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With the unprecedented global vaccination campaign against SARS-CoV-2
attention has now turned to the potential impact of this large-scale intervention on
the evolution of the virus. In this perspective we summarize what is currently
known about evolution in the context of vaccination from research on other
pathogen species, with an eye towards the future evolution of SARS-CoV-2.

It is useful to think of the temporal dynamics of evolutionary change for novel pathogens
like SARS-CoV-2 as passing through two phases. In the first phase the host population
is immunologically naive and selection strongly favours adaptation to these abundant
naive hosts. In the second phase a growing proportion of the population will have an
immunological history with the pathogen, either through natural infection or vaccination,
and thus selection will shift, increasingly favouring adaptation to these hosts. In this article
we will focus primarily on pathogen evolution in response to vaccination but return to the
issue of evolution driven by immunity acquired from natural infections in our conclusions.

Pathogen adaptation to naive and vaccinated hosts depends on the appearance of new
variants as well as on their fitness in each host type. We can quantify fitness by
considering both the absolute per capita growth rate of infections caused by a variant as
well as this growth rate relative to the growth rate of the currently dominant type
(sometimes called the wildtype). The absolute growth rate will determine if the variant can
spread in a population while the relative growth rate will determine if the variant can
increase in frequency and thereby potentially displace the currently dominant type.

For a variant to spread in a population its absolute growth rate must be positive
(equivalently, its reproduction number must be larger than one). The absolute growth rate,
r;, of infections caused by any pathogen variant i can be approximated as (Appendix 1)

r=0-prn +priy (1)
where p is the fraction of the population vaccinated, and r; y and r;, are the growth rates

of infections by variant i in a fully naive and fully vaccinated population, respectively [1,
2].



For a variant to increase in relative frequency, and thus potentially displace the wildtype,
its selection coefficient, s, defined as the difference between its growth rate and that of
the wildtype, must be positive. For the above model this selection coefficient is given by

s = (1 —p)Ary + pAry (2)

where Ary and Ary, are the differences in growth rate between the variant and the wildtype
in a fully naive and fully vaccinated population, respectively.

With this we can give a precise definition of a variant being adapted to vaccinated or naive
host populations. If Ar, > 0 then the variant is more fit (i.e., has a higher growth rate) than
the wildtype in a population of vaccinated hosts and so we say it is adapted to vaccinated
host populations (equivalently, it is vaccine-adapted). Likewise, if Ary > 0 then the variant
is more fit (i.e., has a higher growth rate) than the wildtype in a population of naive hosts
and so we say it is adapted to naive host populations. Thus, in the first phase of an
outbreak, when the fraction of vaccinated hosts p is small, selection strongly favours
variants for which Ary, > 0 while, in the second phase, when p is large, it strongly favours
variants for which Ar, > 0. In what follows we will focus on vaccine-adapted variants (i.e.,
those for which Ar, > 0). Note that while there are many molecular and cellular
mechanisms playing out within an infected host that can make a variant vaccine-adapted
(Box 1), it is the impact of these mechanisms on the growth rate of the population of
infected hosts that determines whether a variant spreads.

The above ideas lead to two useful ways of categorizing vaccine-adapted variants. First,
if a vaccine-adapted variant is also adapted to naive host populations (i.e., Ary > 0) then
we refer to it as a “generalist” variant since it is better at spreading than the wildtype
irrespective of host type. Conversely, if a vaccine-adapted variant is maladapted to naive
host populations (i.e., Ary < 0) then we refer to it as a “specialist” variant since it is
specialized to have higher fitness than the wildtype in vaccinated host populations only.
This categorization is useful because, for vaccine-adapted variants, generalists will
increase in frequency and replace the wildtype regardless of the vaccine coverage
whereas specialists require the vaccine coverage to be above a critical threshold before
they will increase in frequency (Figure 1).

A second useful way to categorize a variant is to assess whether the absolute growth rate
of infections that it causes is inhibited or facilitated by vaccination. The absolute growth
rate of a vaccination-inhibited variant decreases as the vaccination coverage increases,
whereas the absolute growth rate of a vaccination-facilitated variant increases with
increasing vaccination (Figure 1). This categorization is useful because it speaks to
whether the spread of infection will ultimately be lower or higher because of vaccination
and subsequent vaccine-driven pathogen evolution. If a variant's growth rate is
vaccination-inhibited, then increasing vaccination coverage will always reduce the overall
spread of infection, even if the variant ultimately replaces the wildtype (Figure 1a,c).
However, if a variant’s growth rate is vaccination-facilitated, then if vaccination drives the
variant to replace the wildtype it is possible that the overall spread of infection goes up
(e.g., Figure 1b).



The categorization of variants in Figure 1 is based on their per capita growth rates and
therefore such plots are specific to epidemiological context. For example, early in an
outbreak there is typically exponential growth in the number of infections, but as an
outbreak progresses and/or non-pharmaceutical interventions (NPIs) are introduced, the
force of infection will eventually decline, reducing all growth rates r; y and r; ;. Eventually,
if the pathogen becomes endemic, the average growth rate across all variants will be
zero. Notice, however, that the categorization of variants in Figure 1 depends only on the
relative growth rates and so the very same framework can be applied to any
epidemiological context (e.g., in the early stages of an outbreak during exponential growth
or at equilibrium once the pathogen is endemic). Moreover, if the relative ordering of
variants does not change with epidemiological context, then their classification into one
of the four categories will remain consistent regardless of what is happening
epidemiologically (Appendix 1).

To conceptualize evolutionary change during a vaccination campaign we can then
construct a plot of the absolute growth rate of different possible variants in each host type,
locating on the plot each of the four types of variants from Figure 1 (Figure 2; alternative
ways of plotting variants are discussed in Appendix 2). We can also use such a plot to
illustrate how the nature of selection changes as a vaccination campaign proceeds. In
Phase 1, when most hosts are naive (i.e., p is small), selection will primarily favour
variants with a larger growth rate in naive hosts (Figure 3a). As we move to Phase 2
(Figure 3b), however, an increasing fraction of hosts are vaccinated (i.e., p increases)
and selection shifts to primarily favouring variants with a larger growth rate in vaccinated
hosts (Figure 3c). Throughout this transition the variants that appear can be specialists
or generalists, and either vaccination-inhibited or vaccination-facilitated.

With this framework, evolutionary theory then makes some predictions about how we
expect adaptation in novel pathogens to unfold during a vaccination campaign. As a
pathogen adapts there will be occasional selective sweeps in which a new variant
displaces the wildtype and becomes the new wildtype. The sequence of selective sweeps
that occurs will be determined by both the direction of selection (the arrow in Figure 3)
and the set of variants that happen to appear (Box 2). Initially, in a new host-pathogen
association like SARS-COV-2, there will typically be abundant scope for adaptation to
both naive and vaccinated hosts and thus a great many of the variants that arise and
become dominant will be generalist variants (Figure 4a). Over time, as the pathogen
becomes better adapted to the novel host, and as vaccination coverage increases, there
will be fewer new variants that increase fithess in both host types, leaving primarily
specialist variants as the source of variation for further adaptation (Figure 4b). Thus, as
a pathogen becomes increasingly adapted to a novel host, adaptation to vaccination will
tend to result in the loss of some degree of adaptation to naive hosts.

