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Abstract

Benign overfitting, the phenomenon where interpolating models generalize well in the presence of

noisy data, was first observed in neural network models trained with gradient descent. To better un-

derstand this empirical observation, we consider the generalization error of two-layer neural networks

trained to interpolation by gradient descent on the logistic loss following random initialization. We as-

sume the data comes from well-separated class-conditional log-concave distributions and allow for a

constant fraction of the training labels to be corrupted by an adversary. We show that in this setting,

neural networks exhibit benign overfitting: they can be driven to zero training error, perfectly fitting any

noisy training labels, and simultaneously achieve test error close to the Bayes-optimal error. In contrast

to previous work on benign overfitting that require linear or kernel-based predictors, our analysis holds

in a setting where both the model and learning dynamics are fundamentally nonlinear.

1 Introduction

Trained neural networks have been shown to generalize well to unseen data even when trained to inter-

polation (that is, vanishingly small training loss) on training data with significant label noise [Zha+17;

Bel+19]. This empirical observation is surprising as it appears to violate long standing intuition from sta-

tistical learning theory that the greater the capacity of a model to fit randomly labelled data, the worse the

model’s generalization performance on test data will be. This conflict between theory and practice has led

to a surge of theoretical research into the generalization performance of interpolating statistical models to

see if this ‘benign overfitting’ phenomenon can be observed in simpler settings that are more amenable to

theoretical investigation. We now understand that benign overfitting can occur in many classical statistical

settings, including linear regression [Has+19; Bar+20; Mut+20; NDR20; TB20; CLG20; CLB21], sparse

linear regression [Koe+21; CL21a; LW21; WDY21], logistic regression [Mon+19; CL21b; LS20; Mut+21;

WMT21; MNS21], and kernel-based estimators [BHM18; MM19; LR20; LRZ20], among others, and our

understanding of when and why this phenomenon occurs in these settings is rapidly increasing. And yet, for

the class of models from which the initial motivation for understanding benign overfitting arose—trained

neural networks—we understand remarkably little.

In this work, we consider the class of two-layer networks with smoothed leaky ReLU activations trained

on data coming from a high-dimensional linearly separable dataset where a constant fraction of the training
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labels can be adversarially corrupted [KSS94]. We demonstrate that networks trained by standard gradient

descent on the logistic loss in this setting exhibit benign overfitting: they can be driven to zero loss, and

thus interpolate the noisy training data, and simultaneously achieve a classification error rate close to the

Bayes-optimal classification error.

Our results follow by showing that the training loss can be driven to zero while the expected normalized

margin for clean data points is large. The key technical ingredient of the proof for both of these claims

is a ‘loss ratio bound’: we show that the gradient descent dynamics ensure that the loss of each example

decreases at roughly the same rate throughout training. This ensures that the noisy points cannot have an

outsized influence on the training dynamics, so that we can have control over the normalized margin for

clean data points throughout training. At a high-level, this is possible because the data is high-dimensional,

which ensures that all data points are roughly mutually orthogonal.

Our results hold for finite width networks, and since the logistic loss is driven to zero, the weights

traverse far from their randomly initialized values. As a consequence, this shows benign overfitting behavior

in trained neural networks beyond the kernel regime [JGH18].

1.1 Related Work

A number of recent works have characterized the generalization performance of interpolating models. Most

related to ours are those in the classification setting. Chatterji and Long [CL21b] study the high-dimensional

sub-Gaussian mixture model setup we consider here, where labels can be corrupted adversarially, and an-

alyze the performance of the maximum margin linear classifier. They do so by utilizing recent works that

show that the weights found by unregularized gradient descent on the logistic loss asymptotically approach

the maximum margin classifier for linearly separable data [Sou+18; JT19]. Our proof techniques can be

viewed as an extension of some of the techniques developed by Chatterji and Long in the logistic regression

setting to two-layer neural networks. Muthukumar et al. [Mut+21] study the behavior of the overparameter-

ized max-margin classifier in a discriminative classification model with label-flipping noise, by connecting

the behavior of the max-margin classifier to the ordinary least squares solution. They show that under cer-

tain conditions, all training data points become support vectors of the maximum margin classifier [see also,

HMX21]. Following this, Wang and Thrampoulidis [WT21] and Cao, Gu, and Belkin [CGB21] analyze the

behavior of the overparameterized max-margin classifier in high dimensional mixture models by exploiting

the connection between the max-margin classifier and the OLS solution. In contrast with these works, we

consider the generalization performance of an interpolating nonlinear neural network.

A key difficulty in establishing benign overfitting guarantees for trained neural networks lies in demon-

strating that the neural network can interpolate the data. Brutzkus et al. [Bru+18] study SGD on two-layer

networks with leaky ReLU activations and showed that for linearly separable data, stochastic gradient de-

scent on the hinge loss will converge to zero training loss. They provided guarantees for the test error

provided the number of samples is sufficiently large relative to the input dimension and the Bayes error

rate is zero, but left open the question of what happens when there is label noise or when the data is high-

dimensional. Frei, Cao, and Gu [FCG21] show that for linear separable data with labels corrupted by adver-

sarial label noise [KSS94], SGD on the logistic loss of two-layer leaky ReLU networks achieves test error

that is at most a constant multiple of the square root of the noise rate under mild distributional assumptions.

However, their proof technique did not allow for the network to be trained to interpolation. In contrast, we

allow for the network to be trained to arbitrarily small loss and hence interpolate noisy data. In principle,

this could allow for the noisy samples to adversely influence the classifier, but we show this does not happen.

A series of recent works have exploited the connection between overparameterized neural networks

and an infinite width approximation known as the neural tangent kernel (NTK) [JGH18; ALS19; Zou+19;
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Du+19; Aro+19; SJL19]. These works show that for a certain scaling regime of the initialization, learn-

ing rate, and width of the network, neural networks trained by gradient descent behave similarly to their

linearization around random initialization and can be well-approximated by the NTK. The near-linearity

simplifies much of the analysis of neural network optimization and generalization. Indeed, a number of

recent works have characterized settings in which neural networks in the kernel regime can exhibit benign

overfitting [LRZ20; MZ21].

Unfortunately, the kernel approximation fails to meaningfully capture a number of aspects of neural

networks trained in practical settings, such as the ability to learn features [YH21], so that previous kernel-

based approaches for understanding neural networks provide a quite restricted viewpoint for understanding

neural networks in practice. By contrast, in this work, we develop an analysis of benign overfitting in finite

width neural networks trained for many iterations on the logistic loss. We show that gradient descent drives

the logistic loss to zero so that the weights grow to infinity, far from the near-initialization region where

the kernel approximation holds, while the network simultaneously maintains a positive margin on clean

examples. This provides the first guarantee for benign overfitting that does not rely upon an effectively

linear evolution of the parameters.

2 Preliminaries

In this section we introduce the assumptions on the data generation process, the neural network architecture,

and the optimization algorithm we consider.

2.1 Notation

We denote the ℓ2 norm of a vector x ∈ R
p by ‖x‖. For a matrix W ∈ R

m×p, we use ‖W‖F to denote

its Frobenius norm and ‖W‖2 to denote its spectral norm, and we denote its rows by w1, . . . , wm. For an

integer n, we use the notation [n] to refer to the set [n] = {1, 2, . . . , n}.

2.2 Setting

We shall let C > 1 denote a positive absolute constant, and our results will hold for all values of C suf-

ficiently large. We consider a mixture model setting similar to one previously considered by Chatterji and

Long [CL21b], defined in terms of a joint distribution P over (x, y) ∈ R
p × {±1}. Samples from this

distribution can have noisy labels, and so we will find it useful to first describe a ‘clean’ distribution P̃ and

then define the true distribution P in terms of P̃. Samples (x, y) from P are constructed as follows:

1. Sample a clean label ỹ ∈ {±1} uniformly at random, ỹ ∼ Uniform({+1,−1}).

2. Sample z ∼ Pclust where

• Pclust = P
(1)
clust

× · · · × P
(p)
clust

is a product distribution whose marginals are all mean-zero with

sub-Gaussian norm at most one;

• Pclust is a λ-strongly log-concave distribution over Rp for some λ > 0;1

• for some κ > 0, it holds that Ez∼Pclust
[‖z‖2] ≥ κp.

1That is, z ∼ Pclust has a probability density function pz satisfying pz(x) = exp(−U(x)) for some convex function U : Rp
→

R such that ∇2U(x)− λIp is positive semidefinite.
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3. Generate x̃ = z + ỹµ.

4. Then, given a noise rate η ∈ [0, 1/C], P is any distribution over Rp × {±1} such that the marginal

distribution of the features for P and P̃ coincide, and the total variation distance between the two

distributions satisfies dTV(P̃,P) ≤ η. Equivalently, P has the same marginal distribution over x as P̃,

but a sample (x, y) ∼ P has label equal to ỹ with probability 1− η(x) and has label equal to −ỹ with

probability η(x), where η(x) ∈ [0, 1] satisfies Ex∼P [η(x)] ≤ η.

We note that the above assumptions coincide with those used by Chatterji and Long [CL21b] in the

linear setting with the exception of the introduction of an assumption of λ strong log-concavity that we

introduce. This assumption is needed so that we may employ a concentration inequality for Lipschitz func-

tions for strongly log-concave distributions. We note that variations of this data model have also been studied

recently [WT21; LR21; Wan+21].

One example of a cluster distribution which satisfies the above assumptions is the (possibly anisotropic)

Gaussian.

Example 2.1. If Pclust = N(0,Σ), where ‖Σ‖2 ≤ 1 and ‖Σ−1‖ ≤ 1/κ, and each of the labels are flipped

independently with probability η, then all of the properties listed above are satisfied.

Next, we introduce the neural network architecture and the optimization algorithm. We consider one-

hidden-layer neural networks of width m that take the form

f(x;W ) :=

m∑

j=1

ajφ(〈wj , x〉),

where we denote the input x ∈ R
p and emphasize that the network is parameterized by a matrix W ∈ R

m×p

corresponding to the first layer weights {wj}mj=1. The network’s second layer weights {aj}mj=1 are initialized

aj
i.i.d.∼ Unif({1/√m,−1/

√
m}) and fixed at their initial values. We assume the activation function φ

satisfies φ(0) = 0 and is strictly increasing, 1-Lipschitz, and H-smooth, that is, it is twice differentiable

almost everywhere and there exist γ,H > 0 such that

0 < γ ≤ φ′(z) ≤ 1, and |φ′′(z)| ≤ H, ∀z ∈ R.

