij+1 for some constant C. We additionally will consider subsets

S =
{
(Sk)

ij+1+1
k=ij−1 : Sk ⊆ [dk], |Sk| ≤ 4dij+1

}
.

Note that |G| · |S|2 ≤ (dmax)
64ldij+1 . For y ∈ G, S1, S2 ∈ S , consider the following matrix:

M
ij ,ij+1

y,S1,S2 =

ij+1+1∏

k=ij

(Dk(f̃k,ij+1
(y)))+(DS1

k
−DS2

k
))Wk where (DS)i,j =

{
1, if i = j and i ∈ S,

0, otherwise.

We will bound the spectral norm of M
ij ,ij+1

y,S1,S2 . First, note that:

∥∥∥M ij ,ij+1

y,S1,S2

∥∥∥ ≤ 2
∥∥∥M̃ ij ,ij+1

y,S1,S2

∥∥∥ where M̃
ij ,ij+1

y,S1,S2 := Wij

ij+1+1∏

k=ij−1

(Dk(f̃k,ij+1
(y)) + (DS1

k
−DS2

k
))Wk

and observe that from Lemma 2.1:

M̃
ij ,ij+1

y,S1,S2

d
= Wij

ij+1+1∏

k=ij−1

(Dk + (DS1
k
−DS2

k
))Wk) where (Dk)i,j =

{
1 w.p 1

2 if i = j,

0 otherwise.

To bound the spectral norm, let B be a 1/3-net of S
dij

−1
and v ∈ B. Applying Theorem C.3,

∥∥∥v⊤M̃ ij ,ij+1

y,S1,S2

∥∥∥ ≤

∥∥∥∥∥∥
v⊤Wij

ij+1+2∏

k=ij−1

(Dk + (DS1
k
−DS2

k
))Wk)

∥∥∥∥∥∥
·
(
1 +

√
log 1/δ′

dij+1

)

≤
ij+1∏

k=ij


1 +

√
log 1/δ′

dk




with probability at least ℓδ′. But setting δ′ = δ/(16ℓ4 · |G| · |S|2) yields with probability at least

1− δ/16:

∀y ∈ G, S1, S2 ∈ S :
∥∥∥M̃ ij ,ij+1

y,S1,S2

∥∥∥ ≤ (C · ℓ · log dmax)
(ij−ij+1)/2.

On the event in the conclusion of Lemma 2.3, we have that fi(y) != 0 for all i ∈ [ℓ], y ∈ G and

therefore, we have by a union bound over the discrete set G:

∀y ∈ G, k ∈ {ij+1, . . . , ij} ,m ∈ [dk] : (f̃k,ij (y))m != 0

proving the lemma for y ∈ G as the activations are deterministic. For y /∈ G, the following claim

concludes the proof of the lemma. The claim is essentially a generalization of [BCGdC21, Eq. (18)]

and its proof is deferred to the appendix.

8

Claim 2.7. With probability at least 1−δ′/ℓ2 over the {Wk}, we have for all m ∈ {ij+1+1, . . . , ij}
and y ∈ fij+1

(B(x,R)):

P{Dk(f̃k,ij+1
(y)),Dk(f̃k,ij+1

(ỹ))}
{
Tr|Dm(f̃m,ij+1

(y))−Dm(f̃m,ij+1
(ỹ))| ≤ 4dij+1

}
= 1

where ỹ = argminz∈G‖z − y‖, and the probability is taken with respect to the random choices in

the definition of the Dk(·).

The previous claim along with our previously established bounds establish the lemma.

Our final technical result establishes the near-linearity of f in a ball around x. The full proof is

deferred to Appendix A.4 but in our proof sketch we identify sections which involve considerations

unique to this lemma.

Lemma 2.8. For some absolute constant C, with probability at least 1− δ over the {Wk}:

∀‖x− y‖ ≤ R, j ∈ [ℓ] : P{Dk(f̃k(x)),Dk(f̃k(y))}
{
‖∇f(x)−∇f(y)‖ ≤

(
Cℓ

logℓ dmax

)}
= 1,

where the probability is taken with respect to the random choices in the definition of the Dk(·).

Proof Sketch. Consider a fixed term from (GD-DECOMP); that is, consider:

Diffj(y) := Wℓ+1

(
j+1∏

i=ℓ

Di(f̃i(x))Wi

)
· (Dj(f̃j(y))−Dj(f̃j(x)))Wj ·




1∏

i=j−1

Di(f̃i(y))Wi


 .