It is more difficult to make predictions about whether variants are likely to be vaccination-
inhibited or vaccination-facilitated. At first one might wonder if vaccination-facilitated
variants are even possible but, as we detail in the next section, such variants have been
documented in some infectious diseases. Moreover, it is not difficult to imagine how such



a variant might occur in SARS-CoV-2. For example, people with symptoms often isolate
and socially distance so they do not infect others. A variant that evades vaccine-induced
immunity in terms of its transmissibility could spread more rapidly in a fully vaccinated
population than in a fully naive population (i.e., it would be vaccination-facilitated) if
vaccination reduces disease severity and so reduces the rate of isolation and social
distancing. This hypothetical example helps to emphasize that categorizing a variant as
vaccination-facilitated is solely a statement about its fitness (i.e., its ability to spread) and
it carries with it no a priori implication about whether the spread of such a variant would
ultimately lead to a greater or lesser amount of disease, either in an individual infection
or in the population overall.

Examples of Pathogen Adaptation to Vaccination

Before considering examples of adaptation to vaccination it is important to stress that
many vaccines have not been undermined by pathogen adaptation (e.g. smallpox,
measles, polio). This lack of adaptation is hypothesized to result from two features
commonly associated with vaccination [3]. First, because vaccination is a prophylactic
intervention, it can keep pathogen numbers small within vaccinated hosts, which limits
the generation and transmission of novel variants. Second, because vaccines typically
induce immune responses against multiple targets on a pathogen, multiple genetic
changes may be required to circumvent vaccine-mediated immunity [4]. Both features are
expected to limit the ability of the pathogens to adapt to vaccination by hampering the
accessibility of variants (fewer red dots in Figure 3, Box 2). However, for a handful of
vaccines that do not keep pathogen densities below transmissible levels in the majority
of infected hosts, or that do not induce immunity against multiple targets, evolutionary
adaptation has occurred [3]. Given this, we look to these previous examples for guidance
on possible outcomes of adaptation to vaccination in SARS-CoV-2.

The most direct way to determine how vaccines affect pathogen adaptation is through
experimental evolution, yet we know of only one study that takes this approach. It involved
a novel host-pathogen association of malaria parasites in laboratory mice [5]. Parasites
were serially passaged for 20 generations through either vaccinated or naive mice and
allowed to evolve in response to these different treatments. The parasites became
progressively better able to replicate in the host type they were evolving in, but they also
evolved a better replication rate in the other host type as well. Moreover, vaccination
inhibited the replication of all the evolved pathogens, demonstrating that the variants that
arose during evolution were vaccination-inhibited generalists.

Most other data are observational and focus on pathogen species that have a longer
association with their host. As expected from the earlier considerations, many vaccine-
adapted variants appear to be specialist variants relative to the wildtype. For example,
vaccine-adapted variants of hepatitis B virus arise that have altered surface antigens,
making the vaccine less effective [6]. These variants cause sporadic breakthrough
infections but they have not increased in overall number at the population level even as
vaccination rates have increased [7, 8]. This suggests that, although they are more fit
than the wildtype within vaccinated hosts, their spread from vaccinated hosts is



apparently suppressed making them vaccination-inhibited specialists. In Bordetella
pertussis, acellular vaccines that target PRN have led to the spread of vaccine-adapted
variants that no longer express PRN [9]. These variants appear to be more fit than the
wildtype in vaccinated hosts but less fit in naive hosts making them specialist variants
[10]. Variants also arise that overexpress the immunosuppressive PTX molecule, and
these appear to be more fit than non-overexpressing variants in both naive and acellular-
vaccinated hosts [30]. Notably, fithess was not assayed in whole-cell vaccinated hosts
limiting our ability to definitively classify the variants as specialists or generalists. In both
sets of B. pertussis variants, however, the ability of these variants to spread in a
vaccinated population appears to be less than in naive populations [10, 11], making them
all vaccination-inhibited variants.

Similar patterns often arise with vaccines used in farm animals, although the data
necessary to distinguish between specialist and generalist variants are often inconclusive.
For example, avian metapneumovirus vaccination suppresses virus shedding in turkeys,
but less so for recent isolates of the virus than historical isolates, and no difference was
detected between the isolates in non-vaccinated turkeys [12]. This difference has been
credited to amino acid divergence in two genes [12]. Similarly, breakthrough against a
vaccine for a fish bacterial pathogen Yersinia ruckeri, has been associated with a loss of
the bacterial flagellum [13]. However, partial vaccine protection persists against all tested
variants [14] again suggesting that these variants are vaccination-inhibited.

One strikingly different example is the chicken pathogen Marek’s disease virus (MDV).
MDYV is an oncogenic virus that can cause paralysis and high levels of mortality [15], and
a succession of vaccines have been developed and deployed in response to continual
vaccine-driven evolution [16]. The vaccine-adapted variants that have been analyzed
appear to be disfavoured in naive chickens relative to the ancestral virus [17].
Nevertheless, unlike the examples described above, the vaccine-adapted variants of
MDV transmit better from vaccinated chickens than from naive chickens [17]. These
variants are therefore examples of vaccination-facilitated specialist variants. Notably, the
overall prevalence of disease in the poultry industry was nevertheless reduced by
vaccination despite this evolution [18] (as in Figure 1d).

Other examples of evolution in response to vaccination involve host-pathogen
associations where multiple serotypes coexist and vaccines target only a subset of those
serotypes. These situations are more complex because the very coexistence of serotypes
suggests that multiple host types are present, possibly because of distinct immunological
histories that have arisen through natural infection by the different serotypes. As a result,
the framework in Figures 2 and 3 would need to be extended with additional axes
corresponding to the different kinds of hosts. Nevertheless, we can draw an analogy to
the previous examples by viewing the set of serotypes targeted by the vaccine as the
‘wildtype’ and the non-targeted serotypes as the ‘variants’. The fact that the wildtype and
variant serotypes coexist suggests that, as expected, they are specialist variants. It is
more difficult to categorize them as being vaccination-inhibited or vaccination-facilitated,
but in all examples that we are aware of, the total prevalence of infection has either gone
down or remained unchanged after the deployment of the vaccine. For example,



vaccination against Streptococcus pneumoniae often resulted in no change in the total
prevalence of bacterial carriage because non-targeted serotypes completely replaced
vaccine-targeted serotypes following vaccination [19-21]. For human papillomavirus in
contrast, vaccination reduced the total number of infections because non-targeted
serotypes did not change in prevalence while vaccine-targeted serotypes became less
common [22]. Other examples involving coexisting serotypes, including Bordetella
pertussis [23], Haemophilus influenzae [24], Neisseria meningitidis [25], and rotavirus
[26], appear to fall somewhere between these two extremes.

One final example is human influenza virus, which continually evolves in response to host
immunity through a process known as antigenic drift, generating many sequential
influenza variants over time [27]. To keep up with antigenic drift, flu vaccines are
frequently updated. Again, this can be conceptualized in the current framework by
introducing a new axis in Figures 2 and 3 every time a new vaccine is introduced and/or
a new immunological type of host arises. We were unable to find definitive data that
addresses whether influenza variants tend to be generalists or specialists. Either way,
existing data suggest that most novel variants arising through antigenic drift are partially
inhibited by vaccination [28].

Thus, in the handful of cases where vaccine adaptation has been observed, specialist
variants have been involved. This is consistent with our theoretical expectation that
generalist variants will eventually give way to specialist variants as novel host-pathogen
associations become more established (Figure 4). Moreover, most of those handful of
cases involve vaccination-inhibited specialists. As a result, vaccination has generally
resulted in a reduced overall spread of infection, even when vaccination drove the
evolutionary advantage of the variants. We have identified examples of vaccination-
facilitated specialist variants, but it is noteworthy that even in these cases it appears that
such a vaccine-driven increase in the overall prevalence of infection has never been
documented [29].