An example of such a function is a smoothed leaky ReLU activation,

φSLReLU(z) =





z − 1−γ
4H , z ≥ 1/H,

1−γ
4 Hz2 + 1+γ

2 z, |z| ≤ 1/H,

γz − 1−γ
4H , z ≤ −1/H.

(1)

As H → ∞, φSLReLU approximates the leaky ReLU activation z 7→ max(γz, z). We shall refer to functions

φ satisfying the above properties as γ-leaky, H-smooth activations.

We assume access to a set of samples S = {(xi, yi)}ni=1
i.i.d.∼ Pn. We denote by C ⊂ [n] the set of indices

corresponding to samples with clean labels, and N as the set of indices corresponding to noisy labels, so

that i ∈ N implies (xi, yi) ∼ P is such that yi = −ỹi using the notation above.

Let ℓ(z) = log(1 + exp(−z)) be the logistic loss, and denote the empirical and population risks under

ℓ by

L̂(W ) :=
1

n

n∑

i=1

ℓ(yif(xi;W )) and L(W ) := E(x,y)∼P [ℓ(yf(x;W ))] .
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We will also find it useful to treat the function −ℓ′(z) = 1/(1+exp(z)) as a loss itself: since ℓ is convex and

decreasing, −ℓ′ is non-negative and decreasing and thus can serve as a surrogate for the 0-1 loss. This trick

has been used in a number of recent works on neural network optimization [CG20; FCG19; JT20; FCG21].

To this end, we introduce the notation,

g(z) := −ℓ′(z) and Ĝ(W ) :=
1

n

n∑

i=1

g(yif(xi;W )).

We also introduce notation to refer to the function output and the surrogate loss g evaluated at samples for a

given time point,

f
(t)
i := f(xi;W

(t)) and g
(t)
i := g

(
yif

(t)
i

)
.

We initialize the first layer weights independently for each neuron according to standard normals [W (0)]i,j
i.i.d.∼

N(0, ω2
init), where ω2

init is the initialization variance. The optimization algorithm we consider is unregular-

ized full-batch gradient descent on L̂(W ) initialized at W (0) with fixed step-size α > 0 which has updates

W (t+1) = W (t) − α∇L̂(W (t)).

Given a failure probability δ ∈ (0, 1/2), we make the following assumptions on the parameters in the

paper going forward:

(A1) Number of samples n ≥ C log(1/δ).

(A2) Dimension p ≥ Cmax{n‖µ‖2, n2 log(n/δ)}.

(A3) Norm of the mean satisfies ‖µ‖2 ≥ C log(n/δ).

(A4) Noise rate η ≤ 1/C .

(A5) Step-size α ≤
(
Cmax

{
1, H√

m

}
p2
)−1

, where φ is H-smooth.

(A6) Initialization variance satisfies ωinit
√
mp ≤ α.

Assumptions (A1), (A2), and (A3) above have previously appeared in Chatterji and Long [CL21b] and

put a constraint on how the number of samples, dimension, and cluster mean separation can relate to one

another. One regime captured by these assumptions is when the mean separation satisfies ‖µ‖ = Θ(pβ),

where β ∈ (0, 1/2) and p ≥ Cmax{n
1

1−2β , n2 log(n/δ)}. Assumption (A6) ensures that the first step

of gradient descent dominates the behavior of the neural network relative to that at initialization; this will

be key to showing that the network traverses far from initialization after a single step, which we show in

Proposition 3.2. We note that our analysis holds for neural networks of arbitrary width m ≥ 1.

3 Main Result

Our main result is that when a neural network is trained on samples from the distribution P described in the

previous section, it will exhibit benign overfitting: the network achieves arbitrarily small logistic loss, and

hence interpolates the noisy training data, and simultaneously achieves test error close to the noise rate.
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Theorem 3.1. For any γ-leaky, H-smooth activation φ, and for all κ ∈ (0, 1), λ > 0, there is a C > 1 such

that provided Assumptions (A1) through (A6) are satisfied, the following holds. For any 0 < ε < 1/2n, by

running gradient descent for T ≥ CL̂(W (0))/
(
‖µ‖2αε2

)
iterations, with probability at least 1 − 2δ over

the random initialization and the draws of the samples, the following holds:

1. All training points are classified correctly and the training loss satisfies L̂(W (T )) ≤ ε.

2. The test error satisfies

P(x,y)∼P

[
y 6= sgn(f(x;W (T )))

]
≤ η + 2exp

(
−n‖µ‖4

Cp

)
.

Theorem 3.1 shows that neural networks trained by gradient descent will exhibit benign overfitting: the

logistic loss can be driven to zero so that the network interpolates the noisy training data, and the trained

network will generalize with classification error close to the noise rate η provided n‖µ‖4 ≫ p. Our results

do not require many of the assumptions typical in theoretical analyses of neural networks: we allow for

networks of arbitrary width; we permit arbitrarily small initialization variance; and we allow for the network

to be trained for arbitrarily long.

A few remarks about the bound on the test error are in order. In the noiseless case (where η = 0), the

results of Jin [Jin09] established that when n is a constant, learning is impossible if ‖µ‖ = o(p1/4). Our

bounds shows that interpolating neural networks learnt by gradient descent on the logistic loss work right

up until this information-theoretic threshold. Further, our upper bound on the test error matches the lower

bound on the test error for the maximum margin classifier [CGB21, Theorem 3.2, Part 2] in this setting

without noise.

It is worth noting the difference between the test error bound presented in Theorem 3.1 and the Bayes

error. For simplicity, consider the setting where the noise takes the form of random classification noise,

where each label is flipped independently with probability η, and when Pclust = N(0, Ip). In the noise-

less setting, the Bayes error is precisely Φ(−‖µ‖), where Φ is the standard normal cumulative distribu-

tion function [Li+17], so that the random classification noise setting under consideration has Bayes error

η + Φ(−‖µ‖) = η + exp(−Θ(‖µ‖2)). By contrast, the test error bound for interpolating neural networks

given in Theorem 3.1 is at most η + exp(−Θ(n‖µ‖4/p)), and Assumption (A2) implies ‖µ‖2 > n‖µ‖4/p,

so that there is always a gap between the Bayes error and our upper bound for the generalization error.

However, the gap between the two is exponentially small in the input dimension in the setting ‖µ‖ = Θ(pβ)
for β > 1/4.

We briefly also compare our results to margin bounds in the literature. Note that even if one could prove

that the training data is likely to be separated by a large margin, the bound of Theorem 3.1 approaches the

Bayes error rate faster than the standard margin bounds [Vap99; Sha+98].

We wish to emphasize that our optimization and generalization analysis used to prove Theorem 3.1 do

not rely upon the neural tangent kernel approximation. One way to see this is that our results cover finite-

width networks and require ‖W (t)‖ → ∞ as ε → 0 since the logistic loss is never zero. In fact, for the

choice of step-size and initialization variance given in Assumptions (A5) and (A6), the weights travel far

from their initial values after a single step of gradient descent, as we show in Proposition 3.2 below.

Proposition 3.2. Under the settings of Theorem 3.1, we have for some absolute constant C > 1 with

probability at least 1− 2δ over the random initialization and the draws of the samples,

‖W (1) −W (0)‖F
‖W (0)‖F

≥ γ‖µ‖
C

.

The proof for Proposition 3.2 is provided in Appendix B.
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4 Proof of Theorem 3.1

In this section we will assume that Assumptions (A1) through (A6) are in force for a large constant C > 1.

Theorem 3.1 consists of two claims: the first is that the test error of the trained neural network is close

to the noise rate when n‖µ‖4/p ≫ 1, and the second is that the empirical loss can simultaneously be made

arbitrarily small despite the presence of noisy labels. Both of these claims will be established via a series of

lemmas. All of these lemmas are proved in Appendix A.

The first claim will follow by establishing a lower bound for the expected normalized margin on clean

points, E(x,ỹ)∼P̃
[ỹf(x;W (t))/‖W (t)‖F ]. We do so in the following lemma which leverages the fact that

Pclust is λ-strongly log-concave.

Lemma 4.1. Suppose that E(x,ỹ)∼P̃
[ỹf(x;W )] ≥ 0. Then there exists a universal constant c > 0 such that

P(x,y)∼P

(
y 6= sgn(f(x;W ))

)
≤ η + 2exp


−cλ

(
E(x,ỹ)∼P̃

[ỹf(x;W )]

‖W‖F

)2

 .

Lemma 4.1 demonstrates that the generalization bound will follow by showing a lower bound on the

normalized margin of the neural network on clean samples at a given time. To derive such a result, we first

need to introduce a number of structural results about the samples and the neural network objective function.

The first such result concerns the norm of the weights at initialization.

Lemma 4.2. There is a universal constant C0 > 1 such that with probability at least 1− δ over the random

initialization,

‖W (0)‖2F ≤ 3

2
ω2
initmp and ‖W (0)‖2 ≤ C0ωinit(

√
m+

√
p).

Our next structural result characterizes some properties of random samples from the distribution. It was

proved in Chatterji and Long [CL21b, Lemma 10] and is a consequence of Assumptions (A1) through (A4).

Lemma 4.3. For all κ > 0, there is C1 > 1 such that for all c′ > 0, for all large enough C , with probability

at least 1− δ over Pn, the following hold:

E.1 For all k ∈ [n],

p/C1 ≤ ‖xk‖2 ≤ C1p.

E.2 For all i 6= j ∈ [n],

|〈xi, xj〉| ≤ C1(‖µ‖2 +
√

p log(n/δ)).

E.3 For all k ∈ C,

|〈µ, ykxk〉 − ‖µ‖2| ≤ ‖µ‖2/2.

