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Abstract

Benign overfitting, the phenomenon where interpolating models generalize well in the presence of
noisy data, was first observed in neural network models trained with gradient descent. To better un-
derstand this empirical observation, we consider the generalization error of two-layer neural networks
trained to interpolation by gradient descent on the logistic loss following random initialization. We as-
sume the data comes from well-separated class-conditional log-concave distributions and allow for a
constant fraction of the training labels to be corrupted by an adversary. We show that in this setting,
neural networks exhibit benign overfitting: they can be driven to zero training error, perfectly fitting any
noisy training labels, and simultaneously achieve test error close to the Bayes-optimal error. In contrast
to previous work on benign overfitting that require linear or kernel-based predictors, our analysis holds
in a setting where both the model and learning dynamics are fundamentally nonlinear.

1 Introduction

Trained neural networks have been shown to generalize well to unseen data even when trained to inter-
polation (that is, vanishingly small training loss) on training data with significant label noise [Zha+17;
Bel+19]. This empirical observation is surprising as it appears to violate long standing intuition from sta-
tistical learning theory that the greater the capacity of a model to fit randomly labelled data, the worse the
model’s generalization performance on test data will be. This conflict between theory and practice has led
to a surge of theoretical research into the generalization performance of interpolating statistical models to
see if this ‘benign overfitting’ phenomenon can be observed in simpler settings that are more amenable to
theoretical investigation. We now understand that benign overfitting can occur in many classical statistical
settings, including linear regression [Has+19; Bar+20; Mut+20; NDR20; TB20; CLG20; CLB21], sparse
linear regression [Koe+21; CL21a; LW21; WDY21], logistic regression [Mon+19; CL21b; LS20; Mut+21;
WMT21; MNS21], and kernel-based estimators [BHM 18; MM 19; LR20; LRZ20], among others, and our
understanding of when and why this phenomenon occurs in these settings is rapidly increasing. And yet, for
the class of models from which the initial motivation for understanding benign overfitting arose—trained
neural networks—we understand remarkably little.

In this work, we consider the class of two-layer networks with smoothed leaky RelLU activations trained
on data coming from a high-dimensional linearly separable dataset where a constant fraction of the training



labels can be adversarially corrupted [KSS94]. We demonstrate that networks trained by standard gradient
descent on the logistic loss in this setting exhibit benign overfitting: they can be driven to zero loss, and
thus interpolate the noisy training data, and simultaneously achieve a classification error rate close to the
Bayes-optimal classification error.

Our results follow by showing that the training loss can be driven to zero while the expected normalized
margin for clean data points is large. The key technical ingredient of the proof for both of these claims
is a ‘loss ratio bound’: we show that the gradient descent dynamics ensure that the loss of each example
decreases at roughly the same rate throughout training. This ensures that the noisy points cannot have an
outsized influence on the training dynamics, so that we can have control over the normalized margin for
clean data points throughout training. At a high-level, this is possible because the data is high-dimensional,
which ensures that all data points are roughly mutually orthogonal.

Our results hold for finite width networks, and since the logistic loss is driven to zero, the weights
traverse far from their randomly initialized values. As a consequence, this shows benign overfitting behavior
in trained neural networks beyond the kernel regime [JGH18].

1.1 Related Work

A number of recent works have characterized the generalization performance of interpolating models. Most
related to ours are those in the classification setting. Chatterji and Long [CL21b] study the high-dimensional
sub-Gaussian mixture model setup we consider here, where labels can be corrupted adversarially, and an-
alyze the performance of the maximum margin linear classifier. They do so by utilizing recent works that
show that the weights found by unregularized gradient descent on the logistic loss asymptotically approach
the maximum margin classifier for linearly separable data [Sou+18; JT19]. Our proof techniques can be
viewed as an extension of some of the techniques developed by Chatterji and Long in the logistic regression
setting to two-layer neural networks. Muthukumar et al. [Mut+21] study the behavior of the overparameter-
ized max-margin classifier in a discriminative classification model with label-flipping noise, by connecting
the behavior of the max-margin classifier to the ordinary least squares solution. They show that under cer-
tain conditions, all training data points become support vectors of the maximum margin classifier [see also,
HMX21]. Following this, Wang and Thrampoulidis [WT21] and Cao, Gu, and Belkin [CGB21] analyze the
behavior of the overparameterized max-margin classifier in high dimensional mixture models by exploiting
the connection between the max-margin classifier and the OLS solution. In contrast with these works, we
consider the generalization performance of an interpolating nonlinear neural network.

A key difficulty in establishing benign overfitting guarantees for trained neural networks lies in demon-
strating that the neural network can interpolate the data. Brutzkus et al. [Bru+18] study SGD on two-layer
networks with leaky ReL.U activations and showed that for linearly separable data, stochastic gradient de-
scent on the hinge loss will converge to zero training loss. They provided guarantees for the test error
provided the number of samples is sufficiently large relative to the input dimension and the Bayes error
rate is zero, but left open the question of what happens when there is label noise or when the data is high-
dimensional. Frei, Cao, and Gu [FCG21] show that for linear separable data with labels corrupted by adver-
sarial label noise [KSS94], SGD on the logistic loss of two-layer leaky ReLU networks achieves test error
that is at most a constant multiple of the square root of the noise rate under mild distributional assumptions.
However, their proof technique did not allow for the network to be trained to interpolation. In contrast, we
allow for the network to be trained to arbitrarily small loss and hence interpolate noisy data. In principle,
this could allow for the noisy samples to adversely influence the classifier, but we show this does not happen.

A series of recent works have exploited the connection between overparameterized neural networks
and an infinite width approximation known as the neural tangent kernel (NTK) [JGHI18; ALS19; Zou+19;



Du+19; Aro+19; SJL19]. These works show that for a certain scaling regime of the initialization, learn-
ing rate, and width of the network, neural networks trained by gradient descent behave similarly to their
linearization around random initialization and can be well-approximated by the NTK. The near-linearity
simplifies much of the analysis of neural network optimization and generalization. Indeed, a number of
recent works have characterized settings in which neural networks in the kernel regime can exhibit benign
overfitting [LRZ20; MZ21].

Unfortunately, the kernel approximation fails to meaningfully capture a number of aspects of neural
networks trained in practical settings, such as the ability to learn features [YH21], so that previous kernel-
based approaches for understanding neural networks provide a quite restricted viewpoint for understanding
neural networks in practice. By contrast, in this work, we develop an analysis of benign overfitting in finite
width neural networks trained for many iterations on the logistic loss. We show that gradient descent drives
the logistic loss to zero so that the weights grow to infinity, far from the near-initialization region where
the kernel approximation holds, while the network simultaneously maintains a positive margin on clean
examples. This provides the first guarantee for benign overfitting that does not rely upon an effectively
linear evolution of the parameters.

2 Preliminaries

In this section we introduce the assumptions on the data generation process, the neural network architecture,
and the optimization algorithm we consider.

2.1 Notation

We denote the £2 norm of a vector z € RP by ||z||. For a matrix W € R™*P, we use |W || to denote
its Frobenius norm and ||[WW||2 to denote its spectral norm, and we denote its rows by wq, ..., w,,. For an
integer n, we use the notation [n] to refer to the set [n] = {1,2,...,n}.

2.2 Setting

We shall let C' > 1 denote a positive absolute constant, and our results will hold for all values of C' suf-
ficiently large. We consider a mixture model setting similar to one previously considered by Chatterji and
Long [CL21b], defined in terms of a joint distribution P over (z,y) € RP x {£1}. Samples from this
distribution can have noisy labels, and so we will find it useful to first describe a ‘clean’ distribution P and
then define the true distribution P in terms of P. Samples (x,y) from P are constructed as follows:

1. Sample a clean label § € {£1} uniformly at random, § ~ Uniform({+1, —1}).

2. Sample z ~ P¢ust where

* Poust = Pﬁllgst X -+ X Pg’gst is a product distribution whose marginals are all mean-zero with

sub-Gaussian norm at most one;
* Pgust is @ A-strongly log-concave distribution over R? for some A > 0;!
» for some x > 0, it holds that Ep_ _[||z||?] > kp.

clust [

'That is, z ~ Pyt has a probability density function p, satisfying p.(z) = exp(—U (z)) for some convex function U : R? —
R such that V2U (z) — A1, is positive semidefinite.



3. Generate T = z + ju.

4. Then, given a noise rate n € [0,1/C], P is any distribution over RP x {£1} such that the marginal
distribution of the features for P and P coincide, and the total variation distance between the two
distributions satisfies d-rv(ls, P) <. Equivalently, P has the same marginal distribution over x as P,
but a sample (x,y) ~ P has label equal to § with probability 1 — n(x) and has label equal to —g with
probability 7(x), where n(z) € [0, 1] satisfies E,..p [n(x)] < 7.

We note that the above assumptions coincide with those used by Chatterji and Long [CL21b] in the
linear setting with the exception of the introduction of an assumption of A strong log-concavity that we
introduce. This assumption is needed so that we may employ a concentration inequality for Lipschitz func-
tions for strongly log-concave distributions. We note that variations of this data model have also been studied
recently [WT21; LR21; Wan+21].

One example of a cluster distribution which satisfies the above assumptions is the (possibly anisotropic)
Gaussian.

Example 2.1. If Pt = N(0,%), where ||2||2 < 1 and |27 < 1/k, and each of the labels are flipped
independently with probability n, then all of the properties listed above are satisfied.

