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Abstract
We consider the Ising perceptron model with N spins and M “ Nα patterns, with a general
activation function U that is bounded above. For U bounded away from zero or Upxq “ 1tx ě κu,
it was shown by Talagrand (2000, 2011b) that for small densities α, the free energy of the model
converges as N Ñ 8 to the replica symmetric formula conjectured in the physics literature by
Krauth and Mézard (1989) (see also Gardner and Derrida, 1988). We give a new proof of this
result, which covers the more general class of all functions U that are bounded above and satisfy
a certain variance bound. The proof uses the (first and second) moment method conditional on the
approximate message passing iterates of the model. In order to deduce our main theorem, we also
prove a new concentration result for the perceptron model in the case where U is not bounded away
from zero.
Keywords: List of keywords

1. Introduction

1.1. Overview

We study a class of generalized Ising perceptron models, defined as follows. Let G ” GMˆN be
an M ˆN matrix with i.i.d. standard gaussian entries. Denote the rows of G as g1, . . . ,gM ; each
ga is an independent standard gaussian vector in RN . Let U : RÑ r0,8q be a bounded measurable
function (the activation function), and denote u ” logU : R Ñ r´8,8q. The associated Ising
perceptron partition function is

Z ” ZpGq ”
ÿ

J

exp

"

ÿ

aďM

u

ˆ

pga, Jq

N1{2

˙*

, (1)

where the sum goes over J P t´1,`1uN . The Ji are called the spins, while the vectors ga are
called the patterns. The random matrixG is also called the disorder of the model.

A special case of the above is the half-space intersection model defined by the functionUpxq “
1tx ě κu, where κ P R is a fixed parameter. In this case, the pattern ga P RN defines a “half-space”
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Hga , which is the set of J P t´1,`1uN such that pga, Jq{N1{2 ě κ. The partition function (1) is
then the cardinality of the intersection of random half-spaces,

Z “

ˇ

ˇ

ˇ

ˇ

M
č

a“1

Hga

ˇ

ˇ

ˇ

ˇ

ď 2N . (2)

This is connected to a neural network memorization model, which has been much studied following
seminal works from the physics literature in the late 1980s (reviewed in §1.2 below).

The model (1) with general U was introduced by Talagrand (2000, 2002). From the mathemat-
ical perspective, a motivation for the generalized model is that it may be more tractable to analyze
under restrictions on the function U — for instance, results of Talagrand (2000) impose bounds on
u ” logU and its derivatives. In the physics language, these restrictions may be viewed as describ-
ing subsets of the “high-temperature” regime. On the other hand, from the statistical perspective,
another motivation to consider the model (1) with general U is that we may view u ” logU as a
loss function. Thus, understanding the behavior of the model (1) may shed insight on the nature of
certain high-dimensional loss surfaces.

In this paper we focus on the problem of understanding the free energy of the perceptron model
(1), i.e., the first-order asymptotic behavior of the partition function Z. We develop a method to
compute the asymptotic free energy of (1) with M “ αN for small α, and N Ñ 8. The small
α requirement amounts to a high-temperature condition, which is less restrictive than in previous
results (because there are fewer conditions onU ), but still does not identify the full high-temperature
regime for any given U .

Before stating our main result, we lay out our assumptions on U . Note that if U is scaled by
any factor c, then the partition function (1) is simply scaled by cM . Therefore, since we assume U
is bounded, we may as well assume that U maps into r0, 1s. More precisely, we impose:

Assumption 1 The function U is a measurable mapping from R into r0, 1s. Moreover, with Eξ
denoting expectation over the law of a standard gaussian random variable ξ, we have

EξrξUpξqs “
ż

zUpzqϕpzq dz ‰ 0 , (3)

where ϕ denotes the standard gaussian density.

See Remark 1.2 below for more discussion on the above assumption; in particular, we will
explain that the condition (3) only rules out an easier case of the problem. We also impose:

Assumption 2 Writing Eξ,ξ1 for expectation over i.i.d. standard gaussians ξ, ξ1, the quantity

K2,opUq ” max

"

1, sup

"

Eξ,ξ1rpξ ´ ξ1q2Upx` cξqUpx` cξ1qs
Eξ,ξ1rUpx` cξqUpx` cξ1qs

: x P R,
2

5
ď c ď

7

3

**

.

is finite. This assumption implies that the quantity

K2pUq ” max

"

1, sup

"

Eξ,ξ1rpξ ´ ξ1q2Upx` cξqUpx` cξ1qs
Eξ,ξ1rUpx` cξqUpx` cξ1qs

: x P R,
1

2
ď c ď 2

**

is also finite, and indeed K2pUq ď K2,opUq. (The bound on K2,opUq further ensures that K2pUηq
is bounded, where Uη is a smoothed approximation of U ; see Lemma B.9.)1

1. Assumption 2 is the “certain variance bound” mentioned in the abstract of this paper: K2pUq and K2,opUq refer to
variances of certain measures µx,c on the real line, which are essentially gaussian measures reweighted by translates
of U — see Definition B.1.
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Discussion of Assumption 2 is also deferred to Remark 1.2. We now state our main result:

Theorem 1.1 (main theorem) If the function U satisfies Assumptions 1 and 2, then there exists
a positive constant αopUq ą 0 such that, if G is an M ˆ N matrix with i.i.d. standard gaussian
entries and M{N Ñ α with 0 ď α ď αopUq, then for the (generalized) Ising perceptron model (1)
the following limit holds in probability:

lim
NÑ8

1

N
logZpGq “ RSpα;Uq , (4)

where RSpα;Uq is an exact expression known as the “replica symmetric free energy” of the model,
defined by (12) and (29) below. Moreover, we can take αopUq explicitly as in (31) below.

For U bounded uniformly away from zero, as well as for the half-space intersection model
Upxq “ 1tx ě κu, the result of Theorem 1.1 was previously shown by Talagrand (2000, 2011b).
Our proof is very different, and is based on the idea of conditioning on the AMP (approximate
message passing) iteration: this method was previously introduced by Ding and Sun (2018) and
Bolthausen (2019) (see also Alaoui and Sellke, 2020; Fan and Wu, 2021; Brennecke and Yau, 2021);
and is described in §1.2.5 and §1.3 below. By contrast, Talagrand uses an interpolation approach,
which seemingly necessitates more conditions on U , while our result covers the much more general
class of functions U satisfying only Assumptions 1 and 2. To name a simple example, we will see
below that the function Upxq “ 1tx P r´1, 2su is covered by Theorem 1.1 but not by Talagrand’s
results. The main contributions of this work are the implementation of the AMP conditioning ap-
proach, together with new concentration results, for a more general model than has been considered
in prior works. See §1.2.3 below for further discussion and comparison.

In general terms, the left-hand side of (4), whenever it exists, is called the asymptotic free
energy density of the model. The right-hand side of (4) is the replica symmetric free energy of
the model: it is an exact expression which was derived by heuristic methods of statistical physics,
and conjectured to coincide with the left-hand side in the high-temperature regime — i.e., at least
for α small enough, and potentially for all α where the left-hand side has a positive limit. In the
case of the perceptron model this calculation was done by physicists in the late 1980s; the historical
background is given in §1.2.1. It is not very difficult but requires some care to show that the formula
RSpα;Uq is in fact even well-defined; the details of this will be given in §A.1 below. The physics
derivation of (4) is non-rigorous because it relies on unproven hypotheses about the structure of the
perceptron model, as we will discuss further in §1.2.1. One of the motivations of this project is to
develop a deeper rigorous understanding of the perceptron model.

Remark 1.2 We make some further comments on our assumptions:
(1) From our perspective, Assumption 1 is relatively mild. It may be possible to relax the condition
U ď 1 to accommodate functions Upxq that do not grow too quickly in |x|, but we will not pur-
sue this here. Next, if the condition (3) fails — meaning that EξrξUpξqs “ 0 — then the replica
symmetric free energy RSpα;Uq reduces2 to the annealed free energy

annpα;Uq “
1

N
logEZpGq “ log 2` α logEUpξq . (5)

2. To see that this occurs, note that the fixed-point equation (9) is solved by q “ ψ “ 0. As a result, the expression (12)
for RSpα;Uq simplifies to the right-hand side of (5).
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In this case, it is known that the limiting free energy can be obtained by a direct first and second
moment method approach, without the need of a conditioning scheme. This is done for the case of
symmetric U by Aubin et al. (2019), and the argument of that paper can be extended to cover the
case EξrξUpξqs “ 0. Moreover it is expected that this case may be more tractable to analyze for
finer properties of the solution space, following Perkins and Xu (2021); Abbe et al. (2021) (further
discussed in §1.2.6 below).
(2) We view Assumption 2 as the somewhat more restrictive condition, although we will show (by
straightforward arguments) that it holds if U is bounded away from zero, compactly supported,
or logconcave (see Proposition 1.3 below). Moreover, Assumption 2 is essentially necessary to
ensure that in the approximate message passing (AMP) iteration associated with our model ((14)
and (15)), the message-passing functions are Lipschitz — this is by an easy calculation, which we
give in Lemma B.14. This allows us to use existing results on AMP and state evolution (Bayati and
Montanari, 2011; Bolthausen, 2014) — see §1.3 and §A.2 — which all require the message-passing
functions to be Lipschitz. On the other hand, we give in Remark B.5 an example of a function U
that does not satisfy Assumption 2.
Assumption 1 holds throughout this paper, even if not explicitly stated. However, we will point out
explicitly each place where Assumption 2 is used.

Proposition 1.3 (proved in §B.4) Suppose U satisfies Assumption 1. If in addition U is bounded
away from zero, compactly supported, or logconcave, then U also satisfies Assumption 2.3

1.2. Background and related work

In this subsection we give some background on the perceptron model, and survey the related work.
Some high-level discussion of key ideas in this paper is given in §1.2.3–1.2.5.

The perceptron problem originates from a toy model of a single-layer neural network, as follows.
Suppose we have N ` 1 input nodes, labelled 0 ď j ď N . Likewise we have N ` 1 output nodes,
labelled 0 ď i ď N . For all i ‰ j, between the j-th input node and the i-th output node there is
an edge weight Ji,j , to be determined. It will be convenient to fix Ji,i ” 0 for all i. The system
is given M input “patterns” g1, . . . , gM , which are vectors in RN`1. We then say that the system
memorizes the pattern ga if

sgn

ˆ N
ÿ

j“0

Ji,jpg
aqj

˙

“ sgn
´

pgaqi

¯

(6)

for all 0 ď i ď N . One can then ask, given M “ Nα i.i.d. random patterns, whether there exists
a choice of edge weights J such that the system memorizes all M patterns. The storage capacity
αc of the model is the supremum of all α “M{N for which memorization of all M given patterns
is possible with probability 1 ´ oN p1q. Models of this type have been considered at least since the
mid-20th century (e.g. McCulloch and Pitts, 1943; Hebb, 1949; Little, 1974; Hopfield, 1982).

Suppose the random patterns ga are modeled as i.i.d. standard gaussian vectors in RN`1. One
can consider the constraint (6) separately for each 0 ď i ď N , and by symmetry it suffices to
understand the case i “ 0. Recall that J0,0 ” 0, and denote Jj ” Jj,0 for 1 ď j ď N . Denote
ga,j ” sgnppgaq0qpg

aqj for all 1 ď a ď M and 1 ď j ď N , and note the ga,i are i.i.d. standard

3. Note that Proposition 1.3 implies that the function Upxq “ 1tx P r´1, 2su indeed satisfies Assumptions 1 and 2, as
was mentioned above.
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gaussian random variables. Writing ga ” pga,iqiďN , we see that (6) is equivalent to pga, Jq{N1{2 ě

κ for κ “ 0. Of course, one can then generalize the model by taking a non-zero parameter κ: taking
κ ă 0 weakens the original constraint (6), while taking κ ą 0 gives a more restrictive constraint than
(6). This is equivalent to the model (1) with Upxq “ 1tx ě κu. The configurations J P t´1,`1uN

which have a positive weight in (1) are precisely the choices of pJj,0q1ďiďN such that the neural
network memorizes the i “ 0 spin on all M input patterns. To make the connection with the
question considered in this paper, note that if the asymptotic free energy density is positive, there
are many valid choices of pJj,0q1ďiďN , so we expect that this corresponds to α “M{N being below
the storage capacity αc. For the models discussed in this paper, it is conjectured that RSpα;Uq is
a strictly decreasing function of α ě 0, and that αc corresponds to the unique positive root of this
function. Our main result Theorem 1.1 addresses a subcritical regime, where α{αc is small.

The two most commonly studied variants of the model are the Ising perceptron where Ji P
t´1,`1u (as in this paper), and the spherical perceptron where J “ pJiqiďN is restricted to the
sphere of radius N1{2; these are both discussed further below. (Both the replica symmetric formula
and the value of αc depend on U , and on whether the model is spherical versus Ising.)

1.2.1. NON-RIGOROUS RESULTS FROM STATISTICAL PHYSICS

In the physics literature, the spherical perceptron model with the threshold activation function
Upxq “ 1tx ě κu for κ ě 0 was analyzed in a series of celebrated works (Gardner, 1987, 1988;
Gardner and Derrida, 1988, 1989), using the non-rigorous replica method. In general terms, the
replica method starts from the observation that

logZ “ lim
nÓ0

Zn ´ 1

n
.

The replica method is then to calculate EpZnq for large integer n, and apply analytic continuation
to take the limit n Ó 0. The expectation E is over the disorder of the system, which in the case of
the perceptron model is the random matrix G. The n-th moment EpZnq is the expected partition
function of n replicas of the same random system. The calculation of EpZnq is typically a saddle
point analysis, and the result is called replica symmetric if the optimal saddle point has the n
replicas behaving independently, even though they are coupled through the shared disorder G. For
the spherical perceptron with Upxq “ 1tx ě κu — where Z is the volume of the intersection of
the sphere in RN with the random half-spaces — this calculation was carried out by Gardner and
Derrida, yielding a conjectured replica symmetric limiting formula for N´1 logZ similar to (4).

The replica method also applies to the Ising perceptron with Upxq “ 1tx ě κu for any κ P R,
but the original Gardner–Derrida analysis contained an error leading to incorrect predictions. A
corrected replica calculation for the Ising model was given by Krauth and Mézard (1989); this is
the first appearance of the correct prediction for the right-hand side of (4). The same results were
rederived using the cavity method by Mézard (1989). Roughly speaking, the basic idea of this
method is to estimate

1

N
logZpGMˆN q « E log

ZpGMˆpN`1qq

ZpGMˆN q
` αE log

ZpGpM`1qˆN q

ZpGMˆN q
,

where on the right-hand side the first term is the effect of adding one more spin JN`1, and the
second term is the effect of adding one more pattern ga. Both terms can be computed heuristically

5
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by making assumptions about the structure of the Gibbs measure

µpJq ”
1

ZpGq

ź

aďM

U

ˆ

pga, Jq

N1{2

˙

. (7)

(When U is t0, 1u-valued, µ is simply the uniform probability measure on all configurations J
that give a non-zero contribution in the sum (1). For instance, in the half-space intersection model
Upxq “ 1tx ě κu, µ is the uniform measure on the intersection of half-spaces appearing in (2).)
In particular, the replica symmetric hypothesis says, roughly speaking, that any Op1q subset of
coordinates are asymptotically independent under the Gibbs measure µ. The replica and cavity
methods are both non-rigorous, and are regarded by physicists to be morally equivalent to one
another — in particular, the interpretation of replica symmetry in the replica method (independent
replicas) is expected to be essentially equivalent to the meaning in the cavity method (independence
on any Op1q subset of coordinates). However, the cavity method may be generally considered to
yield more transparent derivations.

The Gardner–Derrida and Krauth–Mézard predictions primarily concern the replica symmetric
regime. The spherical perceptron with Upxq “ 1tx ě κu (also called the positive spherical per-
ceptron) is expected to be replica symmetric for all κ ě 0 and all α ď αc. In contrast, the Ising
perceptron with Upxq “ 1tx ě κu is expected to be replica symmetric for all κ P R. Our The-
orem 1.1 shows that for a more general class of activation functions U , the Ising perceptron has
the replica symmetric free energy for α small enough; it leaves open the question of what happens
for larger α. More recently there have been several works in the physics literature investigating the
spherical perceptron model with Upxq “ 1tx ě κu for κ ă 0 (also called the negative spherical
perceptron), which is expected to exhibit replica symmetry breaking, e.g. Franz and Parisi (2016);
Franz et al. (2017).

1.2.2. RIGOROUS RESULTS ON THE SPHERICAL PERCEPTRON

The mathematical literature contains numerous very strong results on the spherical perceptron for
Upxq “ 1tx ě κu, especially for κ ě 0 (conjecturally the replica symmetric regime). For κ “ 0,
the storage capacity αc “ 2 was known since the 1960s (Wendel, 1962; Cover, 1965). For general
κ ě 0, the storage capacity αcpκq was proved by a short and elegant argument (Stojnic, 2013), us-
ing convex duality together with Gordon’s gaussian minimax comparison inequality (Gordon, 1985,
1988; Thrampoulidis et al., 2014). However, perhaps the most striking result for this model is that
of Shcherbina and Tirozzi (2003), proving the Gardner free energy formula for the spherical per-
ceptron for all κ ě 0 and all α up to αcpκq. The proof of Shcherbina and Tirozzi (2003) makes
crucial use of the classical Brunn–Minkowski inequality for volumes of bodies in euclidean space
(Lusternik, 1935; Hadwiger and Ohmann, 1956). The main result of Shcherbina and Tirozzi (2003)
was later reproved (Talagrand, 2011a, Ch. 3) and (Talagrand, 2011b, Ch. 8) with a perhaps simpler
argument, using instead the functional Brunn–Minkowski (Prékopa–Leindler) inequality (Prékopa,
1971; Leindler, 1972; Prékopa, 1973). This inequality implies concentration of Lipschitz function-
als under strongly logconcave measures (Maurey, 1991), which can be used to deduce concentration
of overlaps and cavity equations (see e.g. Talagrand, 2011a, Thm. 3.1.11).4 As noted by Shcherbina
and Tirozzi (2003) and Talagrand (2011a, §3.4), similar concentration results can also be obtained

4. In this work we have also used the result of Maurey (1991) (restated in Theorem B.12), but only to prove Proposi-
tion 1.3 which is not required for the main result Theorem 1.1.
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using instead the Brascamp–Lieb inequality (Brascamp and Lieb, 1976); and indeed this idea ap-
pears in earlier work on the Hopfield model (Bovier and Gayrard, 1998). Thus, all existing results
on the positive spherical perceptron (excluding the case κ “ 0) use powerful tools from convex
geometry.5

1.2.3. RIGOROUS RESULTS ON THE ISING PERCEPTRON

The mathematical literature on the Ising perceptron is far less advanced than for the spherical
perceptron. For the half-space model, the free energy was computed heuristically by Krauth and
Mézard (1989); their method applies also to the more general model (1). One consequence of that
calculation is an explicit prediction α‹ for the storage capacity αc for the model Upxq “ 1tx ě κu
— for κ “ 0, the conjectured threshold α‹ is approximately 0.83.

In the rigorous literature, most results concern the half-space model Upxq “ 1tx ě 0u.6 For
this model, it was shown by Kim and Roche (1998) and Talagrand (1999b) that there is a small
absolute constant ε ą 0 such that the transition must occur between ε and 1´ ε: that is, the partition
function (1) is non-zero with high probability for α ď ε, and zero with high probability for α ě 1´ε.
A more recent work of Ding and Sun (2018) (further discussed below) uses some of the methods
of this paper to show, under a certain variational hypothesis, that the partition function is non-zero
with non-negligible probability for α ă α‹, where α‹ is the conjectured threshold from Krauth
and Mézard (1989). A more recent work of Xu (2021) confirms that the model indeed has a sharp
threshold, meaning that PpZ ą 0q transitions from 1´ oN p1q to oN p1q in an oN p1q window of α.7

For the situation where we have a more general function U in (1), Talagrand (2000) (see also
Talagrand, 2011a, Ch. 2) proves that the limiting free energy is given by the replica symmetric for-
mula RSpα;Uq, for small enough α, under the assumption that the function u ” logU is uniformly
bounded. This corresponds to the case of our main result Theorem 1.1 where u is bounded, which
we prove at the end of Section D. Even for bounded u, the two proofs are very different: Talagrand
(2000) uses an interpolation method to derive replica symmetric equations, while this paper uses
first and second moments conditional on the AMP iteration. We remark also that the argument of
Talagrand (2000) seemingly needs to go through a smoothed approximation of u, while our proof
for bounded u requires no smoothing.

In comparison with previous work of Talagrand, the main new result of this work is that the
limiting free energy is given by the replica symmetric formula RSpα;Uq, for small enough α, for
all U satisfying Assumptions 1 and 2. A special case of this result, for the half-space model Upxq “
1tx ě κu, was previously obtained in (Talagrand, 2011a, Ch. 9) (with partial results appearing in a
previous work (Talagrand, 1999a)).8 Talagrand’s proof for the half-space model relies crucially on
an estimate (Talagrand, 2011b, Thm. 8.2.4) which says roughly that if puiqiďn is a near-isotropic
gaussian process, then the fraction of indices i where ui ě κ cannot be too small. The proof

5. The Prékopa–Leindler inequality generalizes the Brunn–Minkowski inequality, and also can be used to deduce the
Brascamp–Lieb inequality (Bobkov and Ledoux, 2000). For more on the relations among these inequalities we refer
to the survey of Gardner (2002).

6. The existing results for Upxq “ 1tx ě 0u can likely be extended to cover Upxq “ 1tx ě κu for any κ P R.
7. To be precise, the result of Ding and Sun (2018) is with gaussian noise G (as in this paper), while the other results

(Kim and Roche, 1998; Talagrand, 1999b; Xu, 2021) are for the Bernoulli noise model where ga,i are i.i.d. symmetric
random signs. It is reasonable to expect that the results of Kim and Roche (1998); Talagrand (1999b); Xu (2021) can
be transferred to the gaussian noise model.

8. The function Upxq “ 1tx ě κu satisfies the hypothesis of Theorem 1.1: it clearly satisfies Assumption 1, and one
can check that it satisfies Assumption 2 either by direct calculation or by applying Proposition 1.3.

7
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of this estimate uses a gaussian comparison inequality (see (Talagrand, 2011a, Lem. 1.3.1) and
(Talagrand, 2011b, Propn. 8.2.2)), and does not extend for instance to the event ui P E where E
is a bounded measurable subset of R. In this paper we prove an analogous (although quantitatively
weaker) estimate for general E by different methods (Proposition F.1), and use this in the proof of
Theorem 1.1 in the case of unbounded u.

1.2.4. BELIEF PROPAGATION AND TAP

The main idea in the proof of Theorem 1.1, which we discuss further in §1.3 below, is to compute
(first and second) moments of the partition function (1) conditional on the AMP filtration.
The motivation originates from the TAP (Thouless–Anderson–Palmer) framework, which was
introduced for the classical Sherrington–Kirkpatrick model (Sherrington and Kirkpatrick, 1975) by
Thouless et al. (1977) (and further investigated by de Almeida and Thouless (1978); Plefka (1982)).
We describe the TAP idea heuristically, in the context of the perceptron (1). Given q P r0, 1q let

Fqpxq ”
1

p1´ qq1{2
EξrξUpx` p1´ qq1{2ξqs
EξUpx` p1´ qq1{2ξq

. (8)

In Proposition A.1 we will show that the fixed-point equation
ˆ

q
ψ

˙

“

ˆ

q̄pψq
αr̄pqq

˙

”

ˆ

Erthpψ1{2Zq2s

αErFqpq1{2Zq2s

˙

(9)

has a unique solution in a certain regime, which we hereafter denote pq, ψq. For the model (1), the
TAP equations (see Mézard (1989, 2017); and explained futher below) read

m ” thpHq “ th

ˆ

Gtn

N1{2
´ βm

˙

, β “ αEpFqq1pq1{2Zq (10)

n ” Fqphq “ Fq

ˆ

Gm

N1{2
´ β1n

˙

, β1 “ 1´ q , (11)

where the functions th and Fq are applied coordinatewise, m ” thpHq is a vector in p´1,`1qN

with }m}2{N “ q, and n ” Fqphq is a vector in RM with }n}2{N “ ψ. The terms βm and β1n
are the Onsager corrections (more below). For the model (1) at small α, it is conjectured that the
TAP equations (10) and (11) have a unique solution pm‹,n‹q, such that the vector m‹ approximates
the mean value of a random configuration J sampled from the Gibbs measure µ defined by (7).
The vector n‹ describes the distribution of the vector GJ{N1{2 where J is sampled from µ.9 It
is further expected that N´1 logZ concentrates very well around a TAP free energy Φpm‹,n‹q,
which in turn concentrates (more on this below) around the replica symmetric value

RSpα;Uq “ ´
ψp1´ qq

2
` E

"

log 2 chpψ1{2Zq ` α logEξU
´

q1{2Z ` p1´ qq1{2ξ
¯

*

, (12)

where Z and ξ are independent standard gaussians. Note (12) is the quantity in Theorem 1.1.
The TAP equations and TAP free energy can be viewed as a dense limit of the belief propaga-

tion (BP) equations and Bethe free energy. We describe this briefly, and refer to Mézard (1989,

9. Note that m‹, n‹, and µ all depend on G. These statements are conditional on a typical realization G.
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2017) for the details. The basic idea is to consider the analogues of (7) with the a-th factor removed,
or with the i-th spin removed; let us denote these µ´a and µ´i. Write ∆a ” pga, Jq{N1{2. The
belief propagation (BP) equations for the model (1) have a total of 2MN variables miÑa and naÑi
(for i ď N and a ďM ), with the following interpretation:

miÑa “ “mean of Ji under µ´a, i.e. in absence of a-th factor,”

naÑi “ “mean of ∆a under µ´i, i.e. in absence of i-th spin.”