We will show with high probability that Diffj(y) is small for all y ∈ B(x,R). This will then imply

the lemma by a union bound and (GD-DECOMP). Let k be such that ik = argminm<j dm. We will

condition on the weights of the network up to layer ik. Specifically, we will assume the conclusions

of Lemmas 2.3 and 2.6 up to layer ik. We may now focus our attention solely on the segment of the

network beyond layer ik as a consequence of the following observation and Lemma 2.6:

‖Diffj(y)‖ ≤ ‖Diffj,k(x, y)‖ · ‖Mik,0(y)‖ where (3)

Diffj,k(x, y) := Wℓ+1

(
j+1∏

i=ℓ

Di(f̃i(x))Wi

)
(Dj(f̃j(y))−Dj(f̃j(x)))Wj




ik+1∏

i=j−1

Di(f̃i(y))Wi




We will show for all y such that ‖y − x‖ ≤ R:

P{Dm(f̃m(x)),Dm(f̃m(y))}
{
‖Diffj,k(x, y)‖ ≥ Cℓ

(ℓ log dmax)3ℓ

}
= 0

with probability at least 1− δ/(16ℓ2).

We have from Lemma 2.1 that the random vector H defined below is spherically symmetric and

satisfies ‖H‖ ≤ 2ℓ with probability at least 1− δ/(16ℓ4):

Wℓ+1

j+1∏

i=ℓ

Di(f̃i(x))Wi
d
= W̃ℓ+1

j+1∏

i=ℓ

DiW̃i =: H.

As in the proof of Lemma 2.6, let G be an ε-net of fik(B(x,R)) with ε as in the proof of Lemma 2.6.

We now break into two cases depending on how dj compares to dik and handle them separately. At

this point, we have effectively reduced the multi-layer proof to the problem of analyzing deviations

of activations at a fixed layer. For the remaining proof, we generalize approaches in [DS20] for the

small width case and [BCGdC21] for the large width case.

Case 1: dj ≤ dik(ℓ log dmax)
20ℓ. In this case, the key observation already made in [DS20]

is that under Lemma 2.3, the number of neurons that may actually differ at layer j is at

most dj/poly(ℓ log dmax)
ℓ between y ∈ B(x,R) and x. Since, H is spherically distributed,

‖H(Dj(f̃j(x))−Dj(f̃j(y)))‖ is very small and consequently the whole term is small.

9

Case 2: dj ≥ dik(ℓ log dmax)
20ℓ. This case is analogous to [BCGdC21]. The proof is technically

involved and requires careful analysis of the random vector H(Dj(f̃j(x))−Dj(f̃j(y)))Wj , which

is complicated in our setting due to the matrices preceeding it in (GD-DECOMP). It involves the

distributional equivalence in Lemma 2.1.

A union bound and an application of the triangle inequality now imply the lemma.

Proof of Theorem 1.1. On the intersection of the events in the conclusions of Lemmas 2.2, 2.3

and 2.8, we have that ∇f(x) is deterministic and furthermore, we have:

‖∇f(x)‖ ≥ 1

2ℓ+1
, |f(x)| ≤ c2ℓ

√
log 1/δ

∀y s.t ‖y − x‖ ≤ R : ‖∇f(x)−∇f(y)‖ ≤ 1

(ℓ log dmax)ℓ
= o(1).

Assume f(x) > 0 (the alternative is similar) and let η = − 2ℓ log d·
√

log 1/δ

‖∇f(x)‖2 , we have for the point

x+ η∇f(x), defining the function g(t) = f(x+ tη∇f(x)):

f(x+ η∇f(x)) = f(x) +

∫ 1

0

g′(t)dt = f(x) +

∫ 1

0

(η∇f(x))⊤∇f(x+ tη∇f(x))dt

= f(x)− (1− o(1))2ℓ log d
√
log 1/δ ≤ −f(x).

Our lower bounds on ∇f(x) ensure ‖η∇f(x)‖ ≤ R, concluding the proof of the theorem.

3 The Impact of Depth

Theorem 1.1 relies on the depth being constant. In this section, we show that some constraint on

the depth is necessary in order to ensure the existence of adversarial examples. In particular, the

following result gives an example of a sufficiently deep network for which, with high probability, the

output of the network will have the same sign for all input patterns.

Theorem 3.1. Fix a sufficiently large d ∈ N, an ℓ ≥ d3 and (ℓd)20 ≤ k ≤ exp(
√
ℓ), and consider

the randomly initialized neural network (NN-DEF) with d1 = · · · = dℓ = k. There is a universal

constant C such that with probability at least 0.9,

∀x, y ∈ S
d−1 :

|f(x)− f(y)|
|f(x)| ≤ C

√
log d

d
.

The proof involves showing that the image of Sd−1 is bounded away from 0, and that the inner

products between images of two input vectors throughout the network converge. The following

lemma shows how the expected inner products evolve through the network. The lemma follows from

computing a double integral; see [CS09, Eq. (6)]. The proof of Theorem 3.1 is in Appendix B.

