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With the unprecedented global vaccination campaign against SARS-CoV-2 
attention has now turned to the potential impact of this large-scale intervention on 
the evolution of the virus. In this perspective we summarize what is currently 
known about evolution in the context of vaccination from research on other 
pathogen species, with an eye towards the future evolution of SARS-CoV-2.  
 
It is useful to think of the temporal dynamics of evolutionary change for novel pathogens 
like SARS-CoV-2 as passing through two phases. In the first phase the host population 
is immunologically naïve and selection strongly favours adaptation to these abundant 
naïve hosts. In the second phase a growing proportion of the population will have an 
immunological history with the pathogen, either through natural infection or vaccination, 
and thus selection will shift, increasingly favouring adaptation to these hosts. In this article 
we will focus primarily on pathogen evolution in response to vaccination but return to the 
issue of evolution driven by immunity acquired from natural infections in our conclusions. 
 
Pathogen adaptation to naïve and vaccinated hosts depends on the appearance of new 
variants as well as on their fitness in each host type. We can quantify fitness by 
considering both the absolute per capita growth rate of infections caused by a variant as 
well as this growth rate relative to the growth rate of the currently dominant type 
(sometimes called the wildtype). The absolute growth rate will determine if the variant can 
spread in a population while the relative growth rate will determine if the variant can 
increase in frequency and thereby potentially displace the currently dominant type. 
 
For a variant to spread in a population its absolute growth rate must be positive 
(equivalently, its reproduction number must be larger than one). The absolute growth rate, 
𝑟!, of infections caused by any pathogen variant i can be approximated as (Appendix 1) 
 
𝑟! = (1 − 𝑝)𝑟!,# + 𝑝𝑟!,$        (1) 
 
where 𝑝 is the fraction of the population vaccinated, and 𝑟!,# and 𝑟!,$ 	are the growth rates 
of infections by variant i in a fully naïve and fully vaccinated population, respectively [1, 
2]. 
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For a variant to increase in relative frequency, and thus potentially displace the wildtype, 
its selection coefficient, s, defined as the difference between its growth rate and that of 
the wildtype, must be positive. For the above model this selection coefficient is given by 
 
𝑠 = (1 − 𝑝)∆𝑟# + 𝑝∆𝑟$        (2) 
 
where ∆𝑟# and ∆𝑟$ are the differences in growth rate between the variant and the wildtype 
in a fully naïve and fully vaccinated population, respectively. 
 
With this we can give a precise definition of a variant being adapted to vaccinated or naïve 
host populations. If ∆𝑟$ > 0 then the variant is more fit (i.e., has a higher growth rate) than 
the wildtype in a population of vaccinated hosts and so we say it is adapted to vaccinated 
host populations (equivalently, it is vaccine-adapted). Likewise, if ∆𝑟# > 0 then the variant 
is more fit (i.e., has a higher growth rate) than the wildtype in a population of naïve hosts 
and so we say it is adapted to naïve host populations. Thus, in the first phase of an 
outbreak, when the fraction of vaccinated hosts 𝑝 is small, selection strongly favours 
variants for which ∆𝑟# > 0 while, in the second phase, when 𝑝 is large, it strongly favours 
variants for which ∆𝑟$ > 0. In what follows we will focus on vaccine-adapted variants (i.e., 
those for which ∆𝑟$ > 0). Note that while there are many molecular and cellular 
mechanisms playing out within an infected host that can make a variant vaccine-adapted 
(Box 1), it is the impact of these mechanisms on the growth rate of the population of 
infected hosts that determines whether a variant spreads. 
 
The above ideas lead to two useful ways of categorizing vaccine-adapted variants. First, 
if a vaccine-adapted variant is also adapted to naïve host populations (i.e., ∆𝑟# > 0) then 
we refer to it as a “generalist” variant since it is better at spreading than the wildtype 
irrespective of host type. Conversely, if a vaccine-adapted variant is maladapted to naïve 
host populations (i.e., ∆𝑟# < 0) then we refer to it as a “specialist” variant since it is 
specialized to have higher fitness than the wildtype in vaccinated host populations only. 
This categorization is useful because, for vaccine-adapted variants, generalists will 
increase in frequency and replace the wildtype regardless of the vaccine coverage 
whereas specialists require the vaccine coverage to be above a critical threshold before 
they will increase in frequency (Figure 1).  
 
A second useful way to categorize a variant is to assess whether the absolute growth rate 
of infections that it causes is inhibited or facilitated by vaccination. The absolute growth 
rate of a vaccination-inhibited variant decreases as the vaccination coverage increases, 
whereas the absolute growth rate of a vaccination-facilitated variant increases with 
increasing vaccination (Figure 1). This categorization is useful because it speaks to 
whether the spread of infection will ultimately be lower or higher because of vaccination 
and subsequent vaccine-driven pathogen evolution. If a variant’s growth rate is 
vaccination-inhibited, then increasing vaccination coverage will always reduce the overall 
spread of infection, even if the variant ultimately replaces the wildtype (Figure 1a,c). 
However, if a variant’s growth rate is vaccination-facilitated, then if vaccination drives the 
variant to replace the wildtype it is possible that the overall spread of infection goes up 
(e.g., Figure 1b).  
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The categorization of variants in Figure 1 is based on their per capita growth rates and 
therefore such plots are specific to epidemiological context. For example, early in an 
outbreak there is typically exponential growth in the number of infections, but as an 
outbreak progresses and/or non-pharmaceutical interventions (NPIs) are introduced, the 
force of infection will eventually decline, reducing all growth rates 𝑟!,# and 𝑟!,$. Eventually, 
if the pathogen becomes endemic, the average growth rate across all variants will be 
zero. Notice, however, that the categorization of variants in Figure 1 depends only on the 
relative growth rates and so the very same framework can be applied to any 
epidemiological context (e.g., in the early stages of an outbreak during exponential growth 
or at equilibrium once the pathogen is endemic). Moreover, if the relative ordering of 
variants does not change with epidemiological context, then their classification into one 
of the four categories will remain consistent regardless of what is happening 
epidemiologically (Appendix 1).  
 
To conceptualize evolutionary change during a vaccination campaign we can then 
construct a plot of the absolute growth rate of different possible variants in each host type, 
locating on the plot each of the four types of variants from Figure 1 (Figure 2; alternative 
ways of plotting variants are discussed in Appendix 2). We can also use such a plot to 
illustrate how the nature of selection changes as a vaccination campaign proceeds. In 
Phase 1, when most hosts are naïve (i.e., p is small), selection will primarily favour 
variants with a larger growth rate in naïve hosts (Figure 3a). As we move to Phase 2 
(Figure 3b), however, an increasing fraction of hosts are vaccinated (i.e., p increases) 
and selection shifts to primarily favouring variants with a larger growth rate in vaccinated 
hosts (Figure 3c). Throughout this transition the variants that appear can be specialists 
or generalists, and either vaccination-inhibited or vaccination-facilitated.  
 
With this framework, evolutionary theory then makes some predictions about how we 
expect adaptation in novel pathogens to unfold during a vaccination campaign. As a 
pathogen adapts there will be occasional selective sweeps in which a new variant 
displaces the wildtype and becomes the new wildtype. The sequence of selective sweeps 
that occurs will be determined by both the direction of selection (the arrow in Figure 3) 
and the set of variants that happen to appear (Box 2). Initially, in a new host-pathogen 
association like SARS-COV-2, there will typically be abundant scope for adaptation to 
both naïve and vaccinated hosts and thus a great many of the variants that arise and 
become dominant will be generalist variants (Figure 4a). Over time, as the pathogen 
becomes better adapted to the novel host, and as vaccination coverage increases, there 
will be fewer new variants that increase fitness in both host types, leaving primarily 
specialist variants as the source of variation for further adaptation (Figure 4b). Thus, as 
a pathogen becomes increasingly adapted to a novel host, adaptation to vaccination will 
tend to result in the loss of some degree of adaptation to naïve hosts.  
 
It is more difficult to make predictions about whether variants are likely to be vaccination-
inhibited or vaccination-facilitated. At first one might wonder if vaccination-facilitated 
variants are even possible but, as we detail in the next section, such variants have been 
documented in some infectious diseases. Moreover, it is not difficult to imagine how such 
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a variant might occur in SARS-CoV-2. For example, people with symptoms often isolate 
and socially distance so they do not infect others. A variant that evades vaccine-induced 
immunity in terms of its transmissibility could spread more rapidly in a fully vaccinated 
population than in a fully naïve population (i.e., it would be vaccination-facilitated) if  
vaccination reduces disease severity and so reduces the rate of isolation and social 
distancing. This hypothetical example helps to emphasize that categorizing a variant as 
vaccination-facilitated is solely a statement about its fitness (i.e., its ability to spread) and 
it carries with it no a priori implication about whether the spread of such a variant would 
ultimately lead to a greater or lesser amount of disease, either in an individual infection 
or in the population overall.  
 