We are unaware of an example of a vaccination-facilitated generalist variant in any
infectious disease. Such a variant would spread regardless of vaccine coverage, and it
would also necessarily compromise our ability to control infection using that particular
vaccine (Figure 1c). It is not clear if the apparent absence of such variants is because
very few variants in this category are possible (Box 2), or if it is because generalist
variants will be rare except when host-pathogen associations are new. As discussed
above, it is possible to imagine such variants but again we stress that even if they arose
their spread need not necessarily lead to a greater overall amount of disease in either
infected individuals or at the population level.

SARS-CoV-2

There is now substantial evidence that SARS-CoV-2 has been undergoing rapid adaptive
evolution since its first appearance in humans. The first compelling data involved the
spread of the Alpha and Delta variants because of their fithess advantages over the



wildtype [30-32]. What does our framework tell us about the potential for SARS-CoV-2
adaptation to vaccination? Epidemiological data from several countries suggest that, as
expected, the main vaccine-adapted variants to appear so far are vaccination-inhibited
generalists (Figure 5). It is important to stress, however, that the evolutionary advantage
of Delta has not been driven by vaccination even though it appeared in the vaccine era.
The Delta variant increased in frequency in countries with very low vaccine coverage as
well as in countries with relatively high vaccination coverage, suggesting it is a generalist.
Data indicating that Delta is vaccination-inhibited are less direct and come both from
epidemiological studies [33] and from neutralization assays [34]. Although these data only
quantify one of the three components of fitness (see section ‘The Relationship Between
Pathogen Fitness and Infection Characteristics’ below), they show that while Delta is
vaccine-adapted, current vaccines (BNT162b2 Pfizer-BioNTech, mRNA-1273 Moderna,
and ChAdOx1 nCoV-19 Oxford-AstraZeneca) nevertheless still provide considerable
levels of protection [35, 36]. The case for the Alpha variant being vaccine adapted is even
less direct because Alpha spread and was then largely replaced by Delta before
significant vaccine coverage existed in most countries. Thus, the epidemiological data
clearly show that Alpha was advantageous relative to the wildtype in naive hosts [32, 37,
38], but estimates of its fitness in vaccinated hosts again come from proxies using vaccine
efficacy. The important point for both variants is that they would have become dominant
regardless of whether vaccines had been deployed because they are generalists (Figure
5).

Although the above examples of evolution are not driven by vaccination, vaccine
coverage is now reaching high enough levels in some countries that the possibility of
vaccine adaptation has become a real concern. As mentioned earlier, vaccine-driven
evolution has tended to occur in other pathogens when either the benefits of prophylaxis
are small (e.g., the vaccine does not sufficiently suppress viral replication below
transmissible levels) or when they target a small number of viral epitopes [3, 39]. Data
increasingly suggest that at least the first of these is true for SARS-CoV-2 [40-43]. As
SARS-CoV-2 adapts further to humans we might therefore expect that specialist variants
will begin to appear that have even higher reproductive success in vaccinated populations
but where this increased adaptation to the vaccine comes at a cost of reduced
reproductive success in naive populations. Indeed, at the time of writing yet another new
SARS-CoV-2 variant of concern (labelled Omicron) appears to be undergoing a selective
sweep in some parts of the world. Current estimates suggest that its selection coefficient
is quite large, between 0.2/day and 0.4/day [44]. Furthermore, growing evidence suggests
that Omicron is less well controlled by current vaccine schedules than is the Delta variant
but it is still too early to categorize Omicron definitively (Figure 5).

So far as we know, vaccination-facilitated variants in SARS-COV-2 have not yet been
reported and, depending on the available genetic variation (Box 2), it is possible that they
never will arise. For a variant to be vaccination-facilitated, the vaccine would have to either
increase the rate at which the variant generates new infections and/or decrease the rate
at which existing infections caused by the variant are lost from circulation through
recovery, isolation, or death. In principle, molecular processes involving antibody
dependent enhancement of cell infectivity (ADE) could provide a mechanism by which



vaccine facilitation occurs [34, 45, 46], but we know of no evidence that ADE has
increased transmission in any infectious disease. Vaccination could also increase the rate
at which a variant generates new infections if vaccinated people engage in more risky
behavior (e.g. are allowed entry to concerts and bars [47]). The other type of variants that
could be facilitated by vaccination are variants whose transmission is curtailed because
of the disease severity that they cause (e.g. leading to isolation). Vaccination, which is
aimed at reducing disease severity, could facilitate silent or semi-silent spread of such
variants (Box 2) in a manner directly analogous to the variants facilitated by the first
generation vaccines against Marek’s disease [17]).

In the longer term, if variants like those hypothesized above appear and spread, thereby
compromising the utility of the vaccine, it is likely that boosts and new vaccines would be
introduced. Furthermore, as SARS-CoV-2 spreads in the human population and
presumably becomes an endemic virus, the number of people with an immunological
history due to natural infection will increase significantly as well. In both cases, the
framework presented here will need to be extended to account for multiple host types.
Making longer-term predictions for such cases is difficult at this stage because a great
deal will depend on the nature of the genetic variation that is possible (Box 2).

The Relationship Between Pathogen Fitness and Infection Characteristics

The above analysis focuses solely on pathogen fithess. One thing missing from this
discussion is a consideration of how vaccination might drive the evolution of infection
characteristics like vaccine efficacy or disease severity. To better illustrate the relationship
between the fitness of a variant (as measured by the growth rate of infections that it
causes) and the characteristics of the infection, we can decompose the absolute growth
rate r;, of a variant into three main components of fitness (Box 1 and 3): (i) infectivity -
the probability that, upon exposure, a variant infects either type of host; (ii) transmissibility
- the rate at which a variant produces infectious propagules that contact uninfected
individuals; and (iii) infection duration — how long a variant produces infectious propagules
in either type of host before the infectious period ends through recovery, isolation, or
death. All else equal, variants with increased infectivity, increased transmissibility, or
increased duration of infection will have an increased growth rate.

Vaccine efficacy against infection - The infectivity of a variant is a key property for
determining how well a vaccine works against a variant. If gy and o, denote the infectivity
of a variant in naive and vaccinated hosts respectively, then vaccine efficacy (VE) is the
proportional reduction in infectivity that vaccination confers, given by VE =1 — gy, /oy.
This highlights two important things about the utility of VE for understanding the
evolutionary epidemiology of vaccine-adapted variants. First, because VE is a measure
of the relative infectivity of a variant in vaccinated versus non-vaccinated hosts, a variant
can have a reduced VE as a result of an increase in g, and/or a decrease in gy. Second,
VE involves only one of the three different components of fithess and so it provides only
partial information for determining the fate of a variant or the consequences it will have if
it sweeps to fixation. For example, the Beta and Gamma variants of SARS-Cov-2 both




appear to reduce VE [48] yet, to date, neither has become the dominant variant. Measures
of VE that capture other components of pathogen adaptation to vaccinated hosts do exist
[49].

A related issue arises in discussions of vaccination that center around so-called “escape
variants”. Although this term is not always defined precisely, it is often used in reference
to variants that differ in epitope and so are able to escape a specific immune response
as measured in inhibition assays in vitro [48, 50-53]. For example, SARS-CoV-2 variants
are sometimes characterized by both their transmissibility (as measured by their overall
growth rate and/or Ro) and their performance in inhibition assays. We have purposefully
avoided doing so here because this approach conflates the mechanism through which a
variant is potentially adapted to vaccinated hosts (i.e., escape from a specific immunity
and so greater ability to replicate within an individual) with the source of selection that
favours the variant (e.g., increased infectivity). It is useful to keep these notions distinct
because there are many different mechanisms through which a variant can be adapted
to vaccinated hosts (Box 1) and each of these can affect any of the three main
epidemiological components of fitness (i.e., infectivity, transmissibility, infection duration).
Therefore, we believe the most consistent, general, and agnostic way to characterize
variants is as described in Figure 2. Ideally, we would also quantify multiple infection
characteristics (infectivity, transmissibility, and infection duration) for variants that arise,
along with this quantification of fitness (Appendix 2). Such an approach is possible for
SARS-CoV-2 using the unprecedented availability of genetically resolved, real time
epidemiological data (Box 3 and Figure 5).