E.4 For all k ∈ N ,

|〈µ, ykxk〉 − (−‖µ‖2)| ≤ ‖µ‖2/2.
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E.5 The number of noisy samples satisfies |N |/n ≤ η + c′.

Definition 4.4. If the events in Lemma 4.2 and Lemma 4.3 occur, let us say that we have a good run.

Lemmas 4.2 and 4.3 show that a good run occurs with probability at least 1 − 2δ. In what follows, we

will assume that a good run occurs.

We next introduce a number of structural lemmas concerning the neural network optimization objective.

The first concerns the smoothness of the network in terms of the first layer weights.

Lemma 4.5. For an H-smooth activation φ and any W,V ∈ R
m×p and x ∈ R

p,

|f(x;W )− f(x;V )− 〈∇f(x;V ),W − V 〉| ≤ H‖x‖2
2
√
m

‖W − V ‖22.

In the next lemma, we provide a number of smoothness properties of the empirical loss.

Lemma 4.6. For an H-smooth activation φ and any W,V ∈ R
m×p, on a good run it holds that

1√
C1p

‖∇L̂(W )‖F ≤ Ĝ(W ) ≤ L̂(W ) ∧ 1,

where C1 is the constant from Lemma 4.3. Additionally,

‖∇L̂(W )−∇L̂(V )‖F ≤ C1p

(
1 +

H√
m

)
‖W − V ‖2.

Our final structural result is the following lemma that characterizes the pairwise correlations of the

gradients of the network at different samples.

Lemma 4.7. Let C1 > 1 be the constant from Lemma 4.3. For a γ-leaky, H-smooth activation φ, on a good

run, we have the following.

(a) For any i, k ∈ [n], i 6= k, and any W ∈ R
m×d, we have

|〈∇f(xi;W ),∇f(xk;W )〉| ≤ C1

(
‖µ‖2 +

√
p log(n/δ)

)
.

(b) For any i ∈ [n] and any W ∈ R
m×d, we have

γ2p

C1
≤ ‖∇f(xi;W )‖2F ≤ C1p.

In the regime where ‖µ‖2 = o(p), Lemma 4.7 shows that the gradients of the network at different

samples are roughly orthogonal as the pairwise inner products of the gradients are much smaller than the

norms of each gradient. This mimics the behavior of the samples xi established in Lemma 4.3.

With these structural results in place, we can now begin to prove a lower bound for the normalized

margin on test points. To do so, our first step is to characterize the change in the unnormalized margin

y[f(x;W (t+1))− f(x;W (t))] from time t to time t+ 1 for an independent test sample (x, y).
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Lemma 4.8. Let C1 > 1 be the constant from Lemma 1. For a γ-leaky, H-smooth activation φ, on a

good run, we have for any t ≥ 0 and (x, y) ∈ R
p × {±1}, and for each i = 1, . . . , n, there exist ξi =

ξ(W (t), xi, x) ∈ [γ2, 1], such that

y[f(x;W (t+1))− f(x;W (t))] ≥ α

n

n∑

i=1

g
(t)
i

[
ξi〈yixi, yx〉 −

HC2
1p

2α

2
√
m

]
,

where g
(t)
i := −ℓ′(yif(xi;W (t))).

Consider what Lemma 4.8 tells us when (x, ỹ) ∼ P̃ is a clean test example. The lemma suggests

that if 〈yixi, ỹx〉 is always bounded from below by a strictly positive constant, then the margin on the test

sample (x, ỹ) will increase. Unfortunately, the presence of noisy labels will cause some of the 〈yixi, ỹx〉
terms appearing above to be negative, allowing for the possibility that the unnormalized margin decreases

on a test sample (x, ỹ). If the losses g(yif(xi;W
(t))) for (noisy) samples satisfying 〈yixi, ỹx〉 < 0 are

particularly large relative to the losses g(yi′f(xi′ ;W
(t))) for (clean) samples satisfying 〈yi′xi′ , ỹx〉 > 0,

then indeed Lemma 4.8 may fail to guarantee an increase in the unnormalized margin. However, if one

could show that the g losses are essentially ‘balanced’ across all samples, then provided the fraction of

noisy labels is not too large, one could ignore the effect of the noisy labels which contribute negative terms

to the sum
∑

i g
(t)
i 〈yixi, ỹx〉, and eventually show that the lower bound given in Lemma 4.8 is strictly

positive. This provides a motivation for our next lemma, which directly shows that the losses on all samples

are relatively balanced throughout training. This is the key technical lemma for our proof, and extends the

results of Chatterji and Long [CL21b] from the logistic regression setting to the two-layer neural network

setting.

Lemma 4.9. For a γ-leaky, H-smooth activation φ, there is an absolute constant Cr = 16C2
1/γ

2 such that

on a good run, provided C > 1 is sufficiently large, we have for all t ≥ 0,

max
i,j∈[n]

g
(t)
i

g
(t)
j

≤ Cr.

With this loss ratio bound, we first derive an upper bound on the norm of the iterates W (t), sharper than

what we get by applying the triangle inequality along with the bound on the norm of the gradient of the loss

provided by Lemma 4.6. This will improve our final guarantee for the normalized margin.

Lemma 4.10. There is an absolute constant C2 > 1 such that for C > 1 sufficiently large, on a good run

we have that for all t ≥ 0,

‖W (t)‖F ≤ ‖W (0)‖F + C2α

√
p

n

t−1∑

s=0

Ĝ(W (s)).

With the loss ratio bound provided in Lemma 4.9 and the tightened gradient norm bound of Lemma 4.10

established, we can now derive a lower bound on the normalized margin. Note that this lower bound on the

normalized margin in conjunction with Lemma 4.1 results in the test error bound for the main theorem.

Lemma 4.11. For a γ-leaky, H-smooth activation φ, and for all C > 1 sufficiently large, on a good run,

for any t ≥ 1,

E(x,ỹ)∼P̃
[ỹf(x;W (t))]

‖W (t)‖F
≥ γ2‖µ‖2√n

8max(
√
C1, C2)

√
p
,

where C1 and C2 are the constants from Lemma 4.3 and Lemma 4.10, respectively.

9



Since Lemma 4.11 provides a positive margin on clean points, we have by Lemma 4.1 a guarantee that

the neural network achieves classification error on the noisy distribution close to the noise level. The only

remaining part of Theorem 3.1 that remains to be proved is that the training loss can be driven to zero. This

is a consequence of the following lemma, the proof of which also crucially relies upon the loss ratio bound

of Lemma 4.9.

Lemma 4.12. For a γ-leaky, H-smooth activation φ, provided C > 1 is sufficiently large, then on a good

run we have for all t ≥ 0,

‖∇L̂(W (t))‖F ≥ γ‖µ‖
4

Ĝ(W (t)).

Moreover, any T ∈ N,

1

n

n∑

i=1

1

(
yi 6= sgn(f(xi;W

(T−1)))
)
≤ 2Ĝ(W (T−1)) ≤ 2

(
32L̂(W (0))

γ2‖µ‖2αT

)1/2

.

In particular, for T ≥ 128L̂(W (0))/
(
γ2‖µ‖2αε2

)
, we have Ĝ(W (T−1)) ≤ ε/2.

We now have all of the results necessary to prove our main theorem.

Proof of Theorem 3.1. By Lemma 4.3 and Lemma 4.2, a ‘good run’ occurs with probability at least 1− 2δ.

Since a good run occurs, we can apply Lemma 4.11. Using this as well as Lemma 4.1, we have with

probability at least 1− 2δ,

P(x,y)∼P

(
y 6= sgn(f(x;W ))

)
≤ η + 2exp


−cλ

(
E(x,ỹ)∼P̃

[ỹf(x;W )]

‖W‖2

)2



≤ η + 2exp

(
−cλ

(
γ4n‖µ‖4

82 max(C1, C2
2 )p

))
.

By Lemma 4.12, since T ≥ 32L̂(W (0))/
(
γ‖µ‖αε2

)
, we have

Ĝ(W (T−1)) ≤ ε/2.

Since ε < 1/(2n) and g(z) = −ℓ′(z) < 1/2 if and only if z > 0, we know that yif(xi;W
(T−1)) > 0

for every i ∈ [n]. We are working with the logistic loss, and hence we have 1
2ℓ(yif(xi;W

(T−1))) ≤
g(yif(xi;W

(T−1))) for every i ∈ [n], which implies that

L̂(W (T−1)) =
1

n

n∑

i=1

ℓ(yif(xi;W
(T−1))) ≤ 2

n

n∑

i=1

−ℓ′(yif(xi;W (T−1))) = 2Ĝ(W (T−1)) ≤ ε.

5 Discussion

We have shown that neural networks trained by gradient descent will interpolate noisy training data and

still generalize close to the noise rate when the data comes from a mixture of well-separated sub-Gaussian

distributions and the dimension of the data is larger than the sample size. Our results mimic those established
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by Chatterji and Long [CL21b] for linear classifiers, but they hold for the much richer class of two-layer

neural networks.

Our proof technique relies heavily upon the assumption that the number of samples is much less than

the ambient dimension. This assumption allows for every pair of distinct samples to be roughly mutually

orthogonal so that samples with noisy labels cannot have an outsized effect on the ability for the network to

learn a positive margin on clean examples. Previous work has established a similar ‘blessing of dimension-

ality’ phenomenon: Belkin, Hsu, and Mitra [BHM18] showed that the gap between a particular simplicial

interpolation rule and the Bayes error decreases exponentially fast as the ambient dimension increases,

mimicking the behavior we show in Theorem 3.1. In the linear regression setting, it is known that for the

minimum norm solution to generalize well it is necessary for the dimension of the data p to be much larger

than n [Bar+20]. It has also been shown that if the ambient dimension is one, local interpolation rules nec-

essarily have sub-optimal performance [JLT21]. Taken together, these results suggest that working in high

dimensions makes it easier for benign overfitting to hold, but it is an interesting open question to understand

the extent to which working in the p ≥ n regime is necessary for benign overfitting with neural networks.