Examples of Pathogen Adaptation to Vaccination 
 
Before considering examples of adaptation to vaccination it is important to stress that 
many vaccines have not been undermined by pathogen adaptation (e.g. smallpox, 
measles, polio). This lack of adaptation is hypothesized to result from two features 
commonly associated with vaccination [3]. First, because vaccination is a prophylactic 
intervention, it can keep pathogen numbers small within vaccinated hosts, which limits 
the generation and transmission of novel variants. Second, because vaccines typically 
induce immune responses against multiple targets on a pathogen, multiple genetic 
changes may be required to circumvent vaccine-mediated immunity [4]. Both features are 
expected to limit the ability of the pathogens to adapt to vaccination by hampering the 
accessibility of variants (fewer red dots in Figure 3, Box 2). However, for a handful of 
vaccines that do not keep pathogen densities below transmissible levels in the majority 
of infected hosts, or that do not induce immunity against multiple targets, evolutionary 
adaptation has occurred [3]. Given this, we look to these previous examples for guidance 
on possible outcomes of adaptation to vaccination in SARS-CoV-2.  
 
The most direct way to determine how vaccines affect pathogen adaptation is through 
experimental evolution, yet we know of only one study that takes this approach. It involved 
a novel host-pathogen association of malaria parasites in laboratory mice [5]. Parasites 
were serially passaged for 20 generations through either vaccinated or naïve mice and 
allowed to evolve in response to these different treatments. The parasites became 
progressively better able to replicate in the host type they were evolving in, but they also 
evolved a better replication rate in the other host type as well. Moreover, vaccination 
inhibited the replication of all the evolved pathogens, demonstrating that the variants that 
arose during evolution were vaccination-inhibited generalists. 
 
Most other data are observational and focus on pathogen species that have a longer 
association with their host. As expected from the earlier considerations, many vaccine-
adapted variants appear to be specialist variants relative to the wildtype. For example, 
vaccine-adapted variants of hepatitis B virus arise that have altered surface antigens, 
making the vaccine less effective [6]. These variants cause sporadic breakthrough 
infections but they have not increased in overall number at the population level even as 
vaccination rates have increased [7, 8]. This suggests that, although they are more fit 
than the wildtype within vaccinated hosts, their spread from vaccinated hosts is 
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apparently suppressed making them vaccination-inhibited specialists. In Bordetella 
pertussis, acellular vaccines that target PRN have led to the spread of vaccine-adapted 
variants that no longer express PRN [9]. These variants appear to be more fit than the 
wildtype in vaccinated hosts but less fit in naïve hosts making them specialist variants 
[10]. Variants also arise that overexpress the immunosuppressive PTX molecule, and 
these appear to be more fit than non-overexpressing variants in both naïve and acellular-
vaccinated hosts [30]. Notably, fitness was not assayed in whole-cell vaccinated hosts 
limiting our ability to definitively classify the variants as specialists or generalists. In both 
sets of B. pertussis variants, however, the ability of these variants to spread in a 
vaccinated population appears to be less than in naïve populations [10, 11], making them 
all vaccination-inhibited variants.  
 
Similar patterns often arise with vaccines used in farm animals, although the data 
necessary to distinguish between specialist and generalist variants are often inconclusive.  
For example, avian metapneumovirus vaccination suppresses virus shedding in turkeys, 
but less so for recent isolates of the virus than historical isolates, and no difference was 
detected between the isolates in non-vaccinated turkeys [12]. This difference has been 
credited to amino acid divergence in two genes [12]. Similarly, breakthrough against a 
vaccine for a fish bacterial pathogen Yersinia ruckeri, has been associated with a loss of 
the bacterial flagellum [13]. However, partial vaccine protection persists against all tested 
variants [14] again suggesting that these variants are vaccination-inhibited.  
 
One strikingly different example is the chicken pathogen Marek’s disease virus (MDV). 
MDV is an oncogenic virus that can cause paralysis and high levels of mortality [15], and 
a succession of vaccines have been developed and deployed in response to continual 
vaccine-driven evolution [16]. The vaccine-adapted variants that have been analyzed 
appear to be disfavoured in naïve chickens relative to the ancestral virus [17]. 
Nevertheless, unlike the examples described above, the vaccine-adapted variants of 
MDV transmit better from vaccinated chickens than from naive chickens [17]. These 
variants are therefore examples of vaccination-facilitated specialist variants. Notably, the 
overall prevalence of disease in the poultry industry was nevertheless reduced by 
vaccination despite this evolution [18] (as in Figure 1d).  
 
Other examples of evolution in response to vaccination involve host-pathogen 
associations where multiple serotypes coexist and vaccines target only a subset of those 
serotypes. These situations are more complex because the very coexistence of serotypes 
suggests that multiple host types are present, possibly because of distinct immunological 
histories that have arisen through natural infection by the different serotypes. As a result, 
the framework in Figures 2 and 3 would need to be extended with additional axes 
corresponding to the different kinds of hosts. Nevertheless, we can draw an analogy to 
the previous examples by viewing the set of serotypes targeted by the vaccine as the 
‘wildtype’ and the non-targeted serotypes as the ‘variants’. The fact that the wildtype and 
variant serotypes coexist suggests that, as expected, they are specialist variants. It is 
more difficult to categorize them as being vaccination-inhibited or vaccination-facilitated, 
but in all examples that we are aware of, the total prevalence of infection has either gone 
down or remained unchanged after the deployment of the vaccine. For example, 
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vaccination against Streptococcus pneumoniae often resulted in no change in the total 
prevalence of bacterial carriage because non-targeted serotypes completely replaced 
vaccine-targeted serotypes following vaccination [19-21]. For human papillomavirus in 
contrast, vaccination reduced the total number of infections because non-targeted 
serotypes did not change in prevalence while vaccine-targeted serotypes became less 
common [22]. Other examples involving coexisting serotypes, including Bordetella 
pertussis [23], Haemophilus influenzae [24], Neisseria meningitidis [25], and rotavirus 
[26], appear to fall somewhere between these two extremes. 
 
One final example is human influenza virus, which continually evolves in response to host 
immunity through a process known as antigenic drift, generating many sequential 
influenza variants over time [27]. To keep up with antigenic drift, flu vaccines are 
frequently updated. Again, this can be conceptualized in the current framework by 
introducing a new axis in Figures 2 and 3 every time a new vaccine is introduced and/or 
a new immunological type of host arises. We were unable to find definitive data that 
addresses whether influenza variants tend to be generalists or specialists. Either way, 
existing data suggest that most novel variants arising through antigenic drift are partially 
inhibited by vaccination [28].  
 
Thus, in the handful of cases where vaccine adaptation has been observed, specialist 
variants have been involved. This is consistent with our theoretical expectation that 
generalist variants will eventually give way to specialist variants as novel host-pathogen 
associations become more established (Figure 4). Moreover, most of those handful of 
cases involve vaccination-inhibited specialists. As a result, vaccination has generally 
resulted in a reduced overall spread of infection, even when vaccination drove the 
evolutionary advantage of the variants. We have identified examples of vaccination-
facilitated specialist variants, but it is noteworthy that even in these cases it appears that 
such a vaccine-driven increase in the overall prevalence of infection has never been 
documented [29]. 
 
We are unaware of an example of a vaccination-facilitated generalist variant in any 
infectious disease. Such a variant would spread regardless of vaccine coverage, and it 
would also necessarily compromise our ability to control infection using that particular 
vaccine (Figure 1c). It is not clear if the apparent absence of such variants is because 
very few variants in this category are possible (Box 2), or if it is because generalist 
variants will be rare except when host-pathogen associations are new. As discussed 
above, it is possible to imagine such variants but again we stress that even if they arose 
their spread need not necessarily lead to a greater overall amount of disease in either 
infected individuals or at the population level. 
 
 
SARS-CoV-2 
 
There is now substantial evidence that SARS-CoV-2 has been undergoing rapid adaptive 
evolution since its first appearance in humans. The first compelling data involved the 
spread of the Alpha and Delta variants because of their fitness advantages over the 
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wildtype [30-32]. What does our framework tell us about the potential for SARS-CoV-2 
adaptation to vaccination? Epidemiological data from several countries suggest that, as 
expected, the main vaccine-adapted variants to appear so far are vaccination-inhibited 
generalists (Figure 5). It is important to stress, however, that the evolutionary advantage 
of Delta has not been driven by vaccination even though it appeared in the vaccine era. 
The Delta variant increased in frequency in countries with very low vaccine coverage as 
well as in countries with relatively high vaccination coverage, suggesting it is a generalist. 
Data indicating that Delta is vaccination-inhibited are less direct and come both from 
epidemiological studies [33] and from neutralization assays [34]. Although these data only 
quantify one of the three components of fitness (see section ‘The Relationship Between 
Pathogen Fitness and Infection Characteristics’ below), they show that while Delta is 
vaccine-adapted, current vaccines (BNT162b2 Pfizer-BioNTech, mRNA-1273 Moderna, 
and ChAdOx1 nCoV-19 Oxford-AstraZeneca) nevertheless still provide considerable 
levels of protection [35, 36]. The case for the Alpha variant being vaccine adapted is even 
less direct because Alpha spread and was then largely replaced by Delta before 
significant vaccine coverage existed in most countries. Thus, the epidemiological data 
clearly show that Alpha was advantageous relative to the wildtype in naïve hosts [32, 37, 
38], but estimates of its fitness in vaccinated hosts again come from proxies using vaccine 
efficacy. The important point for both variants is that they would have become dominant 
regardless of whether vaccines had been deployed because they are generalists (Figure 
5). 
 