Next, we introduce the neural network architecture and the optimization algorithm. We consider one-
hidden-layer neural networks of width m that take the form

Flas W) =" aje((w;,2)),
j=1

where we denote the input x € RP and emphasize that the network is parameterized by a matrix W € R™*P
corresponding to the first layer weights {w; }* ;. The network’s second layer weights {a; }*; are initialized

a; R Unif({1/y/m,—1/y/m}) and fixed at their initial values. We assume the activation function ¢
satisfies ¢(0) = 0 and is strictly increasing, 1-Lipschitz, and H-smooth, that is, it is twice differentiable
almost everywhere and there exist v, H > 0 such that

0<v<¢'(z) <1, and |¢"(2)| < H, Vz€R.

An example of such a function is a smoothed leaky ReLU activation,

= 14_—ny’ z Z 1/H7
¢sLreLu(2) = § X H22 + 2z, 2| < 1/H, (1)
yz—l_—HV, z < —1/H.

As H — 00, ¢s1.ReLU approximates the leaky ReLU activation z — max(vyz, z). We shall refer to functions
¢ satisfying the above properties as y-leaky, H-smooth activations.

We assume access to a set of samples S = {(x;, y;) }14 K Pn . We denote by C C [n] the set of indices
corresponding to samples with clean labels, and N as the set of indices corresponding to noisy labels, so
that i € N implies (z;,y;) ~ P is such that y; = —7; using the notation above.

Let ¢(z) = log(1 + exp(—z)) be the logistic loss, and denote the empirical and population risks under

¢ by
EOW) = 3 Uyif (W) and (W) = By p [y (2 )]
i=1
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We will also find it useful to treat the function —¢'(z) = 1/(1+exp(z)) as a loss itself: since  is convex and
decreasing, —¢' is non-negative and decreasing and thus can serve as a surrogate for the 0-1 loss. This trick
has been used in a number of recent works on neural network optimization [CG20; FCG19; JT20; FCG21].
To this end, we introduce the notation,

9(2) = () and G(W) = %Z o f(s W),
i=1

We also introduce notation to refer to the function output and the surrogate loss g evaluated at samples for a
given time point,
t) . Lt t) . ¢
A= fasw®) and gl = g(uif").
o . . . iid.
We initialize the first layer weights independently for each neuron according to standard normals [W(O)]L j "
N(0, w?nit), where wfnit is the initialization variance. The optimization algorithm we consider is unregular-

ized full-batch gradient descent on E(W) initialized at (%) with fixed step-size ov > 0 which has updates
WD = w® — ovL(Ww®).

Given a failure probability 6 € (0,1/2), we make the following assumptions on the parameters in the
paper going forward:

(A1) Number of samples n > C'log(1/9).
(A2) Dimension p > C max{n/| u||?, n?log(n/d)}.
(A3) Norm of the mean satisfies ||u||? > C'log(n/9).

(A4) Noiseraten < 1/C.

-1
(AS) Step-size a < (C’ max {1, \/—Hm } p2) , where ¢ is H-smooth.
(A6) Initialization variance satisfies winity/mp < Q.

Assumptions (A1), (A2), and (A3) above have previously appeared in Chatterji and Long [CL21b] and
put a constraint on how the number of samples, dimension, and cluster mean separation can relate to one
another. One regime captured by these assumptions is when the mean separation satisfies ||| = ©(p”),
where § € (0,1/2) and p > C’max{nﬁ,n2 log(n/0)}. Assumption (A6) ensures that the first step
of gradient descent dominates the behavior of the neural network relative to that at initialization; this will
be key to showing that the network traverses far from initialization after a single step, which we show in
Proposition 3.2. We note that our analysis holds for neural networks of arbitrary width m > 1.

3 Main Result

Our main result is that when a neural network is trained on samples from the distribution P described in the
previous section, it will exhibit benign overfitting: the network achieves arbitrarily small logistic loss, and
hence interpolates the noisy training data, and simultaneously achieves test error close to the noise rate.



Theorem 3.1. For any vy-leaky, H-smooth activation ¢, and for all k € (0,1), A > 0, there is a C > 1 such
that provided Assumptions (A1) through (A6) are satisfied, the following holds. For any 0 < ¢ < 1/2n, by
running gradient descent for T > CL(W©))/ (|lwl|*ac?) iterations, with probability at least 1 — 26 over
the random initialization and the draws of the samples, the following holds:

1. All training points are classified correctly and the training loss satisfies Z(W(T)) <e

2. The test error satisfies

n 4
Papop [y 7 sn(F(as W) <+ 200 (205 ).

Theorem 3.1 shows that neural networks trained by gradient descent will exhibit benign overfitting: the
logistic loss can be driven to zero so that the network interpolates the noisy training data, and the trained
network will generalize with classification error close to the noise rate 7 provided n||u||* > p. Our results
do not require many of the assumptions typical in theoretical analyses of neural networks: we allow for
networks of arbitrary width; we permit arbitrarily small initialization variance; and we allow for the network
to be trained for arbitrarily long.

A few remarks about the bound on the test error are in order. In the noiseless case (where = 0), the
results of Jin [Jin09] established that when n is a constant, learning is impossible if ||u| = o(p/*). Our
bounds shows that interpolating neural networks learnt by gradient descent on the logistic loss work right
up until this information-theoretic threshold. Further, our upper bound on the test error matches the lower
bound on the test error for the maximum margin classifier [CGB21, Theorem 3.2, Part 2] in this setting
without noise.

It is worth noting the difference between the test error bound presented in Theorem 3.1 and the Bayes
error. For simplicity, consider the setting where the noise takes the form of random classification noise,
where each label is flipped independently with probability 1, and when Pt = N(0,1,). In the noise-
less setting, the Bayes error is precisely ®(—||u||), where ® is the standard normal cumulative distribu-
tion function [Li+17], so that the random classification noise setting under consideration has Bayes error
n+ ®(—|pll) = n + exp(—O(||p]|?)). By contrast, the test error bound for interpolating neural networks
given in Theorem 3.1 is at most 17 + exp(—O(n||u||*/p)), and Assumption (A2) implies ||u||* > n| u||*/p,
so that there is always a gap between the Bayes error and our upper bound for the generalization error.
However, the gap between the two is exponentially small in the input dimension in the setting ||z = ©(p?)
for g > 1/4.

We briefly also compare our results to margin bounds in the literature. Note that even if one could prove
that the training data is likely to be separated by a large margin, the bound of Theorem 3.1 approaches the
Bayes error rate faster than the standard margin bounds [Vap99; Sha+98].

We wish to emphasize that our optimization and generalization analysis used to prove Theorem 3.1 do
not rely upon the neural tangent kernel approximation. One way to see this is that our results cover finite-
width networks and require |[W®)| — oo as ¢ — 0 since the logistic loss is never zero. In fact, for the
choice of step-size and initialization variance given in Assumptions (A5) and (A6), the weights travel far
from their initial values after a single step of gradient descent, as we show in Proposition 3.2 below.

Proposition 3.2. Under the settings of Theorem 3.1, we have for some absolute constant C' > 1 with
probability at least 1 — 20 over the random initialization and the draws of the samples,

W —wOle _ Allal
WOl = C
The proof for Proposition 3.2 is provided in Appendix B.




4 Proof of Theorem 3.1

In this section we will assume that Assumptions (A1) through (A6) are in force for a large constant C' > 1.

Theorem 3.1 consists of two claims: the first is that the test error of the trained neural network is close
to the noise rate when n|||*/p > 1, and the second is that the empirical loss can simultaneously be made
arbitrarily small despite the presence of noisy labels. Both of these claims will be established via a series of
lemmas. All of these lemmas are proved in Appendix A.

The first claim will follow by establishing a lower bound for the expected normalized margin on clean
points, E(xvg)ng[g fz; W®)/|W®| | £]. We do so in the following lemma which leverages the fact that
Pcust 18 A-strongly log-concave.

Lemma 4.1. Suppose that E, -, s [§f(z;W)] > 0. Then there exists a universal constant ¢ > 0 such that

E(, 5)~plif (@ W>]>2

P oy (v # sen(f(z; W))) <+ 2exp [ —cA ( Wir

Lemma 4.1 demonstrates that the generalization bound will follow by showing a lower bound on the
normalized margin of the neural network on clean samples at a given time. To derive such a result, we first
need to introduce a number of structural results about the samples and the neural network objective function.
The first such result concerns the norm of the weights at initialization.

Lemma 4.2. There is a universal constant Cy > 1 such that with probability at least 1 — § over the random
initialization, 3
0) (2 2 0
w3 < QWinitmp - and WOz < Cowinic(Vm + v/p).
Our next structural result characterizes some properties of random samples from the distribution. It was

proved in Chatterji and Long [CL21b, Lemma 10] and is a consequence of Assumptions (A1) through (A4).

Lemma 4.3. Forall k > 0, there is C1 > 1 such that for all ¢ > 0, for all large enough C, with probability
at least 1 — 9 over P™, the following hold:

E.l1 Forall k € [n],
p/C1 < [lax|* < Cip.
E.2 Foralli# j € [n],
@i, )] < Cr(||pl® + /plog(n/s)).
E.3 Forallk € C,
[ ywre) — Nll?] < [l /2.
E4 Forallk € N,

[y ) = (Sl < ull? /2.



E.5 The number of noisy samples satisfies |N'|/n < n+ .
Definition 4.4. If the events in Lemma 4.2 and Lemma 4.3 occur, let us say that we have a good run.