Lemma 3.2. Let d ∈ N. Fix x, y ∈ R
d with x, y != 0. Then for g ∼ N (0, I):

E
[
max

{
g⊤x, 0

}
max

{
g⊤y, 0

}]
√
E(max {g⊤x, 0})2 · E(max {g⊤y, 0})2

=
sin θ

π
+

(
1− θ

π

)
cos θ

where θ = arccos(x⊤y/(‖x‖‖y‖)).

4 Disclosure of Funding and Competing Interests

PB and YC gratefully acknowledge the support of the NSF through grants DMS-2023505 and DMS-

2031883, the Simons Foundation through award #814639, and Microsoft through the BAIR Open

Research Commons. We declare no competing interests.

10

References

[BCGdC21] Sébastien Bubeck, Yeshwanth Cherapanamjeri, Gauthier Gidel, and Rémi Tachet des

Combes. A single gradient step finds adversarial examples on random two-layers neural

networks. arXiv, 2104.03863, 2021. 1, 8, 9, 10

[BLM13] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities.

Oxford University Press, Oxford, 2013. 4, 27

[BLN21] Sébastien Bubeck, Yuanzhi Li, and Dheeraj M. Nagaraj. A law of robustness for two-

layers neural networks. In Mikhail Belkin and Samory Kpotufe, editors, Conference on

Learning Theory, COLT 2021, 15-19 August 2021, Boulder, Colorado, USA, volume

134 of Proceedings of Machine Learning Research, pages 804–820. PMLR, 2021. 3

[BLPR19] Sebastien Bubeck, Yin Tat Lee, Eric Price, and Ilya Razenshteyn. Adversarial examples

from computational constraints. In Kamalika Chaudhuri and Ruslan Salakhutdinov,

editors, Proceedings of the 36th International Conference on Machine Learning, vol-

ume 97 of Proceedings of Machine Learning Research, pages 831–840. PMLR, 2019.

1

[BS21] Sébastien Bubeck and Mark Sellke. A universal law of robustness via isoperimetry.

CoRR, abs/2105.12806, 2021. 3

[CS09] Youngmin Cho and Lawrence Saul. Kernel methods for deep learning. In Y. Bengio,

D. Schuurmans, J. Lafferty, C. Williams, and A. Culotta, editors, Advances in Neural

Information Processing Systems, volume 22. Curran Associates, Inc., 2009. 10

[CW17a] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural

networks. In 2017 IEEE Symposium on Security and Privacy (SP), pages 39–57, 2017.

1

[CW17b] Nicholas Carlini and David A. Wagner. Adversarial examples are not easily detected:

Bypassing ten detection methods. In Bhavani M. Thuraisingham, Battista Biggio,

David Mandell Freeman, Brad Miller, and Arunesh Sinha, editors, Proceedings of the

10th ACM Workshop on Artificial Intelligence and Security, AISec@CCS 2017, Dallas,

TX, USA, November 3, 2017, pages 3–14. ACM, 2017. 1

[DS20] Amit Daniely and Hadas Shacham. Most ReLU networks suffer from ℓ2 adversarial

perturbations. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin,

editors, Advances in Neural Information Processing Systems, volume 33, pages 6629–

6636. Curran Associates, Inc., 2020. 1, 9

[FCSG17] Reuben Feinman, Ryan R. Curtin, Saurabh Shintre, and Andrew B. Gardner. Detecting

adversarial samples from artifacts. arXiv, 1703.00410, 2017. 1

[GSS15] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing

adversarial examples. In Yoshua Bengio and Yann LeCun, editors, 3rd International

Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,

2015, Conference Track Proceedings, 2015. 1

[MMS+18] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian

Vladu. Towards deep learning models resistant to adversarial attacks. In International

Conference on Learning Representations, 2018. 1, 3

[QMG+19] Chongli Qin, James Martens, Sven Gowal, Dilip Krishnan, Krishnamurthy Dvijotham,

Alhussein Fawzi, Soham De, Robert Stanforth, and Pushmeet Kohli. Adversarial

robustness through local linearization. In H. Wallach, H. Larochelle, A. Beygelzimer,

F. d’Alché Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information

Processing Systems, volume 32. Curran Associates, Inc., 2019. 1, 3

11

[SSRD19] Adi Shamir, Itay Safran, Eyal Ronen, and Orr Dunkelman. A simple explanation for

the existence of adversarial examples with small hamming distance. arXiv, 1901.10861,

2019. 1

[SZS+14] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian

Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In International

Conference on Learning Representations, 2014. 1

[Ver18] Roman Vershynin. High-dimensional probability, volume 47 of Cambridge Series in

Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge,

2018. 7, 14, 22

12