The BP equations are a closed system of heuristic equations among these 2MN variables: miÑa

is expressed as a function of pgbi, nbÑiq for b P rM sza, and naÑi is expressed as a function of
pgaj ,mjÑaq for j P rN szi. The equations are derived assuming the “replica symmetric” hypothe-
sis described in §1.2.1. The Bethe free energy ΦBethepmBP,nBPq is a heuristic approximation for
N´1 logZ as a function of the BP solution pmBP,nBPq. Note the BP solution depends on the ran-
dom disorderG, so the Bethe free energy depends onG also. The Bethe free energy is expected to
be a good approximation for the true free energy in the replica symmetric regime.

The TAP equations above can be viewed as a dense limit of the BP equations, as follows. Since
every spin i ď N interacts with every factor a ď N , the differences miÑa ´ mi will be small
in the large-N limit, although not completely negligible. Similarly, all the naÑi (i ď N ) will be
close to a single value na. In absence of the a-th factor, we have ∆a “ pg

a, Jq{N1{2 where each
Ji is a random sign with mean miÑa. If the Ji are not too correlated (cf. the discussion of replica
symmetry in §1.2.1), it is reasonable to expect that the law of ∆a under µ´a is roughly gaussian
with mean ha and variance 1´ qa, where

ha ”
1

N1{2

ÿ

iďN

ga,imiÑa 1´ qa ”
1

N

ÿ

iďN

pga,iq
2
´

1´ pmiÑaq
2
¯

.

This suggests that, once we add back in the a-th factor, the mean of ∆a under µ will be

Eξrpha ` p1´ qaq1{2ξqUpha ` p1´ qaq1{2ξqs
EξUpha ` p1´ qaq1{2ξq

“ ha ` p1´ qaqFqaphaq .

On the other hand, from the definition ∆a “ pga, Jq{N1{2, the mean of ∆a under µ should also
coincide with pga,mq where m is the mean of J under µ. This explains the rationale for the second
TAP equation (11) above, which arises from equating the last two displays and substituting qa “ q.
The reason for this substitution is that }m}2{N “ q, and miÑa is close to mi. On the other hand,
in the equation for ha we cannot simply replace miÑa by mi, and the Onsager correction in (11)
takes into account that the discrepancy miÑa ´mi is correlated with ga,i. The other TAP equation
(10) is derived by analogous considerations.

Ultimately, the TAP equations are a closed system of equations among the M ` N variables
mi and na, which can be viewed as a simplification of the BP equations described above. The
TAP free energy Φpm‹,n‹q is a heuristic approximation for N´1 logZ as a function of the TAP
solution pm‹,n‹q, and it can be regarded as a simplification of the Bethe free energy. The TAP
solution depends on the random disorder G, so the TAP free energy depends on G also. The TAP
approximation is expected to be valid throughout the replica symmetric regime, where we expect

1

N

ˇ

ˇ

ˇ
logZpGq ´ Φpm‹,n‹;Gq

ˇ

ˇ

ˇ
ď
Opp1q

N
,

ˇ

ˇ

ˇ

ˇ

1

N
Φpm‹,n‹;Gq ´ RSpα;Uq

ˇ

ˇ

ˇ

ˇ

ď
Opp1q

N1{2
. (13)

9
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That is, conjecturally, the TAP solution captures “most” of the randomness in the disordered system,
which fluctuates around a deterministic thermodynamic limit described by RSpα;Uq. For more
work on the general TAP framework in a variety of settings, we refer to Chen et al. (2018, 2021);
Fan et al. (2021); Ben Arous and Jagannath (2021); Adhikari et al. (2021).

1.2.5. AMP AND CONDITIONING

As we commented in Remark 1.2, if we have EξrξUpξqs “ 0 (i.e. if the assumption (3) does not
hold) then the (unconditional) first and second moment method can be used to analyze the partition
functionZ from (1), following Aubin et al. (2019). If EξrξUpξqs ‰ 0, however, it is well known that
the unconditional moment method does not say anything about the random variable Z, because in
fact Z ! EZ with high probability at any positive α “M{N . The first moment EZ overestimates
the typical value of Z because it is dominated by rare events where the disorder G favors large Z
in some atypical way.

The discussion of §1.2.4 leads to the following idea for improving the moment calculation.
Since the TAP fixed point pm‹,n‹q is described by a relatively simple set of equations (10) and (11),
and is conjectured to carry a great deal of information about the random measure (7), it is natural to
consider the first and second moment method conditional on the TAP solution pm‹,n‹q. Indeed,
the prediction (13) suggests that the fluctuations of N´1 logZ away from RSpα;Uq are mostly
accounted for by the randomness in the TAP free energy Φpm‹,n‹q. It is then natural to attempt to
show that

EpZ |m‹,n‹q

exppNRSpα;Uqq
«

EpZ2 |m‹,n‹q

EpZ |m‹,n‹q2
« 1 ,

and thereby deduce the desired conclusion (4).
A major problem with the above approach is that it is not in fact known that the equations (10)

and (11) have a unique solution, although this is conjectured to be true in the replica symmetric
regime. As a result, “conditioning on the TAP solution” is not a mathematically justified approach.
A way to get around this issue (while implementing the same high-level strategy) is to condition
instead on the AMP (approximate message passing) iteration, which constructs approximate so-
lutions of the TAP equations, and will be described in more detail in §1.3 below. The asymptotic be-
havior of AMP has been rigorously characterized (Bayati and Montanari, 2011; Bolthausen, 2014),
and this substitutes for the unproven properties of the TAP solution.

The idea of conditioning on the AMP iteration was introduced by Ding and Sun (2018);
Bolthausen (2019) and has been developed in subsequent works (Alaoui and Sellke, 2020; Fan and
Wu, 2021; Brennecke and Yau, 2021). Of these prior works, Bolthausen (2019) and Brennecke
and Yau (2021) concern the classical Sherrington–Kirkpatrick (SK) model with a gaussian coupling
matrix (i.e., the Hamiltonian is a scalar multiple of J tGJ where G is an N ˆ N matrix with i.i.d.
random gaussian entries). To make the analogy, the condition EξrξUpξqs “ 0 in the perceptron
(cf. (3)) is analogous to having zero external field in the SK model. For the SK model with zero
external field, the asymptotic behavior of the partition function is characterized in the entire high-
temperature regime by Aizenman et al. (1987, 1988). By contrast, the SK model with non-zero
external field remains not fully understood in the high-temperature regime. The work of Fan and Wu
(2021) concerns more general SK models with random orthogonally invariant coupling matrices,
and uses a simplified “memory-free” AMP iteration that was developed and analyzed by Opper and
Winther (2001); Opper et al. (2016); Çakmak and Opper (2019); Fan (2020). The works of Ding
and Sun (2018) and Alaoui and Sellke (2020) concern the perceptron model, but only use the AMP

10
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conditioning method for lower bounds. In the current work, we show that the AMP conditioning
method gives sharp upper and lower bounds for the generalized perceptron (1) at small α.

1.2.6. OTHER RELATED WORK

As noted above, in the special case that U satisfies EξrξUpξqs “ 0 (i.e. if assumption (3) does not
hold), the model (1) is mathematically much more tractable, and can be analyzed by an (uncondi-
tional) second moment method. The condition EξrξUpξqs “ 0 holds for instance if U is a bounded
symmetric function. The second moment analysis was done for the cases Upxq “ 1t|x| ď κu and
Upxq “ 1t|x| ě κu in Aubin et al. (2019). For the model Upxq “ 1t|x| ď κu, much finer struc-
tural results (on the typical geometry of the solution space) were obtained by Perkins and Xu (2021);
Abbe et al. (2021). These results were inspired in part by questions raised in the physics literature
about the algorithmic accessibility of CSP solutions (see e.g. Baldassi et al., 2016; Budzynski et al.,
2019). For the perceptron model in statistical settings, there is an extensive literature which we will
not describe here; we refer the reader for instance to Barbier et al. (2019); Montanari et al. (2021)
and many references therein. Lastly, we remark that while “naive mean field” would approximate
the entire Gibbs measure (7) by product measures, the TAP framework goes beyond this by requir-
ing independence only onOp1q subsets of coordinates. It remains an open question to prove general
results for TAP in the spirit of what has been done for the mean-field approximation by Jain et al.
(2018, 2019); Eldan (2020); Eldan and Gross (2018); this was another motivation for this project.

1.3. AMP iteration and conditional moment results

In this subsection we outline the main steps in the proof of Theorem 1.1. We first introduce the
AMP iteration in more detail. Our convention throughout is that if f : R Ñ R and z ” pzjqj
is any vector, then fpzq ” pfpzjqqj denotes the vector of the same length which results from
applying f componentwise to z. Recall F ” Fq from (8). Let mp0q “ 0 P RN , np0q “ 0 P RM ,
mp1q “ q1{21 P RN , np1q “ pψ{αq1{21 P RM . The approximate message passing (AMP)
iteration for the perceptron model is given by (cf. (228) and (229))

mpt`1q ” thpHpt`1qq “ th

ˆ

Gtnptq

N1{2
´ βmpt´1q

˙

, (14)

npt`1q ” F phpt`1qq “ F

ˆ

Gmptq

N1{2
´ β1npt´1q

˙

. (15)

Recall from the discussion of §1.2.5 that the main idea in the proof of Theorem 1.1 is to compute
(first and second) moments of the partition function (1) conditional on the AMP filtration

F ” F ptq ” σ

ˆ

´

Gmpsq,nps`1q : s ď t
¯

,
´

Gtnp`q,mp``1q : ` ď t´ 1
¯

˙

(16)

in the limit tÑ8. The computation relies on existing results on the asymptotic behavior of AMP in
the large-N limit from Bayati and Montanari (2011) and Bolthausen (2014) (see also Donoho et al.,
2009; Javanmard and Montanari, 2013; Rush and Venkataramanan, 2018; Berthier et al., 2020). In
§A.2 we review the relevant results from Bayati and Montanari (2011); Bolthausen (2014) that are
used in our proofs. The results from our conditional method of moments calculation are summarized
as follows:

11
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Theorem 1.4 (conditional first moment) If U satisfies Assumptions 1 and 2, then there exists a
positive constant αpUq ą 0 such that, ifG is anM ˆN matrix with i.i.d. standard gaussian entries
and M{N Ñ α with 0 ď α ď αpUq, and F ptq is the AMP filtration defined by (16), then

E
´

Z
ˇ

ˇ

ˇ
F ptq

¯

ď exp

"

N
´

RSpα;Uq ` otp1q
¯

*

with high probability (i.e., with probability 1´ oN p1q).

Theorem 1.4 implies the upper bound in Theorem 1.1 by standard arguments, using Markov’s
inequality. The proof of the upper bound in Theorem 1.1 is therefore given at the end of Section C,
after the proof of Theorem 1.4.

Theorem 1.5 (conditional second moment) Suppose U satisfies Assumptions 1 and 2, and 0 ď
α ď αpUq as defined by (27). If G is an M ˆ N matrix with i.i.d. standard gaussian entries and
M{N Ñ α, we can construct a random variable Z̄ ď Z (formally defined by (144)) such that

E
´

Z̄pGq
ˇ

ˇ

ˇ
F ptq

¯

ě exp

"

N
´

RSpα;Uq ´ otp1q
¯

*

(17)

with high probability, and for which we have the second moment estimate

E
´

Z̄pGq2
ˇ

ˇ

ˇ
F ptq

¯

ď exp

"

2N
´

RSpα;Uq ` otp1q
¯

*

, (18)

also with high probability.

In Theorem 1.5, the restricted partition function Z̄ is essentially the contribution to the partition
function (1) from all configurations J that approximately satisfy

J ´mptq K span

"

mpsq,Hpsq : s ď t

*

(19)

(this condition is formalized by (144)). A similar restriction was introduced by Ding and Sun (2018)
in the context of the Ising perceptron, and was also subsequently used by Brennecke and Yau (2021)
to obtain an improvement on the result of Bolthausen (2019) in the context of the SK model.

In the bounded case }u}8 ă 8 (recall u ” logU ), Theorem 1.5 implies the lower bound in
Theorem 1.1 by standard arguments, using the Azuma–Hoeffding martingale inequality. The proof
of the lower bound in Theorem 1.1 in the bounded case is given at the end of Section D, after
the proof of Theorem 1.5. In the more general setting where u may be unbounded, the proof of
Theorem 1.1 requires further estimates, as we outline in the next subsection.

1.4. Concentration results for unbounded case

Assumption 1 implies that we must have

1 ě Upxq ą δ11tx P EpUqu (20)

where δ1 is a positive constant, and EpUq is a subset of the real line of positive Lebesgue measure
(which we denote |EpUq|). Moreover we can assume without loss that EpUq is bounded, i.e.,
EpUq Ď r´EmaxpUq, EmaxpUqs for some finite EmaxpUq. Following (Talagrand, 2011b, §8.3),
define the truncated logarithm logApxq ” maxt´A, log xu. The following is an adaptation of
(Talagrand, 2011b, Propn. 9.2.6) (see also (Talagrand, 2011b, Propn. 8.3.6)):

12
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Proposition 1.6 Suppose U satisfies Assumption 1, and let δ1 and EpUq be as above. Then for
τ “ expp´12q we have

P
ˆ

1

N

ˇ

ˇ

ˇ
logNτ

ˆ

Z

2N

˙

´ E logNτ

ˆ

Z

2N

˙

ˇ

ˇ

ˇ
ě
plogNq2

N1{2

˙

ď
1

N2

for all N large enough (depending on |EpUq|, EmaxpUq, and δ1).

Next let η be a small positive constant, and consider the smoothed function

Uηpxq ” pU ˚ ϕηqpxq “

ż

Upx` ηzqϕpzq dz “ EξUpx` ηξq . (21)

Let Zpηq denote the perceptron partition function with Uη in place of U :

Zpηq ”
ÿ

J

ź

aďM

Uη

ˆ

pga, Jq

N1{2

˙

. (22)

Note that Uη satisfies Assumption 1: it is a smooth mapping from R into r0, 1s for any η ą 0,
and condition (3) holds for η small enough. We will show (see Lemma B.9) that K2pUηq can be
bounded in terms of K2,opUq. We then have the following approximation result:

Proposition 1.7 Suppose U satisfies Assumption 1, and let δ1 and EpUq be as above. Then for
τ “ expp´12q we have

lim sup
NÑ8

1

N

ˇ

ˇ

ˇ

ˇ

E
„

logNτ

ˆ

Zpηq

2N

˙

´ logNτ

ˆ

Z

2N

˙ˇ

ˇ

ˇ

ˇ

ď oηp1q .

Propositions 1.6 and 1.7 are proved in Section F. The proofs rely on a bound for near-isotropic
gaussian processes, Proposition F.1, which we mentioned in §1.2.3 above. Finally, we have:

Proposition 1.8 If U satisfies Assumption 1, then we have limηÓ0 RSpα;Uηq “ RSpα;Uq for all
0 ď α ď αopUq (as defined by (31)).

Proposition 1.9 Suppose U satisfies Assumption 1, and let Zpηq be as in (22). Then we have

P
ˆ

ˇ

ˇ

ˇ
logZpηq ´ E logZpηq

ˇ

ˇ

ˇ
ě Nx

˙

ď 32N ¨ exp

"

´
Nx2

32C2C1pU ; ηq2

*

for all 0 ď x ď 5pC2q
1{2C1pU ; ηq, where C2 is an absolute constant while C1pU ; ηq depends on U

and η.

The proof of Proposition 1.8 is given in Section B, while the proof of Proposition 1.9 is given
in Section F. Then Propositions 1.6, 1.7, 1.8, and 1.9 can be combined to finish the proof of The-
orem 1.1 in the unbounded case }u}8 “ 8. The argument goes roughly as follows: by Proposi-
tions 1.6 and 1.7, with high probability

1

N
logNτ

Z

2N
´ oN p1q “

1

N
E logNτ

Z

2N
“

1

N
E logNτ

Zpηq

2N
` oηp1q .
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By applying Theorem 1.5 to Uη, and combining with Proposition 1.8 and Proposition 1.9, we obtain

1

N
E logNτ

Zpηq

2N
´ oN p1q “ RSpα;Uηq ´ log 2 “ RSpα;Uq ´ log 2` oηp1q .

For 0 ă α ď αpUq, the above is ě ´τ{2 by straightforward estimates (Corollary B.8). Therefore

´
τ

2
ď RSpα;Uq ´ log 2 “ oN p1q `

1

N
logNτ

Z

2N
“ oN p1q `

1

N
log

Z

2N

with high probability, as desired. At the end of Section F we give the conclusion of the proof of
Theorem 1.1, where the above sketch is made precise.

Organization

The remaining sections of the paper are organized as follows:

• In Section A we give a preliminary expression (see Theorem A.12) for the first moment of
the perceptron partition function conditional on F ptq.

• In Section B we collect some technical results, including basic consequences of Assump-
tions 1 and 2. We also give the proofs of Propostions A.1, 1.3, and 1.8.

• In Section C we analyze the conditional first moment calculations from Section A and com-
plete the proof of Theorem 1.4. This leads to the upper bound in Theorem 1.1.

• In Section D we prove Theorem 1.5, which bounds the first and second moments of the
(truncated) perceptron partition function conditional on F ptq. From this we deduce the lower
bound in Theorem 1.1 for the case }u}8 ă 8.

• In Section E we prove a local central limit theorem (Proposition E.13) which is required for
the calculations of Sections A–D.

• In Section F we prove Propositions 1.6, 1.7, and 1.9; and use these to conclude the proof of
Theorem 1.1.

• Lastly, in Section G we prove a gaussian resampling identity (Lemma A.16) which is used in
the conditional moment calculations of Sections A–D. We also give a heuristic review of the
state evolution limit of AMP, which was rigorously established in earlier works (Bayati and
Montanari, 2011; Bolthausen, 2014). Finally, in §G.5 we present a simplified version of the
moment calculations of this paper, which highlights some of the main ideas.
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Appendix A. First moment conditional on AMP

We consider the perceptron model (1) with an independent copyG1 of the disorder matrixG— this
is clearly equivalent (in law) to the original model. The (random) weight of the configuration J is

S ” SJpG1q ” exp

"ˆ

1, u

ˆ

G1J

N1{2

˙˙*

, (23)

where u ” logU : R Ñ r´8, 0s is applied componentwise by the convention of this paper. As in
(1), the corresponding perceptron partition function is

ZpG1q ”
ÿ

J

SJpG1q . (24)

Let mpsq and np`q be generated from the AMP iteration (14) and (15) with G1 in place of G (and
with the same initial values for mp0q, np0q, mp1q, np1q as before). Then, similarly as in (16), let

F 1ptq ” σ

ˆ

´

G1mpsq,nps`1q : s ď t
¯

,
´

pG1qtnp`q,mp``1q : ` ď t´ 1
¯

˙

. (25)

We emphasize that F 1ptq in (25) is defined with respect toG1 while F ptq in (16) was defined with
respect toG. This section is organized as follows:

• In §A.1 we state Proposition A.1, which allows us to formally define the parameters pq, ψq
appearing in the definition (12) of the replica symmetric free energy.

• In §A.2 we give a brief review of known results (Bayati and Montanari, 2011; Bolthausen,
2014) on the state evolution limit of AMP.

• In §A.3 we decompose ZpG1q into two parts (see (59)): one part Z˝pG1q roughly captures
the contribution of configurations J P t´1,`1uN which lie close to mptq in some sense
(see (57)), while Z‚pG1q is the remainder of the partition function. We then state the main
result of this section, Theorem A.12, which gives the conditional first moment upper bound
for Z˝pG1q.

• In §A.4 we state and prove Proposition A.13, which gives a conditional first moment upper
bound for a single configuration J P t´1,`1uN .

• In §A.5 we complete the proof of Theorem A.12. We also supply some large deviations
bounds, Lemmas A.22 and A.23, which will be used later to boundZ‚pG1q (see Corollary C.1
in §C.1).

The bound from Theorem A.12 will be analyzed in Section C to conclude the proof of Theorem 1.4.
Throughout this section, U satisfies Assumption 1 and 2.

A.1. Formal definition of replica symmetric free energy

In this subsection we formally define the quantity RSpα;Uq appearing in the statement of the main
result Theorem 1.1. As above, let ξ denote an independent standard gaussian random variable, and
let Eξ denote expectation over the law ξ. Given q P r0, 1q let

Lqpxq ” logEξU
´

x` p1´ qq1{2ξ
¯

” log

ż

U
´

x` p1´ qq1{2z
¯

ϕpzq dz , (26)
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where ϕ denotes the standard gaussian density as above. Recall from (8) that we defined

Fqpxq “ pLqq
1pxq “

1

p1´ qq1{2
EξrξUpx` p1´ qq1{2ξqs
EξUpx` p1´ qq1{2ξq

.

We will sometimes abbreviate L ” Lq and F ” Fq.

Proposition A.1 (proved in Section B) If U satisfies Assumption 1, then there exists a positive
constant αpUq ą 0 such that for all 0 ă α ď αpUq there exists a unique pair pq, ψq P r0, 1{25s ˆ
r0,8q satisfying (9). Moreover we can take

αpUq ”
1

e10 ¨ c1 ¨ C1pUq6 ¨K2pUq4
, (27)

where c1 is an absolute constant characterized by Lemma B.7 and Corollary B.8, and C1pUq is a
finite constant depending only on U which is characterized by Lemma B.3. The solution pq, ψq of
(9) satisfies

pEξrξUpξqsq2

2
ď
q

α
ď
ψ

α
ď 3 ¨ C1pUq

2 (28)

for all 0 ď α ď αpUq.

For any U and α such that (9) has a unique solution pq, ψq P r0, 1q ˆ r0,8q, the replica
symmetric formula for the free energy of the corresponding perceptron model (1) is given by (12),
which can be written equivalently as

RS ” RSpα;Uq “ ´
ψp1´ qq

2
` E

"

log 2 chpψ1{2Zq ` αLqpq
1{2Zq

*

, (29)

where the expectation is over an independent standard gaussian random variable Z. Let us also
remark that since th1pxq “ 1´pthxq2, it follows using (9) that we can rewrite the coefficients β, β1

from (14) and (15) as
ˆ

β
β1

˙

“

ˆ

αEF 1pq1{2Zq

E th1pψ1{2Zq

˙

. (30)

Lastly, we comment that in Theorem 1.1 we can take

αopUq ”
1

e16 ¨ c1 ¨ pC1q
opUq6 ¨K2,opUq4

ď
αpUq

e6
, (31)

where K2,opUq is defined by Assumption 2, αpUq is defined by (27), and pC1q
opUq will be defined

by Lemma B.3.

A.2. Review of AMP state evolution

In this subsection we review the main results on approximate message passing (as introduced in
§1.3) that will be used in our proofs. What follows is primarily based on Bayati and Montanari
(2011) and Bolthausen (2014). A more detailed review (with heuristic derivations) is given in
Section G.
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Definition A.2 (state evolution recursions) Let pq, ψq be as given by Proposition A.1, and abbre-
viate F ” Fq. Let

ρ1 ” λ1 ”

ˆ

1

q

˙1{2

E thpψ1{2Zq “ 0 , µ1 ” γ1 ”

ˆ

α

ψ

˙1{2

EF pq1{2Zq (32)

(cf. (240)). Next let ξ, ξ1 be independent standard gaussian random variables, and for s ě 1 let

ρs`1 ” ρpµsq ”
1

q
E
„

th

ˆ

ψ1{2
!

µsξ ` r1´ pµsq
2s1{2ξ1

)

˙

thpψ1{2ξq



,

µs`1 ” µpρsq ”
α

ψ
E
„

F

ˆ

q1{2
!