Lemmas 4.2 and 4.3 show that a good run occurs with probability at least 1 — 2J. In what follows, we
will assume that a good run occurs.

We next introduce a number of structural lemmas concerning the neural network optimization objective.
The first concerns the smoothness of the network in terms of the first layer weights.

Lemma 4.5. For an H-smooth activation ¢ and any W,V € R™*P qnd x € RP,

Hljz|?
N

In the next lemma, we provide a number of smoothness properties of the empirical loss.

|f(@; W) = f(2;V) = (Vf(a; V), W = V)| < W —V|s.

Lemma 4.6. For an H-smooth activation ¢ and any W,V € R™*P, on a good run it holds that

1 . . .
\/?lp”VL(W)HF <SGW) < L(W) AL,

where C is the constant from Lemma 4.3. Additionally,

Jm

Our final structural result is the following lemma that characterizes the pairwise correlations of the
gradients of the network at different samples.

~ ~ H
IVE(W) -~ VE(V) |5 < Cup (1 i —) W = V.

Lemma 4.7. Let C; > 1 be the constant from Lemma 4.3. For a ~y-leaky, H-smooth activation ¢, on a good
run, we have the following.

(a) Forany ik € [n), i # k, and any W € R™*4 e have
V(s W), V (e W))| < Cr (Ilul? + v/plog(n]) )

(b) Foranyi € [n] and any W € R™*%, we have

2
& <IVi@s Wl < Cw.

In the regime where ||u||> = o(p), Lemma 4.7 shows that the gradients of the network at different
samples are roughly orthogonal as the pairwise inner products of the gradients are much smaller than the
norms of each gradient. This mimics the behavior of the samples x; established in Lemma 4.3.

With these structural results in place, we can now begin to prove a lower bound for the normalized
margin on test points. To do so, our first step is to characterize the change in the unnormalized margin
y[f (z; WEDY — £(2; W®)] from time ¢ to time ¢ + 1 for an independent test sample (z, 7).



Lemma 4.8. Let Cy > 1 be the constant from Lemma 1. For a y-leaky, H-smooth activation ¢, on a
good run, we have for any t > 0 and (z,y) € RP x {£1}, and for each i = 1,...,n, there exist §; =

EWW® zy 2) € [v2,1], such that
n 2,2
WEDY e OV > ENT O g gy BCIP
y[f(mﬂW ) f($7W )] - n ;gz £Z<yl$17y$> 2\/m 9

where g(t) = 0 (i f (zi; WO,

(2

Consider what Lemma 4.8 tells us when (z,7) ~ P is a clean test example. The lemma suggests
that if (y;x;, yx) is always bounded from below by a strictly positive constant, then the margin on the test
sample (z,y) will increase. Unfortunately, the presence of noisy labels will cause some of the (y;z;, yz)
terms appearing above to be negative, allowing for the possibility that the unnormalized margin decreases
on a test sample (z, 7). If the losses g(y;f(z;; W®)) for (noisy) samples satisfying (y;z;, jz) < 0 are
particularly large relative to the losses g(yy f(zy; W (")) for (clean) samples satisfying (yyz;,9z) > 0,
then indeed Lemma 4.8 may fail to guarantee an increase in the unnormalized margin. However, if one
could show that the g losses are essentially ‘balanced’ across all samples, then provided the fraction of
noisy labels is not too large, one could ignore the effect of the noisy labels which contribute negative terms

to the sum ), ggt) (yizi, yz), and eventually show that the lower bound given in Lemma 4.8 is strictly
positive. This provides a motivation for our next lemma, which directly shows that the losses on all samples
are relatively balanced throughout training. This is the key technical lemma for our proof, and extends the
results of Chatterji and Long [CL21b] from the logistic regression setting to the two-layer neural network
setting.

Lemma 4.9. For a y-leaky, H-smooth activation ¢, there is an absolute constant C,. = 16C% /~? such that
on a good run, provided C > 1 is sufficiently large, we have for all t > 0,
(t)

max git < (.
i.jen] gt"

With this loss ratio bound, we first derive an upper bound on the norm of the iterates W), sharper than
what we get by applying the triangle inequality along with the bound on the norm of the gradient of the loss
provided by Lemma 4.6. This will improve our final guarantee for the normalized margin.

Lemma 4.10. There is an absolute constant Cy > 1 such that for C' > 1 sufficiently large, on a good run
we have that for all t > 0,

t—1
WO < WO e+ Caay /25 G0V,
n s=0

With the loss ratio bound provided in Lemma 4.9 and the tightened gradient norm bound of Lemma 4.10
established, we can now derive a lower bound on the normalized margin. Note that this lower bound on the
normalized margin in conjunction with Lemma 4.1 results in the test error bound for the main theorem.

Lemma 4.11. For a y-leaky, H-smooth activation ¢, and for all C' > 1 sufficiently large, on a good run,
foranyt > 1,

Ewpp@F@WON - 922y
WO g ~ 8max(y/C1,Cs)/p’

where Cy and Cs are the constants from Lemma 4.3 and Lemma 4. 10, respectively.



Since Lemma 4.11 provides a positive margin on clean points, we have by Lemma 4.1 a guarantee that
the neural network achieves classification error on the noisy distribution close to the noise level. The only
remaining part of Theorem 3.1 that remains to be proved is that the training loss can be driven to zero. This
is a consequence of the following lemma, the proof of which also crucially relies upon the loss ratio bound
of Lemma 4.9.

Lemma 4.12. For a ~y-leaky, H-smooth activation ¢, provided C > 1 is sufficiently large, then on a good
run we have for all t > 0,

VL)) > Wil gy,
Moreover, any T € N,

32E(W(0>)> is

1 — ~
— 1(y; # sgn(f(x;; WD) < 26w TNy < 9
n ZZ:; (y # sg (f( ))) > ( ) > ’yz”,u”ZOzT

In particular, for T > 128L(W(©)/ (v?||l|2ce?), we have GW(T-D) < ¢/2.
We now have all of the results necessary to prove our main theorem.

Proof of Theorem 3.1. By Lemma 4.3 and Lemma 4.2, a ‘good run’ occurs with probability at least 1 — 2.
Since a good run occurs, we can apply Lemma 4.11. Using this as well as Lemma 4.1, we have with
probability at least 1 — 26,

E(gc,g)mﬁ[?jf(% W) ’
W12

4 4

vinllpll
< 2 —cA .
=0+ exp< ¢ <82 max(C1, C3)p

By Lemma 4.12, since T > 32L(W )/ (v]|pllag?), we have

Blonyyop (y # sgn(f(a: W) <+ 2exp | —eA (

GW TNy < ¢/2.

Since ¢ < 1/(2n) and g(z) = —¢'(z) < 1/2 if and only if z > 0, we know that y; f(z;; W(T=1) > 0
for every i € [n]. We are working with the logistic loss, and hence we have $((y; f(z;; wT-1)y) <
g(yi f (zi; WD) for every i € [n], which implies that

n

~ 1 & 2 .
LWy = =% yif s W) < 23 =0 (yaf (s WD) = 2GW ) <.
i=1 i=1

S Discussion
We have shown that neural networks trained by gradient descent will interpolate noisy training data and

still generalize close to the noise rate when the data comes from a mixture of well-separated sub-Gaussian
distributions and the dimension of the data is larger than the sample size. Our results mimic those established
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by Chatterji and Long [CL21b] for linear classifiers, but they hold for the much richer class of two-layer
neural networks.

Our proof technique relies heavily upon the assumption that the number of samples is much less than
the ambient dimension. This assumption allows for every pair of distinct samples to be roughly mutually
orthogonal so that samples with noisy labels cannot have an outsized effect on the ability for the network to
learn a positive margin on clean examples. Previous work has established a similar ‘blessing of dimension-
ality’ phenomenon: Belkin, Hsu, and Mitra [BHM 18] showed that the gap between a particular simplicial
interpolation rule and the Bayes error decreases exponentially fast as the ambient dimension increases,
mimicking the behavior we show in Theorem 3.1. In the linear regression setting, it is known that for the
minimum norm solution to generalize well it is necessary for the dimension of the data p to be much larger
than n [Bar+20]. It has also been shown that if the ambient dimension is one, local interpolation rules nec-
essarily have sub-optimal performance [JLT21]. Taken together, these results suggest that working in high
dimensions makes it easier for benign overfitting to hold, but it is an interesting open question to understand
the extent to which working in the p > n regime is necessary for benign overfitting with neural networks.
In particular, when can benign overfitting occur in neural networks that have enough parameters to fit the
training points (mp > n) but for which the number of samples is larger than the input dimension (n > p)?

In this work we considered a data distribution for which the optimal classifier is linear but analyzed a
model and algorithm that are fundamentally nonlinear. A natural next step is to develop characterizations of
benign overfitting for neural networks trained by gradient descent in settings where the optimal classifier is
nonlinear.
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A Omitted Proofs from Section 4

In this section we provide a proof of all of the lemmas presented in Section 4. We remind the reader that
throughout this section, we assume that Assumptions (A1) through (A6) are in force.

First in Section A.1 we prove the concentration results, Lemmas 4.1 and 4.2. Next, in Section A.2 we
prove the structural results, Lemmas 4.5, 4.6 and 4.7. In Section A.3 we prove Lemma 4.8 that demonstrates
that the margin on a test point increases with training. In Section A.4 we prove Lemma 4.9 that guaran-
tees that the ratio of the surrogate losses remains bounded throughout training, while in Section A.5 we
prove Lemma 4.10 that bounds the growth of the norm of the parameters. Next, in Section A.6 we prove
Lemma 4.11 that provides a lower bound on the normalized margin on a test point. Finally, in Section A.7,
we prove Lemma 4.12 that is useful in proving that the training error and loss converge to zero.