Although the above examples of evolution are not driven by vaccination, vaccine 
coverage is now reaching high enough levels in some countries that the possibility of 
vaccine adaptation has become a real concern. As mentioned earlier, vaccine-driven 
evolution has tended to occur in other pathogens when either the benefits of prophylaxis 
are small (e.g., the vaccine does not sufficiently suppress viral replication below 
transmissible levels) or when they target a small number of viral epitopes [3, 39]. Data 
increasingly suggest that at least the first of these is true for SARS-CoV-2 [40-43]. As 
SARS-CoV-2 adapts further to humans we might therefore expect that specialist variants 
will begin to appear that have even higher reproductive success in vaccinated populations 
but where this increased adaptation to the vaccine comes at a cost of reduced 
reproductive success in naïve populations. Indeed, at the time of writing yet another new 
SARS-CoV-2 variant of concern (labelled Omicron) appears to be undergoing a selective 
sweep in some parts of the world. Current estimates suggest that its selection coefficient 
is quite large, between 0.2/day and 0.4/day [44]. Furthermore, growing evidence suggests 
that Omicron is less well controlled by current vaccine schedules than is the Delta variant 
but it is still too early to categorize Omicron definitively (Figure 5).  
 
So far as we know, vaccination-facilitated variants in SARS-COV-2 have not yet been 
reported and, depending on the available genetic variation (Box 2), it is possible that they 
never will arise. For a variant to be vaccination-facilitated, the vaccine would have to either 
increase the rate at which the variant generates new infections and/or decrease the rate 
at which existing infections caused by the variant are lost from circulation through 
recovery, isolation, or death. In principle, molecular processes involving antibody 
dependent enhancement of cell infectivity (ADE) could provide a mechanism by which 
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vaccine facilitation occurs [34, 45, 46], but we know of no evidence that ADE has 
increased transmission in any infectious disease. Vaccination could also increase the rate 
at which a variant generates new infections if vaccinated people engage in more risky 
behavior (e.g. are allowed entry to concerts and bars [47]). The other type of variants that 
could be facilitated by vaccination are variants whose transmission is curtailed because 
of the disease severity that they cause (e.g. leading to isolation). Vaccination, which is 
aimed at reducing disease severity, could facilitate silent or semi-silent spread of such 
variants (Box 2) in a manner directly analogous to the variants facilitated by the first 
generation vaccines against Marek’s disease [17]). 
 
In the longer term, if variants like those hypothesized above appear and spread, thereby 
compromising the utility of the vaccine, it is likely that boosts and new vaccines would be 
introduced. Furthermore, as SARS-CoV-2 spreads in the human population and 
presumably becomes an endemic virus, the number of people with an immunological 
history due to natural infection will increase significantly as well. In both cases, the 
framework presented here will need to be extended to account for multiple host types. 
Making longer-term predictions for such cases is difficult at this stage because a great 
deal will depend on the nature of the genetic variation that is possible (Box 2). 
 
 
The Relationship Between Pathogen Fitness and Infection Characteristics 
 
The above analysis focuses solely on pathogen fitness. One thing missing from this 
discussion is a consideration of how vaccination might drive the evolution of infection 
characteristics like vaccine efficacy or disease severity. To better illustrate the relationship 
between the fitness of a variant (as measured by the growth rate of infections that it 
causes) and the characteristics of the infection, we can decompose the absolute growth 
rate 𝑟!, of a variant into three main components of fitness (Box 1 and 3):  (i) infectivity - 
the probability that, upon exposure, a variant infects either type of host; (ii) transmissibility 
- the rate at which a variant produces infectious propagules that contact uninfected 
individuals; and (iii) infection duration – how long a variant produces infectious propagules 
in either type of host before the infectious period ends through recovery, isolation, or 
death. All else equal, variants with increased infectivity, increased transmissibility, or 
increased duration of infection will have an increased growth rate. 
 
Vaccine efficacy against infection - The infectivity of a variant is a key property for 
determining how well a vaccine works against a variant. If 𝜎# and  𝜎$ denote the infectivity 
of a variant in naïve and vaccinated hosts respectively, then vaccine efficacy (VE) is the 
proportional reduction in infectivity that vaccination confers, given by 𝑉𝐸 = 1 − 𝜎$/𝜎#. 
This highlights two important things about the utility of VE for understanding the 
evolutionary epidemiology of vaccine-adapted variants. First, because VE is a measure 
of the relative infectivity of a variant in vaccinated versus non-vaccinated hosts, a variant 
can have a reduced VE as a result of an increase in 𝜎$ and/or a decrease in 𝜎#. Second, 
VE involves only one of the three different components of fitness and so it provides only 
partial information for determining the fate of a variant or the consequences it will have if 
it sweeps to fixation. For example, the Beta and Gamma variants of SARS-Cov-2 both 
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appear to reduce VE [48] yet, to date, neither has become the dominant variant. Measures 
of VE that capture other components of pathogen adaptation to vaccinated hosts do exist 
[49].  
 
A related issue arises in discussions of vaccination that center around so-called “escape 
variants”. Although this term is not always defined precisely, it is often used in reference 
to variants that differ in epitope and so are able to escape a specific immune response 
as measured in inhibition assays in vitro [48, 50-53]. For example, SARS-CoV-2 variants 
are sometimes characterized by both their transmissibility (as measured by their overall 
growth rate and/or R0) and their performance in inhibition assays. We have purposefully 
avoided doing so here because this approach conflates the mechanism through which a 
variant is potentially adapted to vaccinated hosts (i.e., escape from a specific immunity 
and so greater ability to replicate within an individual) with the source of selection that 
favours the variant (e.g., increased infectivity). It is useful to keep these notions distinct 
because there are many different mechanisms through which a variant can be adapted 
to vaccinated hosts (Box 1) and each of these can affect any of the three main 
epidemiological components of fitness (i.e., infectivity, transmissibility, infection duration). 
Therefore, we believe the most consistent, general, and agnostic way to characterize 
variants is as described in Figure 2.  Ideally, we would also quantify multiple infection 
characteristics (infectivity, transmissibility, and infection duration) for variants that arise, 
along with this quantification of fitness (Appendix 2). Such an approach is possible for 
SARS-CoV-2 using the unprecedented availability of genetically resolved, real time 
epidemiological data (Box 3 and Figure 5). 
 
Disease Severity – Arguably the most important infection characteristic from the 
standpoint of human health is the severity of disease caused by a variant. Most definitions 
of severity capture both the morbidity and the mortality caused by infection. As such, 
severity can affect all three components of fitness. For example, high disease severity 
might reduce infection duration through increased mortality, or it might reduce the 
transmissibility through a reduction in activity level and thus the contact rate of infected 
individuals [54]. In most cases disease severity per se is disadvantageous to the 
pathogen and thus selected against [55]. It is nevertheless difficult to make predictions 
about how disease severity will evolve because variants that cause more severe disease 
might have increased fitness relative to the wildtype through differences in other 
components of fitness [56]. For example, data suggests that the Alpha variant of SARS-
CoV-2 may cause more severe disease than the Wuhan wildtype [57, 58], but it 
nevertheless has higher fitness because its transmissibility is higher. Also, severity of the 
disease may be partially mediated by the host immune response and recent studies 
suggest that some antibodies may “enhance” the replication of the virus and may induce 
more symptoms [45, 59]. A SARS-CoV-2 variant that could escape from neutralizing 
antibodies and exploit this enhancing effect could lead to greater disease severity in 
vaccinated or previously infected hosts [46]. This illustrates that, although we can make 
quite robust and reliable predictions about the evolution of pathogen fitness in naïve and 
vaccinated hosts, it is harder to make predictions about the underlying components of 
fitness or disease severity since variants with very different values of the three fitness 
components can nevertheless have the same overall fitness (Box 1 and 3). This means 
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that pattens of evolution in these infection characteristics are likely to be somewhat 
idiosyncratic.  This is a major reason why we cannot extrapolate the evolutionary 
trajectories of such traits from one pathogen to another. 
 