Disease Severity — Arguably the most important infection characteristic from the
standpoint of human health is the severity of disease caused by a variant. Most definitions
of severity capture both the morbidity and the mortality caused by infection. As such,
severity can affect all three components of fithess. For example, high disease severity
might reduce infection duration through increased mortality, or it might reduce the
transmissibility through a reduction in activity level and thus the contact rate of infected
individuals [54]. In most cases disease severity per se is disadvantageous to the
pathogen and thus selected against [55]. It is nevertheless difficult to make predictions
about how disease severity will evolve because variants that cause more severe disease
might have increased fitness relative to the wildtype through differences in other
components of fitness [56]. For example, data suggests that the Alpha variant of SARS-
CoV-2 may cause more severe disease than the Wuhan wildtype [57, 58], but it
nevertheless has higher fitness because its transmissibility is higher. Also, severity of the
disease may be partially mediated by the host immune response and recent studies
suggest that some antibodies may “enhance” the replication of the virus and may induce
more symptoms [45, 59]. A SARS-CoV-2 variant that could escape from neutralizing
antibodies and exploit this enhancing effect could lead to greater disease severity in
vaccinated or previously infected hosts [46]. This illustrates that, although we can make
quite robust and reliable predictions about the evolution of pathogen fitness in naive and
vaccinated hosts, it is harder to make predictions about the underlying components of
fithess or disease severity since variants with very different values of the three fitness
components can nevertheless have the same overall fitness (Box 1 and 3). This means




that pattens of evolution in these infection characteristics are likely to be somewhat
idiosyncratic. This is a major reason why we cannot extrapolate the evolutionary
trajectories of such traits from one pathogen to another.

Despite the lack of robust theoretical predictions about disease severity, a few
observations from other infectious diseases could be relevant to SARS-CoV-2. First,
vaccine protection tends to be even more evolutionarily robust against disease than
against infection. This conclusion arises from the observation that when pathogens have
evolved in response to vaccines in the past, vaccinated individuals that are infected by a
pathogen tend to have better outcomes than non-vaccinated individuals [29]. A potential
concern is if there are enhancing effects of antibodies on disease severity [60, 61], as
there may be for COVID [45, 46, 59]. Second, for pathogens with coexisting serotypes,
vaccine-driven serotype replacement could in principle increase or decrease overall
disease burdens if different serotypes have different propensities for causing disease, as
they often do (for example, [62]). Rational design of variant-based vaccines must
therefore consider both the current prevalence of each variant and their likelihood of
causing disease given infection. Third, under certain conditions, vaccines may lead to the
evolution of highly virulent variants. The best example of this is MDV in which highly
virulent variants of the virus kill their hosts so quickly that they are unable to persist in the
absence of vaccination [17]. Vaccines ameliorate disease severity of MDV and so they
allow hosts infected by these highly virulent variants to remain alive but they do not
prevent transmission. Despite this effect, however, vaccinated chickens exposed to these
highly virulent variants are nevertheless better off than non-vaccinated chickens exposed
to the original wildtype. On the other hand, non-vaccinated chickens are now at greater
risk of infection with variants causing more severe Marek’s disease than they were prior
to the introduction of the vaccine. Regardless of whether SARS-CoV-2 follows this path
(Figure 5), vaccination remains our most effective tool to mitigate the epidemic, as was
the case with MDV [63]. Vaccination also reduces the number of cases which may also
slow down the flux of new mutations and thus the probability of viral adaptation (Box 2).

Implications

If further adaptation of SARS-CoV-2 occurs in response to vaccination, then our
framework and the examination of previous experimental and empirical examples suggest
that the long-term outcome will likely yield specialist variants. The path to getting there
will likely involve vaccination-inhibited variants meaning that we are likely to, at least
partially, retain the benefits of vaccination with first-generation COVID vaccines in the
short term. In the meantime, there is an urgent need to monitor the epidemiology and
evolution of the virus [39]. This will better characterize newly arising variants (Box 3) and
make it possible to decide if, like for flu, new vaccines are needed to counteract viral
adaptation.

It is also critical to stress that concerns about possible future viral evolution are not a
reason to withhold currently available vaccines. First, vaccines are currently greatly
reducing disease burdens and saving lives [64]. Second, as discussed above, much of
the evolution currently occurring in SARS-CoV-2 involves generalist variants and so
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would be occurring regardless of whether we deployed existing vaccines. Third, immunity
arising from natural infections will also impact on-going viral evolution. Currently, it is
impossible to know whether natural immunity or vaccine-induced immunity will be the
stronger evolutionary driver. Fourth, even with the Delta variant, current mRNA vaccines
substantially reduce the probability of infection and infection duration compared to
infections in naive individuals [42, 43, 48]. That itself very substantially reduces
evolutionary potential (Box 2).

Going forward, it is quite possible that new vaccine schedules (e.g., higher doses,
boosters, combinations of existing vaccines) or next-generation vaccines (e.g., new RNA
sequences, mucosal vaccines) will be required to deal with SARS-CoV-2 evolution. A
diversity of vaccine types are already being used around the globe, and vaccine
schedules in many locations are being continually adjusted. If this diversity generates
relevant immunological heterogeneity within and among populations, then natural
selection could favor different viral variants at different times in different locations, and
perhaps even result in the coexistence of several variants. If so, vaccination programs
may need to be continually adjusted at a national or regional level, as is necessary to
control coronaviruses in agriculture [65, 66]. The more that vaccination suppresses
transmission, targets multiple epitopes, and more effectively inhibits infection and within-
host replication and so mutation and recombination, the better it will be at slowing the rate
of adaptation (Box 2) and providing sustainable long-term efficacy [39].

Summary

In the history of human and animal vaccination, there are few documented cases of
vaccine-driven evolution. For situations where adaptation to vaccines occurs, either
through the vaccination itself or through immunity due to natural infection, we propose a
typology of vaccine-adapted variants based on their fithess in naive and vaccinated host
populations (Figure 1).

Adaptation occurs when a novel variant is more fit than its predecessors. The fithess of a
variant is measured by its per-capita growth rate of the number of infections that it causes
(i.e., the number of new infections per infection per unit time).

In the early phase of pandemics, we expect the rise of variants that are better at spreading
than their ancestors in both naive and immunized hosts (generalists). Later, viral evolution
should involve specialised adaptations to immunized hosts, and so some decrease of
adaptation to naive hosts.

Both generalist and specialist variants can be inhibited by vaccination, where the growth
rate of infections decrease as vaccine coverage increases. Under these circumstances,
even if the impact of vaccination is eroded by viral evolution, the overall spread of infection
is still reduced by vaccination.
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Vaccination-facilitated variants can arise. In this case, the overall spread of infection could
theoretically go up as vaccination rates increase but this does not imply that the overall
level of disease necessarily will increase in either an individual infection or in the
population overall.

Evolution is more than selection. Our framework predicts the direction and strength of
selection, but does not precisely predict the evolutionary trajectory that will be followed
because there is no way of knowing in advance what phenotypes are available to the
virus genetically (via mutation or recombination) (Box 2).