A.1 Concentration Inequalities

In this subsection we prove the concentration results Lemmas 4.1 and 4.2.
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A.1.1 Proof of Lemma 4.1

Let us restate Lemma 4.1.

Lemma 4.1. Suppose that E( 2,5)~P [9f(x;W)] > 0. Then there exists a universal constant ¢ > 0 such that

;W
Py (Y # sgn(f(z; W))) <n+2exp _c)\< ()P0 ( )])

W 1[e

Proof. Following the proof of Chatterji and Long [CL21b, Lemma 9], we have

Peyy~p(y # sgn(f(z; W) = Ppyyp(ysgn(f(z; W)) <0)
<+ P p@f(@ W) <0).

It therefore suffices to provide an upper bound for IP’(x Q)ng(g] f(z; W) < 0). Towards this end, we first note
that f is a ||W||2-Lipschitz function of the input x: let z, 2’ € RP, and consider

| f(a; W) — =) ajlp((wy, 2) — d((w),2))]
j=1
(i) & ,
§Z|“J||wy, — )|
j=1
(? Za? ij,aj—az’>2
7j=1
=HW(33—$)H

(i41)
< [Wllallz — 2.

Above, (i) uses that ¢ is 1-Lipschitz, and (iz) follows by the Cauchy—Schwarz inequality. Inequality (i)
is by the definition of the spectral norm. This shows that f(-; W) is ||IW||2-Lipschitz.

Since Pgyst is A-strongly log-concave, by Ledoux [Led01, Theorem 2.7 and Proposition 1.10], since
gf(x; W) is ||W||2-Lipschitz, there is an absolute constant ¢ > 0 such that for any ¢ > 1, ||§f(z; W) —
E[gf(x; W)]|lze < c|[W|2+/q/\. This behavior of the growth of L? norms is equivalent to §f (z; W) —
E[jf(x; W)] having sub-Gaussian norm ¢’||I¥||2/+v/A for some absolute constant ¢’ > 0, by Vershynin
[Ver10, Proposition 2.5.2]. Thus, there is an absolute constant ¢’ > 0 such that for any ¢ > 0,

N
P([gf(z: W) —E[gf(z; W)]| > 1) < 2exp <_C”)\ <||W||2> > .

Since we have the equality,

P(g # sgu(f(z;W))) =P f (x; W) — E[jf (x; W)] < —E[5.f (a; W)])

the result follows by taking ¢t = E[g f(x; W)] > 01in (2) and using ||V |2 < ||W|F. O

13



A.1.2 Proof of Lemma 4.2

Now let us restate and prove Lemma 4.2.

Lemma 4.2. There is a universal constant Cy > 1 such that with probability at least 1 — § over the random
initialization,

IWOUE < Swiyemp and  [WO 2 < Cowinie(v/m + /D)

le

Proof. Note that ||1/© H2 is aw? ;, -multiple of a chi-squared random variable with mp degrees of freedom.

By concentration of the y? distribution [Wai19, Example 2.11], for any ¢ € (0, 1),

1
P (| WO 1] 2 ) < 2exp-mpts).
mpwmlt

In particular, if we choose ¢t = /8log(4/9)/md and use Assumption (A2), we get that ¢ < 1/2 and so with

probability at least 1 — 4/2, we have

3

HW HF < mpwmlt

N |

As for the spectral norm, since the entries of w0 /winit are i.i.d. standard normal random variables, by Ver-
shynin [Verl0, Theorem 4.4.5] there exists a universal constant ¢ > 0 such that for any v > 0, with
probability at least 1 — 2 exp(—u?), we have

HW H2<Cwln1t(\/_+\/_+u)

In particular, taking u = /log(4/8) we have with probability at least 1 — §/2, |[W© ||y < cwinit(v/m +
/P + +/log(4/6). Since \/p > +/log(4/d) by Assumption (A2), the proof is completed by a union bound

over the claims on the spectral norm and the Frobenius norm. O

A.2 Structural Results

As stated above in this section we prove Lemmas 4.5, 4.6 and 4.7.

A.2.1 Proof of Lemma 4.5

We begin by restating and proving Lemma 4.5.
Lemma 4.5. For an H-smooth activation ¢ and any W,V € R™*P and x € RP,

H]z|*
N

Proof. Since ¢ is twice differentiable, ¢’ is continuous and so by Taylor’s theorem, for each j € [m], there
exist constants t; = t;(w;,v;,x) € R,

|f(; W) = f(z; V) = (Vf(2; V), W = V)| < W — V3.

¢"(t;)

7 (w; = vy, 2)?,

¢((w;, z)) — ¢((vj, ) = ¢ ((vj,2)) - (w; — vj, z) +

14



where ¢; lies between (w;, x) and (vj, z). We therefore have

f@W) = f(a;V) = ) aj[o({wj, z)) = ((vj, 7))]

M

7=1
- ¢"(t;)

=3 | s = w32 + L 05,0
j=1

m ¢// t.
= (Vf(x;V),W =-V) + Z aj%“” — Uj,gj>2.
j=1
The last equality follows since we can write
Vf(z;V)=DYax", where DY :=diag(¢'((vj,1))), 3)

and thus

(VF(@;V),W = V) =tr(za DY (W = V)) =a DY (W = V)z =Y a;¢/((vj, 2)){w; — vj, ).
J

For the final term, we have

m (b// ;
> (&)

2
a4 (wj —vj,z)

IN

Z\%\W(’w]‘ —vj,x)”
j=1

J=1

2 mF1
H 2
= m (W — V)33H2
H 2
< m W = VI3 ||33H§

A.2.2 Proof of Lemma 4.6
Next we prove Lemma 4.6 that establishes that the loss is smooth.

Lemma 4.6. For an H-smooth activation ¢ and any W,V € R™*P, on a good run it holds that

1 N N N
\/?WHVL(W)”F <GW) < L(W) AT,

where C is the constant from Lemma 4.3. Additionally,

IVZOW) — VEWV)[r < Cip (1 ; \/—HE) W=Vl

15



Proof. Since a good run occurs, all of the events in Lemma 4.3 hold. We thus have

HVE(W) ZQ Wi f (@ W)y V f(zis W)

I

F

(@) 1
s—zgyz 2 W) [V F i W)

< “? > o W) = VEGW)
(m \/T Z min (¢

flzi; W), 1)

@
Cip(L(W) A 1).

In (i) we have used Jensen’s inequality. In (i7) we have used that ¢ is 1-Lipschitz so that ||V f (z;; W)||5 =
HDZWW%‘THF = HDZWaH2 ||332H2 < C1p by Event (E.1), where DZW = D;"i’ is defined in Equation (3). In

(3i) we use that 0 < g(z) < 1 A4(z). In (iv) we use Jensen’s inequality since z — min {z, 1} is a concave
function.

Next we show that the loss has Lipschitz gradients. First, we have the decomposition

n

~ ~ 1
IVL(W) = VL(V)||r = - Z l9(yi f (i W)y V f(zis W) = g(yi f (255 V) yiV f (235 V)]
=1 F

< - Z IVf (@i W)llplg(yi f (s W) — g(yif (zi; V)]
+- Z IV f(zs W) =V f(zi; V)|F

(@) 1

< - Z IV £ (i W)l | f (s W) = f (V)|
+ ;Z\Ivf(:vi;W) ~ V(s V) o)

i=1
In (i), we use that g = —¢' (the negative derivative of the logistic loss) is 1-Lipschitz. Therefore, to show

that the loss has Lipschitz gradients, it suffices to show that both the network and the gradient of the network
are Lipschitz with respect to the first layer weights. We first show that the network is Lipschitz with respect

16



to the network parameters:

;W) = (V)P = D a[e((wy, 2) — ¢((v,3))]

As for the gradients of the network, again recalling the D!V notation from Equation (3), we have

IV f(x; W) =V f(z; V)3 = (DY — DY )az™||?
< Hw|!2|r<DW — DY)all?

Hx” Za w]? ¢/(<Uj7x>)]2
< ||| - Z’ wj, x) — (v, z)|?

HQHSCH2 H(W V)al|l?

< |z||HW — V3.
< mllx\l I 12

Continuing from (4), we have

IVEOW) ~ VEWV)lle < = 3 IV 7 G W)llelf o W) — fos V)
=1

* % Z IV f (@ W) =V f (i V)|

C1H
< /o —Zlf 2 W) = (s V)l + = Z2E W = Vs

(13) H
2 cup (”T) W = V..

®

(6)

(7

In (i) we use that ¢ being 1-Lipschitz implies ||V f(z;; W)||r = ||2:|[|D}Y a|| < /Cip for the first term,

and (6) together with (E.1). In (7), we use (5) and (E.1).

A.2.3 Proof of Lemma 4.7

Finally, we prove Lemma 4.7 that bounds the correlation between the gradients.

17
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Lemma 4.7. Let C; > 1 be the constant from Lemma 4.3. For a ~y-leaky, H-smooth activation ¢, on a good

run, we have the following.

(a) Forany ik € [n], i # k, and any W € R™*?, we have
(V@i W),V @ W) < C (Il + v/plog(n/5) )

(b) Foranyi € [n] and any W € R™*%, we have

VP

LIS @sW)lp < Cap.