Despite the lack of robust theoretical predictions about disease severity, a few 
observations from other infectious diseases could be relevant to SARS-CoV-2. First, 
vaccine protection tends to be even more evolutionarily robust against disease than 
against infection. This conclusion arises from the observation that when pathogens have 
evolved in response to vaccines in the past, vaccinated individuals that are infected by a 
pathogen tend to have better outcomes than non-vaccinated individuals [29]. A potential 
concern is if there are enhancing effects of antibodies on disease severity [60, 61], as 
there may be for COVID [45, 46, 59]. Second, for pathogens with coexisting serotypes, 
vaccine-driven serotype replacement could in principle increase or decrease overall 
disease burdens if different serotypes have different propensities for causing disease, as 
they often do (for example, [62]). Rational design of variant-based vaccines must 
therefore consider both the current prevalence of each variant and their likelihood of 
causing disease given infection. Third, under certain conditions, vaccines may lead to the 
evolution of highly virulent variants. The best example of this is MDV in which highly 
virulent variants of the virus kill their hosts so quickly that they are unable to persist in the 
absence of vaccination [17]. Vaccines ameliorate disease severity of MDV and so they 
allow hosts infected by these highly virulent variants to remain alive but they do not 
prevent transmission. Despite this effect, however, vaccinated chickens exposed to these 
highly virulent variants are nevertheless better off than non-vaccinated chickens exposed 
to the original wildtype. On the other hand, non-vaccinated chickens are now at greater 
risk of infection with variants causing more severe Marek’s disease than they were prior 
to the introduction of the vaccine. Regardless of whether SARS-CoV-2 follows this path 
(Figure 5), vaccination remains our most effective tool to mitigate the epidemic, as was 
the case with MDV [63]. Vaccination also reduces the number of cases which may also 
slow down the flux of new mutations and thus the probability of viral adaptation (Box 2).  
 
Implications 
 
If further adaptation of SARS-CoV-2 occurs in response to vaccination, then our 
framework and the examination of previous experimental and empirical examples suggest 
that the long-term outcome will likely yield specialist variants. The path to getting there 
will likely involve vaccination-inhibited variants meaning that we are likely to, at least 
partially, retain the benefits of vaccination with first-generation COVID vaccines in the 
short term. In the meantime, there is an urgent need to monitor the epidemiology and 
evolution of the virus [39]. This will better characterize newly arising variants (Box 3) and 
make it possible to decide if, like for flu, new vaccines are needed to counteract viral 
adaptation.  
 
It is also critical to stress that concerns about possible future viral evolution are not a 
reason to withhold currently available vaccines. First, vaccines are currently greatly 
reducing disease burdens and saving lives [64]. Second, as discussed above, much of 
the evolution currently occurring in SARS-CoV-2 involves generalist variants and so 
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would be occurring regardless of whether we deployed existing vaccines. Third, immunity 
arising from natural infections will also impact on-going viral evolution. Currently, it is 
impossible to know whether natural immunity or vaccine-induced immunity will be the 
stronger evolutionary driver. Fourth, even with the Delta variant, current mRNA vaccines 
substantially reduce the probability of infection and infection duration compared to 
infections in naïve individuals [42, 43, 48]. That itself very substantially reduces 
evolutionary potential (Box 2). 
 
Going forward, it is quite possible that new vaccine schedules (e.g., higher doses, 
boosters, combinations of existing vaccines) or next-generation vaccines (e.g., new RNA 
sequences, mucosal vaccines) will be required to deal with SARS-CoV-2 evolution. A 
diversity of vaccine types are already being used around the globe, and vaccine 
schedules in many locations are being continually adjusted. If this diversity generates 
relevant immunological heterogeneity within and among populations, then natural 
selection could favor different viral variants at different times in different locations, and 
perhaps even result in the coexistence of several variants. If so, vaccination programs 
may need to be continually adjusted at a national or regional level, as is necessary to 
control coronaviruses in agriculture [65, 66]. The more that vaccination suppresses 
transmission, targets multiple epitopes, and more effectively inhibits infection and within-
host replication and so mutation and recombination, the better it will be at slowing the rate 
of adaptation (Box 2) and providing sustainable long-term efficacy [39].  
 
 
 
Summary 
 
In the history of human and animal vaccination, there are few documented cases of 
vaccine-driven evolution. For situations where adaptation to vaccines occurs, either 
through the vaccination itself or through immunity due to natural infection, we propose a 
typology of vaccine-adapted variants based on their fitness in naïve and vaccinated host 
populations (Figure 1). 
 
Adaptation occurs when a novel variant is more fit than its predecessors. The fitness of a 
variant is measured by its per-capita growth rate of the number of infections that it causes 
(i.e., the number of new infections per infection per unit time). 
 
In the early phase of pandemics, we expect the rise of variants that are better at spreading 
than their ancestors in both naïve and immunized hosts (generalists). Later, viral evolution 
should involve specialised adaptations to immunized hosts, and so some decrease of 
adaptation to naïve hosts. 
 
Both generalist and specialist variants can be inhibited by vaccination, where the growth 
rate of infections decrease as vaccine coverage increases. Under these circumstances, 
even if the impact of vaccination is eroded by viral evolution, the overall spread of infection 
is still reduced by vaccination. 
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Vaccination-facilitated variants can arise. In this case, the overall spread of infection could 
theoretically go up as vaccination rates increase but this does not imply that the overall 
level of disease necessarily will increase in either an individual infection or in the 
population overall.  
 
Evolution is more than selection. Our framework predicts the direction and strength of 
selection, but does not precisely predict the evolutionary trajectory that will be followed 
because there is no way of knowing in advance what phenotypes are available to the 
virus genetically (via mutation or recombination) (Box 2). 
 
Evolution is more than mutation. There is no way of knowing in advance how particular 
mutations relate to the multiple dimensions of the fitness landscape, even if they may 
have an advantage on a particular dimension in a laboratory assay (Box 1). 
 
So far, the SARS-CoV-2 variants of concern that have become dominant have been 
vaccination-inhibited generalists that would have spread regardless of vaccination. We 
expect more generalist variants to arise and spread until the mutational supply has been 
exhausted. Once exhausted, we expect further adaptation to result from the spread of 
specialist variants. Whether these variants will be vaccination-inhibited or vaccination-
facilitated will depend on mutational availability. 
 
Beyond those expectations, a priori prediction about future vaccine efficacy and disease 
severity for SARS-CoV-2 is not possible. Molecular epidemiological surveillance will be 
critical for detecting and characterizing viral adaptation as it unfolds (Box 3). 
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Figure Captions 
 
Figure 1: Four types of vaccine-adapted variants. Solid lines depict the growth 
rate of the population of infected individuals for the wildtype (blue) and for a variant 
(red) as a function of vaccination coverage. Vaccination decreases the growth rate 
of the wildtype (𝑟# > 𝑟$). Quantities ∆𝑟# and ∆𝑟$ are the differences in growth rate 
between the variant and the wildtype in naïve and vaccinated hosts, respectively. 
Colored shading indicates which type prevails evolutionarily: the wildtype (light blue 
shading) or the variant (light red shading). Panels (a) and (b) are generalists - the 
variant is also better adapted to naive hosts (∆𝑟# > 0). Generalist variants will 
outcompete the wildtype even in the absence of vaccination. Panels (c) and (d) are 
specialists – the variant is maladapted to naive hosts (∆𝑟# < 0). Specialist variants 
will outcompete the wildtype only above a critical vaccination threshold. Panels (a) 
and (c) are vaccination-inhibited variants - the growth rate of the variant decreases 
with increasing vaccination. As a result, the growth rate of infections after adaptation 
(i.e., after fixation of the fittest type) in a fully vaccinated population (black dot) is 
always lower than that in a fully naïve population (white dot & dashed line). Panels 
(b) and (d) are vaccination-facilitated variants - the growth rate of the variant 
increases with increasing vaccination. As a result, the growth rate of infections after 
adaptation in a fully vaccinated population (black dot) is always higher than that in 
a fully naïve population (white dot) for generalist variants (panel (c)) but it can go 
either way for specialists (panel (d) - only the case where it is lower is shown). 
 
Figure 2: Four types of vaccine-adapted variants. A plot of the growth rate of 
variants in a fully naïve, 𝑟!,#, and a fully vaccinated, 𝑟!,$, population. Blue dot 
indicates location of the wildtype. Uncolored region corresponds to variants whose 
growth rate in vaccinated hosts is less than that of the wildtype and so are vaccine-
maladapted (and so ignored in our discussion). Different coloured regions 
correspond to the 4 types of variants from Figure 1 (labels (a)-(d) correspond to 
panels (a)-(d) from Figure 1). Additional types of variants are presented in Figure 
S1. See Appendix 2 for a discussion of alternative ways to visualize variants.    
 