ρsξ ` r1´ pρsq
2s1{2ξ1

)

˙

F pq1{2ξq



(33)

(cf. (246) and (251)). Supposing that γ1, . . . , γs´1 and λ1, . . . , λs´1 have been defined, we let

λs “
ρs ´ Λs´1

p1´ Λs´1q
1{2

, γs “
µs ´ Γs´1

p1´ Γs´1q
1{2

(34)

(cf. (255)), where we have used the abbreviations

Γs´1 ”
ÿ

`ďs´1

pγ`q
2 , Λs´1 ”

ÿ

`ďs´1

pλ`q
2 . (35)

The above recursions are standard in the AMP literature, so we defer the explanations to Section G.
We will confirm in Lemma B.10 that the recursions result in well-defined quantities for all s ě 1.

We now explain how the constants given in Definition A.2 describe the large-N behavior of the
AMP iteration. To this end, we define the (deterministic) matrices

Γ ”

¨

˚

˚

˚

˚

˚

˝

1

γ1 p1´ Γ1q
1{2

γ1 γ2 p1´ Γ2q
1{2

...
. . .

γ1 γ2 ¨ ¨ ¨ p1´ Γt´2q
1{2

˛

‹

‹

‹

‹

‹

‚

P Rpt´1qˆpt´1q , (36)

Λ ”

¨

˚

˚

˚

˚

˚

˝

1

λ1 p1´ Λ1q
1{2

λ1 λ2 p1´ Λ2q
1{2

...
. . .

λ1 λ2 ¨ ¨ ¨ p1´ Λt´1q
1{2

˛

‹

‹

‹

‹

‹

‚

P Rtˆt . (37)

It will follow from Lemma B.10 below that in our setting we will have Γs P r0, 1q and Λs P r0, 1q
for all s ě 0, which implies that both Γ and Λ are non-singular matrices. As in (25), let mpsq

and np`q be generated from the AMP iteration (14) and (15) with G1 in place of G. Recall that
mpsq ” thpHpsqq and npsq ” F phpsqq, where F “ Fq is given by (8). We define vectors ypsq and
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xpsq by setting

Hrt´ 1s

ψ1{2
”

1

ψ1{2

¨

˚

˝

pHp2qqt

...
pHptqqt

˛

‹

‚

” Γ

¨

˚

˝

pyp1qqt

...
pypt´1qqt

˛

‹

‚

” Γyrt´ 1s P Rpt´1qˆN , (38)

hrts

q1{2
”

1

q1{2

¨

˚

˝

php2qqt

...
phpt`1qqt

˛

‹

‚

” Λ

¨

˚

˝

pxp1qqt

...
pxptqqt

˛

‹

‚

” Λxrts P RtˆM , (39)

for Γ and Λ as in (36) and (37). Then the xpsq “behave like” i.i.d. standard gaussian vectors in RM ,
while the ypsq “behave like” i.i.d. standard gaussian vectors in RN . For an intuitive explanation we
refer to the heuristic derivation of (253) and (254) given in Section G. The formal version is given
by the next definition and lemma:

Definition A.3 (pseudo-Lipschitz functions) Following Bayati and Montanari (2011), we say that
a function f : R` Ñ R (where ` is any positive integer) is pseudo-Lipschitz of order k if there exists
a constant L ą 0 such that

}fpxq ´ fpyq} ď L

ˆ

1` }x}k´1 ` }y}k´1

˙

}x´ y}

for all x, y P R`. We say for short that f is a PLpkq function.

Throughout what follows we let ei (for i ď N ) denote the i-th standard basis vector in RN .
With a minor abuse of notation we also let ea (for a ď M ) denote the a-th standard basis vector in
RM ; the dimension of the vector should be clear from context.

Lemma A.4 ((Bayati and Montanari, 2011, Lem. 1)) Suppose U satisfies Assumptions 1 and 2.
In particular, this guarantees that the function Fq of (8) is Lipschitz (see Lemma B.14). LetG be an
M ˆN matrix with i.i.d. standard gaussian entries, such that M{N “ α. Assume 0 ď α ď αpUq,
and let pq, ψq be the solution given by Proposition A.1. Then let mpsq ” thpHpsqq and np`q ”
Fqph

p`qq be generated from the AMP iteration (14) and (15), with the same initial values for mp0q,
np0q, mp1q, np1q as before. If f : Rt´1 Ñ R is a PLpkq function, then

1

N

ÿ

iďN

f
´

pHrt´ 1seiq
t
¯

NÑ8
ÝÑ Efpψ1{2Γξq

where ξ here denotes a standard gaussian vector in Rt´1, and the convergence holds in probability
as N Ñ8 for any fixed t. Likewise, if f : Rt Ñ R is a PLpkq function, then

1

M

ÿ

aďM

f
´

phrtseaq
t
¯

NÑ8
ÝÑ Efpq1{2Λξq

where ξ here denotes a standard gaussian vector in Rt.
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We remark that the results of Bayati and Montanari (2011) are for a more general setting where
the AMP iteration starts from a random initialization with bounded moments up to order 2k ´ 2;
the result then holds for any f which is PLpkq. In this paper we start from an initialization with
bounded moments of all finite orders, so in Lemma A.4 we can take f to be in PLpkq for any finite
k. We now present a few applications of Lemma A.4 which illustrate how some of the recursions
from Definition A.2 naturally arise. First, it follows from Lemma A.4 and the definition (33) that

pmprq,mpsqq

Nq
“
pthpHprqq, thpHpsqqq

Nq
» ρppΓΓtqr´1,s´1q .

In the above and throughout this paper, we write f » g to indicate that f ´ g converges to zero in
probability as N Ñ8. In the case r “ s we have

pΓΓtqr´1,r´1
(36)
“

ÿ

`ďr´2

pγ`q
2 ` p1´ Γr´2q

(35)
“ Γr´2 ` p1´ Γr´2q “ 1 . (40)

If r ‰ s, we can suppose without loss that r ă s, in which case

pΓΓtqr´1,s´1
(36)
“

ÿ

`ďr´2

pγ`q
2 ` γr´1p1´ Γr´2q

1{2 (35)
“ Γr´2 ` γr´1p1´ Γr´2q

1{2 (34)
“ µr´1 .

It follows that }mprq}2 » Nq for all r, and for r ă s we have

pmprq,mpsqq

Nq
» ρpµr´1q

(33)
“ ρr

(34)
“ Λr´1 ` λrp1´ Γr´1q

1{2 (36)
“ pΛΛtqr,s . (41)

A similar calculation gives that }nprq}2 » Nψ for all r, and for r ă s we have

pnprq,npsqq

Nψ
» µpρr´1q “ µr “ pΓΓtqr,s . (42)

Let rpsq be the Gram–Schmidt orthogonalization of the vectors mpsq for s ě 1: thus rp1q “
mp1q{}mp1q} “ 1{N1{2,

rp2q “
mp2q ´ pmp2q, rp1qqrp1q

}mp2q ´ pmp2q, rp1qqrp1q}
,

and so on. The rpsq form an orthonormal set in N -dimensional space (assuming the number of
iterations is much smaller than the dimension). Likewise, let cpsq be the Gram–Schmidt orthogonal-
ization of the vectors npsq for s ě 1; these form an orthonormal set in M -dimensional space. Let
ΛN ,ΓN be the (random) matrices such that

mrts

pNqq1{2
”

1

pNqq1{2

¨

˚

˝

pmp1qqt

...
pmptqqt

˛

‹

‚

“ ΛN

¨

˚

˝

prp1qqt

...
prptqqt

˛

‹

‚

” ΛNrrts P RtˆN , (43)

nrt´ 1s

pNψq1{2
”

1

pNψq1{2

¨

˚

˝

pnp1qqt

...
pnpt´1qqt

˛

‹

‚

“ ΓN

¨

˚

˝

pcp1qqt

...
pcpt´1qqt

˛

‹

‚

” ΓNcrt´ 1s P Rpt´1qˆM . (44)
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It can be deduced from (41) and (42) that

ˆ

ΛN

ΓN

˙

»

ˆ

Λ
Γ

˙

. (45)

(This means ΛN ´ Λ and ΓN ´ Γ converge entrywise to zero, in probability, as N Ñ 8.) Since
rrts and crt´ 1s have orthonormal rows, the above implies

mrtsmrtst

Nq

(43)
“ ΛNrrtsrrtstpΛN q

t “ ΛN pΛN q
t »

hrtshrtst

Nαq
P Rtˆt ,

nrt´ 1snrt´ 1st

Nψ

(44)
“ ΓNcrt´ 1scrt´ 1stpΓN q

t “ ΓN pΓN q
t »

HrtsHrtst

Nψ
P Rpt´1qˆpt´1q ,

where the approximations on the right-hand side use Lemma A.4. The above is of course consis-
tent with the previous calculations (41) and (42) (cf. (Bayati and Montanari, 2011, eq. (3.18) and
(3.19))).

A further consequence of Lemma A.4 is that for all k, ` ě 1 we have

pmpk`1q,yp`qq

Nq1{2
“
pthpHpk`1qq,yp`qq

Nq1{2

(38)
“

1

Nq1{2

ˆ

th

ˆ

ψ1{2

"

ÿ

`1ďt´1

Γk,`1y
p`1q

*˙

,yp`q
˙

»
Γk,`

q1{2
E
”

Z thpψ1{2Zq
ı

“
Γk,`

q1{2
ψ1{2E

”

th1pψ1{2Zq
ı

(9)
“

Γk,`

q1{2
ψ1{2p1´ qq ,

where the transition from the first line to the second is an application of Lemma A.4, and we also
used the gaussian integration by parts identity. Recall also that mp1q “ q1{21, so Lemma A.4 also
implies

pmp1q,yp`qq

Nq1{2
» Eξ “ 0

for all ` ď t ´ 1, where ξ is a standard gaussian random variable. The above calculations can be
summarized as

›

›

›

›

yrt´ 1smrtst

Nq1{2
´

ˆ

0
ψ1{2

q1{2
p1´ qqΓt

˙
›

›

›

›

8

ď ERRt,1 » 0 , (46)

where 0 denotes the zero vector in t´ 1 dimensions, and ERRt,1 is an an F ptq-measurable random
variable that converges to zero in probability as N Ñ 8 (cf. (Bayati and Montanari, 2011, eq.
(3.20) and (3.21))). This concludes our review of the required results on the state evolution of AMP,
and we turn next to the conditional moment calculations. We introduce some notation which will
be used later in the paper:

Remark A.5 (bounds on ΛN and ΓN ) Since Λ and Γ are both non-singular (this will be verified
in Lemma B.10 below), we can define a large finite constant ςt such that we have the bound

max

"

}ΛN}8, }pΛN q
´1}8, }ΓN}8, }pΓN q

´1}8

*

ď

ˆ

ςt
t

˙1{2

(47)
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with high probability. In the above, and throughout this paper, }¨}8 denotes the entrywise maximum
absolute value of a vector or matrix. On the other hand, we write }u} for the euclidean norm of a
vector u, and }A} for the spectral norm a matrix A. It follows from (47) that we also have

max

"

}ΛN}, }pΛN q
´1}, }ΓN}, }pΓN q

´1}

*

ď pςtq
1{2

with high probability.

The proof of the following proposition is deferred to §B.4. It amounts to checking that an
Almeida–Thouless (AT) condition (de Almeida and Thouless, 1978) is satisfied; see Lemma B.11.

Proposition A.6 Suppose U satisfies Assumptions 1 and 2. For 0 ă α ď αpUq as defined by (27),
the state evolution recursions from Definition A.2 result in Γt Ñ 1 and Λt Ñ 1 as tÑ8.

A.3. Positions of configurations relative to AMP iterates

We now define parameters πpJq and $pJq which summarize the position of configurations J P
t´1,`1uN relative to the vectors rpsq and yp`q from (43) and (38).

Definition A.7 (parameters π and $) Let F 1ptq be as in (25). For J P t´1,`1uN , define

πpJq ”
rrtsJ

N1{2
“

ˆ

prpsq, Jq

N1{2

˙

sďt

P Rt , (48)

$pJq ”
yrt´ 1sJ

N
“

ˆ

pyp`q, Jq

N

˙

`ďt´1

P Rt´1 . (49)

Note that for any given J P t´1,`1uN , its parameters πpJq and$pJq are measurable with respect
to F 1ptq.

Recall that the vectors rpsq and mpsq (1 ď s ď t) are linearly related by (43), while the vectors
yp``1q and Hp`q (1 ď ` ď t ´ 1) are linearly related by (38). For part of our calculation it is more
convenient to work with mpsq and Hp``1q rather than with rpsq and yp`q. For this reason we also
define the following parameters:

Definition A.8 (parameters π̂ and δ) Given F 1ptq as in (25), and given any J P t´1,`1uN , we
decompose J as J “ J 1`J2 where J 1 is the orthogonal projection of J onto the span of the vectors
mpsq, 1 ď s ď t. We let π̂s for 1 ď s ď t be the coefficients such that

J 1 “
ÿ

sďt

π̂s
mpsq

q1{2
“

mrtstπ̂

q1{2
. (50)

Next let v ” J2{}J2}, and let δ P Rt´1 be defined by

ΓN pΓN q
tδ “

Hrt´ 1sv

pNψq1{2
. (51)

Note that for any given J P t´1,`1uN , its parameters π̂pJq and δpJq are measurable with respect
to F 1ptq.
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The parameters pπ,$q of Definition A.7 are related as follows to the parameters pπ̂, δq of Defi-
nition A.8:

Lemma A.9 (change of basis) Given F 1ptq as in (25), suppose J P t´1,`1uN has parameters
πpJq, $pJq, π̂pJq, δpJq as in Definitions A.7 and A.8. Then we have πpJq “ pΛN q

tπ̂pJq, and

$pJq “
yrt´ 1smrtst

Nq1{2
π̂pJq `

´

1´ }πpJq}2
¯1{2

Γ´1ΓN pΓN q
tδpJq .

Proof For convenience we will often abbreviate π ” πpJq, etc. The expression (50) can be
rewritten as

J 1

N1{2

(50)
“

mrtstπ̂

pNqq1{2
(43)
“ rrtstpΛN q

tπ̂ ,

so by comparing with (48) we see that πpJq “ pΛN q
tπ̂pJq. Next we have

Hrt´ 1sJ 1

Nψ1{2

(50)
“

Hrt´ 1smrtstπ̂

Npψqq1{2
(38)
“

Γyrt´ 1smrtstπ̂

Nq1{2
. (52)

It is clear from (48) that }J 1}{N1{2 “ }π}, and since v ” J2{}J2}, it follows that

Hrt´ 1sJ2

Nψ1{2
“
}J2}

N1{2
¨
Hrt´ 1sv

pNψq1{2
“

´

1´}π}2
¯1{2 Hrt´ 1sv

pNψq1{2
(51)
“

´

1´}π}2
¯1{2

ΓN pΓN q
tδ . (53)

Combining (38), (52), and (53) gives

$pJq
(49)
“

yrt´ 1sJ

N

(38)
“

Γ´1Hrt´ 1sJ

Nψ1{2

(53)
“

Γ´1Hrt´ 1sJ 1

Nψ1{2
`

´

1´ }π}2
¯1{2

Γ´1ΓN pΓN q
tδ

(52)
“

yrt´ 1smrtst

Nq1{2
π̂ `

´

1´ }π}2
¯1{2

Γ´1ΓN pΓN q
tδ .

This concludes the proof.

Lemma A.10 (approximate change of basis) Given F 1ptq as in (25), suppose again that J P

t´1,`1uN has parameters πpJq, $pJq, π̂pJq, δpJq as in Definitions A.7 and A.8. Define also
9πpJq ” Λtπ̂pJq and

9$pJq ” pΓN q
t
"

ψ1{2

q1{2
p1´ qqπ́pJq `

´

1´ }πpJq}2
¯1{2

δpJq

*

, (54)

where π́ ” π́pJq ” pπ̂2, . . . , π̂tq P Rt´1. Then

max

"

›

›

›
πpJq ´ 9πpJq

›

›

›

8
`

›

›

›
$pJq ´ 9$pJq

›

›

›

8
: J P t´1,`1uN

*

ď ERRt,2 ,

where ERRt,2 is an an F 1ptq-measurable random variable that converges to zero in probability as
N Ñ8.
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Proof It follows trivially from the definition (48) and the Cauchy–Schwarz inequality that

}πpJq}8 ď max

"

}rpsq} ¨ }J}

N1{2
: s ď t

*

“ 1 ,

where we emphasize that the bound clearly holds uniformly over all J P t´1,`1uN . Now recall
from Lemma A.9 that 9πpJq “ Λtπ̂pJq and πpJq “ pΛN q

tπ̂pJq. It follows that
›

›

›
πpJq ´ 9πpJq

›

›

›

8
ď sup

"
›

›

›

›

ˆ

pΛN q
´1pΛN ´Λq

˙t

u

›

›

›

›

8

: }u}8 ď 1

*

.

The right-hand side above is F 1ptq-measurable and does not depend on J , and it follows from (45)
that it tends to zero in probability as N Ñ 8. Next, to compare $pJq with 9$pJq, we note that
$pJq ´ 9$pJq can be expressed as IpJq ` IIpJq where

IpJq ”
"

yrt´ 1smrtst

Nq1{2
´

ˆ

0
ψ1{2

q1{2
p1´ qqpΓN q

t
˙*

pΛN q
´1πpJq ,

IIpJq ”
´

1´ }πpJq}2
¯1{2

Γ´1pΓN ´ ΓqpΓN q
tδpJq .

Since }πpJq}8 ď 1 as noted above, it follows using (45) and (46) that }IpJq}8 can be bounded
uniformly over J by an F 1ptq-measurable quantity that tends to zero in probability as N Ñ 8.
Next we note that (51) combined with the Cauchy–Schwarz inequality gives, for all J ,

›

›

›
ΓN pΓN q

tδpJq
›

›

›

8
ď max

"

}Hp`q}

Nψ1{2
: ` ď t´ 1

*

.

The right-hand side above is F 1ptq-measurable, and it can be deduced from Lemma A.4 that it
converges in probability to 1 as N Ñ 8. It follows by combining with (45) that }IIpJq}8 can also
be bounded uniformly over J by an F 1ptq-measurable quantity that tends to zero in probability as
N Ñ8. This proves the claim.

We next use the AMP iteration to define a convenient change of measure on the discrete cube:

Definition A.11 (change of measure) Let P be the uniform probability measure on t´1,`1uN ,
and let Q be the probability measure on the same space which is given by

dQ

dP
“

ź

iďN

expppHptqqiJiq

chpHptqqi
“

exptpHptq, Jqu

exptp1, log ch Hptqqu
.

If J is sampled from the measure Q, its expected value is exactly thpHptqq “ mptq. We now compute
the expected values under Q of the parameters from Definition A.7. First we note that

9π˚ ”
rrtsmptq

N1{2
“

rrtsmrtstêt

N1{2

(43)
“ q1{2rrtsrrtstpΛN q

têt “ q1{2pΛN q
têt , (55)

where ês denotes the s-th standard basis vector in Rt. Let us define also π˚ ” q1{2Λtêt, and note
that π˚ » 9π˚ by (45). Next we note that

9$˚ ”
yrt´ 1smptq

N

(46)
» ψ1{2p1´ qqpΓtét´1q ” $˚ P Rt´1 , (56)

where é` denotes the `-th standard basis vector in Rt´1.
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Recalling (1) and (23), we now define

N˝ ”

"

pπ,$q : max
!

}πpJq ´ π˚}, }$pJq ´$˚}
)

ď 16 ¨ C1pUqα
1{2

*

, (57)

where the constant C1pUq comes from Lemma B.3 below. We also let

H˝ ”
"

J P t´1,`1uN : pπpJq, $pJqq PN˝

*

, (58)

and we let H‚ ” t´1,`1uNzH˝. Now decompose (24) as ZpG1q “ Z˝pG1q `Z‚pG1q where

Z˝pG
1q ”

ÿ

JPH˝

SJpG1q , Z‚pG
1q ”

ÿ

JPH‚

SJpG1q , (59)

The main result of this section is as follows:

Theorem A.12 Suppose U satisfies Assumptions 1 and 2, and let F 1ptq be as in (25). Given ε̄ P R,
define

Xpπ,$q ” xrtstπ˚ `

"

xrtstpπ ´ π˚q `N
1{2ε̄crt´ 1stp$ ´$˚q

*

P RM ,

for π˚ and $˚ as in Definition A.11. (The parameter ε̄ will be fixed later in (114).) Then define

Ψpπ,$q ”
}$ ´ ε̄p$ ´$˚q}

2

2p1´ }π}2q
´
p$˚, $q

1´ q
`

1

N

ÿ

aďM

L}π}2pXapπ,$qq .

If Q is the measure on t´1,`1uN from Definition A.11, then we have

EpZ˝pG1q |F 1ptqq

exptp1, logp2 chpHptqqqqu
ď

ÿ

JPH˝

QpJq exp

"

N

„

ΨpπpJq, $pJqq ` ERRt,3

*

,

where ERRt,3 is an an F 1ptq-measurable random variable that converges to zero in probability as
N Ñ8.

The proof of Theorem A.12 is given in §A.5.

A.4. First moment for a single configuration

The main result of this subsection is the following:

Proposition A.13 Suppose U satisfies Assumption 1 and 2, and let F 1ptq be as in (25). Define

Apπ, 9π, 9$, θq ”
} 9$ ´ θ}2

2p1´ }π}2q
`

1

N

ÿ

aďM

L}π}2

ˆ

xrtst 9π `N1{2crt´ 1stθ

˙

,

where the function L is defined by (26). Recall SJpG1q from (23). There exists a finite constant ℘t,1
such that for any large finite constant θmax, it holds with probability 1´ oN p1q that

1

N
logE

´

SJpG1q
ˇ

ˇ

ˇ
F 1ptq

¯

ď inf

"

A
´

πpJq, 9πpJq, 9$pJq, θ
¯

: }θ} ď θmax

*

`
℘t,1
N

uniformly over all J P t´1,`1uN with }πpJq} ď 4{5.
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The proof of Proposition A.13 is given at the end of this subsection.

Definition A.14 (row and column subspaces) Given F 1ptq as in (25), define the linear subspaces

VR ” VRptq ” span

"

eapm
psqqt : 1 ď a ďM, 1 ď s ď t

*

,

VC ” VCpt´ 1q ” span

"

np`qpeiq
t : 1 ď i ď N, 1 ď ` ď t´ 1

*

.

Let VRC ” VR ` VC. Let projR denote the orthogonal projection onto VR, and define analogously
projC and projRC. Note that pG1qRC ” projRCpG

1q is measurable with respect to F 1ptq.

Definition A.15 (row and column events) We now letG be an independent copy ofG1, and define
the events

R ”
!

projRpGq “ pG
1qR

)

“

"

Gmpsq

N1{2
“ hps`1q ` β1nps´1q for all 1 ď s ď t

*

, (60)

C ”
!

projCpGq “ pG
1qC

)

“

"

Gtnp`q

N1{2
“ Hp``1q ` βmp`´1q for all 1 ď ` ď t´ 1

*

. (61)

We shall refer to R as the row event (since it constrains the rows of the matrixG). Likewise we shall
refer to C as the column event.

Recall F 1ptq from (25), and define also

H 1ptq ” σ

ˆ

´

mpsq : s ď t
¯

,
´

np`q : ` ď t´ 1
¯

˙

Ď F 1ptq .

Our calculation is based on the following resampling principle (proved in §G.2):

Lemma A.16 (resampling) If f : RMˆN Ñ R is any bounded measurable function, then

E
´

fpG1q
ˇ

ˇ

ˇ
F 1ptq

¯

“ E
ˆ

fpGq

ˇ

ˇ

ˇ

ˇ

H 1ptq,R,C, pG1qRC

˙

whereG denotes an independent copy ofG1; and the events R and C are defined by (60) and (61).

Definition A.17 (configuration-dependent subspaces) Given F 1ptq as in (25), and a spin con-
figuration J P t´1,`1uN , recall from Definition A.8 that we decompose J “ J 1 ` J2, and let
v ” J2{}J2}. We then define the linear subspaces

VP ” span

"

eav
t : 1 ď a ďM

*

,

VA ” span

"

np`qvt : 1 ď ` ď t´ 1

*

.

Note that VA is a subspace of VP, and is also a subspace of VC. Let projA denote the orthogonal
projection onto VA, and note that pG1qA ” projApG

1q is measurable with respect to F 1ptq.
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Definition A.18 (admissibility event) As in Definition A.15, let G be an independent copy of G1,
and define

A ”
!

projApGq “ pG
1qA

)

(61)
“

"

nrt´ 1sGv

Nψ1{2
“

Hrt´ 1sv

pNψq1{2

*

, (62)

where the last identity holds assuming that the event C from (61) occurs. Note that Hrt ´ 1sv is
determined by the parameter δpJq from Definition A.8. We refer to A as the admissibility event, and
note C Ď A.