In particular, when can benign overfitting occur in neural networks that have enough parameters to fit the

training points (mp > n) but for which the number of samples is larger than the input dimension (n > p)?
In this work we considered a data distribution for which the optimal classifier is linear but analyzed a

model and algorithm that are fundamentally nonlinear. A natural next step is to develop characterizations of

benign overfitting for neural networks trained by gradient descent in settings where the optimal classifier is

nonlinear.
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A Omitted Proofs from Section 4

In this section we provide a proof of all of the lemmas presented in Section 4. We remind the reader that

throughout this section, we assume that Assumptions (A1) through (A6) are in force.

First in Section A.1 we prove the concentration results, Lemmas 4.1 and 4.2. Next, in Section A.2 we

prove the structural results, Lemmas 4.5, 4.6 and 4.7. In Section A.3 we prove Lemma 4.8 that demonstrates

that the margin on a test point increases with training. In Section A.4 we prove Lemma 4.9 that guaran-

tees that the ratio of the surrogate losses remains bounded throughout training, while in Section A.5 we

prove Lemma 4.10 that bounds the growth of the norm of the parameters. Next, in Section A.6 we prove

Lemma 4.11 that provides a lower bound on the normalized margin on a test point. Finally, in Section A.7,

we prove Lemma 4.12 that is useful in proving that the training error and loss converge to zero.

A.1 Concentration Inequalities

In this subsection we prove the concentration results Lemmas 4.1 and 4.2.
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A.1.1 Proof of Lemma 4.1

Let us restate Lemma 4.1.

Lemma 4.1. Suppose that E(x,ỹ)∼P̃
[ỹf(x;W )] ≥ 0. Then there exists a universal constant c > 0 such that

P(x,y)∼P

(
y 6= sgn(f(x;W ))

)
≤ η + 2exp


−cλ

(
E(x,ỹ)∼P̃

[ỹf(x;W )]

‖W‖F

)2

 .

Proof. Following the proof of Chatterji and Long [CL21b, Lemma 9], we have

P(x,y)∼P(y 6= sgn(f(x;W )) = P(x,y)∼P(y sgn(f(x;W )) < 0)

≤ η + P(x,ỹ)∼P̃
(ỹf(x;W ) < 0).

It therefore suffices to provide an upper bound for P(x,ỹ)∼P̃
(ỹf(x;W ) < 0). Towards this end, we first note

that f is a ‖W‖2-Lipschitz function of the input x: let x, x′ ∈ R
p, and consider

|f(x;W )− f(x′;W )| =

∣∣∣∣∣∣

m∑

j=1

aj[φ(〈wj , x〉)− φ(〈wj , x
′〉)]

∣∣∣∣∣∣
(i)

≤
m∑

j=1

|aj ||〈wj , x− x′〉|

(ii)

≤

√√√√
m∑

j=1

a2j

√√√√
m∑

j=1

〈wj, x− x′〉2

= ‖W (x− x′)‖
(iii)

≤ ‖W‖2‖x− x′‖.

Above, (i) uses that φ is 1-Lipschitz, and (ii) follows by the Cauchy–Schwarz inequality. Inequality (iii)
is by the definition of the spectral norm. This shows that f(·;W ) is ‖W‖2-Lipschitz.

Since Pclust is λ-strongly log-concave, by Ledoux [Led01, Theorem 2.7 and Proposition 1.10], since

ỹf(x;W ) is ‖W‖2-Lipschitz, there is an absolute constant c > 0 such that for any q ≥ 1, ‖ỹf(x;W ) −
E[ỹf(x;W )]‖Lq ≤ c‖W‖2

√
q/λ. This behavior of the growth of Lq norms is equivalent to ỹf(x;W ) −

E[ỹf(x;W )] having sub-Gaussian norm c′‖W‖2/
√
λ for some absolute constant c′ > 0, by Vershynin

[Ver10, Proposition 2.5.2]. Thus, there is an absolute constant c′′ > 0 such that for any t ≥ 0,

P(|ỹf(x;W )− E[ỹf(x;W )]| ≥ t) ≤ 2 exp

(
−c′′λ

(
t

‖W‖2

)2
)
. (2)

Since we have the equality,

P
(
ỹ 6= sgn(f(x;W ))

)
= P(ỹf(x;W )− E[ỹf(x;W )] < −E[ỹf(x;W )])

the result follows by taking t = E[ỹf(x;W )] ≥ 0 in (2) and using ‖W‖2 ≤ ‖W‖F .
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A.1.2 Proof of Lemma 4.2

Now let us restate and prove Lemma 4.2.

Lemma 4.2. There is a universal constant C0 > 1 such that with probability at least 1− δ over the random

initialization,

‖W (0)‖2F ≤ 3

2
ω2
initmp and ‖W (0)‖2 ≤ C0ωinit(

√
m+

√
p).

Proof. Note that ‖W (0)‖2F is a ω2
init-multiple of a chi-squared random variable with mp degrees of freedom.

By concentration of the χ2 distribution [Wai19, Example 2.11], for any t ∈ (0, 1),

P

(∣∣∣∣
1

mpω2
init

‖W (0)‖2F − 1

∣∣∣∣ ≥ t

)
≤ 2 exp(−mpt2/8).

In particular, if we choose t =
√

8 log(4/δ)/md and use Assumption (A2), we get that t ≤ 1/2 and so with

probability at least 1− δ/2, we have

‖W (0)‖2F ≤ 3

2
mpω2

init.

As for the spectral norm, since the entries of W (0)/ωinit are i.i.d. standard normal random variables, by Ver-

shynin [Ver10, Theorem 4.4.5] there exists a universal constant c > 0 such that for any u ≥ 0, with

probability at least 1− 2 exp(−u2), we have

‖W (0)‖2 ≤ cωinit(
√
m+

√
p+ u).

In particular, taking u =
√

log(4/δ) we have with probability at least 1 − δ/2, ‖W (0)‖2 ≤ cωinit(
√
m +√

p +
√

log(4/δ). Since
√
p ≥

√
log(4/δ) by Assumption (A2), the proof is completed by a union bound

over the claims on the spectral norm and the Frobenius norm.

A.2 Structural Results

As stated above in this section we prove Lemmas 4.5, 4.6 and 4.7.

A.2.1 Proof of Lemma 4.5

We begin by restating and proving Lemma 4.5.

Lemma 4.5. For an H-smooth activation φ and any W,V ∈ R
m×p and x ∈ R

p,

|f(x;W )− f(x;V )− 〈∇f(x;V ),W − V 〉| ≤ H‖x‖2
2
√
m

‖W − V ‖22.

Proof. Since φ is twice differentiable, φ′ is continuous and so by Taylor’s theorem, for each j ∈ [m], there

exist constants tj = tj(wj , vj , x) ∈ R,

φ(〈wj , x〉)− φ(〈vj , x〉) = φ′(〈vj , x〉) · 〈wj − vj , x〉+
φ′′(tj)

2
(〈wj − vj , x〉)2,
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where tj lies between 〈wj, x〉 and 〈vj , x〉. We therefore have

f(x;W )− f(x;V ) =

m∑

j=1

aj [φ(〈wj , x〉) − φ(〈vj , x〉)]

=
m∑

j=1

aj

[
φ′(〈vj , x〉) · 〈wj − vj , x〉+

φ′′(tj)
2

〈wj − vj , x〉2
]

= 〈∇f(x;V ),W − V 〉+
m∑

j=1

aj
φ′′(tj)

2
〈wj − vj, x〉2.

The last equality follows since we can write

∇f(x;V ) = DV
x ax

⊤, where DV
x := diag(φ′(〈vj , x〉)), (3)

and thus

〈∇f(x;V ),W − V 〉 = tr(xa⊤DV
x (W − V )) = a⊤DV

x (W − V )x =
∑

j

ajφ
′(〈vj , x〉)〈wj − vj, x〉.

For the final term, we have

∣∣∣∣∣∣

m∑

j=1

aj
φ′′(ξj)

2
〈wj − vj, x〉2

∣∣∣∣∣∣
≤

m∑

j=1

|aj |
|φ′′(tj)|

2
〈wj − vj, x〉2

≤ H

2
√
m

m∑

j=1

〈wj − vj , x〉2

=
H

2
√
m

‖(W − V )x‖22

≤ H

2
√
m

‖W − V ‖22 ‖x‖22.

A.2.2 Proof of Lemma 4.6

Next we prove Lemma 4.6 that establishes that the loss is smooth.

Lemma 4.6. For an H-smooth activation φ and any W,V ∈ R
m×p, on a good run it holds that

1√
C1p

‖∇L̂(W )‖F ≤ Ĝ(W ) ≤ L̂(W ) ∧ 1,

where C1 is the constant from Lemma 4.3. Additionally,

‖∇L̂(W )−∇L̂(V )‖F ≤ C1p

(
1 +

H√
m

)
‖W − V ‖2.
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Proof. Since a good run occurs, all of the events in Lemma 4.3 hold. We thus have

∥∥∥∇L̂(W )
∥∥∥
F
=

∥∥∥∥∥
1

n

n∑

i=1

g(yif(xi;W ))yi∇f(xi;W )

∥∥∥∥∥
F

(i)

≤ 1

n

n∑

i=1

g(yif(xi;W )) ‖∇f(xi;W )‖F

(ii)

≤
√
C1p

n

n∑

i=1

g(yif(xi;W )) =
√

C1pĜ(W )

(iii)

≤
√
C1p

n

n∑

i=1

min(ℓ(yif(xi;W )), 1)

(iv)

≤
√

C1p(L̂(W ) ∧ 1).

In (i) we have used Jensen’s inequality. In (ii) we have used that φ is 1-Lipschitz so that ‖∇f(xi;W )‖2F =∥∥DW
i ax⊤i

∥∥2
F

=
∥∥DW

i a
∥∥2
2
‖xi‖22 ≤ C1p by Event (E.1), where DW

i = DW
xi

is defined in Equation (3). In

(iii) we use that 0 ≤ g(z) ≤ 1∧ ℓ(z). In (iv) we use Jensen’s inequality since z 7→ min {z, 1} is a concave

function.