Figure 3: Selection and genetic variation. A plot of the growth rate of all viable 
variants i in a fully naïve and a fully vaccinated population (black dots). Large blue 
dot denotes the current wildtype. Red dots are those variants that are most 
accessible from the wildtype (see Box 2). Note that the location of all variants along 
the 𝑟!,$ axis is specific to a vaccine and will be different for different vaccines. All 
variants in white region are selectively advantageous but variants in the direction of 
the selection arrow are most strongly favoured (dashed lines indicate contours of 
overall growth rate). Variants in the grey region are disfavoured by selection. The 
direction of selection arrow is upwards in a fully naïve population (𝑝 = 0) (panel (a)) 
and shifts towards the right as the level of vaccination (and/or fraction of hosts with 
exposure to the wildtype through natural infection) increases (panels (b) and (c)).  
 
Figure 4: Pathogen adaptation during vaccination. A plot of the growth rate of 
all viable variants in a fully naïve and a fully vaccinated population (dots). Large blue 
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dot denotes the phenotype of the current wildtype and black arrow indicates 
direction of selection (i.e., the variants that are most advantageous). Variants in the 
grey region are disadvantageous. Note that the location of all variants along the 𝑟!,$ 
axis is specific to a vaccine and will be different for different vaccines. Coloured 
regions indicate the four different kinds of variants. (a) Early in a novel host-
pathogen association (and in the first phase of the vaccination campaign). Many 
potential new variants will be better adapted to both host types (i.e., they will be 
generalists). (b) Later in the association, when the pathogen is better adapted to its 
novel host (and vaccination levels are higher). The evolutionary trajectory of 
successive fixation events leading to the new wildtype variant is indicated with the 
succession of blue dots. Note how the change in the location of the blue dot can 
affect the typology of some variants (i.e., a variant that was identified as a generalist 
in the early stage of adaption could later become a specialist relative to the more 
recent form of the virus). Once the level of adaptation is high (panel b) most 
advantageous variants that appear will tend to be specialists. Even though 
generalists are still more strongly favoured by selection there are fewer of them that 
can arise.  
 
Figure 5: Graphical representation of SARS-CoV-2 adaptation to naïve and 
vaccinated hosts. Blue dot denotes location of the Wuhan wildtype, which is 
relatively poorly adapted to both naïve and vaccinated hosts. The bars give the 
range of plausible values for the growth rate of each variant in fully naïve or fully 
vaccinated hosts (where fully vaccinated means two doses of current mRNA 
vaccines). The Wuhan wildtype and the Alpha variant are vaccine-maladapted 
relative to Delta variant (see Figure 2). Note the dashed black lines indicate where 
the growth rates are zero (the three variants are able to grow in a fully naïve 
population but not in a fully vaccinated population). The red ellipse indicates the 
likely position of the newly emerged Omicron variant at the time of writing (early 
January 2022). See Appendix 2 for details regarding the construction of this figure.  
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Box 1 – Mechanisms of vaccine adaptation 
 
Our focus is on the ability of a variant to spread between hosts, and this ability can arise 
from several different mechanisms operating within an infected individual. Pathogens 
have evolved a vast diversity of countermeasures against natural immunity, many of 
which will also be highly effective against vaccine-induced immunity and so are expected 
to be involved in adaptation to vaccination. The list below is intended to be illustrative of 
the diversity of possible within-host adaptations, rather than comprehensive. 
 
Immune evasion (avoiding anti-pathogen responses). 

• Antigenic change.  
• Antigenic loss. Inactivation or deletion of molecules targeted by host responses. 
Examples include loss of toxins (diphtheria, pertussis). 

• Antigenic repertoires. Changes in genes controlling the rates at which pathogens 
generate and expose novel antigens (e.g. trypanosomes, malaria). 

• Increased cell-cell infection to evade antiviral humoral immunity which threatens 
cell-free infection [53]. 

• Altered tissue tropism to immune-privileged sites. 
Immune suppression (dampening or mis-directing anti-pathogen responses). 

• Up-regulation of enzymes to degrade effector molecules (e.g., ptxP3 in pertussis) 
• Production of immune-regulatory molecules such as cytokine mimics (e.g. pox 
viruses) and immune antagonists (e.g. Orf9b and Orf6 in Alpha variant of SARS-
CoV-2, [67]). 

• Production of substances that drive inappropriate responses (e.g. helminths) 
• Production of ‘smoke screen’ molecules, which distract immune effector molecules 
(e.g. malaria, [68]) 

 
Immune exploitation (utilizing host responses) 

• Antibody-dependent enhancement (e.g. [45, 46]) 
 
Life-history mediated countermeasures against immunity 
Direct countermeasures against immunity, such as those listed above, are not the only 
possible within-host mechanisms of vaccine adaptation. A very different suite of potential 
mechanisms has to do with where, when, and how fast pathogens replicate.   

• Variants that replicate earlier or faster can overwhelm the immune response, at 
least initially. 

• Variants that replicate more slowly can potentially remain below immune detection 
for longer (e.g., many chronic viral infections). 

• Variants which can exploit altered host cell invasion pathways can have an 
advantage when primary pathways are blocked by host immunity.  

Traits underpinning these mechanisms can include higher binding affinity to host 
receptors, large burst sizes (number of pathogen progeny released from a host cell), 
altered latency (dormancy in host cell) and changes in the investment of within-host 
replication relative to transmission stage production (e.g., malaria). 
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Finally, where transmission is restricted by disease severity (for instance, via host death 
or hospitalization), vaccination, can enhance pathogen transmission by reducing disease 
severity (e.g., Marek’s disease). 
 
Most of the traits listed above can be studied in a variety of in vitro and in vivo models, 
with native pathogens or novel expression systems like pseudoviruses. Often, in vivo 
studies are also possible, using animal models and, in some cases, human subjects. In 
most cases, it is very challenging to link within-host mechanisms to between-host fitness 
because individual traits are often, at best, correlates or partial determinants of one or 
more of infectivity, transmissibility and infection duration (which are the three key 
components of fitness). Fitness per se (i.e., the growth rate of the number of infections) 
and other components of fitness can also be inferred in real time from rates at which the 
different variants spread in the human population (Box 3). 
 

 
 
Figure Box 1: The fate of a variant i within a host population is determined by three key 
components of fitness, each of which can be affected by several within-host mechanisms 
of adaptation. All else equal, variants with increased infectivity, increased transmissibility, or 
increased duration of infection will have an increased fitness (rate of spread in a population). As 
indicated in equation (1) fitness depends on both the amount of adaptation to naïve and 
vaccinated hosts. Within-host processes impact those three components of fitness to varying 
extents and, in turn, individual viral mutations can affect those processes to varying extent. Some 
within-host mechanisms of adaptation can be measured directly in in vitro assays. Some 
components of viral fitness can be inferred from evolutionary epidemiological studies (Box 3).  
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Box 2 – Mutation and adaptation to vaccination 
 
Pathogen adaptation requires variation in fitness among variants. New variants arise from 
mutation during replication and from recombination when distinct variants coinfect the 
same host. It is important to distinguish between the rate at which new variants arise and 
how their fitness differs from the wildtype.  
 
The rate at which variants arise 
Mutations are continuously generated during the replication of the virus within infected 
hosts. The rate at which this occurs is proportional to the rate at which genomic changes 
occur during replication, and the amount of replication that is taking place. Vaccination 
reduces the amount of replication taking place in two ways. First, at the within-host level, 
if a vaccinated host is infected, a vaccine-primed immune response is expected to reduce 
the viral load and to clear the infection faster. Second, at the between-host level, the 
rollout of vaccination is expected to reduce the number of infected hosts (both naïve and 
vaccinated). These effects are tempered for imperfect (or leaky) vaccines, however, 
because they have a lower ability to reduce pathogen replication and to prevent infection. 
 