In the setting of the perceptron model, the calculation of Lemma A.16 can be simplified as
follows:

Lemma A.19 (reduction of column constraints) If h : RM Ñ R is any bounded measurable
function, then

E
ˆ

hpGJq

ˇ

ˇ

ˇ

ˇ

H 1ptq,R,C, pG1qRC

˙

“ E
ˆ

hpGJq

ˇ

ˇ

ˇ

ˇ

H 1ptq,R,A, pG1qRA

˙

where G denotes an independent copy of G1 and the events R,C,A are defined by (60), (61), and
(62).

Proof Let VCzR be the orthogonal complement of VR inside VR ` VC: that is,

VR ` VC “ VR k VCzR ,

where we use k to denote the sum of two orthogonal vector spaces. Note that VA is a subspace of
VC which is orthogonal to VR, so it follows that VA is also a subspace of VCzR. Let projCzR denote
the orthogonal projection onto VCzR. Note that VA is a subspace of VP, and VP is orthogonal to VR.
We claim that

projCzRpVPq “ VA . (63)

Since we already noted that VA Ď VCzR, it suffices to show inclusion in the other direction. The
space VP is spanned by the elements eav

t. Let cp`q, 1 ď ` ď t´ 1, be any orthonormal basis for the
span of the vectors np`q, 1 ď ` ď t´ 1. An orthonormal basis for VA is then given by the matrices
cp`qvt, 1 ď ` ď t ´ 1. On the other hand, the space VC is spanned by the elements cp`qpeiq

t. We
therefore have

ˆ

eav
t ´ projA

´

eav
t
¯

, cp`qpeiq
t ´ projR

´

cp`qpeiq
t
¯

˙

“

ˆ

eav
t ´ projA

´

eav
t
¯

, cp`qpeiq
t
˙

“ pcp`qqavi ´

ˆ

ÿ

kďt´1

peav
t, cpkqvtqcpkqvt, cp`qpeiq

t
˙

“ pcp`qqavi ´ pc
p`qqavi “ 0 .

It follows that for any GP P VP we have GP ´ projApGPq orthogonal to VCzR, which concludes the
proof of (63). It follows that VP “ VA k VPzA where VPzA is the orthogonal complement of VA
inside VP, and VPzA is orthogonal to VCzR. As a result, ifG is an M ˆN matrix with i.i.d. standard
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gaussian entries, we can decompose GP “ GA `GPzA where GPzA “ projPzApGq is independent
ofGCzR. It follows that

E
ˆ

hpGJq

ˇ

ˇ

ˇ

ˇ

H 1ptq,R,C, pG1qRC

˙

“ E
ˆ

hpGRJ
1 `GPJ

2q

ˇ

ˇ

ˇ

ˇ

H 1ptq,R,A,C, pG1qRC

˙

“ E
ˆ

hpGRJ
1 ` pGA `GPzAqJ

2q

ˇ

ˇ

ˇ

ˇ

H 1ptq,R,A,C, pG1qRC

˙

“ E
ˆ

hpGRJ
1 ` pGA `GPzAqJ

2q

ˇ

ˇ

ˇ

ˇ

H 1ptq,R,A, pG1qRA

˙

“ E
ˆ

hpGJq

ˇ

ˇ

ˇ

ˇ

H 1ptq,R,A, pG1qRA

˙

,

as claimed.

Further towards the proof of Proposition A.13, we record the following calculations:

Lemma A.20 For J P t´1,`1uN , recall the decomposition J “ J 1 ` J2, and define X̃J ”

GJ 1{N1{2. On the event R from (60), we have

X̃J “
1

q1{2

"

hrtstπ̂pJq ` β1nrt´ 1stπ́pJq

*

“ xrtst 9πpJq `N1{2crt´ 1st
ˆ

9$pJq ´
´

1´ }πpJq}2
¯1{2

pΓN q
tδ

˙

.

In the above, πpJq is given by Definition A.7; π̂pJq and δpJq are given by Definition A.8; and π́pJq,
9πpJq, and 9$pJq are defined by Lemma A.10.

Proof Fix J and abbreviate π ” πpJq, etc. Conditional on the event R from (60), we have

X̃J ”
GJ 1

N1{2

(50)
“

ÿ

sďt

π̂s
Gmpsq

pNqq1{2
(60)
“

ÿ

sďt

π̂s

q1{2

´

hps`1q ` β1nps´1q
¯

.

Recall the notation (39) and (44), and also that np0q ” 0 P RM . Therefore the above can be
rewritten as

X̃J “
hrtstπ̂

q1{2
`
β1nrt´ 1stπ́

q1{2
.

Recalling from (11) that β1 “ 1´ q, and combining with (39) and (44), gives

X̃J
(39)
“ xrtstΛtπ̂ `

p1´ qqnrt´ 1stπ́

q1{2

(44)
“ xrtstΛtπ̂ `

N1{2ψ1{2p1´ qq

q1{2
crt´ 1spΓN q

tπ́ .

Recalling the notation of Lemma A.10 gives, with 9π ” Λtπ̂ and 9$ as in (54),

X̃J “ xrtst 9π `N1{2crt´ 1st
ˆ

9$ ´
´

1´ }π}2
¯1{2

pΓN q
tδ

˙

.

This concludes the proof.
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Lemma A.21 Given J P t´1,`1uN , define the cumulant-generating function

K̃Jpτq ”
1

N
logE

„

exp

"

N1{2
ÿ

`ďt´1

τ`pc
p`q,Gvq

*

SJpGq
ˇ

ˇ

ˇ

ˇ

H 1ptq,R


for τ P Rt´1. Then, with L as in (26), the function K̃J satisfies

K̃Jpτq ´
}τ}2

2
“

1

N

ˆ

1, L}πpJq}2

ˆ

X̃J `N
1{2

´

1´ }πpJq}2
¯1{2

crt´ 1stτ

˙˙

” L̃Jpτq ,

with πpJq as in Definition A.7 and X̃J is as in Lemma A.20.

Proof Conditional on H 1ptq and on the event R, it follows from Lemma A.20 that GJ 1{N1{2 “

X̃J ” X̃ . We also have
GJ2

N1{2
“
}J2}

N1{2
Gv ”

´

1´ }π}2
¯1{2

ξ ,

where π ” πpJq, and ξ ” Gv is distributed as an independent gaussian vector in RN . It follows
that

K̃Jpτq “
1

N

ÿ

aďM

logEξ
„

exp

"

N1{2
ÿ

`ďt´1

τ`pc
p`qqaξ

*

U

ˆ

X̃a `

´

1´ }π}2
¯1{2

ξ

˙

,

where ξ denotes a standard gaussian random variable. Making a change of variable gives

K̃Jpτq “
}τ}2

2
`

1

N

ÿ

aďM

logEξU
ˆ

X̃a `

´

1´ }π}2
¯1{2

„

ξ `N1{2
ÿ

`ďt´1

τ`c
p`q
a

˙

,

from which the result follows.

Having collected most of the necessary ingredients, we now prove the main result of this sub-
section. The proof requires one more slightly technical estimate which we defer to Proposition E.13
in Section E.
Proof [Proof of Proposition A.13] With F 1ptq as in (25) and SJpG1q as in (23), let us abbreviate
the quantity of interest as

EJ ” E
´

SJpG1q
ˇ

ˇ

ˇ
F 1ptq

¯

.

By the resampling principle from Lemma A.16, we can express

EJ “ E
´

SJpGq
ˇ

ˇ

ˇ
H 1ptq,R,C, pG1qRC

¯

,

where G is an independent copy of G1, and R and C are the row and column events of Defini-
tion A.15. Applying Lemma A.19 then gives the further simplification

EJ “ E
´

SJpGq
ˇ

ˇ

ˇ
H 1ptq,R,A, pG1qRA

¯

, (64)

where A is the admissibility event defined by (62).
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Let VR be as in Definition A.14, and note that an orthonormal basis for VR is given by the
elements eapr

psqqt for 1 ď a ďM , 1 ď s ď t. Denote

gR ”

ˆ

pG, eapr
psqqtq : 1 ď a ďM, 1 ď s ď t

˙

P RMt .

Likewise let VP and VA be as in Definition A.17: recall that VP is orthogonal to VR, and VA is a
subpsace of VP. An orthonormal basis for VP is given by the elements eav

t for 1 ď a ďM . Denote

gP ”

ˆ

pG, eav
tq : 1 ď a ďM

˙

“ Gv P RM . (65)

An orthonormal basis for VA is given by the elements cp`qvt for 1 ď ` ď t´ 1, and we shall denote

gA ”

ˆ

pG, cp`qvtq : 1 ď ` ď t´ 1

˙

“ crt´ 1sGv P Rt´1 . (66)

Lastly, as in the proof of Lemma A.19, let VPzA be the orthogonal complement of VA inside VP.
Choose an orthonormal basis for VPzA, and denote itBj for 1 ď j ďM ´ pt´ 1q. We then let

gB ”

ˆ

pG,Bjq : 1 ď j ďM ´ pt´ 1q

˙

P RM´t`1 . (67)

Note that there is an orthogonal transformation of RM which maps gP to the pair pgA,gBq. In what
follows we let pR denote the probability density function for gR, so

pRpgRq “
1

p2πqMt{2
exp

"

´
}gR}

2

2

*

. (68)

Likewise let pA and pB denote the densities for gA and gB respectively. Since the three subspaces
VR, VA, and VB are mutually orthogonal, the joint density of pgR,gA,gBq is simply the product
pRpgRqpApgAqpBpgBq.

The weight SJpGq, as defined by (23), is a function ofGJ , which we decomposed in the proof
of Lemma A.21 as a sum of GJ 1 and GJ2. Note that GJ 1 is a function of gR, while GJ2 is a
function of gP which in turn is a function of pgA,gBq. Thus (23) can be rewritten as a function SJ
of pgR,gA,gBq: explicitly,

SJpGq “
ź

aďM

U

ˆ

ÿ

sďt

pJ, rpsqq

N1{2
pgRqa,s `

}J2}

N1{2
pgPqa

˙

” SJpgR,gA,gBq .

On the event R, the value of gR is fixed to a value ḡR:

pḡRqa,s “ pGrrtstqa,s
(43)
“

ˆ

GmrtstppΛN q
tq´1

pNqq1{2

˙

a,s

,

where the right-hand side can be computed from (60). Likewise, on the event A, the value of gA is
fixed to a value ḡA. We then introduce a parameter τ P Rt´1, and define

SJ,τ pGq ” SJ,τ pgR,gA,gBq ” SJpgR,gA,gBq exp

"

N1{2pτ,gAq

*

. (69)
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Then, for any τ P Rt´1, we can rewrite (64) as

EJ “ E
´

SJpGq
ˇ

ˇ

ˇ
H 1ptq,R,A, pG1qRA

¯

“ E
ˆ

SJ,τ pgR,gA,gBq

exppN1{2pτ, ḡAqq

ˇ

ˇ

ˇ

ˇ

pgR,gAq “ pḡR, ḡAq

˙

“
1

exppN1{2pτ, ḡAqq

ż

SJ,τ pḡR, ḡA, gBqpBpgBq dgB . (70)

By contrast, the expected value of SJ,τ given only the row constraints is

EJpτ | ḡRq ” E
´

SJ,τ pGq
ˇ

ˇ

ˇ
H 1ptq,R, pG1qR

¯

“ E
ˆ

SJ,τ pgR,gA,gBq

ˇ

ˇ

ˇ

ˇ

gR “ ḡR

˙

“

ż

pApgAq

ż

SJ,τ pḡR, gA, gBqpBpgBq dgB dgA “ exppNK̃Jpτqq , (71)

which was computed in Lemma A.21 above. We then let pJ,τ p¨ | ḡRq be the probability density
function of gA under the measure that is biased by SJ,τ pGq, conditional on the event R, that is to
say,

pJ,τ pgA | ḡRq dgA ”
EpSJ,τ pGq1tgA P dgAu |H 1ptq,R, pG1qRq

EpSJ,τ pGq |H 1ptq,R, pG1qRq

”
pApgAq

EJpτ | ḡRq

„
ż

SJ,τ pḡR, gA, gBqpBpgBq dgB



dgA . (72)

Then, for any τ P Rt´1, we can rewrite (70) as

EJ “
EJpτ | ḡRq ¨ pJ,τ pḡA | ḡRq

exptN1{2pτ, ḡAqu ¨ pApḡAq
. (73)

We will show in Proposition E.13 (deferred to Section E) that there is a finite constant ℘t,0 such that
for any finite constant τmax, we have the uniform bound

max

"

›

›

›
pJ,τ p¨ | ḡRq

›

›

›

8
: J P t´1,`1uN , }πpJq} ď

4

5
, }τ} ď τmax

*

ď ℘t,0 (74)

with high probability. It therefore remains to estimate the other two terms on the right-hand side of
(73). We then note that Definition A.18 implies that, on the event A, we have

ḡA

N1{2
“

gA

N1{2

(66)
“

crt´ 1sGv

N1{2

(44)
“
pΓN q

´1nrt´ 1sGv

Nψ1{2

(62)
“
pΓN q

´1Hrt´ 1sv

pNψq1{2
(51)
“ pΓN q

tδ . (75)

Substituting (75) into the formula for pA (similar to (68)) gives

pApḡAq “
1

p2πqpt´1q{2
exp

"

´
N}pΓN q

tδ}2

2

*

. (76)

Meanwhile, it follows by combining (71) and (75) that

EJpτ | ḡRq

exptN1{2pτ, ḡAqu
“ exp

"

N
”

K̃Jpτq ´ pτ, pΓN q
tδq

ı

*

. (77)
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Substituting (74), (76), and (77) into (73) gives

EJ

p2πqt{2 ¨ ℘t,0
ď exp

"

N

„

K̃Jpτq ´ pτ, pΓN q
tδq `

}pΓN q
tδ}2

2

*

.

Recalling the calculation of K̃Jpτq from Lemma A.21 gives

EJ

p2πqt{2 ¨ ℘t,0
ď exp

"

N

„

}τ ´ pΓN q
tδ}2

2
` L̃Jpτq

*

” exp
!

NÃJpτq
)

, (78)

where ÃJ is defined by the last identity. To simplify the above expression, we will recenter τ around

τ̄ ” τ̄pπ́q ” ´
ψ1{2p1´ qqpΓN q

tπ́

q1{2p1´ }π}2q1{2
(54)
“ ´

9$

p1´ }π}2q1{2
` pΓN q

tδ . (79)

We then make a change of variables from τ to θ, via the definition

τ ” τ̄ `
θ

p1´ }π}2q1{2
. (80)

This change of variables results in the simplification

τ ´ pΓN q
tδ

(80)
“ τ̄ `

θ

p1´ }π}2q1{2
´ pΓN q

tδ
(79)
“

θ ´ 9$

p1´ }π}2q1{2
.

The computation of X̃J from Lemma A.20 can also be rewritten as

X̃J
(79)
“ xrtst 9π ´N1{2

´

1´ }π}2
¯1{2

crt´ 1stτ̄ . (81)

As a result the function L̃J from Lemma A.21 can be reparametrized as

L̃J
ˆ

τ̄ `
θ

p1´ }π}2q1{2

˙

(81)
“

1

N

ˆ

1, L}π}2
´

xrtst 9π `N1{2crt´ 1stθ
¯

˙

.

It follows by substituting the above calculations into (78) that

ÃJ

ˆ

τ̄ `
θ

p1´ }π}2q1{2

˙

“
} 9$ ´ θ}2

2p1´ }π}2q
`

1

N

ÿ

aďM

L}π}2

ˆ

xrtst 9π `N1{2crt´ 1stθ

˙

.

The claim follows by taking ℘t,1 ” plog℘t,0 ` t logp2πqq{2.

The above completes the proof of Proposition A.13, modulo Proposition E.13 which is deferred
to Section E.
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A.5. First moment for partition function

We now collect some of the preceding results to complete the proof of the main result of this section:
Proof [Proof of Theorem A.12] For any J P t´1,`1uN we can calculate (abbreviating$ ” $pJq)

pHptq, Jq

N
“
pét´1q

tHrt´ 1sJ

N

(38)
“

ψ1{2pét´1q
tΓyrt´ 1sJ

N

(49)
“ pψ1{2Γtét´1, $q

(56)
“
p$˚, $q

1´ q
.

It follows by combining with Definition A.11 that

EpZ˝pG1q |F 1ptqq

exptp1, logp2 chpHptqqqqu
“

ÿ

JPH˝

QpJq

ˆ

PpJq

QpJq exptp1, log chpHptqqqu

˙

E
´

SJpG1q
ˇ

ˇ

ˇ
F 1ptq

¯

“
ÿ

JPH˝

QpJq exp

"

´
Np$˚, $q

1´ q

*

E
´

SJpG1q
ˇ

ˇ

ˇ
F 1ptq

¯

. (82)

Combining Proposition A.13 with Lemma A.10 gives, with high probability,

E
´

SJpG1q
ˇ

ˇ

ˇ
F 1ptq

¯

ď
}$ ´ θ}2

2p1´ }π}2q
`

1

N

ÿ

aďM

L}π}2

ˆ

xrtstπ `N1{2crt´ 1stθ

˙

` ERRt,3 ,

uniformly over }πpJq} ď 4{5 and }θ} ď θmax. The claim follows by setting θ “ ε̄p$ ´$˚q.

Recall from (59) that Z “ Z˝ ` Z‚ where Z˝ is bounded by Theorem A.12. In the remainder
of this section we show that the other quantity Z‚ can be bounded by a priori estimates. For this
purpose we prove a rough estimate on πpJq (Lemma A.22), followed by a more precise estimate on
$pJq (Lemma A.23). In fact Lemma A.23 is more precise than what is needed to analyze Z‚, but
it will be needed later (in Section C) in the analysis of Z˝. We first state and prove the estimate for
πpJq:

Lemma A.22 Recall πpJq from Definition A.7 and 9π˚ from (55). For Q as in Definition A.11, we
have

Q

ˆ"

J P t´1,`1uN :
›

›

›
πpJq ´ 9π˚

›

›

›
ě d

*˙

ď

ˆ

66t

q

˙t{2

exp

"

´
Nd2p1´ 3q1{2q

8

*

for all |d| ě 1{N1{2. (The bound is vacuous unless Nd2 is large compared to t log t.)

Proof Under the measure Q, the random vector J ´mptq has independent entries of mean zero.
We note also that

pmiq
2 ” max

"

ˇ

ˇ

ˇ
Ji´pm

ptqqi

ˇ

ˇ

ˇ

2
: Ji P t´1,`1u

*

ď

´

1`|pmptqqi|

¯2
ď 1` 3|pmptqqi| ď 4 . (83)

Thus for any a P Rt we can bound

Vmaxpaq ”
ÿ

iďN

ˆ

ÿ

sďt

aspr
psqqi

˙2

pmiq
2 ď 4

›

›

›

›

ÿ

sďt

asr
psq

›

›

›

›

2

“ 4}a}2 .
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It follows by the Azuma–Hoeffding bound that

Q

ˆ

1

N1{2

ˆ

ÿ

sďt

asr
psq, J ´mptq

˙

ě x

˙

ď exp

"

´
Nx2

2Vmaxpaq

*

ď exp

"

´
Nx2

8}a}2

*

. (84)

On the other hand, it follows from Definition A.7 and (55) that

1

N1{2

ˆ

ÿ

sďt

asr
psq, J ´mptq

˙

“

´

a, πpJq ´ 9π˚

¯

. (85)

Given d ą 0 and ε P p0, 1{4s, note there exists a pdεq-net of r´4d, 4dst of cardinality at most

R

8t1{2

ε

Vt

ď

ˆ

8t1{2

ε
` 1

˙t

. (86)

If J is any element of t´1,`1uN with d ď }πpJq´ 9π˚} ď 2d, and πnet is an element of the pdεq-net
at minimal distance from πpJq, then }πnet ´ 9π˚} ě dp1´ εq, and

´

πnet ´ 9π˚, πpJq ´ 9π˚

¯

ě

›

›

›
πpJq ´ 9π˚

›

›

›

2
´

ˇ

ˇ

ˇ

ˇ

´

πnet ´ πpJq, πpJq ´ 9π˚

¯

ˇ

ˇ

ˇ

ˇ

ě d2p1´ 2εq .

Thus, by taking a “ πnet ´ 9π˚ and ε “ q1{2 in (84) and (85), we obtain

Q

ˆ

d ď
›

›

›
πpJq ´ 9π˚

›

›

›
ď 2d

˙

ď

ˆ

65t

q

˙t{2

exp

"

´
Nd4p1´ 2q1{2q2

8d2p1´ q1{2q2

*

ď

ˆ

65t

q

˙t{2

exp

"

´
Nd2p1´ 3q1{2q

8

*

.

Since 4k ě 3k for all k ě 0, as long as Nd2 ě 1 we can bound

Q

ˆ

›

›

›
πpJq ´ 9π˚

›

›

›
ě d

˙

ď
ÿ

kě0

p65t{qqt{2

exptNp2kdq2p1´ 3q1{2q{8u
ď

2p65t{qqt{2

exptNd2p1´ 3q1{2q{8u
.

This proves the claim.

The result for $pJq is very similar, although slightly more involved since we require a more
precise estimate:

Lemma A.23 Recall $pJq from Definition A.7, and 9$˚ from (56). For Q as in Definition A.11,
we have

Q

ˆ"

J P t´1,`1uN :
›

›

›
$pJq ´ 9$˚

›

›

›
ě d

*˙

ď

ˆ

66t

q

˙t{2

exp

"

´
Nd2p1´ 8q1{2q

2

*

for all |d| ě 1{N1{2. (The bound is vacuous unless Nd2 is large compared to t log t.)
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Proof Recall the definition of mi from the bound (83) in the proof of Lemma A.22. For b P Rt´1,
denote

Wmaxpbq ”
1

N

ÿ

iďN

ˆ

ÿ

`ďt´1

b`py
p`qqi

˙2

pmiq
2 ďW0pbq ` 3W1pbq .

Applying (83) gives Wmax ďW0 ` 3W1 where

W0pbq ”
1

N

›

›

›

›

ÿ

`ďt´1

b`y
p`q

›

›

›

›

2

,

W1pbq ”
1

N

ÿ

iďN

ˆ

ÿ

`ďt´1

b`py
p`qqi

˙2

|pmptqqi| .

It follows from Lemma A.4 that W0pbq Ñ }b}2 in probability as N Ñ8. Lemma A.4 also implies

W1pbq

}b}2
NÑ8
ÝÑ E

„ˆ

ρZ ` p1´ ρ2q1{2Z 1
˙2ˇ

ˇ

ˇ
thpψ1{2Zq

ˇ

ˇ

ˇ



” w1pρq .

in probability, where ρ P r´1, 1s is a value that can depend on b. However we can crudely bound

w1pρq ď

ˆ

EpZ4qErthpψ1{2Zq2s

˙1{2
(9)
“ p3qq1{2 .

It follows by the Azuma–Hoeffding inequality that

Q

ˆ

1

N

ˆ

ÿ

`ďt´1

b`y
p`q, J ´mptq

˙

ě x

˙

ď exp

"

´
Nx2

2Wmaxpbq

*

ď exp

"

´
Nx2

2}b}2p1` 6q1{2q

*

.

(87)
On the other hand, it follows from Definition A.7 and (56) that

1

N

ˆ

ÿ

`ďt´1

b`y
p`q, J ´mptq

˙

“

´

b,$pJq ´ 9$˚

¯

. (88)

Given d ą 0 and ε P p0, 1{4s, note there exists a pdεq-net of r´4d, 4dst´1 with cardinality upper
bounded by (86). If J is any element of t´1,`1uN with d ď }$pJq ´ 9$˚} ď 2d, and $net is an
element of the pdεq-net at minimal distance from $pJq, then }$net ´ 9$˚} ě dp1´ εq, and

´

$net ´ 9$˚, $pJq ´ 9$˚

¯

ě

›

›

›
$pJq ´ 9$˚

›

›

›

2
´

ˇ

ˇ

ˇ

ˇ

p$net ´$pJq, $pJq ´ 9$˚q

ˇ

ˇ

ˇ

ˇ

ě d2p1´ 2εq .

Thus, by taking ε “ q1{2 and b “ $net ´ 9$˚ in (87) and (88), we obtain

Q

ˆ

d ď
›

›

›
$pJq ´ 9$˚

›

›

›
ď 2d

˙

ď

ˆ

65t

q

˙t{2

exp

"

´
Nd4p1´ 2q1{2q2

2d2p1´ q1{2q2p1` 6q1{2q

*

ď

ˆ

65t

q

˙t{2

exp

"

´
Nd2p1´ 8q1{2q

2

*

.