Next we show that the loss has Lipschitz gradients. First, we have the decomposition

‖∇L̂(W )−∇L̂(V )‖F =

∥∥∥∥∥
1

n

n∑

i=1

[g(yif(xi;W ))yi∇f(xi;W )− g(yif(xi;V ))yi∇f(xi;V )]

∥∥∥∥∥
F

≤ 1

n

n∑

i=1

‖∇f(xi;W )‖F |g(yif(xi;W ))− g(yif(xi;V ))|

+
1

n

n∑

i=1

‖∇f(xi;W )−∇f(xi;V )‖F

(i)

≤ 1

n

n∑

i=1

‖∇f(xi;W )‖F |f(xi;W )− f(xi;V )|

+
1

n

n∑

i=1

‖∇f(xi;W )−∇f(xi;V )‖F . (4)

In (i), we use that g = −ℓ′ (the negative derivative of the logistic loss) is 1-Lipschitz. Therefore, to show

that the loss has Lipschitz gradients, it suffices to show that both the network and the gradient of the network

are Lipschitz with respect to the first layer weights. We first show that the network is Lipschitz with respect
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to the network parameters:

|f(x;W )− f(x;V )|2 =

∣∣∣∣∣∣

m∑

j=1

aj [φ(〈wj , x〉) − φ(〈vj , x〉)]

∣∣∣∣∣∣

2

≤




m∑

j=1

a2j


 ·

m∑

j=1

|φ(〈wj , x〉)− φ(〈vj , x〉)|2

≤
m∑

j=1

|〈wj , x〉 − 〈uj , x〉|2

= ‖(W − V )x‖2

≤ ‖x‖2‖W − V ‖22. (5)

As for the gradients of the network, again recalling the DW
x notation from Equation (3), we have

‖∇f(x;W )−∇f(x;V )‖2F = ‖(DW
x −DV

x )ax
T ‖2

≤ ‖x‖2‖(DW
x −DV

x )a‖2

= ‖x‖2
m∑

j=1

a2j [φ
′(〈wj , x〉)− φ′(〈vj , x〉)]2

≤ ‖x‖2 · H
2

m

m∑

j=1

|〈wj , x〉 − 〈vj , x〉|2

= H2‖x‖2 · 1

m
‖(W − V )x‖2

≤ H2

m
‖x‖4‖W − V ‖22. (6)

Continuing from (4), we have

‖∇L̂(W )−∇L̂(V )‖F ≤ 1

n

n∑

i=1

‖∇f(xi;W )‖F |f(xi;W )− f(xi;V )|

+
1

n

n∑

i=1

‖∇f(xi;W )−∇f(xi;V )‖F

(i)

≤
√

C1p ·
1

n

n∑

i=1

|f(xi;W )− f(xi;V )|+ C1Hp√
m

‖W − V ‖2

(ii)

≤ C1p

(
1 +

H√
m

)
‖W − V ‖2. (7)

In (i) we use that φ being 1-Lipschitz implies ‖∇f(xi;W )‖F = ‖xi‖‖DW
i a‖ ≤ √

C1p for the first term,

and (6) together with (E.1). In (ii), we use (5) and (E.1).

A.2.3 Proof of Lemma 4.7

Finally, we prove Lemma 4.7 that bounds the correlation between the gradients.
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Lemma 4.7. Let C1 > 1 be the constant from Lemma 4.3. For a γ-leaky, H-smooth activation φ, on a good

run, we have the following.

(a) For any i, k ∈ [n], i 6= k, and any W ∈ R
m×d, we have

|〈∇f(xi;W ),∇f(xk;W )〉| ≤ C1

(
‖µ‖2 +

√
p log(n/δ)

)
.

(b) For any i ∈ [n] and any W ∈ R
m×d, we have

γ2p

C1
≤ ‖∇f(xi;W )‖2F ≤ C1p.

Proof. Recall the notation DW
i := diag(φ′(〈wj , xi〉) ∈ R

m×m. By definition,

〈∇f(xi;W ),∇f(xk;W )〉 = tr(xia
⊤DW

i DW
k ax⊤k )

= tr
(
x⊤i xka

⊤DW
i DW

k a
)

= 〈xi, xk〉a⊤DW
i DW

k a

= 〈xi, xk〉
m∑

j=1

a2jφ
′(〈wj , xi〉)φ′(〈wj , xk〉)

= 〈xi, xk〉 ·
1

m

m∑

j=1

φ′(〈wj , xi〉)φ′(〈wj , xk〉). (8)

Since a good run occurs, all of the events in Lemma 4.3 hold. We can therefore bound,

|〈∇f(xi;W ),∇f(xk;W )〉|
(i)

≤ |〈xi, xk〉|
(ii)

≤ C1

(
‖µ‖2 +

√
p log(n/δ)

)
.

Inequality (i) uses that |φ′(z)| ≤ 1, while inequality (ii) uses Event (E.2) from Lemma 4.3. This completes

the proof for part (a). For part (b), we continue from (8) to get

‖∇f(xi;W )‖2F = ‖xi‖2 ·
1

m

m∑

j=1

φ′(〈wj , xi〉)2.

By the assumption on φ, we know φ′(z) ≥ γ > 0 for every t ∈ R. Now we can use Lemma 4.3, which

states that p/C1 ≤ ‖xi‖2 ≤ C1p for all i. In particular, we have

p

C1
· γ2 ≤ ‖xi‖2 ·

1

m

m∑

j=1

φ′(〈wj , xi〉)2 = ‖∇f(xi;W )‖2F ≤ C1p.
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A.3 Proof of Lemma 4.8

Let us restate and prove the lemma. Recall that (x, y) are independent test samples.

Lemma 4.8. Let C1 > 1 be the constant from Lemma 1. For a γ-leaky, H-smooth activation φ, on a

good run, we have for any t ≥ 0 and (x, y) ∈ R
p × {±1}, and for each i = 1, . . . , n, there exist ξi =

ξ(W (t), xi, x) ∈ [γ2, 1], such that

y[f(x;W (t+1))− f(x;W (t))] ≥ α

n

n∑

i=1

g
(t)
i

[
ξi〈yixi, yx〉 −

HC2
1p

2α

2
√
m

]
,

where g
(t)
i := −ℓ′(yif(xi;W (t))).

Proof. First, note that since a good run occurs, Lemma 4.5 implies

∣∣∣f(x;W (t+1))− f(x;W (t))− 〈∇f(x;W (t)),W (t+1) −W (t)〉
∣∣∣ ≤ HC1p

2
√
m

∥∥∥W (t+1) −W (t)
∥∥∥
2

2
.

In particular, we have for y ∈ {±1},

y[f(x;W (t+1))− f(x;W (t))] ≥ y
[
〈∇f(x;W (t)),W (t+1) −W (t)〉

]
− HC1p

2
√
m

∥∥∥W (t+1) −W (t)
∥∥∥
2

2
. (9)

We can therefore calculate

y[f(x;W (t+1))− f(x;W (t))]
(i)

≥ y
[
〈∇f(x;W (t)),W (t+1) −W (t)〉

]
− HC1p

2
√
m

∥∥∥W (t+1) −W (t)
∥∥∥
2

2

= y

[
α

n

n∑

i=1

g
(t)
i 〈yi∇f(x;W (t)),∇f(xi;W

(t))〉
]

− HC1pα
2

2
√
m

∥∥∥∇L̂(W (t))
∥∥∥
2

2

(ii)

≥
[
α

n

n∑

i=1

g
(t)
i 〈y∇f(x;W (t)), yi∇f(xi;W

(t))〉
]

− HC2
1p

2α2

2
√
m

Ĝ(W (t))

= α

[
1

n

n∑

i=1

g
(t)
i ξi〈yixi, yx〉 −

HC2
1p

2α

2
√
m

Ĝ(W (t))

]
.

The inequality (i) follows by (9), while (ii) uses Lemma 4.6. The last equality follows by defining

ξi = ξ(W (t), x, xi) :=
1

m

m∑

j=1

φ′(〈w(t)
j , xi〉) · φ′(〈w(t)

j , x〉),

and re-using the identity (8) and using the fact that φ′(z) ∈ [γ, 1] for all z ∈ R. The result follows by

recalling the definition Ĝ(W (t)) = 1
n

∑n
i=1 g

(t)
i .
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A.4 Proof of Lemma 4.9

Let us first restate the lemma.

Lemma 4.9. For a γ-leaky, H-smooth activation φ, there is an absolute constant Cr = 16C2
1/γ

2 such that

on a good run, provided C > 1 is sufficiently large, we have for all t ≥ 0,

max
i,j∈[n]

g
(t)
i

g
(t)
j

≤ Cr.

Before proceeding with the proof of Lemma 4.9, we introduce the following fact which will be used in

our proof.

Fact A.1. For any z1, z2 ∈ R,
g(z1)

g(z2)
≤ max

(
2, 2

exp(−z1)

exp(−z2)

)
.

Proof. By definition, g(z) = 1/(1 + exp(z)). Note that g is strictly decreasing, non-negative, and bounded

from above by one. Further, one has the inequalities

1

2
exp(−z) ≤ g(z) ≤ exp(−z) ∀z ≥ 0.

We do a case-by-case analysis on the signs of the zi.

• If z1 ≤ 0 and z2 ≤ 0, then since g(z1) ≤ 1 and g(z2) ≥ 1/2, it holds that g(z1)/g(z2) ≤ 2.

• If z1, z2 ≥ 0, then since g(z1) ≤ exp(−z1) and g(z2) ≥ 1/2 exp(−z2), we have g(z1)/g(z2) ≤
2 exp(−z1)/ exp(−z2).

• If z1 ≥ 0 and z2 ≤ 0, then g(z1)/g(z2) ≤ 2.

• If z1 ≤ 0 and z2 ≥ 0, then g(z1)/g(z2) ≤ 2/ exp(−z2) ≤ 2 exp(−z1)/ exp(−z2).

This proves the upper bound of g(z1)/g(z2).

We now proceed with the proof of the loss ratio bound.