The fitness effects of variants 
The fate of a new variant is determined by how the rate of change of number of infections 
it causes differs from that of the wildtype in both naïve and vaccinated populations (i.e., 
where it falls in Figure 3 relative to the wildtype). To this end it is useful to distinguish 
between the set of variants that are possible (all the dots in Figure 3) and the set of 
variants that are easily accessible from the wildtype (the subset of red dots in Figure 3). 
There will be biological constraints on the magnitude of growth rate that is possible in the 
two host types and therefore all the dots in Figure 3 will fall within some specific region 
of the plane. Most mutations are expected to be deleterious or have little effect, but some 
may result in a larger growth rate than the wildtype [69, 70]. Hence, we expect a high 
density of possible phenotypes (black dots in Figure 3) with low fitness relative to the 
density of phenotypes that increase fitness in both host types. Within this set of possible 
variants, some will be more readily accessible from the current wildtype than others for 
several reasons. First, some variants might be multiple mutational or recombinational 
steps away from the wildtype and so will be exceedingly unlikely to arise. For example, 
the lack of adaptation of measles virus to vaccines despite decades of global vaccination 
is potentially because variants that can escape a polyclonal antibody response require at 
least five new mutations to the H glycoprotein [4]. Second, competition between the 
variant and the wildtype within an infection can promote (or hamper) the variant’s ability 
to reach a density high enough for onward transmission to occur. For example, in novel 
host-pathogen associations, mutations that are beneficial for within-host competition are 
also likely to be beneficial in other respects, including their ability to spread at the 
between-host level simply because more generalist variants are accessible when the 
wildtype is poorly adapted to its host (see Figure 4a but when axes are within- and 
between-host fitness). As the association becomes more established, however, variants 
that are successful within hosts will tend to have reduced success at the between-host 
level. This effect of within-host selection biasing the set of variants that are accessible to 
between-host selection is likely also modulated by the leakiness of the vaccine [71]. 
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Vaccination and the speed of pathogen adaptation 
Faster rollout and more effective vaccines will, all else equal, limit the emergence of new 
variants. Hence, the use of leaky vaccines (and the occurrence of chronic infections in 
immunocompromised hosts) could speed up pathogen adaptation both because they 
increase the flux of mutation relative to the use of non-leaky vaccines and because they 
facilitate the within-host rise of some vaccine-adapted variants. Once a vaccine-adapted 
variant is circulating in the population, the influence on evolutionary adaptation of the rate 
at which it arises through mutation is negligible compared to the selection acting on the 
variant (e.g. the dynamics of the Alpha variant of SARS-CoV-2 at the end of 2020 in UK 
was driven by selection, not by the flux of mutations). In this case, the speed of pathogen 
adaptation is mainly driven by selection and different targeted vaccination strategies may 
provide ways to slow down this adaptation [72-74].  
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Box 3 – How to characterise the fitness of SARS-CoV-2 variants? 
 
The ongoing pandemic of SARS-CoV-2 is characterised by an unprecedented access to 
incidence and sequencing data in real time. This data provides a unique opportunity for 
quantifying the underlying components of viral fitness (infectivity, transmissibility, and 
infection duration) related to adaptation to naïve and vaccinated hosts. Three main 
dynamical variables carry useful information about these components of fitness 
(Appendix 1).  
 
First, the per capita growth rate of the epidemic during vaccination provides information 
about the potential emergence and the spread of new variants. Any deviation from the 
predicted drop in incidence of the wildtype due to increasing vaccination coverage could 
signal the spread of a vaccine-adapted variant (∆𝑟$ > 0).  
 
Second, analysis of the change in frequency of a variant allows some inference to be 
made about which components of fitness underly adaptation to vaccination. We show in 
Appendix 1 that the magnitude of change in the frequency of a variant will be proportional 
to the availability of susceptible hosts if the variant obtains its advantage through 
increased transmissibility, 𝛽, or infectivity, 𝜎, but this change will be independent of 
susceptible hosts if the variant obtains its advantage through a longer infection duration. 
Therefore, as the availability to susceptible hosts varies with lockdowns and other NPIs, 
tracking how this affects the change in variant frequency can inform us about the 
mechanism underlying the variant’s success [56, 75]. 
 
Third, the over representation of a variant in vaccinated hosts can be used as an early 
signal that the variant is adapted to the vaccine. We show in Appendix 1 that the 
difference in variant frequency between naïve and vaccinated hosts (i.e., the genetic 
differentiation of the viral populations in the two types of hosts) is mainly governed by the 
relative infectivity of the variant in vaccinated hosts, but not by its transmissibility. Hence, 
the analysis of these three dynamical variables provides a way to begin disentangling the 
three major components of fitness. 
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Supplementary Information 
 

Appendix 1 
 
In this appendix we derive the expressions presented in the main text, and we also show 
how changes in the three main components of fitness of a variant affect the evolutionary 
dynamics.   
 
1. The model 
We track the dynamics of variant 𝑖 in a host population with a density 𝑆! of naïve hosts 
and a density 𝑆" of vaccinated hosts using the following system of differential equations: 

𝐼#̇! = ℎ#𝜎#!𝑆! − 𝛾#!𝐼#! 
𝐼#̇" = ℎ#𝜎#"𝑆" − 𝛾#"𝐼#! 
ℎ# = 𝛽#!𝐼#! + 𝛽#"𝐼#" 

The reproductive success of a variant is determined by three components of fitness: 
- 𝛽#! and 𝛽#": the transmission rate of variant 𝑖 from naïve and vaccinated hosts 
- 𝜎#! and 𝜎#": the infectivity of variant 𝑖 in naïve and vaccinated hosts 
- 𝛾#! and 𝛾#": the infection duration of variant 𝑖 in naïve and vaccinated hosts  

Below we present the derivation of the three dynamical variables mentioned in Box 3 that 
capture the epidemiological and evolutionary dynamics during adaptation to vaccination 
(equations (S1), (S2) and (S3) below). 
 
2. The growth rate of the epidemic 
 
If the change in the density of susceptible hosts occurs slowly relative to the spread of 
infection then the per capita growth rate of infections will be given by the dominant 
eigenvalue 𝑟# of the matrix: 

𝐑# = .
𝑟#!! 𝑟#"!

𝑟#!" 𝑟#""
/ 

where 
 
𝑟#!! = 𝛽#!𝜎#!𝑆! − 𝛾#! 
𝑟#"! = 𝛽#"𝜎#!𝑆! 
𝑟#"" = 𝛽#"𝜎#"𝑆" − 𝛾#" 
𝑟#!" = 𝛽#!𝜎#"𝑆" 
 
If we further define 𝛿# = 𝛾#" − 𝛾#! then we can write  
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𝑟# = (1 − 𝑝)𝑟#,! + 𝑝𝑟#," −
𝑆"𝛽#"𝜎#"

𝑆!𝛽#!𝜎#! + 𝑆"𝛽#"𝜎#"
𝛿# + 𝑂[𝛿#]% 

with: 𝑟#,! = 𝑆𝛽#!𝜎#! − 𝛾#!, 𝑟#," = 𝑆𝛽#"𝜎#" − 𝛾#", and where 𝑆 = 𝑆! + 𝑆" and 𝑝 =
&!

&"'&!
 is the 

coverage of vaccination (i.e., the fraction of the uninfected population that is vaccinated). 
 
When 𝛿# = 0 this simplifies to: 

𝑟# = (1 − 𝑝)𝑟#,! + 𝑝𝑟#," 
which is equation (1) of the main text. Notice, however, that the categorization of variants 
in Figure 1 is not specific to this model but instead can be applied much more generally. 
In principle we can always quantify the per capita growth rate of a variant in a fully naïve 
and a fully vaccinated population no matter what the epidemiological model or parameter 
values. The simplification that 𝛿# = 0 is made entirely for expositional purposes since it 
allows one to write the overall per capita growth rate of a variant for any level of vaccine 
coverage as a convex combination of the variant’s growth rate in each of the two “pure” 
populations. As such the growth rates in Figure 1 are connected simply by straight lines. 
Furthermore, the kind of categorization in Figure 1 can be applied regardless of the 
epidemiological state of the population (e.g., exponential growth, endemicity, etc.). For 
example, as the epidemic grows the density of uninfected hosts will drop and perhaps 
non-pharmaceutical interventions will be implemented to reduce the force of infection. 
Although both processes will reduce the absolute growth rates of all variants we can 
nevertheless construct a version of Figure 1 for any epidemiological context of interest. 
Moreover, because the categorization of variants in Figure 1 depends only on their 
relative growth rates, if this relative ordering does not change with epidemiological context 
then a variant’s classification into one of the four categories will remain consistent 
regardless of what is happening epidemiologically. 
 
In the following, for simplicity, the effects of the mutation on the different viral components 
of fitness in host 𝑋 (where 𝑋 = 𝑁 or 𝑉) will be assumed to be small and will be denoted: 

- ∆𝛽( = 𝛽)( − 𝛽*( 
- ∆𝜎( = 𝜎)( − 𝜎*( 
- ∆𝛾( = 𝛾)( − 𝛾*( 

and the components of fitness of the wildtype will be noted: 
- 𝛿 = 𝛿* 
- 𝛽( = 𝛽*( 
- 𝜎( = 𝜎*( 
- 𝛾( = 𝛾*( 

Using this notation the growth rate of the wildtype population is:  
𝑟 = (1 − 𝑝)𝑟! + 𝑝𝑟" 

 
and the growth rate of the novel variant is 𝑟 + ∆𝑟 where: 
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∆𝑟 = (1 − 𝑝) (𝑆(∆𝛽!𝜎! + 𝛽!∆𝜎!) − ∆𝛾!)=>>>>>>>>?>>>>>>>>@
∆,"

+ 𝑝	 (𝑆(∆𝛽"𝜎" + 𝛽"∆𝜎") − ∆𝛾")=>>>>>>>>?>>>>>>>>@
∆,!