Proof. Recall the notation D}V := diag(¢'((w;,z;)) € R™*™. By definition,
(V@i W),V fa W)) = tr(zia’ D}V DY az)
=tr (a:iTxkaTDZWDk a>
= (i, z)a’ D) D}V a
= (zi,2) > a3 ((wy, z:))¢' ((wy, x))
j=1

1
<xl7xk _
m

J=1

Since a good run occurs, all of the events in Lemma 4.3 hold. We can therefore bound,

(@) (i1)
(V@i W),V @s W) < (o] < Cr (Il + v/plog(n/d) ) -

D (wy, i) ((wy, 1)),

®)

Inequality (7) uses that |¢'(z)| < 1, while inequality (i) uses Event (E.2) from Lemma 4.3. This completes

the proof for part (a). For part (b), we continue from (8) to get

1 m
IV 5 (s W = llall* - — >~ o ((wy,3))
j=1

By the assumption on ¢, we know ¢/(z) > v > 0 for every t € R. Now we can use Lemma 4.3, which

states that p/C; < ||z;]|> < Cyp for all 3. In particular, we have

J
<laill? - — > o (wjo2)* = [V f (i W)I[E < Crp.

i=1

P
C’ 7

18



A.3 Proof of Lemma 4.8
Let us restate and prove the lemma. Recall that (z, y) are independent test samples.

Lemma 4.8. Let Cy > 1 be the constant from Lemma 1. For a y-leaky, H-smooth activation ¢, on a
good run, we have for any t > 0 and (z,y) € RP x {£1}, and for each i = 1,...,n, there exist §; =
EWW® zy 2) € [v2,1], such that

ylf (@ WD) — f (@ Zgz [& Yitti, yr) — Hzc\}p—a] :

where gi(t) = 0 (i f (zi; WD),
Proof. First, note that since a good run occurs, Lemma 4.5 implies
2

Flas W) = flas W) = (91 W), W) w0y | < ZCE Jyeen gy o]
m

In particular, we have for y € {£1},

Gt o

HCqp

ylf s WD) = s WO) 2y (Vs W), W — )| - 2
We can therefore calculate

VLA WD) = e WO 2y (90, W) - )] - HEP gy

=y [% >0 VI W),V f (s W<t>>>]

HClpa

v IFZ7O)

(ZZi) [% > gz(t) YV f (WD), 4,V f (s W(t)»]

HClp Of (t)
AN e HCEp a oy
a [n;gz & (i, ya) — N —L_Gw )]-

The inequality (¢) follows by (9), while (i7) uses Lemma 4.6. The last equality follows by defining
m
t
&= EWW, 2,2;) = Z D)o (), z)),

and re-using the identity (8) and using the fact that ¢'(2) € [,1] for all = € R. The result follows by

recalling the definition G(W®) = L gl(t) O



A.4 Proof of Lemma 4.9

Let us first restate the lemma.

Lemma 4.9. For a y-leaky, H-smooth activation ¢, there is an absolute constant C,. = 16C% /+? such that
on a good run, provided C' > 1 is sufficiently large, we have for all t > 0,

®)

L < C,.
o =
J

Before proceeding with the proof of Lemma 4.9, we introduce the following fact which will be used in
our proof.

Fact A.1. Forany z1,22 € R,

< max <2, 2

o))

exp(—z2)

Proof. By definition, g(z) = 1/(1 + exp(z)). Note that g is strictly decreasing, non-negative, and bounded
from above by one. Further, one has the inequalities

1
3 exp(—z) < g(z) <exp(—z) Vz=>0.

We do a case-by-case analysis on the signs of the z;.
* If z; < 0and 2y <0, then since g(z1) < 1 and g(z2) > 1/2, it holds that g(z1)/g(z2) < 2.

o If 21,290 > 0, then since g(z1) < exp(—=z1) and g(z2) > 1/2exp(—z2), we have g(z1)/g(z2) <
2exp(—21)/ exp(—z2).

e If z; > 0and 2o <0, then g(z1)/g(22) < 2.
e If z; < 0Oand 23 > 0, then g(21)/g(22) < 2/ exp(—22) < 2exp(—z1)/ exp(—22).

This proves the upper bound of g(z1)/g(z2). O
We now proceed with the proof of the loss ratio bound.

Proof of Lemma 4.9. In order to show that the ratio of the g(-) losses is bounded, it suffices to show that the

ratio of exponential losses exp(—(-)) is bounded, since by Fact A.1,
9(if (@ W)

s e WD
- max % <max | 2,2+ max exp(—yif (xis W t)) . (10)
ig=L,m g(y; f(zj; WH)) ij=L,n exp(—y; f(z; W®))

Thus in the remainder of the proof we will show that the ratio of the exponential losses is bounded by
an absolute constant. To see the claim at iteration 0, since ¢ is 1-Lipschitz and ¢(0) = 0, we have by
Cauchy-Schwarz,

20



Since a good run occurs, all of the events in Lemma 4.3 and Lemma 4.2 hold. In particular, we have
WOy < Cowinit(v/m + /p) and ||z;|| < /Cip for all i € [n]. We therefore have the bound,

(i) 2CH/C + (i) 200+/C' (#dd)
2Cowinit v/ C1p(vm + /p) < 0 laj_fn_(;/m vP) < Co’p2 ! <1+ %) <1,

where inequality (7) uses Assumption (A6), inequality (i7) uses Assumption (A5), and the final inequality
(7i7) follows by taking C' > 1 large enough. We thus have for all i € [n],

(@ WO < WOzl < 2C0wimicr/Crp(vm + /) < 1. (11)

Thus,
exp(—yif(zi; W)
< 2). 12
3= n exp(—y; [ (g WO)) = () (42

We now claim by induction that for all ¢ > 0,

exp(—yi f(zi; W1))

max <
ij=L,n exp(—y; f(zj; W®) = ~

8C?
T

The base case ¢ = 0 holds by (12) and since C; > 1. Assume now the result holds at time ¢ and consider
the case ¢ + 1. Without loss of generality, it suffices to prove that the ratio of the exponential loss for the
first sample to the exponential loss for the second sample is bounded by 8C% /2. To this end, let us denote

exp(—y1 f(z1; W)
exp(—yaf(zo; WH))

Since the induction hypothesis holds at time ¢, A; is at most 8C% /2. We want to show A; 1 < 8C%?/~2. To
do so, we calculate the exponential loss ratio between two samples at time ¢ + 1 in terms of the exponential

At =
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loss ratio at time ¢. Recalling the notation gi(t) = g(yi f(x;; W), we can calculate,

exp(—y1 f(z1; WD)

At = exp(—ya f(xg; WtHD))
B exp (—ylfl (W(t) — aVE(W(t)))>
a exp (—y2f2 (W(t) — aVE(W“D))
2 exp (—ylf (xl;W(t)) + 1 <Vf(ac1;W(t ),V (W(t )>) exp (HC’lpoz VLW (t))H2>
exp (_yzf (22 W) + yoou <Vf(962; W), VLW ® )>) v
(i) i exp (yla <Vf(ac1,W(t ), VL w@®) >) (HC’lpOé ||VL( ))H2>
exp (yga <Vf(:E2 w®), v W(t >)
— A, i

e (——Zk kg (s WO,V F (g W )>> O o
exp <——Zk 1y2ykgk <Vf(a:27 ), f(:Ek;W(t))>> exp( VLW W) )
= A, - exp <_E (gl IV f(x; WOD)||% gt)HVf(xg? ))”%))

exp <—% S kot Y1Ukg (Y f (213 WD),V f (2 W(t))>)

exp (=2 o votrol) (VF (w25 WO,V f s W)

‘ exp( ilﬁ‘“ IVE(W <t>>||2) | 13

Inequality (i) uses Lemma 4.5 and Event (E.1) which ensures that ||z;||> < C1p, and (i) uses that A; is the
ratio of the exponential losses. We now proceed to bound each of the three terms in the product separately.
For the first term, by Part (b) of Lemma 4.7, we have for any i € [n],

X

v’p
<, S IVH@s WOl < Cip. (14)

Therefore, we have
o
exp (== (9 IVF @i WO = o8IV £ W7
gét) ggt) t) w®y2
= o (-5 (G519 0@ WOl - 19 WO

(i) (t) g()
1 ’Y p
S eXP <_T ( (t) Cl Clp
(t) (t)
_ g o’y (g’ CFf
- ( = (gg) 7)) | as)

Inequality (7) uses (14). This bounds for the first term in (13).
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For the second term, we again use Lemma 4.7: we have for any ¢ # k

[V F(is W), V(s W) < O (Il + V/plog(n/9) ). (16)

This allows for us to bound,

P <_% S ko1 Y18kgy (Vf (a1 W), V £ (a; W(t))>>

exp (2 Lo vewng (VF (@25 WO,V fa; WO))))
(4) a a
<exp |~ > g UV £ WO), Y f (s W)+ ~ > oV (s

W),V f(ar; W)l

k1 k2

(4) 9 9

<exp [ =3 g7 (Il + Vplog(/3)) + = 3 g - Cu (Ilull* + v/plog(n/))
k#£1 s

(i)

a n
< exp <2E Zg,(f) -Cy (||,U||2 + plog(n/5)>>
k=1

= exp (2C1a (Il + V/plog(n/3)) GOW)). (17)

Inequality (¢) uses the triangle inequality. Inequality (i¢) uses that g]g) > 0 for all k € [n] and eq. (16)

Inequality (7i7) again uses that g]i) > 0.
Finally, for the third term of (13), we have

(4) 2,2 .2 1
exp (LOLE i o)) £ enp (LGLCG0r0)) € exp (avpen®) . as)

Inequality (i) uses Lemma 4.6, while (i7) uses that for C' > 1 sufficiently large, by Assumption (A5) we
have HC?p*a//m < \/P- Putting (15), (17) and (18) into (13), we get

t) 2 (t) 2
. _Gavp (g O
A1 < Ap-exp < Cin <gét) 42 ))

X exp <2C’1a (||,u||2 + plog(n/5)> @(W(t))> - exp <a\/§@(W(t))>

(t) (t)
. 9 0’p (g Cf
e (52 (G- )

x exp (21 (Il + 2v/pTog(n/8)) GOV)).