Proof of Lemma 4.9. In order to show that the ratio of the g(·) losses is bounded, it suffices to show that the

ratio of exponential losses exp(−(·)) is bounded, since by Fact A.1,

max
i,j=1,...,n

g(yif(xi;W
(t)))

g(yjf(xj;W (t)))
≤ max

(
2, 2 · max

i,j=1,...,n

exp(−yif(xi;W
(t)))

exp(−yjf(xj;W (t)))

)
. (10)

Thus in the remainder of the proof we will show that the ratio of the exponential losses is bounded by

an absolute constant. To see the claim at iteration 0, since φ is 1-Lipschitz and φ(0) = 0, we have by

Cauchy–Schwarz,

|f(x;W )| =

∣∣∣∣∣∣

m∑

j=1

ajφ(〈wj , x〉)

∣∣∣∣∣∣
≤

√√√√
m∑

j=1

a2j

√√√√
m∑

j=1

〈wj , x〉2 = ‖Wx‖2.
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Since a good run occurs, all of the events in Lemma 4.3 and Lemma 4.2 hold. In particular, we have

‖W (0)‖2 ≤ C0ωinit(
√
m+

√
p) and ‖xi‖ ≤ √

C1p for all i ∈ [n]. We therefore have the bound,

2C0ωinit

√
C1p(

√
m+

√
p)

(i)

≤ 2C0

√
C1α

√
p(
√
m+

√
p)

√
mp

(ii)

≤ 2C0

√
C1

Cp2

(
1 +

√
p

m

)
(iii)

≤ 1,

where inequality (i) uses Assumption (A6), inequality (ii) uses Assumption (A5), and the final inequality

(iii) follows by taking C > 1 large enough. We thus have for all i ∈ [n],

|f(xi;W (0))| ≤ ‖W (0)‖2‖xi‖ ≤ 2C0ωinit

√
C1p(

√
m+

√
p) ≤ 1. (11)

Thus,

max
i,j=1,...,n

exp(−yif(xi;W
(0)))

exp(−yjf(xj;W (0)))
≤ exp(2). (12)

We now claim by induction that for all t ≥ 0,

max
i,j=1,...,n

exp(−yif(xi;W
(t)))

exp(−yjf(xj;W (t))
≤ 8C2

1

γ2
.

The base case t = 0 holds by (12) and since C1 > 1. Assume now the result holds at time t and consider

the case t + 1. Without loss of generality, it suffices to prove that the ratio of the exponential loss for the

first sample to the exponential loss for the second sample is bounded by 8C2
1/γ

2. To this end, let us denote

At :=
exp(−y1f(x1;W

(t)))

exp(−y2f(x2;W (t)))
.

Since the induction hypothesis holds at time t, At is at most 8C2
1/γ

2. We want to show At+1 ≤ 8C2
1/γ

2. To

do so, we calculate the exponential loss ratio between two samples at time t+ 1 in terms of the exponential
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loss ratio at time t. Recalling the notation g
(t)
i := g(yif(xi;W

(t))), we can calculate,

At+1 =
exp(−y1f(x1;W

(t+1)))

exp(−y2f(x2;W (t+1)))

=
exp

(
−y1f1

(
W (t) − α∇L̂(W (t))

))

exp
(
−y2f2

(
W (t) − α∇L̂(W (t))

))

(i)

≤
exp

(
−y1f

(
x1;W

(t)
)
+ y1α

〈
∇f(x1;W

(t)),∇L̂(W (t))
〉)

exp
(
−y2f

(
x2;W (t)

)
+ y2α

〈
∇f(x2;W (t)),∇L̂(W (t))

〉) exp

(
HC1pα

2

√
m

‖∇L̂(W (t))‖2
)

(ii)
= At ·

exp
(
y1α

〈
∇f(x1;W

(t)),∇L̂(W (t))
〉)

exp
(
y2α

〈
∇f(x2;W (t)),∇L̂(W (t))

〉) exp

(
HC1pα

2

√
m

‖∇L̂(W (t))‖2
)

= At ·
exp

(
−α

n

∑n
k=1 y1ykg

(t)
k 〈∇f(x1;W

(t)),∇f(xk;W
(t))〉

)

exp
(
−α

n

∑n
k=1 y2ykg

(t)
k 〈∇f(x2;W (t)),∇f(xk;W (t))〉

) exp

(
HC1pα

2

√
m

‖∇L̂(W (t))‖2
)

= At · exp
(
−α

n

(
g
(t)
1 ‖∇f(x1;W

(t))‖2F − g
(t)
2 ‖∇f(x2;W

(t))‖2F
))

×
exp

(
−α

n

∑
k>1 y1ykg

(t)
k 〈∇f(x1;W

(t)),∇f(xk;W
(t))〉

)

exp
(
−α

n

∑
k 6=2 y2ykg

(t)
k 〈∇f(x2;W (t)),∇f(xk;W (t))〉〉

)

× exp

(
HC1pα

2

√
m

‖∇L̂(W (t))‖2
)
. (13)

Inequality (i) uses Lemma 4.5 and Event (E.1) which ensures that ‖xi‖2 ≤ C1p, and (ii) uses that At is the

ratio of the exponential losses. We now proceed to bound each of the three terms in the product separately.

For the first term, by Part (b) of Lemma 4.7, we have for any i ∈ [n],

γ2p

C1
≤ ‖∇f(xi;W

(t))‖2F ≤ C1p. (14)

Therefore, we have

exp
(
−α

n

(
g
(t)
1 ‖∇f(x1;W

(t))‖2F − g
(t)
2 ‖∇f(x2;W

(t))‖2F
))

= exp

(
−g

(t)
2 α

n

(
g
(t)
1

g
(t)
2

‖∇f(x1;W
(t))‖2F − ‖∇f(x2;W

(t))‖2F

))

(i)

≤ exp

(
−g

(t)
2 α

n

(
g
(t)
1

g
(t)
2

· γ
2p

C1
− C1p

))

= exp

(
−g

(t)
2 αγ2p

C1n

(
g
(t)
1

g
(t)
2

− C2
1

γ2

))
. (15)

Inequality (i) uses (14). This bounds for the first term in (13).
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For the second term, we again use Lemma 4.7: we have for any i 6= k,

|〈∇f(xi;W ),∇f(xk;W )〉| ≤ C1

(
‖µ‖2 +

√
p log(n/δ)

)
. (16)

This allows for us to bound,

exp
(
−α

n

∑
k>1 y1ykg

(t)
k 〈∇f(x1;W

(t)),∇f(xk;W
(t))〉

)

exp
(
−α

n

∑
k 6=2 y2ykg

(t)
k 〈∇f(x2;W (t)),∇f(xk;W (t))〉〉

)

(i)

≤ exp


α

n

∑

k 6=1

g
(t)
k |〈∇f(x1;W

(t)),∇f(xk;W
(t))〉|+ α

n

∑

k 6=2

g
(t)
k |〈∇f(x2;W

(t)),∇f(xk;W
(t))〉|




(ii)

≤ exp


α

n

∑

k 6=1

g
(t)
k · C1

(
‖µ‖2 +

√
p log(n/δ)

)
+

α

n

∑

k 6=2

g
(t)
k · C1

(
‖µ‖2 +

√
p log(n/δ)

)



(iii)

≤ exp

(
2
α

n

n∑

k=1

g
(t)
k · C1

(
‖µ‖2 +

√
p log(n/δ)

))

= exp
(
2C1α

(
‖µ‖2 +

√
p log(n/δ)

)
Ĝ(W (t))

)
. (17)

Inequality (i) uses the triangle inequality. Inequality (ii) uses that g
(t)
k ≥ 0 for all k ∈ [n] and eq. (16).

Inequality (iii) again uses that g
(t)
k ≥ 0.

Finally, for the third term of (13), we have

exp

(
HC1pα

2

√
m

‖∇L̂(W (t))‖2
)

(i)

≤ exp

(
HC2

1p
2α2

√
m

Ĝ(W (t))

)
(ii)

≤ exp
(
α
√
pĜ(W (t))

)
. (18)

Inequality (i) uses Lemma 4.6, while (ii) uses that for C > 1 sufficiently large, by Assumption (A5) we

have HC2
1p

2α/
√
m ≤ √

p. Putting (15), (17) and (18) into (13), we get

At+1 ≤ At · exp
(
−g

(t)
2 αγ2p

C1n

(
g
(t)
1

g
(t)
2

− C2
1

γ2

))

× exp
(
2C1α

(
‖µ‖2 +

√
p log(n/δ)

)
Ĝ(W (t))

)
· exp

(
α
√
pĜ(W (t))

)

≤ At · exp
(
−g

(t)
2 αγ2p

C1n

(
g
(t)
1

g
(t)
2

− C2
1

γ2

))

× exp
(
2C1α

(
‖µ‖2 + 2

√
p log(n/δ)

)
Ĝ(W (t))

)
. (19)

We now consider two cases: in the first case, the ratio g
(t)
1 /g

(t)
2 is relatively small, in this case we will

show that the exponential loss ratio will not grow too much for small enough step-size α. In the second

case, if the ratio g
(t)
1 /g

(t)
2 is relatively large, then the first exponential term in (19) will dominate and cause

the exponential loss ratio to contract.
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Case 1 (g
(t)
1 /g

(t)
2 ≤ 2C2

1

γ2 ): Continuing from (19), we have

At+1 ≤ At exp

(
−g

(t)
2 αγ2p

C1n

(
g
(t)
1

g
(t)
2

− C2
1

γ2

))
exp

(
2C1α

(
‖µ‖2 + 2

√
p log(n/δ)

)
Ĝ(W (t))

)

(i)

≤ At exp

(
g
(t)
2 C1αp

n

)
exp

(
2C1α

(
‖µ‖2 + 2

√
p log(n/δ)

)
Ĝ(W (t))

)

(ii)

≤ At exp

(
C1αp

n

)
exp

(
2C1α

(
‖µ‖2 + 2

√
p log(n/δ)

)
Ĝ(W (t))

)

(iii)

≤ 2
g
(t)
1

g
(t)
2

exp

(
C1αp

n

)
exp

(
2C1α

(
‖µ‖2 + 2

√
p log(n/δ)

))

= 2
g
(t)
1

g
(t)
2

exp
(
C1α

( p
n
+ 2‖µ‖2 + 4

√
p log(n/δ)

))

(iv)

≤ 4C2
1

γ2
exp

(
C1α

( p
n
+ 2‖µ‖2 + 4

√
p log(n/δ)

))

(v)

≤ 4C2
1 exp(1/8)

γ2
≤ 8C2

1

γ2
.