 

 
The growth rate of the whole population of all infected individuals is simply: 

𝑟̅ = 𝑟 + 𝑓!∆𝑟 (S1) 
 
where 𝑓) is the frequency of the novel variant: 

𝑓) =
𝐼)! + 𝐼)"

𝐼*! + 𝐼*" + 𝐼)! + 𝐼)"
 

Thus, a variant with a higher growth rate will spread when ∆𝑟 > 0 and the subsequent 
increase in mutant frequency will affect the growth rate of the whole pathogen population.  
 
3. The dynamics of variant frequency 
The dynamics of the variant frequency 𝑓) depends on the distribution of the variant in 
naïve and vaccinated hosts (Gandon & Day 2007). But if the phenotype of the variant is 
not very different from that of the wildtype we can obtain a very good approximation of 
these dynamics using (Otto & Day 2007):  
 

𝑓̇) ≈ 𝑓)(1 − 𝑓))𝐕-Δ𝐑)𝐅 
 
where 𝐕- is the vector of reproductive values and 𝐅 is the vector of class frequencies 
which correspond to the conormalised (i.e. 𝐕-𝐅 = 𝟏) left and right eigenvectors of 𝐑*, 
respectively: 

𝐅 ∝ J
𝑆!𝜎!
𝑆"𝜎"

K1 +
𝛿

𝑆!𝛽!𝜎! + 𝑆"𝛽"𝜎"
L + 𝑂(𝛿%), 1N 

𝐕- ∝ J
𝛽!
𝛽"
K1 +

𝛿
𝑆!𝛽!𝜎! + 𝑆"𝛽"𝜎"

L 	+ 𝑂(𝛿%), 1N 

 
and selection on the different transitions is given by:  

Δ𝐑) = O
𝑠!! 𝑠"!
𝑠!" 𝑠""Q 

 
where: 
𝑠!! = (∆𝛽!	𝜎! + 𝛽!	∆𝜎!)	𝑆! − ∆𝛾! Selection coefficient (when 𝑁 infect 𝑁)  
𝑠!" = (∆𝛽!	𝜎" + 𝛽!	∆𝜎")	𝑆"  Selection coefficient (when 𝑁 infect 𝑉) 
𝑠"" = (∆𝛽" 	𝜎" + 𝛽" 	∆𝜎")	𝑆" − ∆𝛾"  Selection coefficient (when 𝑉 infect 𝑉) 
𝑠"! = (∆𝛽" 	𝜎! + 𝛽" 	∆𝜎!)	𝑆!  Selection coefficient (when 𝑉 infect 𝑁) 
 
After some calculation this yields: 

𝑓)̇ ≈ 𝑓)(1 − 𝑓))𝑠 
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where: 
𝑠 ∝ (1 − 𝑝)𝑆(β!Δσ! + σ!Δβ!) + 𝑝𝑆(β"Δσ" + σ"Δβ") − (1 − 𝑞)Δγ! − 𝑞Δγ" + 	𝛿	𝐾	

+ 𝑂(𝛿%) 

𝑞 =
𝑆"𝛽"𝜎"

𝑆!𝛽!𝜎! + 𝑆"𝛽"𝜎"
 

𝐾 =
𝑆!𝑆"𝛽!𝛽"𝜎!𝜎"

(𝑆!𝛽!𝜎! + 𝑆"𝛽"𝜎")%
WK
𝛥𝛽!
𝛽!

−
𝛥𝛽"
𝛽"

L + K
𝛥𝜎!
𝜎!

−
𝛥𝜎"
𝜎"

L −
2

(𝑆!𝛽!𝜎! + 𝑆"𝛽"𝜎")
(𝛥𝛾!

− 𝛥𝛾")Z 

 
When 𝛿 = 0 this simplifies as:  

𝑠 ∝ (1 − 𝑝)𝑆(𝛽"𝛥𝜎" + 𝜎"𝛥𝛽") − (1 − 𝑞)𝛥𝛾"455555555555565555555555557
#$%$&'()*	(*	*,(-$	.)#'#

+ 𝑝𝑆(𝛽/𝛥𝜎/ + 𝜎/𝛥𝛽/) − 𝑞𝛥𝛾/4555555556555555557
#$%$&'()*	(*	-,&&(*,'$0	.)#'#

 (S2) 

 
Note how selection for higher values of transmission 𝛽 and infectivity 𝜎 depend on the 
density of susceptible hosts 𝑆	while selection on the duration of infection γ does not (Day 
et al 2020). 
 
 
4. The dynamics of differentiation 
Next, we use Gandon & Day (2007) to track the difference in variant frequency between 
vaccinated and naïve hosts. The dynamics of variant frequencies in naïve and vaccinated 
hosts in a well-mixed population is: 

𝑓̇)! = 𝑣!𝑠!! + 𝑣"
𝐼"
𝐼!
𝑠"! +

𝐼"
𝐼!
𝑟̅"!𝐷 

𝑓̇)" = 𝑣"𝑠"" + 𝑣!
𝐼!
𝐼"
𝑠!" −

𝐼!
𝐼"
𝑟̅!"𝐷 

where: 
𝐷 = 𝑓)" − 𝑓)!   Differentiation 
𝑣! = 𝑓)!(1 − 𝑓)!)  Genetic variance in naive hosts 
𝑣" = 𝑓)"(1 − 𝑓)")  Genetic variance in vaccinated hosts 
 
𝑟̅"! = 𝑓)"^(𝛽" + ∆𝛽" 	)(𝜎! + ∆𝜎!	)	𝑆!_ + (1 − 𝑓)")(𝛽"𝜎!	𝑆!)

= 𝛽"𝜎!	𝑆! + 𝑓)"(𝛽"∆𝜎! 	+ ∆𝛽"𝜎!)𝑆! = 𝛽"𝜎!	𝑆! + 𝑓)"𝑠"! 
𝑟̅!" = 𝑓)!^(𝛽! + ∆𝛽!	)	(𝜎" + ∆𝜎" 	)	𝑆"_ + (1 − 𝑓)!)(𝛽!	𝜎" 	𝑆")

= 𝛽!	𝜎" 	𝑆" + 𝑓)!(𝛽!∆𝜎" 	+ ∆𝛽!𝜎")𝑆" = 𝛽!	𝜎" 	𝑆" + 𝑓)!𝑠!" 
 
The dynamics of differentiation 𝐷 is therefore given by: 
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𝐷̇ = 𝑣" K𝑠"" −
𝐼"
𝐼!
𝑠"!L − 𝑣! K𝑠!! −

𝐼!
𝐼"
𝑠!"L − 𝐷 K

𝐼!
𝐼"
𝑟̅!" +

𝐼"
𝐼!
𝑟̅"!L 

 
If we assume there is no differentiation initially (𝐷 = 𝑓)" − 𝑓)! = 0, which also means 
genetic variance is the same in the two environments, 𝑣! = 𝑣" = 𝑣 = 𝑓)(1 − 𝑓)) then the 
dynamics of differentiation are: 

𝐷̇ = 𝑣 K𝑠"" − 𝑠!! −
𝐼"
𝐼!
𝑠"! +

𝐼!
𝐼"
𝑠!"L 

𝐷̇ = 𝑣 W(∆𝛽" 	𝜎" + 𝛽" 	∆𝜎")	𝑆" − ∆𝛾" − (∆𝛽!	𝜎! + 𝛽!	∆𝜎!)	𝑆! + ∆𝛾!

−
𝐼"
𝐼!
(∆𝛽" 	𝜎! + 𝛽" 	∆𝜎!)	𝑆! +

𝐼!
𝐼"
(∆𝛽!	𝜎" + 𝛽!	∆𝜎")	𝑆"Z 

 
If we further assume that the prevalence is low so that 𝑆! and 𝑆" remains constant during 
the early stage of the epidemic the prevalence will grow exponentially and the ratio ."

.!
 will 

remain constant. The value of this ratio can be computed from the vector 𝐅 of class 
frequencies given above:  

𝐼!
𝐼"
=
𝑆!𝜎!
𝑆"𝜎"

K1 +
𝛿

𝑆!𝛽!𝜎! + 𝑆"𝛽"𝜎"
L + 𝑂(𝛿%) 

 
The dynamics of differentiation therefore becomes: 

𝐷̇ = 𝑣

⎝

⎜
⎛
(𝑆!𝛽!𝜎! + 𝑆"𝛽"𝜎") K

∆𝜎"
𝜎"

−	
∆𝜎!
𝜎!

L + ∆𝛾! − ∆𝛾" +
𝑠!"

	𝜎"𝑆"
𝜎!𝑆!