(19)

We now consider two cases: in the first case, the ratio gg) / gét) is relatively small, in this case we will
show that the exponential loss ratio will not grow too much for small enough step-size «. In the second

case, if the ratio g, ’ /g~ is relatively large, then the first exponential term in (19) will dominate and cause
the exponential loss ratio to contract.
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Case 1 (ggt) / ggt) < 2ﬁ%%): Continuing from (19), we have

(t) (t) 2

o Cy

App1 < Apexp < 92 0P (W - ?>> exp <201a <||,u||2 + 2¢/plog(n/d) > >
92

Cin
(i) g( )Cl ap
< Ajexp [ Z2——= | exp <201a <H,u\|2—|—2\/plog n/o) > >
(i)
< Agexp (C )exp <2C’1a <\|M|2+2\/plog n/o) ) G(w®) )
@) gl (Crap
< 20 e (S5 e (2000 (1”21 Ts)

2% exp (Crar (£ + 20l + 4/pTogtn0)))

92

7 47_02 exp (Cra (£ +2l|ul? + 4v/p1og(n/2) ) )

(2) 4C% exp(1/8) < 8C?%
= 2 =2

In (i) we use that g( ) > 0, while in (ii) we use that [g(z)| < 1. In (iii), we use Fact A.1 and that G(W) < 1.

In (iv), we use the Case 1 assumption that ggt) / gét) < 2C%/~2. Finally, in (v), we take C' > 1 sufficiently
large so that by the upper bound on the step-size given in Assumption (AS5), we have,

1

6
214,/ < — <=
Cla< + 2||p]|” + 4+/plog(n/d) ) + CHS%

where we have used Assumption (A2) and assumed without loss of generality that H > 1.
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), () _ 2C%,, . . .
Case2(g; /g5 > 7). Again using the bound in (19), we have that

() .2 () 2
g vp (g C .
2

— A B O i
= A exp Cln ® 72
92

n ()
1 —q.
X exp (2010[ (HMHz +2 plog(n/(S)) ggt) -~ Z £(72) >

i=1 92
() ®) o2 ® o2
< A;exp < 92 Z p Q}t) _ ’Y;

16C?
X exp 292 Cla H,uH2 + 2y/plog(n/d) ) max{ 721 })
C’m< 0) 2> 72 (HMH + 2 plog(n/5)>

~y

C 32C
ol [ S B (g7 + 2 Toge)) |

At exp

< Apexp

(23) <
(iv) 8C

< A< —L
72

In (i) we use the induction hypothesis that 4; < 8C1 /~? together W1th Fact A.1. Equality (éi) uses that
Cy > 1 and that v < 1. In (4i7), we use the Case 2 assumption that g /g2 > 2C% /2. Finally, in (iv),
1280 Ln|/u/|? and that p > Cn?log(n/d) >

we use Assumption (A2) so that we have p > Cnl|u|> >

<1232012 n log(n/5)) and also the fact that g(t) > 0.

This completes the induction that for all times ¢ > 0, the ratio of the exponential losses is at most
8012 /~2. Using (10) completes the proof. U

A.5 Proof of Lemma 4.10
We remind the reader of the statement of Lemma 4.10.

Lemma 4.10. There is an absolute constant Cy > 1 such that for C' > 1 sufficiently large, on a good run
we have that for all t > 0,

t—1
t 0 p ~ s
WOl < WO+ Coo £ 3 G0V

Proof. By the triangle inequality we have that

t—1 i—1
WO p = HW<0> +a) VLWO)l < [[WO)p+ad [VLWD)|p. (20)
s=0 F s=0
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Now observe that

IVLW )3

:% S 0 yiv (@ W)
_i:l F

— 5 [ () [T+ Y o0 (Vs W >,Vf<wj;w<s>>>]
=1 i#j€[n]

< LIS (@) s+ X o s >,Vf<xj;w<s>>>¢]
_i:l i#j€[n]

(@) n

g% [Z( ) pt > g (|m|y2+ plog(n/é))]
=1 i#j€[n]

< O3 maxl [Zgz p+n§jgz (Il + p10g<n/5>)]

n? ke[n]
C s
- n_zl (p—i—nHuH2 + ny/plog(n/d) ) maxg [Zgl ] ,

where (i) follows by Lemma 4.7. Now note that since p > Cnl|u? and p > Cn?log(n/d) by Assump-
tion (A2), we have that,

~ 302 ~
IVEW )3 < 22 <maxg§:>> GW®).
Next note that by the loss ratio bound in Lemma 4.9 we have that

max g Z )~ .G (W),

kej n]

Plugging this into the previous inequality yields

3C2C,p

IVE O3 < =L

(é(W<S>))2 :

Finally, taking square roots, defining Cy := /3C?C, and applying this bound on the norm in Inequality (20)
above we conclude that

t—1
t 0 p ~ s
WOl < WO+ Coo B3 G0V,

establishing our claim. O
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A.6 Proof of Lemma 4.11

Let us restate the lemma for the reader’s convenience.
Lemma 4.11. For a y-leaky, H-smooth activation ¢, and for all C' > 1 sufficiently large, on a good run,
foranyt > 1,
(e T
Ewpp@f@WON - 92 )?vm
WO g ~ 8max(v/C ,Cg)\/]_)’

where Cy and Cs are the constants from Lemma 4.3 and Lemma 4. 10, respectively.

Proof. Using the refined upper bound for the norm of the weights given in Lemma 4.10, we have that,

t—1
O < (|IWO PTG
[WN[r < [[WPp + Cza\/;; GW'). 1)

To complete the proof, we want to put together the bound for the unnormalized margin on clean samples
given by Lemma 4.8 with the upper bound on the norm given in (21). First, let us recall the definition of the
quantity &; first introduced in (the proof of) Lemma 4.8,

&= WY, 25,2 qu NG (', 2) € 1% 1).
Since ¢&; € [y%,1] foralli € [n] and s € {0,1,...}, and E(x’g)ng[gjx] = u, by (E.3) and (E.4), we have
TlulP, iec
B, -opl&i(yizi, gz)] > ¢ 2 S (22)
r 3P, ieN.

This allows for us to derive a lower bound on the increment of the unnormalized margin, for any s > 0:

E(I,Q)N.smf(:c' WD) — fa; W)

HC?p*a
> — g - -
g, |: EZ yl$lay$>] 2\/% :|
(@) &) 02 9 3, o HCOIPaz g
> a|=> " = ul’ - E 9 - Sllull” = ———=—GW™)
[n 1eC 2 ze/\/ 2 2ym
20,112 2,92
oyl ( HC{p o ) Arr(s) ( 3) 1 (s)
= L W70 1l—-——————— | GWY) - 1+ =] - — 9;
2 202 ][>/ e 2 ngf

(@) ary?|| |2 K < 3 > HC’lp e > ~
> LR (1-20m 1+ 5 ) - GW(S)}
2 5 ) i) )

() a2 ||ul|l? ~
> %G(W(s)). (23)

Above, inequality (i) uses Lemma 4.8, while (i7) uses (22). Inequality (4i7) uses the fact that the loss ratio
bound given in Lemma 4.9 implies,

> g < V|- maxg = n‘zmangt)SCr-W!’@(W(t))§2Crnn@(W(t))- (24)
iEN k= ‘
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The last inequality (iv) follows by Assumption (A4) so that the noise rate satisfies n < 1/C < [8C,(1 +
37~2)]7L, and since the assumption (A5) implies HC?p?a/(272||p||?) < 1/4 for C > 1 sufficiently large.

We pr0V1de one final auxiliary calculatlon before showing the lower bound on the normalized margin.
By Equation (11) we have |f(z;; W )| < 1 for all 4. Using the following lower bound on the derivative of
the logistic loss, —¢/(y; f (z;; W)) > & exp(—|f(zi; W)]), we therefore have

1 1
GWO) > S exp(-1) > o (25)
Using this along with Lemma 4.2, we have that
WO 5 < 2winie/mp < 20 < an/Cip/nG(W ), (26)

where we have used the assumption (A6) that wiyit,/mp < « and that Assumption (A2) implies p/n is larger
than some fixed constant. With this in hand, we can calculate a lower bound on the normalized margin as
follows. First, note that since £, g)ng[gf(aj; W©)] = 0, we can use (23) to get,

B s 0F @ W Blgs (o wO)] + Y00 B (@3 WD) — fas W)
WOl WO
a%uuu?zﬁhé(vv(s)t
B 4w |

27)
Now consider two disjoint cases.