Evolution is more than mutation. There is no way of knowing in advance how particular
mutations relate to the multiple dimensions of the fithess landscape, even if they may
have an advantage on a particular dimension in a laboratory assay (Box 1).

So far, the SARS-CoV-2 variants of concern that have become dominant have been
vaccination-inhibited generalists that would have spread regardless of vaccination. We
expect more generalist variants to arise and spread until the mutational supply has been
exhausted. Once exhausted, we expect further adaptation to result from the spread of
specialist variants. Whether these variants will be vaccination-inhibited or vaccination-
facilitated will depend on mutational availability.

Beyond those expectations, a priori prediction about future vaccine efficacy and disease
severity for SARS-CoV-2 is not possible. Molecular epidemiological surveillance will be
critical for detecting and characterizing viral adaptation as it unfolds (Box 3).
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Figure Captions

Figure 1: Four types of vaccine-adapted variants. Solid lines depict the growth
rate of the population of infected individuals for the wildtype (blue) and for a variant
(red) as a function of vaccination coverage. Vaccination decreases the growth rate
of the wildtype (ry > r,). Quantities Ary and Ar, are the differences in growth rate
between the variant and the wildtype in naive and vaccinated hosts, respectively.
Colored shading indicates which type prevails evolutionarily: the wildtype (light blue
shading) or the variant (light red shading). Panels (a) and (b) are generalists - the
variant is also better adapted to naive hosts (Ary > 0). Generalist variants will
outcompete the wildtype even in the absence of vaccination. Panels (c¢) and (d) are
specialists — the variant is maladapted to naive hosts (Ary < 0). Specialist variants
will outcompete the wildtype only above a critical vaccination threshold. Panels (a)
and (c) are vaccination-inhibited variants - the growth rate of the variant decreases
with increasing vaccination. As a result, the growth rate of infections after adaptation
(i.e., after fixation of the fittest type) in a fully vaccinated population (black dot) is
always lower than that in a fully naive population (white dot & dashed line). Panels
(b) and (d) are vaccination-facilitated variants - the growth rate of the variant
increases with increasing vaccination. As a result, the growth rate of infections after
adaptation in a fully vaccinated population (black dot) is always higher than that in
a fully naive population (white dot) for generalist variants (panel (c)) but it can go
either way for specialists (panel (d) - only the case where it is lower is shown).

Figure 2: Four types of vaccine-adapted variants. A plot of the growth rate of
variants in a fully naive, r;y, and a fully vaccinated, r;,, population. Blue dot
indicates location of the wildtype. Uncolored region corresponds to variants whose
growth rate in vaccinated hosts is less than that of the wildtype and so are vaccine-
maladapted (and so ignored in our discussion). Different coloured regions
correspond to the 4 types of variants from Figure 1 (labels (a)-(d) correspond to
panels (a)-(d) from Figure 1). Additional types of variants are presented in Figure
S1. See Appendix 2 for a discussion of alternative ways to visualize variants.

Figure 3: Selection and genetic variation. A plot of the growth rate of all viable
variants i in a fully naive and a fully vaccinated population (black dots). Large blue
dot denotes the current wildtype. Red dots are those variants that are most
accessible from the wildtype (see Box 2). Note that the location of all variants along
the r;, axis is specific to a vaccine and will be different for different vaccines. All
variants in white region are selectively advantageous but variants in the direction of
the selection arrow are most strongly favoured (dashed lines indicate contours of
overall growth rate). Variants in the grey region are disfavoured by selection. The
direction of selection arrow is upwards in a fully naive population (p = 0) (panel (a))
and shifts towards the right as the level of vaccination (and/or fraction of hosts with
exposure to the wildtype through natural infection) increases (panels (b) and (c)).

Figure 4: Pathogen adaptation during vaccination. A plot of the growth rate of
all viable variants in a fully naive and a fully vaccinated population (dots). Large blue
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dot denotes the phenotype of the current wildtype and black arrow indicates
direction of selection (i.e., the variants that are most advantageous). Variants in the
grey region are disadvantageous. Note that the location of all variants along the r;,
axis is specific to a vaccine and will be different for different vaccines. Coloured
regions indicate the four different kinds of variants. (a) Early in a novel host-
pathogen association (and in the first phase of the vaccination campaign). Many
potential new variants will be better adapted to both host types (i.e., they will be
generalists). (b) Later in the association, when the pathogen is better adapted to its
novel host (and vaccination levels are higher). The evolutionary trajectory of
successive fixation events leading to the new wildtype variant is indicated with the
succession of blue dots. Note how the change in the location of the blue dot can
affect the typology of some variants (i.e., a variant that was identified as a generalist
in the early stage of adaption could later become a specialist relative to the more
recent form of the virus). Once the level of adaptation is high (panel b) most
advantageous variants that appear will tend to be specialists. Even though
generalists are still more strongly favoured by selection there are fewer of them that
can arise.

Figure 5: Graphical representation of SARS-CoV-2 adaptation to naive and
vaccinated hosts. Blue dot denotes location of the Wuhan wildtype, which is
relatively poorly adapted to both naive and vaccinated hosts. The bars give the
range of plausible values for the growth rate of each variant in fully naive or fully
vaccinated hosts (where fully vaccinated means two doses of current mRNA
vaccines). The Wuhan wildtype and the Alpha variant are vaccine-maladapted
relative to Delta variant (see Figure 2). Note the dashed black lines indicate where
the growth rates are zero (the three variants are able to grow in a fully naive
population but not in a fully vaccinated population). The red ellipse indicates the
likely position of the newly emerged Omicron variant at the time of writing (early
January 2022). See Appendix 2 for details regarding the construction of this figure.
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Box 1 — Mechanisms of vaccine adaptation

Our focus is on the ability of a variant to spread between hosts, and this ability can arise
from several different mechanisms operating within an infected individual. Pathogens
have evolved a vast diversity of countermeasures against natural immunity, many of
which will also be highly effective against vaccine-induced immunity and so are expected
to be involved in adaptation to vaccination. The list below is intended to be illustrative of
the diversity of possible within-host adaptations, rather than comprehensive.

Immune evasion (avoiding anti-pathogen responses).
e Antigenic change.
e Antigenic loss. Inactivation or deletion of molecules targeted by host responses.
Examples include loss of toxins (diphtheria, pertussis).
e Antigenic repertoires. Changes in genes controlling the rates at which pathogens
generate and expose novel antigens (e.g. trypanosomes, malaria).
e Increased cell-cell infection to evade antiviral humoral immunity which threatens
cell-free infection [53].
e Altered tissue tropism to immune-privileged sites.
Immune suppression (dampening or mis-directing anti-pathogen responses).
e Up-regulation of enzymes to degrade effector molecules (e.g., ptxP3 in pertussis)
e Production of immune-regulatory molecules such as cytokine mimics (e.g. pox
viruses) and immune antagonists (e.g. Orf9b and Orf6 in Alpha variant of SARS-
CoV-2, [67]).
¢ Production of substances that drive inappropriate responses (e.g. helminths)
e Production of ‘'smoke screen’ molecules, which distract immune effector molecules
(e.g. malaria, [68])

Immune exploitation (utilizing host responses)
e Antibody-dependent enhancement (e.g. [45, 46])

Life-history mediated countermeasures against immunity
Direct countermeasures against immunity, such as those listed above, are not the only
possible within-host mechanisms of vaccine adaptation. A very different suite of potential
mechanisms has to do with where, when, and how fast pathogens replicate.
e Variants that replicate earlier or faster can overwhelm the immune response, at
least initially.
e Variants that replicate more slowly can potentially remain below immune detection
for longer (e.g., many chronic viral infections).
e Variants which can exploit altered host cell invasion pathways can have an
advantage when primary pathways are blocked by host immunity.
Traits underpinning these mechanisms can include higher binding affinity to host
receptors, large burst sizes (number of pathogen progeny released from a host cell),
altered latency (dormancy in host cell) and changes in the investment of within-host
replication relative to transmission stage production (e.g., malaria).
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Finally, where transmission is restricted by disease severity (for instance, via host death
or hospitalization), vaccination, can enhance pathogen transmission by reducing disease
severity (e.g., Marek’s disease).