Since 4k ě 3k for all k ě 0, as long as Nd2 ě 1 we can bound

Q

ˆ

›

›

›
$pJq ´ 9$˚

›

›

›
ě d

˙

ď
ÿ

kě0

p65t{qqt{2

exptNp2kdq2p1´ 8q1{2q{2u
ď

2p65t{qqt{2

exptNd2p1´ 8q1{2q{2u
.

The claim follows.
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Appendix B. Technical estimates

We now collect some technical results which will be used later in the proof. This section is organized
as follows:

• In §B.1 we prove some basic consequences of Assumptions 1 and 2.

• In §B.2 we give the proof of Proposition A.1, which characterizes the replica symmetric fixed-
point solution. As a consequence of this analysis we obtain a rough estimate (Corollary B.8)
of the replica symmetric formula (29), which will be used in later sections. We also prove
Proposition 1.8, showing that the replica symmetric formula for Uη converges to the one for
U as η Ó 0.

• In §B.3 we prove Lemma B.11, which gives the Almeida–Thouless (AT) condition in our
setting.

• In §B.4 we give the proof of Proposition 1.3, showing that Assumption 2 holds if u ” logU
is either bounded or concave. We also give the proof of Proposition A.6 (convergence of
the state evolution recursions), which amounts to checking that AT condition derived in
Lemma B.11 holds for 0 ă α ď αpUq. We conclude the section with some further con-
sequences (Lemmas B.14 and B.15) of Assumption 2.

The following notation will be used throughout the paper:

Definition B.1 For c ą 0 and x P R, let µx,c denote the probability measure on the real line whose
density (with respect to the Lebesgue measure) is given by

dµx,c
dz

“ χx,cpzq ”
Upx` czqϕpzq

EξrUpx` cξqs
.

We use Ex,c, Varx,c, and Covx,c to denote expectation, variance, and covariance under µx,c.

B.1. Preliminary bounds

In this subsection we prove some basic consequences of Assumptions 1 and 2. As before, ξ denotes
a standard gaussian random variable, and Eξ denotes expectation over ξ.

Lemma B.2 Suppose U satisfies Assumption 1, and let qx,cpzq ” Upx` czqϕpzq as above. Then,
given any ε ą 0 and any L ă 8, it is possible to choose η1 small enough such that we have the
bound

ż

ˇ

ˇ

ˇ
Upx` czq ´ Upx1 ` c1zq

ˇ

ˇ

ˇ
ϕpzq dz ď ε

as long as c, c1 P r1{3, 3s, x, x1 P r´L,Ls, and maxt|x´ x1|, |c´ c1|u ď η1.

Proof Given ε ą 0, we can clearly choose Lpεq large enough (depending only on ε) such that
Lpεq ě L, and

ż

|z|ěLpεq

ˇ

ˇ

ˇ
Upx` czq ´ Upx1 ` c1zq

ˇ

ˇ

ˇ
ϕpzq dz ď

ż

|z|ěLpεq
ϕpzq dz ď

ε

4
. (89)
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If |z| ď Lpεq, then the assumptions imply |x` cz| ď 4Lpεq and |x1 ` c1z| ď 4Lpεq, so
ż

|z|ďLpεq

ˇ

ˇ

ˇ
Upx` czq ´ Upx1 ` c1zq

ˇ

ˇ

ˇ
ϕpzq dz ď

ż

ˇ

ˇ

ˇ
ūpx` czq ´ ūpx1 ` c1zq

ˇ

ˇ

ˇ
ϕpzq dz

where ūpxq ” Upxq1t|x| ď 4Lpεqu. Then, since ū P L1, it is well known that we can choose a
function ũ which is compactly supported and smooth, such that }ū´ ũ}1 ď ε{4 (see e.g. (Lieb and
Loss, 2001, Lem. 2.19)). Therefore
ż

ˇ

ˇ

ˇ
ūpx` czq ´ ũpx` czq

ˇ

ˇ

ˇ
ϕpzq dz ď ϕp0q

ż

ˇ

ˇ

ˇ
ūpx` czq ´ ũpx` czq

ˇ

ˇ

ˇ
dz “

ϕp0q}ū´ ũ}1
c

ď
ε

4
,

where this estimate holds for all x P R and all c ě 1{2. We also have
ż

ˇ

ˇ

ˇ
ũpx` czq ´ ũpx1 ` c1zq

ˇ

ˇ

ˇ
ϕpzq dz ď }ũ1}8

ż

´

|x´ x1| ` |c´ c1||z|
¯

ϕpzq dz ď 2}ũ1}8η
1 ,

which can be made at most ε{4 by taking η1 “ ε{p8}ũ1}8q. Combining the above estimates gives
ż

|z|ďLpεq

ˇ

ˇ

ˇ
Upx` czq ´ Upx1 ` c1zq

ˇ

ˇ

ˇ
ď

3ε

4
,

and combining with the estimate (89) for |z| ě Lpεq gives the conclusion.

Lemma B.3 Suppose U satisfies Assumption 1 . There exists a finite constant C1pUq, depending
on U only, such that

Ex,cp|Z|pq “
Eξp|ξ|pUpx` cξqq

EξUpx` cξq
ď C1pUq `

ˆ

1.82 ¨ |x|

c

˙p

for all 0 ď p ď 200, 1{2 ď c ď 2, and x P R. (We can assume, without loss, C1pUq ě 10.)

Proof It follows from Assumption 1 that EξUpcξq ą 0 for any c ą 0. Lemma B.2 gives that
EξUpcξq is a continuous function of 1{2 ď c ď 2, so by compactness considerations we must have

c̄1pUq ” max

"

2, sup

"

1

EξUpcξq
:

1

2
ď c ď 2

**

ă 8 (90)

(where we chose c̄1pUq ě 2 for convenience). Next, for any M ą 0, it holds for all 1{2 ď c ď 2
that

Eξ
´

Upcξq; |cξ| ěM
¯

ď P
ˆ

|ξ| ě
M

c

˙

ď
ϕpM{cq

M{c
.

If we take K ě K0pUq “ p8 log c̄1pUqq
1{2 ě 2, then for all 1{2 ď c ď 2 we have

Eξ
´

Upcξq; |cξ| ď K
¯

ě EξUpcξq ´
ϕpK{2q

K{2
ě

1

2c̄1pUq
.
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In what follows let Kpxq ” maxtK0pUq, |x|u. Then we can lower bound

EξUpx` cξq “
ż

Upczqϕ

ˆ

z ´
x

c

˙

dz “

ż

Upczq exp

"

´
x2

2c2
`
xz

c

*

ϕpzq dz

ě
EpUpcξq; |cξ| ď Kpxqq

exptp3{2qKpxq2{c2u
ě

1{p2c̄1pUqq

exptp3{2qKpxq2{c2u
. (91)

Next we note that for any M ě 0 and η1 “ 1{10 we have

Eξp|ξ|p; |ξ| ěMq “

ż

|z|ěM

|z|p

p2πq1{2
exp

"

´
z2

2

*

dz

“

ż

|z|ěM{p1`η1q1{2

p1` η1qpp`1q{2|z|p

p2πq1{2
exp

"

´
p1` η1qz2

2

*

dz

ď sup

"

1.05p`1|z|p

exppz2{20q
: z P R

*

P
ˆ

|ξ| ě
M

p1` η1q1{2

˙

ď c0
ϕpM{1.05q

M{1.05
, (92)

where c0 ě 5 is an absolute constant since we restricted 0 ď p ď 200. Combining (91) with (92)
gives

Eξp|ξ|pUpx` cξqq
EξUpx` cξq

ď

ˆ

1.82 ¨Kpxq

c

˙p

`
Eξp|ξ|p; |ξ| ě 1.82 ¨Kpxq{cq

EξUpx` cξq

ď

ˆ

1.82 ¨Kpxq

c

˙p

` c0 ¨
ϕp1.82 ¨Kpxq{p1.05 ¨ cqq

1.82 ¨Kpxq{p1.05 ¨ cq
¨

exptp3{2qKpxq2{c2u

1{p2c̄1pUqq
.

(The first inequality above also uses that U ď 1, from Assumption 1.) Recalling again the restric-
tions 1{2 ď c ď 2 and 0 ď p ď 200, we can simplify the above to obtain

Eξp|ξ|pUpx` cξqq
EξUpx` cξq

ď

ˆ

1.82 ¨Kpxq

c

˙p

` 2c0 ¨ c̄1pUq ¨ ϕ

ˆ

1.82 ¨Kpxq

1.05 ¨ c

˙

exp

"

3Kpxq2

2c2

*

ď

ˆ

1.82 ¨ |x|

c

˙p

`

"ˆ

1.82 ¨K0pUq

1{2

˙200

`
2 ¨ c0 ¨ c̄1pUq

p2πq1{2

*

ď

ˆ

1.82 ¨ |x|

c

˙p

`

"

´

4K0pUq
¯200

` c0 ¨ c̄1pUq

*

”

ˆ

1.82 ¨ |x|

c

˙p

` C1pUq , (93)

where the last equality defines C1pUq. The above choices guarantee C1pUq ě c0 ¨ c̄1pUq ě 10. We
define pC1q

opUq similarly, replacing c̄1pUq with

pc̄1q
opUq ” max

"

2, sup

"

1

EξUpcξq
:

2

5
ď c ď

7

3

**

ă 8 . (94)

Note that a bound on pc̄1q
opUq implies a bound on c̄1pUηq for η small enough; this will be spelled

out below in the proof of Proposition 1.8.
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Remark The bound from Lemma B.3 is reasonably tight. To see this, consider the function

Upxq “ 1

"

|x´ a| ď
a

2

*

for a ą 0. If Upx ` ξq “ 1, then x ` ξ ě a{2, so ξ ě a{2 ´ x. In the case that x ď 0, it implies
|ξ| ě a{2` |x|. It follows that for any x ď 0 we have

Ex,cp|Z|pq “
Eξp|ξ|pUpx` ξqq

EξUpx` ξq
ě

ˆ

a

2
` |x|

˙p

ě

ˆ

a

2

˙p

` |x|p ,

where a ą 0 can be chosen to be arbitrarily large.

Next we combine Assumption 2 (which bounds Varx,cpZq) with the calculations of Lemma B.3
to obtain bounds on Varx,cpZ

2q and Covx,cpZ,Z
2q:

Lemma B.4 Suppose U satisfies Assumptions 1 and 2, and let C1pUq be as in Lemma B.3. Then
we have

Varx,cpZ
2q ď K2pUq ¨

"ˆ

1.82 ¨ |x|

c

˙2

` C1pUq

*

, (95)

Covx,cpZ,Z
2q ď

K2pUq

21{2
¨

ˆ

1.82 ¨ |x|

c
` C1pUq

1{2

˙

, (96)

for all 1{2 ď c ď 2 and all x P R.

Proof Let Kpxq be as in the proof of Lemma B.3. From the definition of K2pUq (see Assump-
tion 2),

pIq ”
Eξ,ξ1rpξ ´ ξ1q2pξ ` ξ1q2Upx` cξqUpx` cξ1q; |ξ ` ξ1| ď 21{2 ¨ 1.82 ¨Kpxq{cs

Eξ,ξ1rUpx` cξqUpx` cξ1qs

ď 2K2pUq ¨

ˆ

1.82 ¨Kpxq

c

˙2

.

If ξ and ξ1 are independent standard gaussian random variables, then ξ´ξ1 and ξ`ξ1 are independent
gaussian random variables with mean zero and variance 2. It follows that

Eξ,ξ1
”

pξ ´ ξ1q2pξ ` ξ1q2; |ξ ` ξ1| ě
?

2M
ı

“ 4 ¨ Eξ
”

|ξ|2; |ξ| ěM
ı (92)
ď 4 ¨ c0

ϕpM{1.05q

M{1.05
. (97)

Combining (97) with our earlier bound (91) gives

pIIq ”
Eξ,ξ1rpξ ´ ξ1q2pξ ` ξ1q2Upx` cξqUpx` cξ1q; |ξ ` ξ1| ě 21{2 ¨ 1.82 ¨Kpxq{cs

Eξ,ξ1rUpx` cξqUpx` cξ1qs

ď 4 ¨ c0
ϕp1.82 ¨Kpxq{p1.05 ¨ cqq

1.82 ¨Kpxq{p1.05 ¨ cq
¨

exptp3{2qKpxq2{c2u

1{p2c̄1pUqq
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(The first inequality above also uses that U ď 1, from Assumption 1.) By combining the above
bounds for the quantities (I) and (II), and recalling again that 1{2 ď c ď 2, we obtain

Varx,cpZ
2q “

Eξ,ξ1rpξ ´ ξ1q2pξ ` ξ1q2Upx` cξqUpx` cξ1qs
2 ¨ Eξ,ξ1Upx` cξqUpx` cξ1q

ď K2pUq ¨

ˆ

1.82 ¨Kpxq

c

˙2

`
4 ¨ c0 ¨ c̄1pUq

1.82{1.05
¨ ϕ

ˆ

1.82 ¨Kpxq

1.05 ¨ c

˙

exp

"

3Kpxq2

2c2

*

ď K2pUq ¨

"ˆ

1.82 ¨ |x|

c

˙2

`

ˆ

1.82 ¨K0pUq

1{2

˙2*

`
4 ¨ c0 ¨ c̄1pUq

p1.82{1.05q ¨ p2πq1{2

ď K2pUq ¨

"ˆ

1.82 ¨ |x|

c

˙2

` 14 ¨K0pUq
2 ` c0 ¨ c̄1pUq

*

ď K2pUq ¨

"ˆ

1.82 ¨ |x|

c

˙2

` C1pUq

*

,

where the second-to-last inequality uses that we took K2pUq ě 1 (see Assumption 2), and the
last inequality uses the definition (93) of C1pUq from the proof of Lemma B.3. This proves (95).
Combining with Assumption 2 and the Cauchy–Schwarz inequality gives

Covx,cpZ,Z
2q ď

"

Varx,cpZqVarx,cpZ
2q

*1{2

ď
K2pUq

21{2

"ˆ

1.82 ¨ |x|

c

˙2

` C1pUq

*1{2

ď
K2pUq

21{2

ˆ

1.82 ¨ |x|

c
` C1pUq

1{2

˙

,

where the last inequality again uses that K2pUq ě 1. This proves (96).

Remark B.5 We include here an example of a function U that satisfies Assumption 1 but does
not satisfy the bound (95) (and hence, by Lemma B.4, must violate Assumption 2). For k ě 1 let
bk ” expp´100 ¨ 4kq, and let

Akpxq ”

ˆ

1
!

x P r0, 1s
)

` 1
!

x P r2k ´ 1, 2ks
)

˙

bk
ϕpxq

”
bkfkpxq

ϕpxq
.

Then clearly Ak is a nonnegative measurable function supported on r0, 1s Y r2k ´ 1, 2ks, with

}Ak}8 ď
bk

ϕp2kq
“ bkp2πq

1{2 exp

ˆ

4k

2

˙

ď
p2πq1{2

expp99 ¨ 4kq
.

Let C be a large absolute constant, and define xk ” C2k and

Upxq ”
ÿ

kě1

Akpxk ` xq .

From the above bound on }Ak}8 it is clear that U satisfies Assumption 1. Next we note that

Eξrξ2Akpξqs

bk
“

ż

z2fkpzq dz “
1

3

ˆ

p2kq3 ´ p2k ´ 1q3 ` 1

˙

“ 22k

ˆ

1`
Op1q

2k

˙

,

Eξrξ4Akpξqs

bk
“

ż

z4fkpzq dz “
1

5

ˆ

p2kq5 ´ p2k ´ 1q5 ` 1

˙

“ 24k

ˆ

1`
Op1q

2k

˙

.
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For any k ě 1, we have EξUp´xk ` ξq ě EξAkpξq “ 2bk. For ` ě k ` 1 and 0 ď p ď 4, we have

Eξr|ξ|pA`p´xk ` x` ` xqs
bk

ď
}A`}8Eξpξ4q

bk
ď

3p2πq1{2 expp100 ¨ 4kq

expp99 ¨ 4`q

ď
3p2πq1{2

expp4kr74 ¨ 4`´k ` p25 ¨ 4`´k ´ 100qsq
ď

3p2πq1{2

expp74 ¨ 4`q
ď

1

expp70 ¨ 4`q
.

On the other hand, for 1 ď ` ď k ´ 1 and 0 ď p ď 4, we have (again taking C large enough)

Eξr|ξ|pA`p´xk ` x` ` xqs
bk

ď
}A`}8Eξrξ4; |ξ| ě C2k{4s

bk
ď

p2πq1{2 expp100 ¨ 4kq

expp99 ¨ 4` ` C24k{33q

ď
p2πq1{2 expp100 ¨ 4kq

expp99` C24k{33q
ď

p2πq1{2

expp99` C4kq
ď

1

expp70 ¨ 4kq
.

(In the first inequality above, we used that the support of A` is contained in r0, 2`s.) Altogether we
conclude

Eξrξ2Up´xk ` ξqs

EξUp´xk ` ξq
“

ˆ

1`
Op1q

expp4kq

˙

Eξrξ2Akpξqs

EξAkpξq
“

ˆ

1`
Op1q

expp4kq

˙

22k

2
,

Eξrξ4Up´xk ` ξqs

EξUp´xk ` ξq
“

ˆ

1`
Op1q

expp4kq

˙

Eξrξ4Akpξqs

EξAkpξq
“

ˆ

1`
Op1q

expp4kq

˙

24k

2
.

Recalling the notation of Definition B.1, we obtain

Var´xk,1pZ
2q “

ˆ

1`
Op1q

expp4kq

˙"

24k

2
´

ˆ

22k

2

˙2*

“ Θp24kq .

Thus shows that U does not satisfy the bound (95), as claimed.

B.2. Estimates of the replica symmetric solution

In this subsection we give the proof of Proposition A.1. As a consequence we obtain a rough
estimate (Corollary B.8) of the replica symmetric formula which will be used later in our analysis.

Lemma B.6 Suppose U satisfies Assumption 1. As in Proposition A.1, let q̄pψq ” Erthpψ1{2Zq2s.
Then

max
!

0, 1´ 4ψ
)

ď
dq̄

dψ
ď 1

for all ψ ě 0.

Proof It is clear that q̄ is increasing with respect to ψ ě 0: indeed,

dq̄

dψ
“ E

„

thpψ1{2Zq th1pψ1{2Zq
Z

ψ1{2



ą 0 ,

since th1pxq ą 0 for all x P R, and x thpxq ě 0 for all x P R. Integrating by parts gives

dq̄

dψ
“ E

„

´

th1pψ1{2Zq
¯2
` thpψ1{2Zq th2pψ1{2Zq



“ E
ˆ

1´ 4 thpψ1{2Zq2 ` 3 thpψ1{2Zq4
˙

.
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Note that x “ thpψ1{2Zq2 P r0, 1s almost surely, and 1´ 4x ď 1´ 4x` 3x2 ď 1 for all x P r0, 1s,
so

1 ě
dq̄

dψ
ě E

´

1´ 4 thpψ1{2Zq2
¯

ě 1´ 4ψ ¨ EpZ2q “ 1´ 4ψ ,

for all ψ ě 0.

Lemma B.7 Suppose U satisfies Assumption 1. As in Proposition A.1, let r̄pqq ” ErFqpq1{2Zq2s.
Then

sup

"ˇ

ˇ

ˇ

ˇ

dr̄

dq

ˇ

ˇ

ˇ

ˇ

: 0 ď q ď
1

2

*

ď c1 ¨ C1pUq
6 ,

where c1 ě 1 is an absolute constant while C1pUq is the constant from Lemma B.3.

Proof For convenience we shall rewrite (8) as

Fqpxq “
EξU 1px` p1´ qq1{2ξq
EξUpx` p1´ qq1{2ξq

. (98)

Note that the above makes sense for any U satisfying Assumption 1, without any smoothness as-
sumption, since U 1 can be interpreted as a distributional derivative (as in e.g. (Lieb and Loss, 2001,
Ch. 6)). Similarly one can make sense of the distributional derivative U pkq for any integer k ě 1.
We can then calculate

dr̄

dq
“ E

„

2Fqpq
1{2Zq

drFqpq
1{2Zqs

dq



“ (I)´ (II)

where, abbreviating U pkq ” U pkqpq1{2Z ` p1´ qq1{2ξq, we have

(I) “ E
„

Z

q1{2
Fqpq

1{2Zq ¨ pFqq
1pq1{2Zq



“ E
„

Fqpq
1{2Zq ¨ pFqq

2pq1{2Zq `
´

pFqq
1pq1{2Zq

¯2


,

(II) “ E
„

Fqpq
1{2Zq

p1´ qq1{2

ˆ

EξpξU2q
EξU

´
pEξU 1qEξpξU 1q

pEξUq2

˙

.

It follows by repeated applications of the inequality 2ab ď a2 ` b2 that
ˇ

ˇ

ˇ

ˇ

dr̄

dq

ˇ

ˇ

ˇ

ˇ

ď C
ÿ

0ďk,pď3

E
ˆ

Eξr|ξ|kUpq1{2Z ` p1´ qq1{2ξqs

EξUpq1{2Z ` p1´ qq1{2ξq

˙2p

for all 0 ď q ď 1{2, where C is an absolute constant. It then follows from Lemma B.3 that
ˇ

ˇ

ˇ

ˇ

dr̄

dq

ˇ

ˇ

ˇ

ˇ

ď C
ÿ

0ďk,pď3

E
„

´

p4q1{2|Z|qk ` C1pUq
¯2p



ď c1 ¨ C1pUq
6

for all 0 ď q ď 1{2, where c1 ě 1 is an absolute constant.

Proof [Proof of Proposition A.1] We seek a value q P r0, 1{25s that satisfies the fixed-point equation
(9), i.e., q “ q̄pαr̄pqqq. This is the same as a root q P r0, 1{25s of the function

ḡpqq “
q̄´1pqq

α
´ r̄pqq . (99)
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Note that q̄p0q “ 0, and it follows from Lemma B.6 that q̄1pψq P r4{5, 1s for all ψ ď 1{20, so

4

5
ψ ď q̄pψq ď ψ

for all ψ ď 1{20. Consequently, if q̄pψq ď 1{25 then we must have ψ ď 1{20, that is to say,

sup

"

pq̄q´1pqq : q ď
1

25

*

ď
1

20
.

It follows from Lemma B.6 that pq̄´1q1pqq P r1, 5{4s for all q ď 1{25. Combining with Lemma B.7
gives

1

α
´ c1 ¨ C1pUq

6 ď
dḡ

dq
ď

5

4α
` c1 ¨ C1pUq

6 ,

where c1 is the absolute constant from Lemma B.7. It follows that as long as α ď αpUq as defined
by (27), then for all 0 ď q ď 1{25 we will have

1

2α
ď
dḡ

dq
ď

2

α
.

At q “ 0 we have ḡp0q “ ´r̄p0q, and it follows by Assumption 1 combined with Lemma B.3 that

´

EξrξUpξqs
¯2
ď r̄p0q “

ˆ

EξU 1pξq
EξUpξq

˙2

“

ˆ

EξrξUpξqs
EξUpξq

˙2

ď C1pUq
2 .

It follows that on the interval 0 ď q ď 1{25, the function ḡ has a unique root q, which must satisfy

pEξrξUpξqsq2

2
ď
q

α
ď 2C1pUq

2 .

It follows from the earlier bound on ψ that

pEξrξUpξqsq2

2
ď
q

α
ď
ψ

α
ď

5q

4α
ď

5C1pUq
2

2
,

so this concludes the proof.

Corollary B.8 If the function U satisfies Assumptions 1 and 2, then for all 0 ă α ď αpUq we have

RSpα;Uq

α
ě

annpα;Uq

α
´ 1.51 ¨ C1pUq

2 ě
log 2

α
´ 1.53 ¨ C1pUq

2 ,

where C1pUq is the constant from Lemma B.3, and αpUq is given by (27).

Proof Let pq, ψq be the solution from Proposition A.1, and recall from (29) that

RSpα;Uq ´ log 2 “ ´
ψp1´ qq

2
` E

"

log chpψ1{2Zq ` αLqpq
1{2Zq

*

.
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We hereafter abbreviate

¯̀pqq ” ELqpq1{2Zq “ E
„

logEξU
´

q1{2Z ` p1´ qq1{2ξ
¯



.

Since chpxq ě 1 for all x P R, we can lower bound

RSpα;Uq ´ log 2 ě ´
ψ

2
` αELqpq1{2Zq ě ´

ψ

2
` α

"

¯̀p0q ´ q sup
0ďqď1{2

ˇ

ˇ

ˇ

ˇ

d¯̀

dq

ˇ

ˇ

ˇ

ˇ

*

.