Case 1 (|[W®||p < 2|[WO)|r): In this case, by using (27) we have that,

B g)p 0/ @ W a2 |uf? 2’;—10 G
WO = 8O
@) oyl S G )
8ay/Crp/nG (W0
@ v/
- 8VCip

where (i) uses (21) and (44) uses that "\ BG( W) > G(W ), This completes the proof in this case.

V=

Case 2 (|W®||p > 2|W©|[p): By (21), we have the chain of inequalities,

t—1
WO < WOl < WO +Coay 2 GW ),
s=0
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In particular, we have Cacry/p/n Zi;%) GW®)) > WOz, and so substituting the preceding inequality
into (27) we get,

B sl @ WO ||l Tz GOV
WO T A WO g+ 4Cha/p/n Y2, GW )

ay? |2 S G )
T 8Chan/p/n Y Th GW )
_ PPy

8Ca/p

completing the proof. O

A.7 Proof of Lemma 4.12

Lemma 4.12. For a ~y-leaky, H-smooth activation ¢, provided C' > 1 is sufficiently large, then on a good
run we have for all t > 0,

Moreover, any T € N,

32E(W<0>)) 2

— i 7 sgn(f(axy; W W= WGWIT-Dy <o 220"
Z Yi # Sg ))) ( ) < ’YQH,U”204T

In particular, for T > 128L(W )/ (V?[|p|lPae?), we have GWTD) <e/2.

Proof. In order to show a lower bound for |[VL(W®)||p = SUPY. | p=1{— VLW ®), U), it suffices to

construct a matrix V' with Frobenius norm at most one such that (—V L(W (), V) is bounded from below
by a positive constant. To this end, let V' € R™*P be the matrix with rows

vj = ajp/|pll. (28)

Then ||V |z = 1 (since a; = +1/,/m), and we have for any W € R™*¢,

1
(Vf(zi; W),V Zaj(b wj, x))(vj,x) = <ﬁ,w> EZ(b((wj,@). (29)
i=1

Now, by Events (E.3) and (E.4), we have that

(i) < Slull?, i eN.
Since ¢/(z) >~ > 0 for all 2, (29) implies we have the following lower bound for any W € R™*¢,
e, i€C,
yi(Vf(xis W), V) > {2 ) (3D
—llull,  ieN.
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This allows for a lower bound on (—%L(I/V(S))7 V'), since

(LW, V) = = 37 gyl V (e W), V)

i=1
(61 () 1 (s) 9
> = ) Dl = = (), 2
>3 Tl - = 3 g Sl
ieC ieN
Ml [ 5o ( 3) ! <s>]
= |G~ (1+2) =D g,
2 v/ ieEN
@ Al [ A/ 10) 3 A7 (s)
> =5 [GVP) = 1+ =) - 20mGW)
(idi) N
> V‘ZI’HG(W(S))' (32)

Inequality () uses (31), while (i7) uses the previously-established inequality (24). Finally, inequality (i74)
above uses Assumption (A4) so that the noise rate satisfies n < 1/C < [4C,.(1+3/v)]~!. We can therefore
derive the following lower bound on the norm of the gradient,

G(W®
el GOv),

for any t > 0, HVE(W(t))|’F > (VE(W(t))a V) 1

(33)
We notice that the inequality of the form IVL(W)|| > ¢G(W) is a proxy PL inequality, where the proxy
loss function is G(W) [FG2 Al]. We can therefore mimic the smoothness-based proof of Erei and Gu [FG21,
Theorem 3.1] to show that G(W(T=1) < ¢ for T = Q(¢~2). By Lemma 4.6, the loss L(W) has C;p(1 +
H/\/m)-Lipschitz gradients. In particular, we have

LWD) < LW®) - o|VEW |3 + Crpmax {1, %} CIVEWO)E. 34

In particular, since Assumption (A5) requires o < 1/ (2 max {1, %} C%pz), we have that

(35)

Inequality (i) uses the proxy PL inequality (33). Finally, note that since |¢”] < 1, an identical cal-
culation to that of (7) shows that the loss G(W) has Cip(1 + H/+/m)-Lipschitz gradients, and since
a < 1/(2max(1, H/\/m)C1p?), we therefore have

—~ ~ a e
G D) — W) < —Z|VEW D).
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In particular, the loss G (W®) is a decreasing function of ¢, and hence CA}'(W(t))2 is a decreasing function
of t. Therefore, by (35),

T-1

. B . . 32L(W ()
w1y = w®y < w®y < 222 )
G( ) ?il%lG( ) < G( ) < T =

e/2, (36)

el

t

i
o

where in the last inequality we use that 7' > 1282(W(0) )/ (?[|p||*@?). The proof is completed by noting
that 1(z < 0) < —2//(2). O

B Non-NTK results, Proof of Proposition 3.2

For the reader’s convenience, we restate Proposition 3.2 here.

Proposition 3.2. Under the settings of Theorem 3.1, we have for some absolute constant C > 1 with
probability at least 1 — 20 over the random initialization and the draws of the samples,

WO —wOlr el
WOl = C

Proof. We construct a lower bound on ||[W (") — W(9)||  using the variational formula for the norm, namely
WO — WO |z > (WO — WO V) for any matrix V' with Frobenius norm at most 1. By definition,

WO —wO vy = o(~VL(W©O), V).

By Lemmas 4.2 and 4.3, a good run occurs with probability at least 1 — 2§. On a good run we can use the
results in Lemma 4.12. In particular, with the choice of V' given in eq. (28), we have,

W = wOp > Wt —wv)
= a(-VL(W®),V)

- 4
@ ol
- 24

where inequality (i) uses eq. (33) and the last inequality (i7) uses (25). Thus, by Lemma 4.2, we have

WO —wOlp _ ayflull_ llul
(WO |p  ~ 48winity/mp — 48 7

where the last inequality uses Assumption (A6). U

References
[ALS19]  Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. “A Convergence Theory for Deep Learning

via Over-Parameterization”. In: International Conference on Machine Learning (ICML). 2019
(Cited on page 2).

31



[Aro+19]

[Bar+20]

[Bel+19]

[BHM18]

[Bru+18]

[CG20]

[CGB21]

[CL21a]

[CLB21]

[CL21b]

[CLG20]

[Du+19]

[FCG19]

[FCG21]

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and Ruosong Wang.
“On exact computation with an infinitely wide neural net”. In: Advances in Neural Information
Processing Systems (NeurIPS). 2019 (Cited on page 3).

Peter L. Bartlett, Philip M. Long, Gabor Lugosi, and Alexander Tsigler. “Benign Overfitting
in Linear Regression”. In: Proceedings of the National Academy of Sciences 117.48 (2020),
pp. 30063-30070 (Cited on pages 1, 11).

Mikhail Belkin, Daniel J Hsu, Siyuan Ma, and Soumik Mandal. “Reconciling modern machine-
learning practice and the classical bias—variance trade-off”. In: Proceedings of the National
Academy of Sciences 116.32 (2019), pp. 15849-15854 (Cited on page 1).

Mikhail Belkin, Daniel J Hsu, and Partha Mitra. “Overfitting or perfect fitting? Risk bounds
for classification and regression rules that interpolate”. In: Advances in Neural Information
Processing Systems (NeurIPS). 2018 (Cited on pages 1, 11).

Alon Brutzkus, Amir Globerson, Eran Malach, and Shai Shalev-Shwartz. “SGD Learns Over-
parameterized Networks that Provably Generalize on Linearly Separable Data”. In: Interna-
tional Conference on Learning Representations (ICLR). 2018 (Cited on page 2).

Yuan Cao and Quanquan Gu. “Generalization Error Bounds of Gradient Descent for Learning
Over-parameterized Deep ReLU Networks”. In: the Thirty-Fourth AAAI Conference on Artifi-
cial Intelligence. 2020 (Cited on page 5).

Yuan Cao, Quanquan Gu, and Mikhail Belkin. “Risk Bounds for Over-parameterized Maxi-
mum Margin Classification on Sub-Gaussian Mixtures”. In: Advances in Neural Information
Processing Systems (NeurlPS). 2021 (Cited on pages 2, 6).

Niladri S Chatterji and Philip M Long. “Foolish Crowds Support Benign Overfitting”. In: arXiv
preprint arXiv:2110.02914 (2021) (Cited on page 1).

Niladri S Chatterji, Philip M Long, and Peter L Bartlett. “The Interplay Between Implicit Bias
and Benign Overfitting in Two-Layer Linear Networks”. In: arXiv preprint arXiv:2108.11489
(2021) (Cited on page 1).

Niladri S. Chatterji and Philip M. Long. “Finite-sample analysis of interpolating linear clas-
sifiers in the overparameterized regime”. In: Journal of Machine Learning Research 22.129
(2021), pp. 1-30 (Cited on pages 1-5,7,9, 11, 13).

Geoffrey Chinot, Matthias Loffler, and Sara van de Geer. “On the robustness of minimum-norm
interpolators”. In: arXiv preprint arXiv:2012.00807 (2020) (Cited on page 1).

Simon S. Du, Xiyu Zhai, Barnabds P6czos, and Aarti Singh. “Gradient Descent Provably Op-
timizes Over-parameterized Neural Networks”. In: International Conference on Learning Rep-
resentations (ICLR). 2019 (Cited on page 3).

Spencer Frei, Yuan Cao, and Quanquan Gu. “Algorithm-Dependent Generalization Bounds for
Overparameterized Deep Residual Networks”. In: Advances in Neural Information Processing
Systems (NeurlIPS). 2019 (Cited on page 5).