+ 𝑠"!
	𝜎!𝑆!
𝜎"𝑆"

𝑆!𝛽!𝜎! + 𝑆"𝛽"𝜎"
𝛿

⎠

⎟
⎞

+ 𝑂(𝛿%) 
 
When 𝛿 = 0 this simplifies as:  

𝐷̇ = 𝑣 ;𝑆<(1 − 𝑝)𝛽"𝜎" + 𝑝𝛽/𝜎/= >
∆𝜎/
𝜎/

−	
∆𝜎"
𝜎"

@ − (∆𝛾/ − ∆𝛾")A (S3) 

 
Note how differentiation is not driven by the transmission rates of the mutant but by its 
relative infectivity in naïve and vaccinated hosts.  
 
References: 
Day T., Gandon S., Lion S. & Otto S. (2020). On the evolutionary epidemiology of SARS-
CoV-2. Current Biology. 30(15): R849-R857. 
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Figure Caption 
 
Figure S1: Typology of pathogen variants after vaccination. We can identify 8 
different types of variants. The panel (a) is expanding the description of Figure 1 and the 
panel (b) is indicating the location of these 8 types as in Figure 2. Variant type I is adapted 
to naïve hosts but maladapted on vaccinated hosts. Variant type V is maladapted on both 
types of hosts. We focus on the 6 vaccine-adapted variants with ∆𝑟" > 0. Variants II, III 
and IV are generalist variants (i.e., ∆𝑟! > 0) and the magnitude of ∆𝑟" 	explains the 
difference between these 3 variants. Variants VI, VII and VIII are specialist variants (i.e., 
∆𝑟! < 0) and the magnitude explains the difference between these 3 variants. Note that 
variants IV,VII and VIII have a growth rate that increases with vaccination coverage. This 
increased growth rate can have major public health implications. In particular, with 
variants IV and VIII, evolution is expected to yield a higher pathogen growth rate after 
100% vaccination (the evolved growth rate𝑟" is indicated with the black dot) than after 0% 
vaccination (the evolved growth rate	𝑟! indicated with the white dot). 
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Appendix 2 
 
In Figure 2 we use the per capita growth rate, r, of infections in a fully naïve and a fully 
vaccinated population as the axes for visualizing different variants. Another common 
measure of the fitness of a variant is its reproduction number, 𝑅/. The reproduction 
number 𝑅/ is a dimensionless quantity that gives the number of new infections produced 
by a single infected individual. It does not account for the timing of when these infections 
occur and so it does not provide information about the timeframe over which infections 
are spreading through a population. The per capita growth rate has units 1/time and so it 
does account for the timeframe of infection spread. Two variants can therefore have 
different values of 𝑟 even if they each produce the same total number of 𝑅/ new infections 
per infection, if they differ in how the production of these new infections is spread out over 
time. More specifically, if we use 𝑡 to denote the amount of time that has elapsed since 
the start of an infection, and 𝜙(𝑡)𝑑𝑡 to denote the fraction of the 𝑅/ new infections that 
are produced in the time interval (𝑡, 𝑡 + 𝑑𝑡), then r and 𝑅/ are related by the equation  
𝑅/ = 1/∫ 𝑒0,1𝜙(𝑡)𝑑𝑡2

/  (Wallinga and Lipsitch 2007). In the special case where 𝜙(𝑡) is a 
gamma density with mean 𝑇	and parameter k, we can solve this for r to obtain 
 

𝑟 = 𝑘 C𝑅0
1/𝑘 − 1D 𝑇⁄  (S4) 

 
For the model of Appendix 1 we have 𝑅/,#( = &7#

$8#
$

9':#
$  as the reproduction number of variant 

𝑖 in host type 𝑋 (where 𝑋 = 𝑁 or 𝑉), 𝑇#( =
;

9':#
$ as the mean time during an infection when 

new infections are produced, and 𝑘	 = 	1.  
 
There are several alternative ways one might construct plots analogous to that of Figure 
2. One is simply to use a variant’s reproduction number in each of the two host types as 
the measure of fitness rather than its per capita growth rate. However, doing so has two 
disadvantages. First, differences between variants in the timing of transmission will affect 
their relative competitive abilities during a vaccination campaign and this is not accounted 
for when using the reproduction number as a measure of fitness (for the reasons 
discussed above).  Second, as has become clear with the appearance and spread of 
novel variants during the SARS-CoV-2 pandemic, one of the first and easiest quantities 
estimated for a variant is its selection coefficient (i.e., the difference in growth rate 
between it and the current dominant type: 𝑠 = 𝑟<=* − 𝑟>?@ ). Such estimates are all that is 
required to place a new variant on a plot like Figure 2 (for instance see below how we 
can attempt to place Omicron in Figure 5 using its selection coefficient against Delta).  
 
Another alternative to the axes used in Figure 2 would be to use a variant’s overall fitness 
across both host types as one axis (as either 𝑟 or 𝑅/) and its ability to evade vaccine-
induced immunity as the other. The latter is often quantified by the vaccine efficacy 
against the variant, as measured by 𝑉𝐸# = 1 − 8#

!

8#
", where 𝜎#! and 𝜎#" is the infectivity of 

the variant in naïve and vaccinated hosts respectively. There are drawbacks with this 
approach as well. First, the axes in such a plot are not independent. Second, any measure 
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of the overall fitness of a variant will necessarily depend on vaccination coverage and so 
a different plot would be needed for different vaccination coverages. It is possible to 
circumvent this problem by using the fitness of a variant in the naïve population as one of 
the axes rather then its overall fitness, but then it is no longer possible to visualize overall 
fitness on such a plot. The reason is that a combination of a variant’s fitness in naïve 
hosts and its 𝑉𝐸# is not sufficient to determine its overall fitness. Differences between 
variants in how the vaccine affects disease severity and transmissibility can also influence 
a variant’s competitive ability and these are excluded from such a plot (since 𝑉𝐸# 
quantifies only the effect on infectivity which is only one of three main components of 
pathogen fitness, see Box 1). 
 
In the remainder of this Appendix we use currently available estimates from three distinct 
variants to obtain the values of the per capita growth rates in naïve and vaccinated hosts 
plotted in Figure 5. For simplicity, we assume that the generation time is the same for all 
variants in naïve and vaccinated hosts (Ganyani et al. 2020). The following table 
summarises the estimates used to make Figure 5. We have attempted to account for the 
uncertainty in the estimates (within and between studies) by indicating a range of 
parameter estimates in the following table (min and max). We also note that although 
estimates of vaccine efficacy against different variants vary among studies, their relative 
ranking is typically consistent (𝑉𝐸* > 𝑉𝐸A > 𝑉𝐸9) (see CDC Science Brief). Finally, the 
estimates used to construct Figure 5 are based on the above formula that relates the 
reproduction number of the per capita growth rate, and use a value k = 5.  
 
Table S1: Estimates of the life-history characteristics of the different variants. We present 
the estimates used for the plots in Figure 5 as well as a range of values that were reported 
among different studies. Numbers in parenthesis indicate the minimal and maximal values 
used to plot the horizontal and vertical bars in Figure 5. 
 

 

 𝑅0,𝑖𝑁  
𝑇𝑖𝑁 = 𝑇𝑖𝑉 
(days) 

𝛽𝑖
𝑉

𝛽𝑖
𝑁 

𝜎𝑖𝑉

𝜎𝑖
𝑁 

𝑟𝑖𝑁 
(days-1) 

𝑟𝑖𝑉 
(days-1) 

Variants 

Wuhan 2.5 
(2,3) 5 0.5 

(0.4,0.6) 
0.1 

(0.05,0.2) 
0.20 

(0.15,0.25) 
-0.34 

(-0.47,-0.18) 
Alpha 4.25 

(3.5,5) 5 0.5 
(0.4,0.6) 

0.15 
(0.05,0.25) 

0.34 
(0.28,0.38) 

-0.20 
(-0.41, -0.06) 

Delta 7 
(5,9) 5 0.5 

(0.4,0.6) 
0.2 

(0.1,0.4) 
0.48 

(0.38,0.55) 
-0.07 

(-0.28, 0.17) 
 

 
At the time of writing a new SARS-CoV-2 variant of concern labelled Omicron has begun 
a selective sweep in several parts of the world. At present there are multiple estimates of 
its selection coefficient in different geographic regions, and these are between 0.2 and 
0.4 per day. There is also growing evidence that current vaccines provide much less 
protection against Omicron than they do against Delta, but precise estimates are still 
lacking. As such, at the moment we can use the estimate of the selection coefficient to 
tentatively place Omicron somewhere in the ellipse shown in Figure 5. This ellipse was 
constructed so that the main axis is aligned with a contours of equal fitness (i.e., a line 
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with a slope equal to −𝑝 (1 − 𝑝)⁄  with 𝑝 = 0.7, see Figure 3) and a selection coefficient  
𝑠 = 𝑟B)#C,>< − 𝑟D=?1E of 0.3. 
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