Similarly as in the proof of Lemma B.7, we can bound
ˇ

ˇ

ˇ

ˇ

d¯̀

dq

ˇ

ˇ

ˇ

ˇ

ď C
ÿ

0ďk,pď2

E
„ˆ

Eξr|ξ|kUpq1{2Z ` p1´ qq1{2ξqs

EξUpq1{2Z ` p1´ qq1{2ξq

˙p

ď c1 ¨ C1pUq
2 (100)

for all 0 ď q ď 1{2, where c1 is an absolute constant (and can be arranged to be the same as the c1

from Lemma B.7). By combining the above bounds we conclude

RSpα;Uq ´ plog 2` α¯̀p0qq

α
ě ´

ψ

2α
´ q sup

0ďqď1{2

ˇ

ˇ

ˇ

ˇ

d¯̀

dq

ˇ

ˇ

ˇ

ˇ

(100)
ě ´

ψ

2α
´ q ¨ c1 ¨ C1pUq

2

(28)
ě ´3C1pUq

2

ˆ

1

2
` c1 ¨ C1pUq

2α

˙

(27)
ě ´3C1pUq

2

ˆ

1

2
`

1

e10C1pUq4K2pUq4

˙

ě ´1.51 ¨ C1pUq
2 ,

where the last bound uses that we chose C1pUq ě 10 in the proof of Lemma B.3. Then, recalling
(5), we have

annpα;Uq ´ log 2 “ α¯̀p0q “ ´α log
1

EUpZq
(90)
ě ´α log c̄1pUq ě ´αc̄1pUq ě ´

αC1pUq
2

50
,

using that we also chose C1pUq ě 5 ¨ c̄1pUq ě 10 in the proof of Lemma B.3. The claim follows.

Lemma B.9 Suppose U satisfies Assumptions 1 and 2, and let Uη “ U ˚ϕη as in (21). Then, using
the notation of Assumption 2, we will have K2pUηq ď 4K2,opUq for all η ď 1.

Proof Let ξ, ξ1 be i.i.d. standard gaussian random variables. We need to bound the quantity

Eξ,ξ1rpξ ´ ξ1q2Uηpx` cξqUηpx` cξ1qs
Eξ,ξ1rUηpx` cξqUηpx` cξ1qs

”
Nηpx, cq

Dηpx, cq
. (101)

Let ζ, ζ 1 be independent copies of ξ, ξ1, and note that

Nηpx, cq “ Eξ,ξ1,ζ,ζ1
„

pξ ´ ξ1q2Upx` cξ ` ηζqUpx` cξ1 ` ηζ 1q



.

Taking an orthogonal transformation of pξ, ζq gives another pair of i.i.d. standard gaussians,
ˆ

X
Y

˙

“
1

pc2 ` η2q1{2

ˆ

c η
´η c

˙ˆ

ξ
ζ

˙

.
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Likewise we like pX 1, Y 1q be the pair obtained by the same transformation applied to pξ1, ζ 1q. Then
note that

pξ ´ ξ1q2 “

ˆ

cpX ´X 1q ´ ηpY ´ Y 1q

pc2 ` η2q1{2

˙2

ď 2 ¨
c2pX ´X 1q2 ` η2pY ´ Y 1q2

c2 ` η2
.

Rewriting Nηpx, cq in terms of the random variables X,X 1, Y, Y 1 gives

Nηpx, cq ď 2 ¨ EX,X 1,Y,Y 1
„ˆ

c2pX ´X 1q2 ` η2pY ´ Y 1q2

c2 ` η2

˙

ˆ Upx` pc2 ` η2q1{2XqUpx` pc2 ` η2q1{2X 1q



“
2c2

c2 ` η2
N0px, pc

2 ` η2q1{2q `
4η2

c2 ` η2
D0px, pc

2 ` η2q1{2q ,

where N0 and D0 are as in (101) but with U in place of Uη. If 1{2 ď c ď 2 and η ď 1, then
1{2 ď pc2 ` η2q1{2 ď 7{3, so Assumption 2 will give

Nηpx, cq ď

ˆ

2c2

c2 ` η2
K2,opUq `

4η2

c2 ` η2

˙

D0px, pc
2 ` η2q1{2q ď 4K2,opUqDηpx, cq .

The claim follows.

Proof [Proof of Proposition 1.8] Recall from Lemma B.3 the constants C1pUq and pC1q
opUq: they

depend on the absolute constant c0, as well as the constants c̄1pUq and pc̄1q
opUq defined by (90) and

(94). Let ξ, ζ be i.i.d. standard gaussians, and note

EξUηpcξq “ Eξ,ζU
´

cξ ` ηζ
¯

“ EξU
´

pc2 ` η2q1{2ξ
¯

.

It follows from this that in the limit η Ó 0, we have c̄1pUηq asymptotically upper bounded by
pc̄1q

opUq. Next recall from Lemma B.9 that if η ď 1 then we have K2pUηq ď 4K2,opUq. Conse-
quently, recalling (27) and (31), we have

αpUηq
(27)
”

1

e10 ¨ c1 ¨ C1pUηq6 ¨K2pUηq4
ě

1

e16 ¨ c1 ¨ pC1q
opUq6 ¨K2,opUq4

(31)
“ αopUq . (102)

This shows that for all 0 ă α ď αopUq, we also have α ď αpUηq for all η small enough, which
means that the results of Proposition A.1 apply for Uη as well as for U . We see from the proof
of Proposition A.1 that the replica symmetric fixed point qη for Uη is a root qη P r0, 1{25s of the
function (cf. (99))

ḡηpqq “
q̄´1pqq

α
´ r̄ηpqq ,

where r̄η is defined as in (9) but with Uη in place of U :

r̄ηpqq “
1

p1´ qq
E
„ˆ

EξrξUηpZ ` p1´ qq1{ξqs
EξUηpZ ` p1´ qq1{ξq

˙2

.

It is clear that ḡη converges uniformly to ḡ over 0 ď q ď 1{25, so qη converges to q, and conse-
quently ψη converges to ψ. It is then straightforward to deduce from the formula (29) that RSpα;Uηq
converges to RSpα;Uq as η Ó 0.
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B.3. Almeida–Thouless condition

Recall from Definition A.2 the state evolution recursions.

Lemma B.10 Suppose U satisfies Assumption 1. The recursions of Definition A.2 are well-defined:
the recursions (33) lead to |ρs| ď 1 and |µs| ď 1 for all s ě 1, and the recursions (34) leads to
Λs P r0, 1q and Γs P r0, 1q for all s ě 0.

Proof We abbreviate F ” Fq throughout this proof. We have ρ1 ” λ1 and µ1 ” γ1 as in (32), and
it follows that

0 ď pρ1q
2 “ pλ1q

2 ď
1

q
E
”

thpψ1{2Zq2
ı

(9)
“ 1 ,

and likewise 0 ď pµ1q
2 “ pγ1q

2 ď 1. Then for s ě 1 we have ρs`1 and µs`1 defined by (33), and
it follows by the Cauchy–Schwarz inequality that

|ρs`1| ď
Erthpψ1{2Zq2s

q

(9)
“ 1 , |µs`1| ď

αErF pq1{2Zq2s

ψ

(9)
“ 1 .

Thus |ρs| ď 1 and |µs| ď 1 for all s ě 1, which confirms that the recursions (33) are well-defined.
It remains to verify that the quantities Λs´1 and Γs´1 from (35) are strictly smaller than 1 for

all s ě 1. The claim holds trivially in the base case s “ 0, since clearly Λ0 “ Γ0 “ 0. We therefore
suppose inductively that we have Λs´1 ă 1 and Γs´1 ă 1. This means that the quantities λs and γs
are well-defined by the recursions (34). Denote M1 ” q1{2 and N1 ” pψ{αq

1{2. Next let Yi, Xj be
a collection of i.i.d. standard gaussian random variables, and let

Mi`1 ” th

ˆ

ψ1{2

"

γ1Y1 ` . . .` γi´1Yi´1 ` p1´ Γi´1q
1{2Yi

*˙

Nj`1 ” F

ˆ

q1{2

"

λ1X1 ` . . .` λj´1Xj´1 ` p1´ Λi´1q
1{2Xj

*˙

(cf. (253) and (254)). This gives well-defined random variables Mk, Nk for all 1 ď k ď s` 1, with
ErpMkq

2s “ q and ErpNkq
2s “ ψ{α. If 2 ď k ă ` ď s` 1, then

EpMkM`q

q
“ ρ

ˆ

pγ1q
2 ` . . .` pγk´2q

2 ` γk´1p1´ Γk´2q
1{2

˙

(34)
“ ρpµk´1q

(33)
“ ρk , (103)

EpNkN`q

ψ{α
“ µ

ˆ

pλ1q
2 ` . . .` pλk´2q

2 ` λk´1p1´ Λk´2q
1{2

˙

(34)
“ µpρk´1q

(33)
“ µk . (104)

(cf. (41) and (42)). Now let Ri, Ci (i ě 1) be the Gram–Schmidt orthogonalization of the random
variables Mi, Ni:

Ri`1 “
1

ri`1

"

Mi`1 ´
ÿ

jďi

EpMi`1RjqRj

*

, (105)

Ci`1 “
1

ci`1

"

Ni`1 ´
ÿ

jďi

EpNi`1CjqCj

*

(106)

where ri`1 and ci`1 are the normalizing constants such that ErpRi`1q
2s “ 1 and ErpCi`1q

2s “ 1.
To see that rs`1 is a well-defined positive number, we apply the inductive hypothesis Γs´1 ă 1:

51



BOLTHAUSEN NAKAJIMA SUN XU

then follows from the above definition (together with the fact that th is a non-constant function)
that Ms`1 depends non-trivially on Ys. On the other hand, the random variables Rj for j ď s can
depend only on Y1, . . . , Ys´1. It follows that the random variable

Ms`1 ´
ÿ

jďs

EpMs`1RjqRj

has strictly positive variance, so rs`1 is well-defined and positive. Likewise, using the inductive
hypothesis Λs´1 ă 1 together with the fact that F is non-constant, we deduce that cs`1 is also well-
defined and positive. Next, since we see from above that the quantities EpMkM`q and EpNkN`q

depend only on mintk, `u, it follows that there is a value lj such that EpMi`1Rjq “ q1{2lj for all
i ě j, and likewise there is a value yj such that EpNi`1Cjq “ pψ{αq

1{2yj for all i ě j. As in (35),
let us abbreviate

Li ”
ÿ

jďi

pljq
2 , Yi ”

ÿ

jďi

pyjq
2 .

It follows by the above calculations that

li`1 “
EpMi`2Ri`1q

q1{2

(105)
“

q1{2

ri`1

"

EpMi`2Mi`1q

q
´

ÿ

jďi

pljq
2

*

(103)
“

ρi`1 ´ Li

p1´ Liq1{2
,

yi`1 “
EpNi`2Ci`1q

pψ{αq1{2
(106)
“

pψ{αq1{2

ri`1

"

EpNi`2Ni`1q

ψ{α
´

ÿ

jďi

pyjq
2

*

(104)
“

µi`1 ´ Yi

p1´ Yiq1{2
.

Recalling that ri`1 and ci`1 are positive for all i ď s, we deduce

0 ă
ri`1

q1{2
“

1

q1{2
E
„ˆ

Mi`1 ´
ÿ

jďi

EpMi`1RjqRj

˙21{2

“ p1´ Liq
1{2 ,

and similarly 0 ă p1 ´ Yiq
1{2, which implies Li, Yi P r0, 1q. We see moreover that the sequences

li,mi satisfy the same recursions (34) as the sequences λi, µi, which implies li “ λi and mi “ µi
for all i ě 1. This proves that Λi “ Li and Γi “ Yi both lie in r0, 1q for all i ě 1. Therefore the
recursions (34) give well-defined quantities λs and γs for all s ě 1, as desired.

Lemma B.11 (Almeida–Thouless condition) Suppose U satisfies Assumption 1, and moreover
that

ATpα;Uq ” α ¨

"

E
´

pFqq
1pq1{2Zq2

¯

*"

E
´

th1pψ1{2Zq2
¯

*

ď 1 . (107)

In this case, the recursions of Definition A.2 lead to Γs Ñ 1 and Λs Ñ 1 as sÑ8.

Proof We begin with a general observation. Let Z, ξ, ξ1 be i.i.d. standard gaussians. Suppose
f : RÑ R is any function with at most polynomial growth, and consider the function

rf ptq ” E
„

f
´

t1{2Z ` p1´ tq1{2ξ
¯

f
´

t1{2Z ` p1´ tq1{2ξ1
¯



,
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which is defined for 0 ď t ď 1. Write Zptq ” t1{2Z ` p1´ tq1{2ξ, and note that

rf ptq “ E
„ˆ

Eξf
´

t1{2Z ` p1´ tq1{2ξ
¯

˙2

“ E
„

´

EξfpZptqq
¯2


ě 0 .

Next we differentiate with respect to t and apply gaussian integration by parts to obtain

prf q
1ptq “ E

"

´

EξfpZptqq
¯

Eξ
„

f 1pZptqq

ˆ

Z

t1{2
´

ξ

p1´ tq1{2

˙*

“ E
„

´

Eξf 1pZptqq
¯2


“ rf 1ptq ě 0 .

It follows moreover that prf q2ptq “ prf 1q1ptq “ rf2ptq ě 0 for all 0 ď t ď 1, so rf is convex.
Now, returning to the state evolution recursions from Definition A.2, we will consider rS and

rT for

Spxq ”

ˆ

α

ψ

˙1{2

F pq1{2xq , T pxq ”

ˆ

1

q

˙1{2

thpψ1{2xq .

Denote rST ” rS ˝ rT . Note that the fixed point equation (9) implies rSp1q “ 1 and rT p1q “ 1,
so rST p1q “ 1. We also have from (32) that rSp0q “ µ1, while rT p0q “ ρ1 “ 0; so if µ1 “ 0
then rST p0q “ 0. However, the condition (107) is equivalent to prST q1p1q ă 1, which implies
prST q

1ptq ă 1 for all t P r0, 1s, and consequently

1´ rST p0q “ rST p1q ´ rST p0q “

ż 1

0
prST q

1ptq dt ď prST q
1p1q ă 1 .

This shows that if prST q1p1q ă 1 then we must have rST p0q “ rSp0q “ pµ1q
2 ą 0.

Next we argue that ρ2 ‰ 0. To this end, for the function T we can directly calculate that for all
0 ď t ď 1,

prT q
1ptq “ rT 1ptq ě rT 1p0q “

´

ET 1pZq
¯2
“
ψ

q

´

E th1pψ1{2Zq
¯2 (9)
“
ψp1´ qq2

q
ą 0 ,

so rT ptq is strictly increasing. Thus, in the case µ1 ą 0 we obtain

ρ2
(33)
“ ρpµ1q “ rT pµ1q ą rT p0q “ 0 .

Since T is an odd function, in the case µ1 ă 0 we obtain

ρ2
(33)
“ ρpµ1q “ ´rT p´µ1q ă ´rT p0q “ 0 .

In both cases we obtain ρ2 ‰ 0 as claimed.
To conclude, note that Lemma B.10 implies that Λs Ò Λ8 ď 1 and Γs Ò Γ8 ď 1 as s Ñ 8. If

prST q
1p1q ă 1, the above considerations give pΓ8q2 ě pγ1q

2 “ pµ1q
2 ą 0, as well as

pΛ8q
2 ě pλ2q

2 (34)
“

ˆ

ρ2 ´ Λ1

p1´ Λ1q
1{2

˙2
(32)
“ pρ2q

2 ą 0 .
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Clearly we must also have λs Ñ 0 and γs Ñ 0 as sÑ8, so
ˆ

ρs
µs

˙

(34)
“

ˆ

Λs´1 ` λsp1´ Λs´1q
1{2

Γs´1 ` γsp1´ Γs´1q
1{2

˙

sÑ8
ÝÑ

ˆ

Λ8
Γ8

˙

ą

ˆ

0
0

˙

.

Thus, for s large enough, we can express

µs`1
(33)
“ µpρsq

(33)
“ µpρpµs´1q “ rST pµs´1q .

which shows that Γ8 must be a fixed point of rST , and Λ8 “ rT pΓ8q. Since we saw above that
rST ptq is convex on the interval 0 ď t ď 1, if prST q1p1q ď 1 then the only fixed point of rST ptq on
the interval 0 ď t ď 1 occurs at t “ 1, and thus we obtain Λ8 “ Γ8 “ 1.

B.4. Logconcavity

In this subsection we review the proof of Proposition 1.3 which follows from well-known results
on logconcave measures. We then state and prove Lemmas B.14 and B.15, which give some further
consequences of Assumption 2. We also present the proof of Proposition A.6.

Theorem B.12 ((Maurey, 1991)) Suppose U satisfies Assumption 1 and is logconcave. Recall
that ϕ denotes the standard gaussian density on R, and let µ be the probability measure on R whose
density (with respect to Lebesgue measure) is

dµ

dz
“
Upzqϕpzq

EξUpξq
.

Then for any measurable subset B Ď R we have the concentration bound
ż

exp

ˆ

dpz,Bq2

4

˙

dµpzq ď
1

µpBq
,

where dpz,Bq denotes the minimum distance from z to B.

Theorem B.12 is obtained as a consequence of the Prékopa–Leindler inequality (or functional
Brunn–Minkowski inequality) (Prékopa, 1971, 1973; Leindler, 1972) from convex geometry; see
also Bobkov and Ledoux (2000) and Talagrand (2011a, Thm. 3.1.4). In this paper we use Theo-
rem B.12 only in the proof of Proposition 1.3, which is not needed for the main result Theorem 1.1.
See §1.2.2 for a discussion of results on the positive spherical perceptron which use convex geom-
etry in more essential ways. By well-known arguments, Theorem B.12 can be used to deduce the
following:

Theorem B.13 (see e.g. (Talagrand, 2011a, Thm. 3.1.4)) In the same setting as Theorem B.12, if
f : RÑ R is Lipschitz, then

ż

pfpyq ´ fpzqq2k

p16kqk
dµpyq dµpzq ď

ż

exp

"

pfpyq ´ fpzqq2

16

*

dµpyq dµpzq ď 4

for any integer k ě 1.
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Note that the concentration bounds from Theorems B.12 and B.13 rely on the strong logconcav-
ity of the gaussian density ϕpxq, and the bounds hold uniformly over all logconcave functions U .
As a consequence we obtain:
Proof [Proof of Proposition 1.3] Suppose U satisfies Assumption 1. If U is bounded away from
zero or compactly supported, then Assumption 2 holds by trivial calculations. In the case that U is
logconcave, Assumption 2 follows from the above result Theorem B.13.

Lemma B.14 If U satisfies Assumption 1 and 2, then the function Fq of (8) satisfies

}pFqq
1}8 ď

1

1´ q

ˆ

K2pUq

2
` 1

˙

.

Therefore Fq is Lipschitz for any q P r0, 1q.

Proof From (8) and (98) we calculate

pFqq
1pxq “

EξU2px` p1´ qq1{2ξq
EξUpx` p1´ qq1{2ξq

´

ˆ

EξU 1px` p1´ qq1{2ξq
EξUpx` p1´ qq1{2ξq

˙2

. (108)

Applying gaussian integration by parts gives

pFqq
1pxq “

1

1´ q

"

Eξrpξ2 ´ 1qUpx` p1´ qq1{2ξqs

EξUpx` p1´ qq1{2ξq
´

ˆ

EξrξUpx` p1´ qq1{2ξqs
EξUpx` p1´ qq1{2ξq

˙*

“
1

1´ q

"

1

2

Eξ,ξ1rpξ ´ ξ1q2Upx` cξqUpx` cξ1qs
Eξ,ξ1rUpx` cξqUpx` cξ1qs

´ 1

*

.

The result follows from Assumption 2.

Proof [Proof of Proposition A.6] In view of Lemma B.11, it suffices to check that the condition
(107) holds for 0 ă α ď αpUq. By Lemma B.14 and the fact that th1pxq P p0, 1q for all x P R, we
can bound

ATpα;Uq ď
α

p1´ qq2

ˆ

K2pUq

2
` 1

˙2

ď
p3{2q2 ¨K2pUq

2 ¨ α

p1´ qq2
(28)
ď 3 ¨K2pUq

2 ¨ α

(27)
ď

3

e10C1pUq6K2pUq2
ă 1 ,

having used that C1pUq ě 10 and K2pUq ě 1.

Lemma B.15 Suppose U satisfies Assumption 1 and 2. Let F 1ptq be as in (25). Then

max

"

}hp`q}8, }n
p`q}8, }H

psq}8, }m
psq}8 : s ď t, ` ď t´ 1

*

ď N0.01

with probability 1´ oN p1q.
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Proof Note that Lemma A.4 implies, for all 1 ď ` ď t´ 1 and all 1 ď s ď t,

lim
NÑ8

1

N

ÿ

iďN

ˆ

pHpsqqi

ψ1{2

˙101

“ lim
NÑ8

1

M

ÿ

aďM

ˆ

php`qqa

q1{2

˙101

“ EpZ101q ,

where the convergence holds in probability. It follows that the event

Ω ”

"

max

"

1

N

ÿ

iďN

ˆ

pHpsqqi

ψ1{2

˙101

,
1

M

ÿ

aďM

ˆ

php`qqa

q1{2

˙101

: s ď t, ` ď t´ 1

*

ď 2EpZ101q

*

occurs with probability 1´ oN p1q. We claim that Ω implies the desired bounds. Indeed, Ω clearly
implies

max

"

}mpsq}8 : s ď t

*

ď max

"

}Hpsq}8 : s ď t

*

ď ψ1{2
´

2NEpZ101q

¯1{101
ď N1{100 .

In the above, the first inequality uses that mpsq “ thpHpsqq and | thpxq| ď |x|; and the last bound
holds for N large enough (depending on ψ). Similarly, Ω implies

max

"

}hp`q}8 : ` ď t´ 1

*

ď q1{2
´

NαEpZ101q

¯1{101
ď N1{100 ,

where the last bound holds for N large enough (depending on α, q). Finally, it follows using
Lemma B.3 that
ˇ

ˇ

ˇ
pnp`qqa

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
F pphp`qqaq

ˇ

ˇ

ˇ

(8)
“

ˇ

ˇ

ˇ

ˇ

1

p1´ qq1{2
EξrξUpphp`qqa ` p1´ qq1{2ξqs
EξUpphp`qqa ` p1´ qq1{2ξq

ˇ

ˇ

ˇ

ˇ

ď
C1pUq ` 4|php`qqa|

p1´ qq1{2
,

and combining with the previous bound on }hp`q}8 gives

max

"

}np`q}8 : ` ď t´ 1

*

“ max

"

}F php`qq}8 : ` ď t´ 1

*

ď
C1pUq ` 4q1{2pNαEpZ101qq1{101

p1´ qq1{2
ď N1{100 ,

where the last bound holds for N large enough. This proves the claim.

Appendix C. Analysis of first moment

In this section we finish analyzing the conditional first moment bound (Theorem A.12) obtained in
Section A. This leads to the proof of Theorem 1.4, our main result on the conditional first moment.
From this we can deduce the upper bound in Theorem 1.1, as presented at the end of this section.
For the reader’s convenience, we begin by reviewing some important notations. Recall from (55)
that

π˚ ” q1{2Λtêt “ q1{2

¨

˚

˚

˚

˝

λ1
...

λt´1

p1´ Λt´1q
1{2q

˛

‹

‹

‹

‚

P Rt . (109)
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Recall also from (56) that we defined

$˚ ” p1´ qqψ
1{2Γtét´1 ” p1´ qqψ

1{2

¨

˚

˚

˚

˝

γ1
...

γt´2

p1´ Γt´2q
1{2q

˛

‹

‹

‹

‚

P Rt´1 . (110)

Given π P Rt with }π}2 ď 1, we denote cpπq ” p1 ´ }π}2q1{2. Next, as in the statement of
Theorem A.12, given a parameter ε̄ P R (see (114) below), we let

Xpπ,$q ” xrtstπ˚ `

"

xrtstpπ ´ π˚q `N
1{2ε̄crt´ 1stp$ ´$˚q

*

P RM . (111)

We then recall the function L from (26), and use it to define

Lpπ,$q ” 1

N

ÿ

aďM

L}π}2pXapπ,$qq ”
1

N

ÿ

aďM

logEξUpYapπ,$qq . (112)

(Note the last identity above serves as the definition of Y ” Y pπ,$q.) The bound in Theorem A.12
is expressed in terms of the function

Ψpπ,$q ”
}$ ´ ε̄p$ ´$˚q}

2

2cpπq2
´
p$˚, $q

1´ q
` Lpπ,$q . (113)

Recall (59) that we decomposed ZpG1q “ Z˝pG1q `Z‚pG1q. The rest of this section is organized
as follows:

• In §C.1 we use Lemmas A.22 and A.23 to prove Corollary C.1, which gives a bound on
Z‚pG

1q. This takes care of the case pπ,$q R N˝ (see (57)), so in the rest of the section we
restrict to pπ,$q PN˝.