Most of the traits listed above can be studied in a variety of in vitro and in vivo models,
with native pathogens or novel expression systems like pseudoviruses. Often, in vivo
studies are also possible, using animal models and, in some cases, human subjects. In
most cases, it is very challenging to link within-host mechanisms to between-host fitness
because individual traits are often, at best, correlates or partial determinants of one or
more of infectivity, transmissibility and infection duration (which are the three key
components of fithess). Fitness per se (i.e., the growth rate of the number of infections)
and other components of fitness can also be inferred in real time from rates at which the
different variants spread in the human population (Box 3).
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Figure Box 1: The fate of a variant i within a host population is determined by three key
components of fitness, each of which can be affected by several within-host mechanisms
of adaptation. All else equal, variants with increased infectivity, increased transmissibility, or
increased duration of infection will have an increased fitness (rate of spread in a population). As
indicated in equation (1) fitness depends on both the amount of adaptation to naive and
vaccinated hosts. Within-host processes impact those three components of fitness to varying
extents and, in turn, individual viral mutations can affect those processes to varying extent. Some
within-host mechanisms of adaptation can be measured directly in in vitro assays. Some
components of viral fithess can be inferred from evolutionary epidemiological studies (Box 3).
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Box 2 — Mutation and adaptation to vaccination

Pathogen adaptation requires variation in fithess among variants. New variants arise from
mutation during replication and from recombination when distinct variants coinfect the
same host. It is important to distinguish between the rate at which new variants arise and
how their fitness differs from the wildtype.

The rate at which variants arise

Mutations are continuously generated during the replication of the virus within infected
hosts. The rate at which this occurs is proportional to the rate at which genomic changes
occur during replication, and the amount of replication that is taking place. Vaccination
reduces the amount of replication taking place in two ways. First, at the within-host level,
if a vaccinated host is infected, a vaccine-primed immune response is expected to reduce
the viral load and to clear the infection faster. Second, at the between-host level, the
rollout of vaccination is expected to reduce the number of infected hosts (both naive and
vaccinated). These effects are tempered for imperfect (or leaky) vaccines, however,
because they have a lower ability to reduce pathogen replication and to prevent infection.

The fitness effects of variants

The fate of a new variant is determined by how the rate of change of number of infections
it causes differs from that of the wildtype in both naive and vaccinated populations (i.e.,
where it falls in Figure 3 relative to the wildtype). To this end it is useful to distinguish
between the set of variants that are possible (all the dots in Figure 3) and the set of
variants that are easily accessible from the wildtype (the subset of red dots in Figure 3).
There will be biological constraints on the magnitude of growth rate that is possible in the
two host types and therefore all the dots in Figure 3 will fall within some specific region
of the plane. Most mutations are expected to be deleterious or have little effect, but some
may result in a larger growth rate than the wildtype [69, 70]. Hence, we expect a high
density of possible phenotypes (black dots in Figure 3) with low fitness relative to the
density of phenotypes that increase fithess in both host types. Within this set of possible
variants, some will be more readily accessible from the current wildtype than others for
several reasons. First, some variants might be multiple mutational or recombinational
steps away from the wildtype and so will be exceedingly unlikely to arise. For example,
the lack of adaptation of measles virus to vaccines despite decades of global vaccination
is potentially because variants that can escape a polyclonal antibody response require at
least five new mutations to the H glycoprotein [4]. Second, competition between the
variant and the wildtype within an infection can promote (or hamper) the variant’s ability
to reach a density high enough for onward transmission to occur. For example, in novel
host-pathogen associations, mutations that are beneficial for within-host competition are
also likely to be beneficial in other respects, including their ability to spread at the
between-host level simply because more generalist variants are accessible when the
wildtype is poorly adapted to its host (see Figure 4a but when axes are within- and
between-host fitness). As the association becomes more established, however, variants
that are successful within hosts will tend to have reduced success at the between-host
level. This effect of within-host selection biasing the set of variants that are accessible to
between-host selection is likely also modulated by the leakiness of the vaccine [71].
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Vaccination and the speed of pathogen adaptation

Faster rollout and more effective vaccines will, all else equal, limit the emergence of new
variants. Hence, the use of leaky vaccines (and the occurrence of chronic infections in
immunocompromised hosts) could speed up pathogen adaptation both because they
increase the flux of mutation relative to the use of non-leaky vaccines and because they
facilitate the within-host rise of some vaccine-adapted variants. Once a vaccine-adapted
variant is circulating in the population, the influence on evolutionary adaptation of the rate
at which it arises through mutation is negligible compared to the selection acting on the
variant (e.g. the dynamics of the Alpha variant of SARS-CoV-2 at the end of 2020 in UK
was driven by selection, not by the flux of mutations). In this case, the speed of pathogen
adaptation is mainly driven by selection and different targeted vaccination strategies may
provide ways to slow down this adaptation [72-74].
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Box 3 — How to characterise the fithess of SARS-CoV-2 variants?

The ongoing pandemic of SARS-CoV-2 is characterised by an unprecedented access to
incidence and sequencing data in real time. This data provides a unique opportunity for
quantifying the underlying components of viral fithess (infectivity, transmissibility, and
infection duration) related to adaptation to naive and vaccinated hosts. Three main
dynamical variables carry useful information about these components of fitness
(Appendix 1).

First, the per capita growth rate of the epidemic during vaccination provides information
about the potential emergence and the spread of new variants. Any deviation from the
predicted drop in incidence of the wildtype due to increasing vaccination coverage could
signal the spread of a vaccine-adapted variant (Ary, > 0).

Second, analysis of the change in frequency of a variant allows some inference to be
made about which components of fitness underly adaptation to vaccination. We show in
Appendix 1 that the magnitude of change in the frequency of a variant will be proportional
to the availability of susceptible hosts if the variant obtains its advantage through
increased transmissibility, £, or infectivity, o, but this change will be independent of
susceptible hosts if the variant obtains its advantage through a longer infection duration.
Therefore, as the availability to susceptible hosts varies with lockdowns and other NPls,
tracking how this affects the change in variant frequency can inform us about the
mechanism underlying the variant’s success [56, 75].

Third, the over representation of a variant in vaccinated hosts can be used as an early
signal that the variant is adapted to the vaccine. We show in Appendix 1 that the
difference in variant frequency between naive and vaccinated hosts (i.e., the genetic
differentiation of the viral populations in the two types of hosts) is mainly governed by the
relative infectivity of the variant in vaccinated hosts, but not by its transmissibility. Hence,
the analysis of these three dynamical variables provides a way to begin disentangling the
three major components of fitness.
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Supplementary Information

Appendix 1

In this appendix we derive the expressions presented in the main text, and we also show
how changes in the three main components of fithess of a variant affect the evolutionary
dynamics.