In (i) we use that g
(t)
i ≥ 0, while in (ii) we use that |g(z)| ≤ 1. In (iii), we use Fact A.1 and that Ĝ(W ) ≤ 1.

In (iv), we use the Case 1 assumption that g
(t)
1 /g

(t)
2 ≤ 2C2

1/γ
2. Finally, in (v), we take C > 1 sufficiently

large so that by the upper bound on the step-size given in Assumption (A5), we have,

C1α
( p
n
+ 2‖µ‖2 + 4

√
p log(n/δ)

)
≤ 1

Hn
+

6

C1H
≤ 1

8
,

where we have used Assumption (A2) and assumed without loss of generality that H ≥ 1.
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Case 2 (g
(t)
1 /g

(t)
2 >

2C2

1

γ2 ): Again using the bound in (19), we have that

At+1

≤ At · exp
(
−g

(t)
2 αγ2p

C1n

(
g
(t)
1

g
(t)
2

− C2
1

γ2

))
· exp

(
2C1α

(
‖µ‖2 + 2

√
p log(n/δ)

)
Ĝ(W (t))

)

= At exp

(
−g

(t)
2 αγ2p

C1n

(
g
(t)
1

g
(t)
2

− C2
1

γ2

))

× exp

(
2C1α

(
‖µ‖2 + 2

√
p log(n/δ)

)
g
(t)
2 · 1

n

n∑

i=1

−g
(t)
i

g
(t)
2

)

(i)

≤ At exp

(
−g

(t)
2 αγ2p

C1n

(
g
(t)
1

g
(t)
2

− C2
1

γ2

))

× exp

(
2g

(t)
2 C1α

(
‖µ‖2 + 2

√
p log(n/δ)

)
·max

{
2,

16C2
1

γ2

})

(ii)
= At exp

(
−g

(t)
2 α

[
γ2p

C1n

(
g
(t)
1

g
(t)
2

− C2
1

γ2

)
− 32C3

1

γ2

(
‖µ‖2 + 2

√
p log(n/δ)

)])

(iii)

≤ At exp

(
−g

(t)
2 α

[
C1p

n
− 32C3

1

γ2

(
‖µ‖2 + 2

√
p log(n/δ)

)])

(iv)

≤ At ≤
8C2

1

γ2
.

In (i) we use the induction hypothesis that At ≤ 8C2
1/γ

2 together with Fact A.1. Equality (ii) uses that

C1 > 1 and that γ < 1. In (iii), we use the Case 2 assumption that g
(t)
1 /g

(t)
2 ≥ 2C2

1/γ
2. Finally, in (iv),

we use Assumption (A2) so that we have p ≥ Cn‖µ‖2 ≥ 128C2

1

γ2 n‖µ‖2 and that p ≥ Cn2 log(n/δ) ≥
(
128C2

1

γ2 n
√
log(n/δ)

)2
and also the fact that g

(t)
2 ≥ 0.

This completes the induction that for all times t ≥ 0, the ratio of the exponential losses is at most

8C2
1/γ

2. Using (10) completes the proof.

A.5 Proof of Lemma 4.10

We remind the reader of the statement of Lemma 4.10.

Lemma 4.10. There is an absolute constant C2 > 1 such that for C > 1 sufficiently large, on a good run

we have that for all t ≥ 0,

‖W (t)‖F ≤ ‖W (0)‖F + C2α

√
p

n

t−1∑

s=0

Ĝ(W (s)).

Proof. By the triangle inequality we have that

‖W (t)‖F =

∥∥∥∥∥W
(0) + α

t−1∑

s=0

∇L̂(W (s))

∥∥∥∥∥
F

≤ ‖W (0)‖F + α

t−1∑

s=0

‖∇L̂(W (s))‖F . (20)
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Now observe that

‖∇L̂(W (s))‖2F

=
1

n2

∥∥∥∥∥

n∑

i=1

g
(s)
i yi∇f(xi;W

(s))

∥∥∥∥∥

2

F

=
1

n2




n∑

i=1

(
g
(s)
i

)2 ∥∥∥∇f(xi;W
(s))
∥∥∥
2

F
+

∑

i 6=j∈[n]
g
(s)
i g

(s)
j yiyj〈∇f(xi;W

(s)),∇f(xj ;W
(s))〉




≤ 1

n2




n∑

i=1

(
g
(s)
i

)2 ∥∥∥∇f(xi;W
(s))
∥∥∥
2

F
+

∑

i 6=j∈[n]
g
(s)
i g

(s)
j

∣∣∣〈∇f(xi;W
(s)),∇f(xj ;W

(s))〉
∣∣∣




(i)

≤ C1

n2




n∑

i=1

(
g
(s)
i

)2
p+

∑

i 6=j∈[n]
g
(s)
i g

(s)
j

(
‖µ‖2 +

√
p log(n/δ)

)



≤ C1

n2
·max
k∈[n]

g
(s)
k

[
n∑

i=1

g
(s)
i p+ n

n∑

i=1

g
(s)
i

(
‖µ‖2 +

√
p log(n/δ)

)]

=
C1

n2

(
p+ n‖µ‖2 + n

√
p log(n/δ)

)
·max
k∈[n]

g
(s)
k

[
n∑

i=1

g
(s)
i

]
,

where (i) follows by Lemma 4.7. Now note that since p ≥ Cn‖µ‖2 and p ≥ Cn2 log(n/δ) by Assump-

tion (A2), we have that,

‖∇L̂(W (s))‖2F ≤ 3C2
1p

n

(
max
k∈[n]

g
(s)
k

)
Ĝ(W (s)).

Next note that by the loss ratio bound in Lemma 4.9 we have that

max
k∈[n]

g
(s)
k ≤ Cr

n

n∑

i=1

g
(s)
i = CrĜ(W (s)).

Plugging this into the previous inequality yields

‖∇L̂(W (s))‖2F ≤ 3C2
1Crp

n

(
Ĝ(W (s))

)2
.

Finally, taking square roots, defining C2 :=
√

3C2
1Cr and applying this bound on the norm in Inequality (20)

above we conclude that

‖W (t)‖F ≤ ‖W (0)‖F + C2α

√
p

n

t−1∑

s=0

Ĝ(W (s)),

establishing our claim.
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A.6 Proof of Lemma 4.11

Let us restate the lemma for the reader’s convenience.

Lemma 4.11. For a γ-leaky, H-smooth activation φ, and for all C > 1 sufficiently large, on a good run,

for any t ≥ 1,

E(x,ỹ)∼P̃
[ỹf(x;W (t))]

‖W (t)‖F
≥ γ2‖µ‖2√n

8max(
√
C1, C2)

√
p
,

where C1 and C2 are the constants from Lemma 4.3 and Lemma 4.10, respectively.

Proof. Using the refined upper bound for the norm of the weights given in Lemma 4.10, we have that,

‖W (t)‖F ≤ ‖W (0)‖F + C2α

√
p

n

t−1∑

s=0

Ĝ(W (s)). (21)

To complete the proof, we want to put together the bound for the unnormalized margin on clean samples

given by Lemma 4.8 with the upper bound on the norm given in (21). First, let us recall the definition of the

quantity ξi first introduced in (the proof of) Lemma 4.8,

ξi = ξ(W (s), xi, x) =
1

m

m∑

j=1

φ′(〈w(s)
j , x〉)φ′(〈w(s)

j , xi〉) ∈ [γ2, 1].

Since ξi ∈ [γ2, 1] for all i ∈ [n] and s ∈ {0, 1, . . .}, and E(x,ỹ)∼P̃
[ỹx] = µ, by (E.3) and (E.4), we have

E(x,ỹ)∼P̃
[ξi〈yixi, ỹx〉] ≥

{
γ2

2 ‖µ‖2, i ∈ C,
−3

2‖µ‖2, i ∈ N .
(22)

This allows for us to derive a lower bound on the increment of the unnormalized margin, for any s ≥ 0:

E(x,ỹ)∼P̃
[ỹ(f(x;W (s+1))− f(x;W (s)))]

(i)

≥ α

n

n∑

i=1

g
(s)
i

[
E[ξi〈yixi, ỹx〉]−

HC2
1p

2α

2
√
m

]

(ii)

≥ α

[
1

n

∑

i∈C
g
(s)
i · γ

2

2
‖µ‖2 − 1

n

∑

i∈N
g
(s)
i · 3

2
‖µ‖2 − HC2

1p
2α

2
√
m

Ĝ(W (s))

]

=
αγ2‖µ‖2

2

[(
1− HC2

1p
2α

2γ2‖µ‖2√m

)
Ĝ(W (s))−

(
1 +

3

γ2

)
· 1
n

∑

i∈N
g
(s)
i

]

(iii)

≥ αγ2‖µ‖2
2

[(
1− 2Crη

(
1 +

3

γ2

)
− HC2

1p
2α

2γ2‖µ‖2√m

)
Ĝ(W (s))

]

(iv)

≥ αγ2‖µ‖2
8

Ĝ(W (s)). (23)

Above, inequality (i) uses Lemma 4.8, while (ii) uses (22). Inequality (iii) uses the fact that the loss ratio

bound given in Lemma 4.9 implies,

∑

i∈N
g
(t)
i ≤ |N | ·max

i
g
(t)
i =

|N |
n

n∑

k=1

max
i

g
(t)
i ≤ Cr · |N | · Ĝ(W (t)) ≤ 2CrηnĜ(W (t)). (24)
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The last inequality (iv) follows by Assumption (A4) so that the noise rate satisfies η ≤ 1/C ≤ [8Cr(1 +
3γ−2)]−1, and since the assumption (A5) implies HC2

1p
2α/(2γ2‖µ‖2) ≤ 1/4 for C > 1 sufficiently large.

We provide one final auxiliary calculation before showing the lower bound on the normalized margin.