• In §C.2 we prove Lemmas C.2 and C.3, which show that the point pπ˚, $˚q, as defined by
(109) and (110), is approximately a stationary point of the function Ψ of (113).

• In §C.3 we prove Proposition C.4, which bounds Hess Ψ for pπ,$q PN˝.

• In §C.4 we combine the results described above to conclude the proof of Theorem 1.4. We
then use this to conclude the proof of the upper bound in Theorem 1.1.

Lastly, we now fix the parameter

ε̄ “ e5C1pUqα
1{2

(27)
ď

1

C1pUq2K2pUq
. (114)

However, this choice of ε̄ will not become important until Lemma C.10 below.
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C.1. Azuma–Hoeffding bounds

Corollary C.1 If U satisifes Assumptions 1 and 2, then with high probability we have

E
´

Z‚pG
1q

ˇ

ˇ

ˇ
F 1ptq

¯

ď exp

"

N
´

RSpα;Uq ´ C1pUq
2α

¯

*

for Z‚pG1q as defined by (59).

Proof Recall from Corollary B.8 that for α ď αpUq we have

RSpα;Uq ´ log 2

α
ě ´1.53 ¨ C1pUq

2 ,

where C1pUq ě 10 is the constant from Lemma B.3. Recalling (59), we will first bound the case
where }$pJq ´$˚} is large. To this end, denote

ZdpG
1q ”

ÿ

J

1

"

d ď }$pJq ´$˚} ď 2d

*

SJpG1q .

Thanks to Assumption 1, in Proposition A.13 we also have the trivial bound EpSJpG1q |F 1ptqq ď 1.
Substituting this into the calculation (82) from the proof of Theorem A.12 gives

EpZdpG1q |F 1ptqq

exptp1, logp2 chpHptqqqqu
ď

ÿ

J :dď}$pJq´$˚}ď2d

QpJq exp

"

´
Np$˚, $pJqq

1´ q

*

.

By Lemma A.4 combined with Jensen’s inequality, we have

lim
NÑ8

p1, log chpHptqqq

N
“ E log chpψ1{2Zq ď logE chpψ1{2Zq

“ logE exppψ1{2Zq “
ψ

2

(28)
ď

3C1pUq
2α

2
, (115)

where the convergence holds in probability as N Ñ8. It follows that, with high probability,

exptp1, logp2 chpHptqqqqu

exptNRSpα;Uqu
ď exp

"

N

ˆ

1.53` 1.51

˙

C1pUq
2α

*

ď exp

"

3.05 ¨NC1pUq
2α

*

.

Next, it follows from (36) and (56) that

}$˚}
(56)
“ ψ1{2p1´ qq}Γtét´1}

(36)
“ ψ1{2p1´ qq

ˆ

ÿ

`ďt´2

pγ`q
2 ` 1´ Γt´2

˙1{2

“ ψ1{2p1´ qq .

Note also that if d ď }$pJq ´$˚} ď 2d then

´
p$˚, $pJqq

1´ q
“ ´

}$˚}
2 ` p$˚, $pJq ´$˚q

1´ q
ď
}$˚}}$pJq ´$˚}

1´ q
ď

2d}$˚}

1´ q
“ 2ψ1{2d .
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Combining the above bounds gives, with high probability,

EpZdpG1q |F 1ptqq

exptNRSpα;Uqu
ď exp

"

N

ˆ

3.05 ¨ C1pUq
2α` 2ψ1{2d

˙*

Q

ˆ

d ď
›

›

›
$pJq ´$˚

›

›

›
ď 2d

˙

ď exp

"

´N

ˆ

d2

2.01
´ 2ψ1{2d´ 3.05 ¨ C1pUq

2α` oN p1q

˙*

,

where the last inequality is by Lemma A.23. If we take d ě d0 ” 8 ¨ C1pUqα
1{2, then we obtain

EpZdpG1q |F 1ptqq

exptNRSpα;Uqu
ď exp

"

´NC1pUq
2α

ˆ

82

2.01
´ 2 ¨ 31{2 ¨ 8´ 3.05´ oN p1q

˙*

ď exp

"

´ 1.1 ¨NC1pUq
2α

*

.

This concludes our analysis of the case where }$pJq´$˚} is large, so we next turn to the case that
}πpJq ´ π˚} is large. To this end, let us denote

Z 1pG1q ”
ÿ

J

1

"

}$pJq ´$˚}

C1pUqα1{2
ď 8,

}πpJq ´ π˚pJq}

C1pUqα1{2
ě 16

*

SJpG1q .

It follows from the previous bounds that

EpZ 1pG1q |F 1ptqq

exptNRSpα;Uqu
ď exp

"

N

ˆ

3.05 ¨ C1pUq
2α` 2ψ1{2 ¨ 8 ¨ C1pUqα

1{2

˙*

ˆQ

ˆ

}πpJq ´ π˚pJq}

C1pUqα1{2
ě 16

˙

ď exp

"

NC1pUq
2α

ˆ

3.05` 2 ¨ 31{2 ¨ 8´
162

8.01
` oN p1q

˙*

ď exp

"

´ 1.2 ¨NC1pUq
2α

*

,

where the second-to-last inequality is by Lemma A.22. Recalling the definition (59) of Z˝pG1q, we
have

Z‚pG
1q ď Z 1pG1q `

ÿ

kě0

Z2kd0pG
1q ,

where d0 “ 8 ¨ C1pUqα
1{2 as above. It follows by combining the above bounds that

EpZ‚pG1q |F 1ptqq

exptNRSpα;Uqu
ď exp

"

´NC1pUq
2α

*

with high probability, which proves the claim.
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C.2. Stationarity at replica symmetric value

In this subsection we show that the function Ψpπ,$q from (113) is approximately stationary at the
point pπ˚, $˚q.

Lemma C.2 Suppose U satisfies Assumption 1 and 2. Then for all 1 ď s ď t we have

BΨ

Bπs
pπ˚, $˚q » 0 ,

where » indicates convergence in probability as N Ñ8.

Proof Recalling (8), (98), and (108), we can rewrite

pFqq
1pxq “

EξU2px` p1´ qq1{2ξq
EξUpx` p1´ qq1{2ξq

´ pFqpxqq
2 . (116)

Recall from (112) the definition of Y ” Y pπ,$q. We then calculate

BL
Bπs

(112)
“

1

N

ÿ

aďM

"

BXa

Bπs

EξU 1pYaq
EξUpYaq

`
Bc

Bπs

EξrξU 1pYaqs
EξUpYaq

*

(98)
“

1

N

ÿ

aďM

"

pxpsqqaF}π}2pXaq ´ πs
EξU2pYaq
EξUpYaq

*

(116)
“

1

N

"

pxpsq, F}π}2pXaqq ´ πsp1, pF}π}2q
1pXqq ´ πs}F}π}2pXq}

2

*

.

It follows from (109) that }π˚}2 “ q, and c˚ ” cpπ˚q “ p1´ qq
1{2. We also note that

hpt`1q “ hrtstêt
(39)
“ q1{2xrtstΛtêt

(109)
“ xrtstπ˚

(111)
“ Xpπ˚, $˚q ”X˚ .

It follows using (39) and Lemma A.4 that at pπ˚, $˚q we have

pxpsq, F}π˚}2pX˚qq

N
» αΛt,sEZFqpq1{2Zq

(109)
“ π˚,sαEpFqq1pq1{2Zq ,

having again used gaussian integration by parts at the last step. As a consequence

BL
Bπs

pπ˚, $˚q » ´π˚,sαE
”

Fqpq
1{2Zq2

ı

(9)
“ ´π˚,sψ .

Substituting this into (113) gives

BΨ

Bπs
pπ˚, $˚q »

}$˚}
2π˚,s

p1´ }π˚}2q2
´ π˚,sψ

(110)
“ 0 ,

as claimed.
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Lemma C.3 Suppose U satisfies Assumption 1 and 2, and 0 ď α ď αpUq. Then for all 1 ď ` ď
t´ 2 we have

BΨ

B$`
pπ˚, $˚q » 0 ,

where » indicates convergence in probability as N Ñ8. For ` “ t´ 1 we have

BΨ

B$`
pπ˚, $˚q » ε̄ψ1{2

ˆ

γt´1 ´ p1´ Γt´2q
1{2

˙

,

where the right-hand side is otp1q by Proposition A.6.

Proof Similarly to the proof of Lemma C.2, we calculate

BL
B$`

(112)
“

1

N

ÿ

aďM

BXa

B$`

EξU 1pYaq
EξUpYaq

“
ε̄pcp`q, F}π}2pXqq

N1{2
.

It follows by recalling Lemma A.4 that

BL
B$`

pπ˚, $˚q “
ε̄pcp`q,npt`1qq

N1{2
» ε̄ψ1{2γ` .

Substituting this into (113) gives

BΨ

B$`
pπ˚, $˚q » ε̄

"

´
$˚,`
1´ q

` ψ1{2γ`

*

,

and combining with (110) gives the claim.

C.3. Hessian calculation

If A and B are symmetric matrices, we write A ď B to indicate that B´A is positive semidefinite.
In this subsection we analyze the Hessian of the function Ψ from (113) to prove:

Proposition C.4 If U satisfies Assumptions 1 and 2, then the function L of (112) satisfies

Hess Ψpπ,$q “

ˆ

Ψπ,π Ψπ,$

Ψπ,$ Ψ$,$

˙ ˇ

ˇ

ˇ

ˇ

pπ,$q

ď

ˆ

e7C1pUq
2K2pUqαI 0
0 1´ 1.9ε̄

˙

for all pπ,$q P N˝ (as defined by (57)), for 0 ď α ď αpUq as defined by (27), and ε̄ “ ε̄pα;Uq as
in (114).

The proof of Proposition C.4 is given at the end of this subsection. We divide the analysis into
several steps. Define

Acpxq “
EξU2px` cξq
EξUpx` cξq

´

ˆ

EξU 1px` cξq
EξUpx` cξq

˙2

“ pF1´c2q
1pxq , (117)

Bcpxq ”
EξrξU2px` cξqs
EξUpx` cξq

´
EξrξU 1px` cξqs
EξUpx` cξq

EξU 1px` cξq
EξUpx` cξq

. (118)
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Define the M -dimensional vectors A ” AcpπqpXq and B ” BcpπqpXq. Next let

acpxq ”
EξrξU 1px` cξqs
EξUpx` cξq

, (119)

bcpxq ”
Eξrξ2U2px` cξqs

EξUpx` cξq
´

ˆ

EξrξU 1px` cξqs
EξUpx` cξq

˙2

, (120)

and define the scalars ā ” p1, acpπqpXqq and b̄ ” p1, bcpπqpXqq.

Lemma C.5 For the function L defined by (112) we have

Lπ,π “
1

N

"

xrtspdiag Aqxrtst `

ˆ

xrtsBp∇cqt ` p∇cqpxrtsBqt
˙*

`
1

N

"

ā ¨Hess c` b̄ ¨ p∇cqp∇cqt
*

, (121)

Lπ,$ “
ε̄

N1{2

"

xrtspdiag Aqcrt´ 1st ` p∇cqcrt´ 1sB

*

, (122)

L$,$ “ ε̄2
"

crt´ 1spdiag Aqcrt´ 1st
*

(123)

for A, B, ā, and b̄ as defined above.

Proof Again recall from (112) the definition of Y ” Y pπ,$q. Note that Y is linear in $, with
first derivative

BYa
B$`

“
BXa

B$`
“ N1{2ε̄pcp`qqa .

It follows by differentiating (112) twice that

BL2

B$kB$`
“

1

N

ÿ

aďM

"EξrU2pYaq BYa
B$k

BYa
B$`
s

EξUpYaq
´

ˆEξrU 1pYaq BYa
B$k

s

EξUpYaq

˙ˆEξrU 1pYaq BYa
B$`
s

EξUpYaq

˙*

“
1

N

ÿ

aďM

Aa
BXa

B$k

BXa

B$`
“ ε̄2

"

crt´ 1spdiag Aqcrt´ 1st
*

k,`

,

which verifies (123). On the other hand we note that Y depends on π both through X and through
cpπq, and

BYa
Bπs

“
BXa

Bπs
`
Bc

Bπs
ξ

(111)
“ xrtss `

Bc

Bπs
ξ .

We use this to calculate the mixed partial

BL2

BπsB$`
“

1

N

"

ÿ

aďM

Aa
BXa

Bπs

BXa

B$`
`
Bc

Bπs

ÿ

aďM

Ba
BXa

B$`

*

“
ε̄

N1{2

ˆ

xrtspdiag Aqcrt´ 1st ` p∇cqcrt´ 1sB

˙

s,`

,
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which verifies (122). Finally, a similar calculation gives

BL2

BπrBπs
“

1

N

"

ÿ

aďM

Aa
BXa

Bπs

BXa

B$`
`
Bc

Bπs

ÿ

aďM

Ba
BXa

B$`
` ā

B2c

BπrBπs
` b̄

Bc

Bπr

Bc

Bπs

*

,

which implies (121).

We now proceed to bound the quantities defined above.

Lemma C.6 Suppose U satisfies Assumptions 1 and 2. With the notation from (118), we have

}B}

M1{2
“
}BcpπqpXq}

M1{2
ď K2pUq

ˆ

2.5 ¨ C1pUq ` 5.8 ¨
}X}

M1{2

˙

.

for all 0.95 ď c ď 1.

Proof Recalling the notation of Definition B.1, we first use gaussian integration by parts to rewrite
(118) as

Bcpxq “
1

c2

"

Covx,cpZ
2, Zq ´ 2 ¨ Ex,cpZq

*

.

It follows by combining Lemmas B.3 and B.4 that for all 0.95 ď c ď 1,

|Bcpxq| ď
1

c2

"

2

ˆ

C1pUq `
1.82 ¨ |x|

0.95

˙

`
K2pUq

21{2

ˆ

1.82 ¨ |x|

0.95
` C1pUq

1{2

˙*

.

Recall that we assumed (without loss) C1pUq ě 10 and K2pUq ě 1, so for instance we can trivially
bound pC1pUqq

1{2 ď C1pUq{101{2. This leads to the simplified bound

|Bcpxq| ď
K2pUq

0.952

"ˆ

2`
1

p2 ¨ 10q1{2

˙

C1pUq `

ˆ

2`
1

21{2

˙

1.82 ¨ |x|

0.95

*

ď K2pUq

ˆ

2.5 ¨ C1pUq ` 5.8 ¨ |x|

˙

.

where the last bound again uses that C1pUq ě 10. The claim follows.

Lemma C.7 Suppose U satisfies Assumption 1. With the notation from (119), we have

|ā|

M
“
|p1, acpπqpXqq|

M
ď 1.1 ¨ C1pUq ` 3.7 ¨

}X}2

M

for all 0.95 ď c ď 1.

Proof We use gaussian integration by parts to rewrite (119) as

acpxq “
Eξrξ2Upx` cξqs

EξUpx` cξq
´ 1 .

It follows by Lemma B.3 (which uses only Assumption 1) that for all 0.95 ď c ď 1,

|acpxq| ď 1`

ˆ

C1pUq `

ˆ

1.82 ¨ x

0.95

˙2˙

ď 1.1 ¨ C1pUq ` 3.7 ¨ x2 ,

where the last bound uses that we took C1pUq ě 10.
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Lemma C.8 Suppose U satisfies Assumptions 1 and 2. With the notation from (120), we have

|b̄|

M
“
|p1, bcpπqpXqq|

M
ď K2pUq

ˆ

4.6 ¨ C1pUq ` 17 ¨
}X}2

M

˙

for all 0.95 ď c ď 1.

Proof We use gaussian integration by parts to rewrite (120) as

bcpxq “
1

c2

"

Eξrpξ4 ´ 5ξ2 ` 2qUpx` cξqs

EξUpx` cξq
´

ˆ

Eξrξ2Upx` cξqs

EξUpx` cξq
´ 1

˙2*

“
1

c2

"

Varx,cpZ
2q ´ 3 ¨ Ex,cpZ2q ` 1

*

.

It follows by combining Lemmas B.3 and B.4 that for all 0.95 ď c ď 1,

|bcpxq| ď
1

c2

"

K2pUq

"ˆ

1.82 ¨ x

c

˙2

` C1pUq

*

` 3

ˆ

C1pUq `

ˆ

1.82 ¨ x

0.95

˙2˙

` 1

*

ď
K2pUq

0.952

"ˆ

4`
1

10

˙

C1pUq ` 4 ¨

ˆ

1.82 ¨ x

0.95

˙2*

,

where the last bound uses that we took C1pUq ě 10 and K2pUq ě 1. The claim follows.

Corollary C.9 If U satisfies Assumptions 1 and 2, then the function L of (112) satisfies

HessLpπ,$q “
ˆ

Lπ,π Lπ,$
Lπ,$ L$,$

˙ ˇ

ˇ

ˇ

ˇ

pπ,$q

ď K2pUq

ˆ

C1pUq
2αI 0

0 5 ¨ ε̄2I

˙

for all pπ,$q P N˝ (as defined by (57)), for 0 ď α ď αpUq as defined by (27), and ε̄ “ ε̄pα;Uq as
in (27).

Proof We will bound each of the terms computed in Lemma C.5. Let u denote any vector in Rt
and let v denote any vector in Rt´1. It follows from Lemma A.4 that, with high probability,

sup

"

}xrtstu}2

M
“

1

M

›

›

›

›

ÿ

sďt

usx
psq

›

›

›

›

2

: u P Rt´1, }u} “ 1

*

ď 2 . (124)

Next, it follows from (109) that }π˚} “ q1{2, so the restriction pπ,$q PN˝ (see (57)) implies

}∇c}
2

ď }π} ď q1{2 ` 16 ¨ C1pUqα
1{2

(28)
ď 18 ¨ C1pUqα

1{2

(27)
ď

18

e5 ¨ C1pUq2K2pUq2
ď

1

e6 ¨K2pUq2
, (125)

where the last bound uses that we assumed (without loss) C1pUq ě 10 and K2pUq ě 1. Therefore
we certainly have cpπq “ p1 ´ }π}2q1{2 ě 0.95. It follows from (117) and Lemma B.14 (which
uses Assumption 2) that

}A}8 ď }Acpπq}8 “ }pF}π}q
1}8 ď

1

cpπq2

"

K2pUq

2
`1

*

ď
K2pUq{2` 1

0.952
ď 1.7 ¨K2pUq . (126)
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It follows that, with high probability, it holds for all unit vectors u, v that

ut
ˆ

1

N
xrtspdiag Aqxrtst

˙

u ď
}A}8
N

¨

›

›

›
xrtstu

›

›

›

2
ď 3.4 ¨K2pUqα , (127)

ut
ˆ

1

N1{2
xrtspdiag Aqcrt´ 1st

˙

v ď
}A}8

N1{2
¨

›

›

›
xrtstu

›

›

›
¨

›

›

›
crt´ 1stv

›

›

›
ď 2.5 ¨K2pUqα

1{2 , (128)

vt
ˆ

crt´ 1spdiag Aqcrt´ 1st
˙

v ď }A}8 ¨
›

›

›
crt´ 1stv

›

›

›

2
ď 1.7 ¨K2pUq . (129)

Next, recalling (111), for all pπ,$q PN˝ we have

}Xpπ,$q}

M1{2

(124)
ď 21{2}π} `

ε̄}$ ´$˚}

α1{2

(57)
ď 21{2}π} ` 16 ¨ ε̄C1pUq

(125)
ď 0.33 ¨ C1pUq , (130)

having used that C1pUq ě 10 and |ε̄| ď 1{50. Combining (130) with Lemma C.6 gives

}B}

M1{2
ď K2pUq

ˆ

2.5 ¨ C1pUq ` 5.8 ¨
}X}

M1{2

˙

ď 4.5 ¨ C1pUqK2pUq .

Combining the above with (124) and (125) gives that with high probability, for all unit vectors u, v
we have

ut
ˆ

1

N
xrtsBp∇cqt

˙

u ď
}xrtstu}}B}}∇c}

N

ď
p2Mq1{2

N

ˆ

4.5 ¨ C1pUqK2pUqM
1{2

˙ˆ

36 ¨ C1pUqα
1{2

˙

(27)
ď

21{2 ¨ 4.5 ¨ 36

e5 ¨ C1pUq
¨ α ď 0.16 ¨ α , (131)

again using that C1pUq ě 10. Similarly, with high probability, it holds for all unit vectors u, v that

ut
ˆ

1

N1{2
p∇cqcrt´ 1sB

˙

v ď
}B}}∇c}
N1{2

ď

ˆ

4.5 ¨ C1pUqK2pUqα
1{2

˙ˆ

36 ¨ C1pUqα
1{2

˙

(27)
ď

4.5 ¨ 36

e5 ¨ C1pUq
¨ α1{2 ď 0.11 ¨ α1{2 . (132)

Next, combining (130) with Lemma C.8 gives

|b̄|

M
ď K2pUq

ˆ

4.6 ¨ C1pUq ` 17 ¨
´

0.33 ¨ C1pUq
¯2
˙

ď 2.4 ¨ C1pUq
2K2pUq .

Combining the above with (125) gives, for any unit vector u,

ut
ˆ

1

N
b̄p∇cqp∇cqt

˙

u ď
|b̄|}∇c}2

N

ď

ˆ

2.4 ¨ C1pUq
2K2pUq

˙

¨

ˆ

18

e5 ¨ C1pUq2K2pUq2

˙2

α ď
α

e7
. (133)
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Finally, we note that the Hessian of cpπq “ p1´ }π}2q1{2 can be calculated as

Hess cpπq “ ´
1

cpπq

"

I `
ππt

cpπq2

*

.

We can bound the above in operator norm by

}Hess cpπq} ď
1

0.95

ˆ

1`
}π}2

0.952

˙

(125)
ď

1

0.95

ˆ

1`
p1{e6q2

0.952

˙

ď 1.1 .

Combining (130) with Lemma C.7 gives

|ā|

M
ď 1.1 ¨ C1pUq ` 3.7 ¨

´

0.33 ¨ C1pUq
¯2
ď 0.6 ¨ C1pUq

2 ,

so altogether we obtain, for any unit vector u,

ut
ˆ

1

N
ā ¨Hess c

˙

u ď 1.1 ¨ 0.6 ¨ C1pUq
2α ď 0.7 ¨ C1pUq

2α . (134)

To conclude, we note that substituting (129) into (123) implies

}L$,$}
ε̄2

ď 1.7 ¨K2pUq .

Substituting (128) and (132) into (122) implies

}Lπ,$}
α1{2ε̄

ď 2.5 ¨K2pUq ` 0.11 ď 2.7 ¨K2pUq .

Finally, substituting (127), (131), (133), and (134) into (121) gives

}Lπ,π}
α

ď 3.4 ¨K2pUq ` 2 ¨ 0.16`
1

e7
` 0.7 ¨ C1pUq

2 ď 0.8 ¨ C1pUq
2K2pUq .

Consequently, for any vector x ” p 9x, :xq where 9x P Rt and :x P Rt´1, we have

|xtpHessLqx|
K2pUq

ď 0.8 ¨ C1pUq
2α} 9x}2 ` 1.7 ¨ ε̄2}:x}2 ` 2 ¨ 2.7 ¨ α1{2ε̄} 9x}}:x}

ď

ˆ

0.8 ¨ C1pUq
2 ` 2.7

˙

α} 9x}2 `
´

1.7` 2.7
¯

ε̄2}:x}2 .

The claim follows.

Recalling (113), let us now denote

Ppπ,$q ” }$ ´ ε̄p$ ´$˚q}
2

2cpπq2
´
p$˚, $q

1´ q
, (135)

so that Ψ “ P ` L.
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Lemma C.10 If U satisfies Assumptions 1 and 2, then the function P of (135) satisfies

HessPpπ,$q “
ˆ

Pπ,π Pπ,$
Pπ,$ P$,$

˙ ˇ

ˇ

ˇ

ˇ

pπ,$q

ď

ˆ

1080 ¨ C1pUq
2αI 0

0 p1´ 1.95 ¨ ε̄qI

˙

for all pπ,$q P N˝ (as defined by (57)), for 0 ď α ď αpUq as defined by (27), and ε̄ “ ε̄pα;Uq as
in (114).

Proof We first calculate the mixed partial derivatives

Pπ,π “
}$ ´ ε̄p$ ´$˚q}

2

cpπq4

"

I `
4ππt

cpπq2

*

,

Pπ,$ “
2p1´ ε̄q

cpπq4
π
´

$ ´ ε̄p$ ´$˚q
¯t
,

P$,$ “
p1´ ε̄q2

cpπq2
I “

p1´ ε̄q2

1´ }π}2
I .