1. The model
We track the dynamics of variant i in a host population with a density Sy of naive hosts
and a density S, of vaccinated hosts using the following system of differential equations:
jilv = hiUiNSN - ViNIiN
jg/ = hiGiVSV - ViVIiN
ho= BYIY + BYIY
The reproductive success of a variant is determined by three components of fitness:
- BY and B/ the transmission rate of variant i from naive and vaccinated hosts
- o and g/ the infectivity of variant i in naive and vaccinated hosts
- yY and y/: the infection duration of variant i in naive and vaccinated hosts

Below we present the derivation of the three dynamical variables mentioned in Box 3 that
capture the epidemiological and evolutionary dynamics during adaptation to vaccination
(equations (S1), (S2) and (S3) below).

2. The growth rate of the epidemic

If the change in the density of susceptible hosts occurs slowly relative to the spread of
infection then the per capita growth rate of infections will be given by the dominant

eigenvalue r; of the matrix:
NN VN
R. — ri ri
13 T'l-NV T.iVV

where

NN __ N __N N
i =B o, Sy —vi
VN _ pV __N

" = Bio; Sy

vv _ v _V 14
=B o Sy —vi
NV _ pN__V

i =P o Sy

If we further define §; = y} — ¥} then we can write



SyBlaf
SwBNal + Sy B/ o)
with: ;v = SN —yN, 1.y =SBV o —y!, and where S =Sy + S, and p = sNSTVsV is the
coverage of vaccination (i.e., the fraction of the uninfected population that is vaccinated).

nn=>0-prytpry— 8; + 0[6;]*

When §; = 0 this simplifies to:
rn=0-pry +ory

which is equation (1) of the main text. Notice, however, that the categorization of variants
in Figure 1 is not specific to this model but instead can be applied much more generally.
In principle we can always quantify the per capita growth rate of a variant in a fully naive
and a fully vaccinated population no matter what the epidemiological model or parameter
values. The simplification that §; = 0 is made entirely for expositional purposes since it
allows one to write the overall per capita growth rate of a variant for any level of vaccine
coverage as a convex combination of the variant’s growth rate in each of the two “pure”
populations. As such the growth rates in Figure 1 are connected simply by straight lines.
Furthermore, the kind of categorization in Figure 1 can be applied regardless of the
epidemiological state of the population (e.g., exponential growth, endemicity, etc.). For
example, as the epidemic grows the density of uninfected hosts will drop and perhaps
non-pharmaceutical interventions will be implemented to reduce the force of infection.
Although both processes will reduce the absolute growth rates of all variants we can
nevertheless construct a version of Figure 1 for any epidemiological context of interest.
Moreover, because the categorization of variants in Figure 1 depends only on their
relative growth rates, if this relative ordering does not change with epidemiological context
then a variant’s classification into one of the four categories will remain consistent
regardless of what is happening epidemiologically.

In the following, for simplicity, the effects of the mutation on the different viral components
of fithess in host X (where X = N or V) will be assumed to be small and will be denoted:

- APy =B — By

- Aoy =0X —of

- Dyx =Vimn—Yi

and the components of fitness of the wildtype will be noted:

- 8=9,

- PBx = ,Bé

- oy =0k

- VX =V

Using this notation the growth rate of the wildtype population is:
r={1-pry +p1y

and the growth rate of the novel variant is r + Ar where:



Ar = (1 —p) (S(ABnoy + ByAoy) — Ayy) +p (S(AByoy + BylAay) — Ayy)

Ary Ary

The growth rate of the whole population of all infected individuals is simply:
| F =1+ fnAr (s1) |

where f,, is the frequency of the novel variant:
Ly + Iy,
M_m+m+m+m
Thus, a variant with a higher growth rate will spread when Ar > 0 and the subsequent
increase in mutant frequency will affect the growth rate of the whole pathogen population.

3. The dynamics of variant frequency

The dynamics of the variant frequency f,, depends on the distribution of the variant in
naive and vaccinated hosts (Gandon & Day 2007). But if the phenotype of the variant is
not very different from that of the wildtype we can obtain a very good approximation of
these dynamics using (Otto & Day 2007):

fm ~ fm(]- - fm)VTARmF

where VTis the vector of reproductive values and F is the vector of class frequencies
which correspond to the conormalised (i.e. VI'F = 1) left and right eigenvectors of R,
respectively:

F o {S’VJN (1 + ) +0(5%) 1}
Syoy SnBnon + SyBvoy ’
By
VT x {— <1 + ) + 0(62), 1}
Bv SnBnon + SyByoy
and selection on the different transitions is given by:
__ (SNN SvN
ARp = (SNV SVV)
where:
syy = (ABy oy + By Aay) Sy — Ayy Selection coefficient (when N infect N)
syy = (ABy oy + By Aay) Sy Selection coefficient (when N infect V)
syy = (ABy oy + By Aoy) Sy — Ayy Selection coefficient (when V infect 1)
syn = (ABy oy + By Aay) Sy Selection coefficient (when V infect N)

After some calculation this yields:

fm ~ fm(l - fm)s



where:
s < (1 —p)S(BnvAoy + oyABy) + pS(BylAoy + oyABy) — (1 — q)Ayy —qlAyy + 6 K
+ 0(62?)
_ Sy By oy
B SnBnon + SyByoy
_ SnSvBnBvonoy ((A,BN _ A,BV) n <AUN _ AUV) _ (dy
(SnBnon + SyBvoy)? Bn Bv On Oy (SnBnon + SyByvoy) N

- AVV))

When § = 0 this simplifies as:
s« (1 —p)S(Bydoy + oyABy) — (1 — q)Ayy + pS(Bydoy + oy ABy) — qdyy (S2)

selection in naive hosts selection in vaccinated hosts

q

Note how selection for higher values of transmission  and infectivity o depend on the
density of susceptible hosts S while selection on the duration of infection y does not (Day
et al 2020).

4. The dynamics of differentiation

Next, we use Gandon & Day (2007) to track the difference in variant frequency between
vaccinated and naive hosts. The dynamics of variant frequencies in naive and vaccinated
hosts in a well-mixed population is:

: Iy Iy _
fh = vnSyn + vy I_SVN + I_rVND
N N
: Iy Iy _
fon = vysyy + vy I_SNV - I_rNVD
74 |4
where:
D=fy—fN Differentiation
vy = (1= Genetic variance in naive hosts
vy = (L= fin) Genetic variance in vaccinated hosts

Tyny = fn‘f((ﬁv + ABy )(oy + Aoy ) SN) + (1 - frr‘{)(ﬁVO_N Sn)

= Byon Sy + fn“{(ﬁVAO-N + AByon)Sy = Byoy Sy + fn‘{SVN
Ty = rﬁv((ﬁzv + ABy ) (oy + Aoy ) SV) +(1- frrly)(ﬁN oy Sy)

= By oy Sy + frg(ﬁNAo-V + ABnoy)Sy = By oy Sy + f‘rrIySNV

The dynamics of differentiation D is therefore given by:



: Iy Iy Iy _ Iy _
D =vy <5VV - I_SVN) —Un <5N1v - I_SNV) -D <I_7"NV + I_TVN)
N v 14 N
If we assume there is no differentiation initially (D = f,y, — ;¥ = 0, which also means

genetic variance is the same in the two environments, vy = v, = v = f,,(1 — f;,,) then the

dynamics of differentiation are:
Iy Iy

D= v<SVV —SNN T I_SVN + I_SNV)
N 14

D=v ((Aﬁv oy + By Aoy) Sy — Ayy — (ABy oy + By Aoy) Sy + Ayy

I I
- I_V (AIBV oy + By Aoy) Sy + [ﬂ (AﬁN oy + By Aay) SV)
N 1%

If we further assume that the prevalence is low so that S, and S;, remains constant during
the early stage of the epidemic the prevalence will grow exponentially and the ratio % will
remain constant. The value of this ratio can be computed from the vector F of class
frequencies given above:

Iﬂ _ SnOn < +

Iy  Syoy SnBnon + SyBvoy

)+owﬁ

The dynamics of differentiation therefore becomes:

Aoy A SNV15%§L*‘SVN'Q¥§”
. Oy On ONON Oy oy
= S S _ Ayy — A
D =v| (SyByon + SyByoy) < oy Oy ) + Ayy Yv + SuBrOn + SyBy oy
+0(6%)
When § = 0 this simplifies as:
- Aoy,  Aogy
D=v 5((1 —p)Byoy + pﬂVUV) G_V - E — (Ayy — Ayy) (S3)

Note how differentiation is not driven by the transmission rates of the mutant but by its
relative infectivity in naive and vaccinated hosts.
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Figure Caption

Figure S1: Typology of pathogen variants after vaccination. We can identify 8
different types of variants. The panel (a) is expanding the description of Figure 1 and the
panel (b) is indicating the location of these 8 types as in Figure 2. Variant type | is adapted
to naive hosts but maladapted on vaccinated hosts. Variant type V is maladapted on both
types of hosts. We focus on the 6 vaccine-adapted variants with Ar;, > 0. Variants I, lll
and IV are generalist variants (i.e., Ary > 0) and the magnitude of Ar, explains the
difference between these 3 variants. Variants VI, VII and VIII are specialist variants (i.e.,
Ary < 0) and the magnitude explains the difference between these 3 variants. Note that
variants IV,VIl and VIII have a growth rate that increases with vaccination coverage. This
increased growth rate can have major public health implications. In particular, with
variants IV and VIII, evolution is expected to yield a higher pathogen growth rate after
100% vaccination (the evolved growth rater;, is indicated with the black dot) than after 0%
vaccination (the evolved growth rate ry indicated with the white dot).



Appendix 2

In Figure 2 we use the per capita growth rate, r, of infections in a fully naive and a fully
vaccinated population as the axes for visualizing different variants. Another common
measure of the fitness of a variant is its reproduction number, R,. The reproduction
number R, is a dimensionless quantity that gives the number of new infections produced
by a single infected individual. It does not account for the timing of when these infections
occur and so it does not provide information about the timeframe over which infections
are spreading through a population. The per capita growth rate has units 1/time and so it
does account for the timeframe of infection spread. Two variants can therefore have
different values of r even if they each produce the same total number of R, new infections
per infection, if they differ in how the production of these new infections is spread out over
time. More specifically, if we use t to denote the amount of time that has elapsed since
the start of an infection, and ¢(t)dt to denote the fraction of the R, new infections that
are produced in the time interval (t,t + dt), then r and R, are related by the equation

Ry=1/ f0°° e Tty (t)dt (Wallinga and Lipsitch 2007). In the special case where ¢(t) is a
gamma density with mean T and parameter k, we can solve this for r to obtain

r::k(R3“¥—1)/T (S4)

SBiai’
6+yf

as the mean time during an infection when

For the model of Appendix 1 we have R(’,fi = as the reproduction number of variant

1
6+yf

i in host type X (where X = Nor V), T =
new infections are produced, and k = 1.

There are several alternative ways one might construct plots analogous to that of Figure
2. One is simply to use a variant’s reproduction number in each of the two host types as
the measure of fitness rather than its per capita growth rate. However, doing so has two
disadvantages. First, differences between variants in the timing of transmission will affect
their relative competitive abilities during a vaccination campaign and this is not accounted
for when using the reproduction number as a measure of fitness (for the reasons
discussed above). Second, as has become clear with the appearance and spread of
novel variants during the SARS-CoV-2 pandemic, one of the first and easiest quantities
estimated for a variant is its selection coefficient (i.e., the difference in growth rate
between it and the current dominant type: s = 7., — 7,14 )- Such estimates are all that is
required to place a new variant on a plot like Figure 2 (for instance see below how we
can attempt to place Omicron in Figure 5 using its selection coefficient against Delta).

Another alternative to the axes used in Figure 2 would be to use a variant’s overall fitness
across both host types as one axis (as either r or R,) and its ability to evade vaccine-
induced immunity as the other. The latter is often quantified by the vaccine efficacy

%4
against the variant, as measured by VE; = 1 — z—‘N where ¢ and ¢/ is the infectivity of

the variant in naive and vaccinated hosts respectively. There are drawbacks with this
approach as well. First, the axes in such a plot are not independent. Second, any measure



of the overall fithess of a variant will necessarily depend on vaccination coverage and so
a different plot would be needed for different vaccination coverages. It is possible to
circumvent this problem by using the fitness of a variant in the naive population as one of
the axes rather then its overall fitness, but then it is no longer possible to visualize overall
fithness on such a plot. The reason is that a combination of a variant’s fitness in naive
hosts and its VE; is not sufficient to determine its overall fitness. Differences between
variants in how the vaccine affects disease severity and transmissibility can also influence
a variant’s competitive ability and these are excluded from such a plot (since VE;
quantifies only the effect on infectivity which is only one of three main components of
pathogen fitness, see Box 1).

In the remainder of this Appendix we use currently available estimates from three distinct
variants to obtain the values of the per capita growth rates in naive and vaccinated hosts
plotted in Figure 5. For simplicity, we assume that the generation time is the same for all
variants in naive and vaccinated hosts (Ganyani et al. 2020). The following table
summarises the estimates used to make Figure 5. We have attempted to account for the
uncertainty in the estimates (within and between studies) by indicating a range of
parameter estimates in the following table (min and max). We also note that although
estimates of vaccine efficacy against different variants vary among studies, their relative
ranking is typically consistent (VE,, > VE, > VEs) (see CDC Science Brief). Finally, the
estimates used to construct Figure 5 are based on the above formula that relates the
reproduction number of the per capita growth rate, and use a value k = 5.

Table S1: Estimates of the life-history characteristics of the different variants. We present
the estimates used for the plots in Figure 5 as well as a range of values that were reported
among different studies. Numbers in parenthesis indicate the minimal and maximal values
used to plot the horizontal and vertical bars in Figure 5.

4 %4
a |o=r| BT
0t (days) By o (days™) (days™)
2.5 0. 0.1 0.20 -0.34
Wuhan 2.3) 5 (0.4,06) | (00502) | (015025 | (-0.47,-0.18)
. 4.25 0.5 0.15 0.34 -0.20
Variants |  Alpha (3.5,5) 3 (0.4,06) | (0.050.25) | (0.28,0.38) | (-0.41,-0.06)
Delta 7 5 0.5 0.2 0.48 -0.07
(5,9) (0.4,06) | (01,04) | (038055 | (-0.28,0.17)

At the time of writing a new SARS-CoV-2 variant of concern labelled Omicron has begun
a selective sweep in several parts of the world. At present there are multiple estimates of
its selection coefficient in different geographic regions, and these are between 0.2 and
0.4 per day. There is also growing evidence that current vaccines provide much less
protection against Omicron than they do against Delta, but precise estimates are still
lacking. As such, at the moment we can use the estimate of the selection coefficient to
tentatively place Omicron somewhere in the ellipse shown in Figure 5. This ellipse was
constructed so that the main axis is aligned with a contours of equal fitness (i.e., a line



with a slope equal to —p/(1 — p) with p = 0.7, see Figure 3) and a selection coefficient
S = Tomicron — Tpeita Of 0.3.
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