By Equation (11) we have |f(xi;W (0))| ≤ 1 for all i. Using the following lower bound on the derivative of

the logistic loss, −ℓ′(yif(xi;W )) ≥ 1
2 exp(−|f(xi;W )|), we therefore have

Ĝ(W (0)) ≥ 1

2
exp(−1) ≥ 1

6
. (25)

Using this along with Lemma 4.2, we have that

‖W (0)‖F ≤ 2ωinit
√
mp ≤ 2α ≤ α

√
C1p/nĜ(W (0)), (26)

where we have used the assumption (A6) that ωinit
√
mp ≤ α and that Assumption (A2) implies p/n is larger

than some fixed constant. With this in hand, we can calculate a lower bound on the normalized margin as

follows. First, note that since E(x,ỹ)∼P̃
[ỹf(x;W (0))] = 0, we can use (23) to get,

E(x,ỹ)∼P̃
[ỹf(x;W (t))]

‖W (t)‖F
=

E[ỹf(x;W (0))] +
∑t−1

s=0 E[ỹ[f(x;W
(s+1))− f(x;W (s))]

‖W (t)‖F

≥ αγ2‖µ‖2∑t−1
s=0 Ĝ(W (s))

4‖W (t)‖F
. (27)

Now consider two disjoint cases.

Case 1 (‖W (t)‖F ≤ 2‖W (0)‖F ): In this case, by using (27) we have that,

E(x,ỹ)∼P̃
[ỹf(x;W (t))]

‖W (t)‖F
≥ αγ2‖µ‖2∑t−1

s=0 Ĝ(W (s))

8‖W (0)‖F
(i)

≥ αγ2‖µ‖2∑t−1
s=0 Ĝ(W (s))

8α
√

C1p/nĜ(W (0))

(ii)

≥ γ2‖µ‖2√n

8
√
C1p

where (i) uses (21) and (ii) uses that
∑t−1

s=0 G(W (s)) ≥ G(W (0)). This completes the proof in this case.

Case 2 (‖W (t)‖F > 2‖W (0)‖F ): By (21), we have the chain of inequalities,

2‖W (0)‖F < ‖W (t)‖F ≤ ‖W (0)‖F + C2α

√
p

n

t−1∑

s=0

Ĝ(W (s)).
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In particular, we have C2α
√

p/n
∑t−1

s=0 Ĝ(W (s)) > ‖W (0)‖F , and so substituting the preceding inequality

into (27) we get,

E(x,ỹ)∼P̃
[ỹf(x;W (t))]

‖W (t)‖F
≥ αγ2‖µ‖2∑t−1

s=0 Ĝ(W (s))

4‖W (0)‖F + 4C2α
√

p/n
∑t−1

s=0 Ĝ(W (s))

≥ αγ2‖µ‖2∑t−1
s=0 Ĝ(W (s))

8C2α
√

p/n
∑t−1

s=0 Ĝ(W (s))

=
γ2‖µ‖2√n

8C2
√
p

,

completing the proof.

A.7 Proof of Lemma 4.12

Lemma 4.12. For a γ-leaky, H-smooth activation φ, provided C > 1 is sufficiently large, then on a good

run we have for all t ≥ 0,

‖∇L̂(W (t))‖F ≥ γ‖µ‖
4

Ĝ(W (t)).

Moreover, any T ∈ N,

1

n

n∑

i=1

1

(
yi 6= sgn(f(xi;W

(T−1)))
)
≤ 2Ĝ(W (T−1)) ≤ 2

(
32L̂(W (0))

γ2‖µ‖2αT

)1/2

.

In particular, for T ≥ 128L̂(W (0))/
(
γ2‖µ‖2αε2

)
, we have Ĝ(W (T−1)) ≤ ε/2.

Proof. In order to show a lower bound for ‖∇L̂(W (t))‖F = supU :‖U‖F=1〈−∇L̂(W (t)), U〉, it suffices to

construct a matrix V with Frobenius norm at most one such that 〈−∇L̂(W (t)), V 〉 is bounded from below

by a positive constant. To this end, let V ∈ R
m×p be the matrix with rows

vj = ajµ/‖µ‖. (28)

Then ‖V ‖F = 1 (since aj = ±1/
√
m), and we have for any W ∈ R

m×d,

〈∇f(xi;W ), V 〉 =
m∑

j=1

ajφ
′(〈wj , x〉)〈vj , x〉 =

〈
µ

‖µ‖ , x
〉

1

m

m∑

i=1

φ′(〈wj , x〉). (29)

Now, by Events (E.3) and (E.4), we have that

{
yi〈µ, xi〉 ≥ 1

2‖µ‖2, i ∈ C,
|〈µ, xi〉| ≤ 3

2‖µ‖2, i ∈ N .
(30)

Since φ′(z) ≥ γ > 0 for all z, (29) implies we have the following lower bound for any W ∈ R
m×d,

yi〈∇f(xi;W ), V 〉 ≥
{

γ
2 ‖µ‖, i ∈ C,
−3

2‖µ‖, i ∈ N .
(31)
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This allows for a lower bound on 〈−∇̂L(W (s)), V 〉, since

〈−∇̂L(W (s)), V 〉 = 1

n

n∑

i=1

g
(s)
i yi〈∇f(xi;W

(s)), V 〉

(i)

≥ 1

n

∑

i∈C
g
(s)
i · γ

2
‖µ‖ − 1

n

∑

i∈N
g
(s)
i · 3

2
‖µ‖

=
γ‖µ‖
2

[
Ĝ(W (s))−

(
1 +

3

γ

)
1

n

∑

i∈N
g
(s)
i

]

(ii)

≥ γ‖µ‖
2

[
Ĝ(W (s))−

(
1 +

3

γ

)
· 2CrηĜ(W (s))

]

(iii)

≥ γ‖µ‖
4

Ĝ(W (s)). (32)

Inequality (i) uses (31), while (ii) uses the previously-established inequality (24). Finally, inequality (iii)
above uses Assumption (A4) so that the noise rate satisfies η ≤ 1/C ≤ [4Cr(1+3/γ)]−1. We can therefore

derive the following lower bound on the norm of the gradient,

for any t ≥ 0, ‖∇L̂(W (t))‖F ≥ 〈∇L̂(W (t)),−V 〉 ≥ γ ‖µ‖ Ĝ(W (t))

4
. (33)

We notice that the inequality of the form ‖∇̂L(W )‖ ≥ cĜ(W ) is a proxy PL inequality, where the proxy

loss function is Ĝ(W ) [FG21]. We can therefore mimic the smoothness-based proof of Frei and Gu [FG21,

Theorem 3.1] to show that Ĝ(W (T−1)) ≤ ε for T = Ω(ε−2). By Lemma 4.6, the loss L̂(W ) has C1p(1 +
H/

√
m)-Lipschitz gradients. In particular, we have

L̂(W (t+1)) ≤ L̂(W (t))− α‖∇L̂(W (t))‖2F + C1pmax

{
1,

H√
m

}
α2‖∇L̂(W (t))‖2F . (34)

In particular, since Assumption (A5) requires α ≤ 1/
(
2max

{
1, H√

m

}
C2
1p

2
)

, we have that

‖∇L̂(W (t))‖2F ≤ 2

α

[
L̂(W (t+1))− L̂(W (t))

]
.

Telescoping the above sum and scaling both sides by 1/T , we get for any T ≥ 1,

γ2‖µ‖2
16

1

T

T−1∑

t=0

Ĝ(W (t))2
(i)

≤ 1

T

T−1∑

t=0

‖∇L̂(W (t))‖2F ≤ 2L̂(W (0))

αT
. (35)

Inequality (i) uses the proxy PL inequality (33). Finally, note that since |ℓ′′| ≤ 1, an identical cal-

culation to that of (7) shows that the loss Ĝ(W ) has C1p(1 + H/
√
m)-Lipschitz gradients, and since

α ≤ 1/(2max(1,H/
√
m)C1p

2), we therefore have

Ĝ(W (t+1))− Ĝ(W (t)) ≤ −α

2
‖∇Ĝ(W (t))‖2F .
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In particular, the loss Ĝ(W (t)) is a decreasing function of t, and hence Ĝ(W (t))2 is a decreasing function

of t. Therefore, by (35),

Ĝ(W (T−1)) = min
t<T

Ĝ(W (t)) ≤ 1

T

T−1∑

t=0

Ĝ(W (t)) ≤
√

32L̂(W (0))

γ2‖µ‖2αT ≤ ε/2, (36)

where in the last inequality we use that T ≥ 128L̂(W (0))/
(
γ2‖µ‖2αε2

)
. The proof is completed by noting

that 1(z ≤ 0) ≤ −2ℓ′(z).

B Non-NTK results, Proof of Proposition 3.2

For the reader’s convenience, we restate Proposition 3.2 here.

Proposition 3.2. Under the settings of Theorem 3.1, we have for some absolute constant C > 1 with

probability at least 1− 2δ over the random initialization and the draws of the samples,

‖W (1) −W (0)‖F
‖W (0)‖F

≥ γ‖µ‖
C

.

Proof. We construct a lower bound on ‖W (1)−W (0)‖F using the variational formula for the norm, namely

‖W (1) −W (0)‖F ≥ 〈W (1) −W (0), V 〉 for any matrix V with Frobenius norm at most 1. By definition,

〈W (1) −W (0), V 〉 = α〈−∇L̂(W (0)), V 〉.

By Lemmas 4.2 and 4.3, a good run occurs with probability at least 1 − 2δ. On a good run we can use the

results in Lemma 4.12. In particular, with the choice of V given in eq. (28), we have,

‖W (1) −W (0)‖F ≥ 〈W (1) −W (0), V 〉
= α〈−∇L̂(W (0)), V 〉
(i)

≥ αγ‖µ‖
4

Ĝ(W (0))

(ii)

≥ αγ‖µ‖
24

,

where inequality (i) uses eq. (33) and the last inequality (ii) uses (25). Thus, by Lemma 4.2, we have

‖W (1) −W (0)‖F
‖W (0)‖F

≥ αγ‖µ‖
48ωinit

√
mp

≥ γ‖µ‖
48

,

where the last inequality uses Assumption (A6).
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