Spencer Frei, Yuan Cao, and Quanquan Gu. “Provable Generalization of SGD-trained Neural
Networks of Any Width in the Presence of Adversarial Label Noise”. In: International Confer-
ence on Machine Learning (ICML). 2021 (Cited on pages 2, 5).

32



[FG21]

[Has+19]

[HMX21]

[JGH18]

[JLT21]

[JT19]

[JT20]

[Jin09]

[KSS94]

[Koe+21]

[Led01]

[Li+17]

[LW21]

[LR20]

[LRZ20]

[LR21]

Spencer Frei and Quanquan Gu. “Proxy Convexity: A Unified Framework for the Analysis of
Neural Networks Trained by Gradient Descent”. In: Advances in Neural Information Process-
ing Systems (NeurIPS). 2021 (Cited on page 30).

Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J Tibshirani. “Surprises in high-
dimensional ridgeless least squares interpolation”. In: arXiv preprint arXiv:1903.08560 (2019)
(Cited on page 1).

Daniel Hsu, Vidya Muthukumar, and Ji Xu. “On the proliferation of support vectors in high
dimensions”. In: International Conference on Artificial Intelligence and Statistics (AISTATS).
2021, pp. 91-99 (Cited on page 2).

Arthur Jacot, Franck Gabriel, and Clément Hongler. “Neural Tangent Kernel: Convergence and
Generalization in Neural Networks”. In: Advances in Neural Information Processing Systems
(NeurIPS). 2018 (Cited on page 2).

Ziwei Ji, Justin D. Li, and Matus Telgarsky. “Early-stopped neural networks are consistent”.
In: Advances in Neural Information Processing Systems (NeurIPS). 2021 (Cited on page 11).

Ziwei Ji and Matus Telgarsky. “The implicit bias of gradient descent on nonseparable data”. In:
Conference on Learning Theory (COLT). 2019 (Cited on page 2).

Ziwei Ji and Matus Telgarsky. “Polylogarithmic width suffices for gradient descent to achieve
arbitrarily small test error with shallow ReLU networks”. In: International Conference on
Learning Representations (ICLR). 2020 (Cited on page 5).

Jiashun Jin. “Impossibility of successful classification when useful features are rare and weak”.
In: Proceedings of the National Academy of Sciences 106.22 (2009), pp. 8859-8864 (Cited on
page 6).

Michael J Kearns, Robert E Schapire, and Linda M Sellie. “Toward efficient agnostic learning”.
In: Machine Learning 17.2-3 (1994), pp. 115-141 (Cited on page 2).

Frederic Koehler, Lijia Zhou, Danica J Sutherland, and Nathan Srebro. “Uniform convergence
of interpolators: Gaussian width, norm bounds, and benign overfitting”. In: arXiv preprint
arXiv:2106.09276 (2021) (Cited on page 1).

M. Ledoux. The Concentration of Measure Phenomenon. Mathematical surveys and mono-
graphs. American Mathematical Society, 2001. ISBN: 9780821837924 (Cited on page 13).

Tianyang Li, Xinyang Yi, Constantine Carmanis, and Pradeep Ravikumar. “Minimax Gaus-
sian Classification and Clustering”. In: International Conference on Artificial Intelligence and
Statistics (AISTATS). 2017 (Cited on page 06).

Yue Li and Yuting Wei. “Minimum ¢;-norm interpolators: Precise asymptotics and multiple
descent”. In: arXiv preprint arXiv:2110.09502 (2021) (Cited on page 1).

Tengyuan Liang and Alexander Rakhlin. “Just interpolate: Kernel “ridgeless” regression can
generalize”. In: Annals of Statistics 48.3 (2020), pp. 1329-1347 (Cited on page 1).

Tengyuan Liang, Alexander Rakhlin, and Xiyu Zhai. “On the Multiple Descent of Minimum-
Norm Interpolants and Restricted Lower Isometry of Kernels”. In: Conference on Learning
Theory (COLT). 2020 (Cited on pages 1, 3).

Tengyuan Liang and Benjamin Recht. “Interpolating classifiers make few mistakes”. In: arXiv
preprint arXiv:2101.11815 (2021) (Cited on page 4).

33



[LS20] Tengyuan Liang and Pragya Sur. “A precise high-dimensional asymptotic theory for boosting
and min-¢;-norm interpolated classifiers”. In: arXiv preprint arXiv:2002.01586 (2020) (Cited
on page 1).

[MM19] Song Mei and Andrea Montanari. “The generalization error of random features regression:
Precise asymptotics and the double descent curve”. In: Communications on Pure and Applied
Mathematics (2019) (Cited on page 1).

[MNS21] Stanislav Minsker, Mohamed Ndaoud, and Yiqiu Shen. “Minimax Supervised Clustering in
the Anisotropic Gaussian Mixture Model: A New Take on Robust Interpolation”. In: Preprint,
arXiv:2111.07041 (2021) (Cited on page 1).

[Mon+19] Andrea Montanari, Feng Ruan, Youngtak Sohn, and Jun Yan. “The generalization error of max-
margin linear classifiers: High-dimensional asymptotics in the overparametrized regime”. In:
arXiv preprint arXiv:1911.01544 (2019) (Cited on page 1).

[MZ21] Andrea Montanari and Yiqiao Zhong. “The Interpolation Phase Transition in Neural Networks:
Memorization and Generalization under Lazy Training”. In: Preprint, arXiv:2007.12826 (2021)
(Cited on page 3).

[Mut+21]  Vidya Muthukumar, Adhyyan Narang, Vignesh Subramanian, Mikhail Belkin, Daniel Hsu, and
Anant Sahai. “Classification vs regression in overparameterized regimes: Does the loss function
matter?” In: Journal of Machine Learning Research 22.222 (2021), pp. 1-69 (Cited on pages 1,
2).

[Mut+20]  Vidya Muthukumar, Kailas Vodrahalli, Vignesh Subramanian, and Anant Sahai. “Harmless

interpolation of noisy data in regression”. In: IEEE Journal on Selected Areas in Information
Theory (2020) (Cited on page 1).

[NDR20] Jeffrey Negrea, Gintare Karolina Dziugaite, and Daniel Roy. “In defense of uniform conver-
gence: Generalization via derandomization with an application to interpolating predictors”. In:
International Conference on Machine Learning. 2020, pp. 72637272 (Cited on page 1).

[Sha+98]  John Shawe-Taylor, Peter L Bartlett, Robert C Williamson, and Martin Anthony. “Structural
risk minimization over data-dependent hierarchies”. In: IEEE transactions on Information The-
ory 44.5 (1998), pp. 1926-1940 (Cited on page 6).

[SIL19] Mahdi Soltanolkotabi, Adel Javanmard, and Jason D. Lee. “Theoretical Insights Into the Opti-
mization Landscape of Over-Parameterized Shallow Neural Networks”. In: IEEE Transactions
on Information Theory 65.2 (2019), pp. 742-769 (Cited on page 3).

[Sou+18] Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. “The
Implicit Bias of Gradient Descent on Separable Data”. In: Journal of Machine Learning Re-
search (JMLR) 19.70 (2018), pp. 1-57 (Cited on page 2).

[TB20] A. Tsigler and P. L. Bartlett. “Benign overfitting in ridge regression”. In: Preprint, arXiv:2009. 14286
(2020) (Cited on page 1).

[Vap99] Vladimir Vapnik. The nature of statistical learning theory. Springer, 1999 (Cited on page 6).

[Ver10] Roman Vershynin. “Introduction to the non-asymptotic analysis of random matrices”. In: arXiv
preprint arXiv:1011.3027 (2010) (Cited on pages 13, 14).

34



[Wail9]

[WDY21]

[WMT21]

[WT21]

[Wan+21]

[YH21]

[Zha+17]

[Zou+19]

M.J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cambridge Se-
ries in Statistical and Probabilistic Mathematics. Cambridge University Press, 2019. ISBN:
9781108498029. URL: https://books.google.com/books?1d=8C8nuQEACAAJ (Cited
on page 14).

Guillaume Wang, Konstantin Donhauser, and Fanny Yang. “Tight bounds for minimum I1-norm
interpolation of noisy data”. In: arXiv preprint arXiv:2111.05987 (2021) (Cited on page 1).

Ke Wang, Vidya Muthukumar, and Christos Thrampoulidis. “Benign Overfitting in Multiclass
Classification: All Roads Lead to Interpolation”. In: Advances in Neural Information Process-
ing Systems (NeurIPS). 2021 (Cited on page 1).

Ke Wang and Christos Thrampoulidis. “Binary Classification of Gaussian Mixtures: Abun-
dance of Support Vectors, Benign Overfitting and Regularization”. In: Preprint, arXiv:2011.09148
(2021) (Cited on pages 2, 4).

Ke Alexander Wang, Niladri S Chatterji, Saminul Haque, and Tatsunori Hashimoto. “Is Impor-
tance Weighting Incompatible with Interpolating Classifiers?” In: arXiv preprint arXiv:2112.12986
(2021) (Cited on page 4).

Greg Yang and Edward J. Hu. “Feature Learning in Infinite-Width Neural Networks”. In: In-
ternational Conference on Machine Learning (ICML). 2021 (Cited on page 3).

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. “Understand-
ing deep learning requires rethinking generalization”. In: International Conference on Learning
Representations (ICLR). 2017 (Cited on page 1).

Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. “Gradient descent optimizes over-
parameterized deep ReLU networks”. In: Machine Learning (2019) (Cited on page 2).

35