We have from (110) that }$˚} “ p1´ qqψ1{2 ď ψ1{2. Then, for pπ,$q P N˝ (as defined by (57))
we must have

}$} ď ψ1{2 ` 16 ¨ C1pUqα
1{2

(28)
ď 18 ¨ C1pUqα

1{2
(27)
ď

18

e5 ¨ C1pUq2
ď

1

e6
(136)

(very similarly to (125)). It follows using (125) and (136) that

}Pπ,π} ď
p18 ¨ C1pUqq

2α

0.954

ˆ

1`
4 ¨ p1{e6q2

0.952

˙

ď e6 ¨ C1pUq
2α ,

}Pπ,$} ď
2p18 ¨ C1pUqq

2α

0.954
ď 720 ¨ C1pUq

2α
(114)
ď

ε̄2

e3
,

}P$,$} ď
p1´ ε̄q2

1´ p18 ¨ C1pUqq2α
ď p1´ ε̄q2 ` 2 ¨ p18 ¨ C1pUqq

2α
(114)
ď 1´ 2ε̄` 1.03 ¨ ε̄2 .

Consequently, for any vector x ” p 9x, :xq where 9x P Rt and :x P Rt´1, we have

|xtpHessPqx| ď 360 ¨ C1pUq
2α} 9x}2 ` 2 ¨ 720 ¨ C1pUq

2α} 9x}}:x} `

ˆ

1´ 2ε̄` 1.03 ¨ ε̄2
˙

}:x}2

ď C1pUq
2
´

360` 720
¯

α} 9x}2 `

ˆ

1´ 2ε̄` 1.03 ¨ ε̄2 `
ε̄2

e3

˙

}:x}2 .

The claim follows.

Proof [Proof of Proposition C.4] It follows by combining Corollary C.9 and Lemma C.10 that

Hess Ψ “ HessP `HessL ď

ˆ

C1pUq
2pK2pUq ` 1080qαI 0

0 p1´ 1.95 ¨ ε̄` 5 ¨K2pUqε̄
2qI

˙

.

We use the choice of ε̄ from (114) to bound

5 ¨K2pUqε̄
2

(114)
ď

5ε̄

C1pUq2
ď 0.05 ¨ ε̄ ,

and the claim follows.
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C.4. Replica symmetric upper bound

In this subsection we give the proof of Theorem 1.4. We then use this to conclude the proof of the
upper bound in Theorem 1.1.
Proof [Proof of Theorem 1.4] Recall from (59) that we decomposed ZpG1q “ Z˝pG1q ` Z‚pG1q.
For Z˝pG1q, we will analyze the bound from Theorem A.12. Note that Lemma A.4 implies

p1, logp2 chpHptqqqq

N
NÑ8
ÝÑ log 2` E log chpψ1{2Zq (137)

in probability. Recalling (109), (110), and (113), and applying Lemma A.4 again, we have

Ψpπ˚, $˚q “ ´
}$˚}

2

2p1´ qq
` Lpπ˚, $˚q

NÑ8
ÝÑ ´

ψp1´ qq

2
` αELqpq1{2Zq (138)

in probability, for L as in (26). It follows by comparing (137) and (138) with (29) that

p1, logp2 chpHptqqqq

N
`Ψpπ˚, $˚q

NÑ8
ÝÑ RSpα;Uq (139)

in probability. Next, it follows by combining Lemmas A.22 and A.23 with Hölder’s inequality that

Q

ˆ"

J P t´1,`1uN :
›

›

›
πpJq ´ π˚

›

›

›
ě d1 and

›

›

›
$pJq ´$˚

›

›

›
ě d2

*˙

ď exp

"

´N

„

ϑ
p1´ 3q1{2q

8
pd1q

2 ` p1´ ϑq
p1´ 8q1{2q

2
pd2q

2 ` oN p1q

*

(140)

for any ϑ P r0, 1s (having used also that π˚ » 9π˚ and $˚ » 9$˚, which follows from (55) and (56)).
On the other hand, if pπ,$q P N˝ (as defined by (57)) with }π ´ π˚} ď d1 and }$ ´$˚} ď d2,
then it follows by combining Lemmas C.2 and C.3 with Proposition C.4 that

Ψpπ,$q ´Ψpπ˚, $˚q ď ∇Ψpπ˚, $˚q

ˆ

π ´ π˚
$ ´$˚

˙

`
e7C1pUq

2K2pUqα

2
pd1q

2 `
p1´ 1.9ε̄q

2
pd2q

2

ď oN p1q ` otp1q `
e7C1pUq

2K2pUqα

2
pd1q

2 `
p1´ 1.9ε̄q

2
pd2q

2 . (141)

Let us take ϑ “ 4α1{2. Then, for d1 ď }π ´ π˚} ď p1 ` αq1{2d1, combining the }π ´ π˚}
2 terms

in (140) and (141) results in

´
4α1{2p1´ 3q1{2q

8
`
e7C1pUq

2K2pUqαp1` αq

2

(27)
ď

ˆ

´1`3q1{2`
e7p1` αq

e5C1pUq

˙

α1{2

2
ď ´

α1{2

10
.

For d2 ď }$´$˚} ď p1` αq
1{2d2, combining the }$´$˚}2 terms in (140) and (141) results in

´
p1´ 4α1{2qp1´ 8q1{2q

2
`
p1` αqp1´ 1.9ε̄q

2

(28)
ď

ˆ

2` 4 ¨ 31{2C1pUq ` α
1{2

˙

α1{2 ´
1.9 ¨ ε̄

2

ď 8C1pUqα
1{2 ´

1.9 ¨ ε̄

2

(114)
ď

ˆ

8´
1.9 ¨ e5

2

˙

C1pUqα
1{2 ď ´1000 ¨ α1{2 .
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Substituting the above bounds into the result of Theorem A.12 gives, with high probability,

EpZ˝pG1q |F 1ptqq

exptNpRSpα;Uq ` otp1qqu
ď

ÿ

k1,k2ě0

exp

"

´
Nα1{2

10

2
ÿ

i“1

pdiq
2p1` αqki

*

ď Op1q .

The result follows by combining with the bound on Z‚pG1q from Corollary C.1.

Proof [Proof of Theorem 1.1 upper bound] It follows from Theorem 1.4 and Markov’s inequality
that for any ε ą 0,

P
ˆ

1

N
logZpG1q ě RSpα;Uq ` ε

ˇ

ˇ

ˇ

ˇ

F 1ptq

˙

ď
exppNotp1qq

exppNεq
,

with high probability over the randomness of F 1ptq. It follows that

P
ˆ

1

N
logZpG1q ě RSpα;Uq ` ε

˙

ď oN p1q `
exppNotp1qq

exppNεq
.

The left-hand side does not depend on t, so it follows that

lim sup
NÑ8

1

N
logZ ď RSpα;Uq

in probability, which gives the upper bound in Theorem 1.1.

Appendix D. Second moment conditional on AMP

In this section we give the proof of Theorem 1.5, our main result on the conditional second moment.
From this we will deduce the lower bound in Theorem 1.1 in the bounded case, as explained at the
end of this section. The lower bound in the general case will be treated in Section F. Recalling (57),
we now restrict further to

N˚ ”

"

pπ,$q : max
!

}πpJq ´ π˚}, }$pJq ´$˚}
)

ď oN p1q

*

,

soN˚ ĎN˝. Then, analogously to (58), we let

H˚ ”
"

J P t´1,`1uN : pπpJq, $pJqq PN˚

*

, (142)

so H˚ Ď H˝. Analogously to (59), we let

Z˚pGq ”
ÿ

JPH˚

SJpGq ď Z˝pGq ď ZpGq . (143)

We will prove Theorem 1.5 for the random variable

Z̄pGq ”
ÿ

JPH˚

SJpGq1
"

}GvJ}
2

M
ď 5C1pUq

2

*

ď Z˚pGq , (144)

where vJ “ J2{}J2} as in Definition A.8, and C1pUq is the constant from Lemma B.3. The
remainder of this section is organized as follows:
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• In §D.1 we prove the first moment lower bound (17), which gives the first assertion of Theo-
rem 1.5.

• In §D.2 we introduce a parameter λ “ λpJ,Kq (Definition D.3) which captures the correla-
tion of a pair of configurations J,K P t´1,`1uN . We then prove Theorem D.9 which gives
a preliminary bound on the second moment contribution from pairs with small λ (see (170)).
We also prove Corollary D.10 which bounds the second moment contribution from pairs with
larger λ.

• In §D.3 we further analyze the bound obtained in Theorem D.9. We show in Proposition D.11
that the bound is approximately stationary at λ “ 0, and then in Corollary C.9 we control the
second derivative of the bound with respect to λ.

• In §D.4 we combine the results of the preceding sections to conclude the proof of Theo-
rem 1.5. From this we deduce the lower bound of Theorem 1.1 in the case }u} ă 8.

The calculation of this section follows a similar outline as that of Sections A and C, so we will point
out the parallels throughout. As before, we letG be an independent copy ofG1.

D.1. First moment lower bound

In this subsection we prove (17), the first assertion of Theorem 1.5. To this end, we begin with the
following result which essentially says that the upper bound of Theorem A.12 is tight in the case
pπ,$q “ pπ˚, $˚q.

Proposition D.1 Suppose U satisfies Assumptions 1 and 2. Let F 1ptq be as in (25). For Z˚ as in
(143) we have

E
´

Z˚pG
1q

ˇ

ˇ

ˇ
F 1ptq

¯

ě exp

"

N
´

RSpα;Uq ´ otp1q
¯

*

with high probability.

Proof Recall from the proof of Proposition A.13 that

EJ ” E
´

SJpG1q
ˇ

ˇ

ˇ
F 1ptq

¯

(73)
“

EJpτ | ḡRq ¨ pJ,τ pḡA | ḡRq

exptN1{2pτ, ḡAqu ¨ pApḡAq
. (145)

If J P H˚, then it follows from Lemma A.10 that π́pJq » π́˚ ” q1{2ét´1, and

ḡA

N1{2

(75)
“ pΓN q

tδpJq »
1

p1´ qq1{2

"

$˚ ´
ψ1{2

q1{2
p1´ qqΓtπ́˚

*

(56)
“ 0 P Rt´1 . (146)

Substituting this into the result of Proposition E.13 gives

pJ,τ̄ pḡA | ḡRq

ψ1{2| det ΓN |
»

gJ,τ̄ pḡAq

ψ1{2| det ΓN |

(204)
“ gJ,τ̄

ˆ

´ pNψq1{2
„

ΓN τ̄ ` cpπq
nrt´ 1sF}π}2pXJ,τ̄ q

Nψ1{2
` oN p1q

˙

, (147)
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forXJ,τ̄ as defined by (181). To evaluate the right-hand side above, note that J P H˚ implies

ΓN τ̄

ψ1{2p1´ qq1{2
”

ΓN τ̄pJq

ψ1{2p1´ qq1{2
(79)
» ´

Γ$˚

ψ1{2p1´ qq

(56)
“ ´ΓΓtét´1 “ ´

¨

˚

˚

˚

˝

µ1
...

µt´2

1

˛

‹

‹

‹

‚

,

where the last identity uses (40) and (40). It also impliesXJ,τ̄ » hpt`1q, and consequently

cpπq
nrt´ 1sF}π}2pXJ,τ̄ q

Nψp1´ qq1{2
»

nrt´ 1sFqph
pt`1qq

Nψ

(42)
»

¨

˚

˚

˚

˝

µ1
...

µt´2

µt´1

˛

‹

‹

‹

‚

.

Note moreover that Proposition A.6 and Lemma B.11 together imply µt´1 “ 1´otp1q. Substituting
these calculations into (147) gives (cf. (74))

pJ,τ̄ pḡA | ḡRq » ψ1{2| det ΓN |gJ,τ̄

¨

˚

˚

˚

˝

pNψq1{2

¨

˚

˚

˚

˝

oN p1q
...

oN p1q
otp1q

˛

‹

‹

‹

‚

˛

‹

‹

‹

‚

“ exptNotp1qu . (148)

Substituting (76), (77), and (148) into (145) gives (cf. (78))

EJ “ exp

"

N
”

ÃJpτ̄q ` otp1q
ı

*

.

It then follows from the proof of Theorem A.12 that (cf. (82))

EpZ˚pG1q |F 1ptqq

exptp1, logp2 chpHptqqqqu
“ QpH˚q exp

"

N
”

Ψpπ˚, $˚q ` otp1q
ı

*

. (149)

We have QpH˚q » 1 by the law of large numbers, so the claim follows by recalling (139).

To finish the proof of (17), it remains only to account for the restriction on }Gv} in (144):
Proof [Proof of first moment lower bound (17)] We begin with an easy large deviations calculation.
If ζ is a standard gaussian random variable, then it is well known that ζ2{2 is a gamma random
variable with shape parameter 1{2, and moment-generating function

E exp

ˆ

θζ2

2

˙

“

ż 8

0

e´p1´θqx

2π1{2x1{2
dx “

1

p1´ θq1{2
,

for any θ ă 1. If ζ is a standard gaussian random vector in RM , then for any L ą 1 we have

P
ˆ

}ζ}2

M
ě L

˙

ď exp

"

´
M

2
sup

"

logp1´ θq ` Lθ : θ P r0, 1q

**

ď exp

"

´
M

2

”

L´ logL´ 1
ı

*

. (150)
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Now, recalling (143) and (144), let us take L ” L1pUq ” 5C1pUq
2 ě 500 and define

Z2pG1q ” Z˚pG
1q ´ Z̄pG1q ”

ÿ

J

SJpG1q1
"

}G1vJ}
2

M
ą L

*

. (151)

It follows from Lemmas A.16 and A.19 that

E
´

Z2pG1q
ˇ

ˇ

ˇ
F 1ptq

¯

“ E
´

Z2pGq
ˇ

ˇ

ˇ
H 1ptq,R,A, pG1qRA

¯

ď
ÿ

J

P
ˆ

}GvJ}
2

M
ą L

ˇ

ˇ

ˇ

ˇ

H 1ptq,R,A, pG1qRA

˙

.

Recall from Definition A.14 that VC denotes the span of the vectors cp`q for ` ď t´1. Let us decom-
poseGvJ P RM as pGvJq

‖`pGvJq
K where pGvJq

‖ is the orthogonal projection ofGvJ onto VC.
Conditional on the events R and A, pGvJq

‖ is fixed by the admissibility condition (see (51), (62),
and (75)), while pGvJq

K behaves as an independent standard gaussian random vector in the or-
thogonal complement of VC. It follows that, conditional on R and A, }GvJ}

2{M is equidistributed
as

N}pΓN q
tδ}

M
`
}ζ1}2

M
“ oN p1q `

}ζ1}2

M
,

where ζ1 is a standard gaussian random vector in RM´`´1. It follows by applying (150) that

E
´

Z2pG1q
ˇ

ˇ

ˇ
F 1ptq

¯

ď 2NP
ˆ

}ζ}2

M
` oN p1q ě L

˙

ď exp

"

N

„

log 2´
5αC1pUq

2

3

*

ď exp

"

N

„

RSpα;Uq ´
αC1pUq

2

10

*

,

where the last bound uses the result of Corollary B.8. Combining with the result of Proposition D.1
gives

E
´

Z̄pG1q
ˇ

ˇ

ˇ
F 1ptq

¯

ě E
´

Z˚pG
1q

ˇ

ˇ

ˇ
F 1ptq

¯

´ E
´

Z2pG1q
ˇ

ˇ

ˇ
F 1ptq

¯

ě exp

"

N
´

RSpα;Uq ´ otp1q
¯

*

,

with high probability.

D.2. Expected weight of a correlated pair

Definition D.2 Recall the function SJpgR,gA,gBq from (69). Moreover recall that by (66) and
(67) combined, the pair pgA,gBq is equivalent to gP ” Gv. We let QJp¨q denote the measure on
RM such that

QJpBq “
EpSJpGq1tGv P Bu |H 1ptq,R,Aq

EpSJpGq |H 1ptq,R,Aq
“

EpSJpḡR, ḡA,gBq1tpḡA,gBq P Buq

EpSJ | ḡR, ḡA,gBqq
.

Note that QJ depends on ḡR and ḡA, where ḡR does not depend on J , but ḡA does.
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Definition D.3 (analogous to Definition A.7) Let J,K P t´1,`1uN . Recall from Definition A.7
that we decompose J “ J 1 ` J2 where J 1 is the orthogonal projection of J onto the span of the
vectors mpsq, 1 ď s ď t. Analogously decompose K “ K 1 `K2. Recall that v ” J2{}J2}, and
define analogously vK ” K2{}K2}. Then let

λpJ,Kq ”

ˆ

J2

}J2}
,
K2

}K2}

˙

“ pv,vKq ,

so clearly we have ´1 ď λpJ,Kq ď 1. We further denote

w ”
K2 ´ pK2,vqv

}K2 ´ pK2,vqv}
»

vK ´ λv

p1´ λ2q1{2
, (152)

so w is a unit vector in RN orthogonal to v.

Definition D.4 (analogous to Definition A.17) Given F 1ptq as in (25), and J,K P t´1,`1uN ,
recall from Definition D.3 that we decompose J “ J 1 ` J2 and K “ K 1 `K2, and define corre-
sponding unit vectors v and w. Let

VPpKq ” span

"

eaw
t : 1 ď a ďM

*

,

VApKq ” span

"

np`qwt : 1 ď ` ď t´ 1

*

.

Note VApKq is a subspace of VPpKq, and is also a subspace of the space VC from Definition A.14. Let
projApKq denote the orthogonal projection onto VApKq, and note that pG1qApKq ” projApKqpG

1q is
measurable with respect to F 1ptq.

Definition D.5 (analogous to Definition A.18) As before, letG be an independent copy ofG1. Let

ApKq ”
!

projApKqpGq “ pG
1qApKq

)

(61)
“

"

nrt´ 1sGw

Nψ1{2
“

Hrt´ 1sw

pNψq1{2

*

, (153)

where the last identity holds assuming that the event C from (61) occurs.

Definition D.6 (extension of Definition A.11) We now let P denote the uniform probability mea-
sure over pairs pJ,Kq P pt´1,`1uN q2, and let Q be the probability measure on the same space
which is given by

dQ

dP
“

exptpHptq, J `Kqu

expt2 ¨ p1, log ch Hptqqu
.

Note that J and K are independent under Q, and each has mean mptq.

Proposition D.7 (analogous to Proposition A.13) For ζ P RM define

A2pλ | ζq ”
ψp1´ qq

2p1´ λ2q
`

1

N

ˆ

1, Lq`λ2p1´qq

ˆ

hpt`1q ` p1´ qq1{2λζ

˙˙

.

Then, for J,K P H˚, we have

EpSJpG1qSKpG1q1t}G1v}2{M ď Lu |F 1ptqq

EpSJpG1q |F 1ptqq
ď

ż

1

"

}ζ}2

M
ď L

*

exptNA2pλ | ζquQJpdζq

with QJ as in Definition D.2, and λ “ λpJ,Kq as in Definition D.3.
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In preparation for the proof of Proposition D.7, we record the following calculation:

Lemma D.8 (analogous to Lemma A.21) For spin configurations J,K P t´1,`1uN and a vec-
tor ζ P RM , define the cumulant-generating function

K̃K|Jpτ | ζq ”
1

N
logE

ˆ

SKpGq exp

"

N1{2τ tcrt´ 1sGw

* ˇ

ˇ

ˇ

ˇ

H 1ptq,R, pG1qR,Gv “ ζ

˙

for τ P Rt´1. Next, with L as in (26) and with X̃K as defined by Lemma A.20, define

L̃K|Jpτ | ζq ”
1

N

ˆ

1, L}πpKq}2p1´λ2q`λ2

ˆ

X̃K

` cpπpKqq
”

λζ ` p1´ λ2q1{2N1{2crt´ 1stτ
ı

˙˙

, (154)

where cpπpKqq ” p1´ }πpKq}2q1{2. Then the function K̃K|J satisfies

K̃K|Jpτ | ζq “
}τ}2

2
` L̃K|Jpτ | ζq .

Proof Conditional on the event R, it follows from Lemma A.20 that GK 1{N1{2 “ X̃K ” X̃ . We
also have

GK2

N1{2
“
}K2}

N1{2
GvK “ cpπpKqq

´

λζ ` p1´ λ2q1{2ξ
¯

, (155)

where ξ “ Gw is distributed as an independent gaussian vector in RN . Thus

K̃K|Jpτ | ζq “
1

N

ÿ

aďM

logEξ
„

exp

"

N1{2
ÿ

`ďt´1

τ`pc
p`qqaξ

*

ˆ U

ˆ

X̃a ` cpπpKqq
!

λζa ` p1´ λ
2q1{2ξ

)

˙

,

where ξ denotes a standard gaussian random variable. Making a change of variable gives

K̃K|Jpτ | ζq “
}τ}2

2
`

1

N

ÿ

aďM

logEξU
ˆ

X̃a

` cpπpKqq

"

λζa ` p1´ λ
2q1{2

„

ξ `N1{2
ÿ

`ďt´1

τ`pc
p`qqa

*˙

,

from which the result follows.

Proof [Proof of Proposition D.7] We follow a very similar outline as in the proof of Proposi-
tion A.13. As in (151) above, let us write L “ 5C1pUq

2. Given F 1ptq as in (25) and J,K P

t´1,`1uN , we abbreviate the quantity of interest as

EJ,K ” E
ˆ

SJpG1qSKpG1q1
"

}G1v}2

M
ď L

* ˇ

ˇ

ˇ

ˇ

F 1ptq

˙

. (156)
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It follows by the obvious generalization of Lemma A.16 that

EJ,K “ E
ˆ

SJpGqSKpGq1
"

}Gv}2

M
ď L

* ˇ

ˇ

ˇ

ˇ

H 1ptq,R,C, pG1qRC

˙

,

where G is an independent copy of G1. Next, the obvious generalization of Lemma A.19 gives the
simplification

EJ,K “ E
ˆ

SJpGqSKpGq1
"

}Gv}2

M
ď L

*
ˇ

ˇ

ˇ

ˇ

H 1ptq,R,A,ApKq, pG1qRAApKq

˙

,

where A and ApKq are as in Definition A.18 and Definition D.5 respectively. By the law of iterated
expectations,

EJ,K “ E
ˆ

SJpGq1
"

}Gv}2

M
ď L

*

ˆ E
”

SKpGq
ˇ

ˇ

ˇ
H 1ptq,R,Gv,ApKq, pG1qRAApKq

ı

ˇ

ˇ

ˇ

ˇ

H 1ptq,R,A, pG1qRA

˙

. (157)

We therefore first consider the calculation of the inner term

EK|Jpζq ” E
ˆ

SKpGq
ˇ

ˇ

ˇ

ˇ

H 1ptq,R,Gv “ ζ,ApKq, pG1qRAApKq

˙

(158)

(where we assume that ζ satisfies the constraints imposed by A).
Towards the calculation of (158), recall the notation of Definition D.4, and let VPpKqzApKq be

the orthogonal complement of VApKq inside VPpKq. Analogously to (65) and (66), define gPpKq and
gApKq, for instance

gApKq ”

ˆ

pG, cp`qwtq : 1 ď ` ď t´ 1

˙

“ crt´ 1sGw P Rt´1 . (159)

Choose an orthonormal basis for VPpKqzApKq, and denote it BjpKq for 1 ď j ď M ´ pt ´ 1q.
Analogously to (67), let

gBpKq ”

ˆ

pG,BjpKqq : 1 ď j ďM ´ pt´ 1q

˙

P RM´t`1 .

Note that there is an orthogonal transformation of RM which maps gPpKq to the pair pgApKq,gBpKqq.
The weight SKpGq, as defined by (23), is a function ofGK, which we decomposed in the proof

of Lemma D.8 as a sum of GK 1 and GK2. Recall that GK 1 is a function of gR. Meanwhile (see
e.g. (155)) GK2 is a linear combination of gP “ Gv “ ζ and gPpKq “ Gw, where gPpKq is
equivalent to the pair pgApKq,gBpKqq as noted above. Thus SKpGq can be rewritten as a function
SK|J of pgR,gP,gApKq,gBpKqq: explicitly,

SKpGq “
ź

aďM

U

ˆ

ÿ

sďt

pK, rpsqq

N1{2
pgRqa,s `

}K2}

N1{2

´

λpgPqa ` p1´ λ
2q1{2pgPpKqqa

¯

˙

” SK|JpgR,gP,gApKq,gBpKqq ,
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with λ ” λpJ,Kq as given by Definition D.3. On the event ApKq, the value of gApKq is fixed to a
value ḡApKq. We then introduce a parameter τ P Rt´1, and define (analogously to (69))

SK|J,τ pGq ” SK|J,τ pgR,gP,gApKq,gBpKqq

” SK|JpgR,gP,gApKq,gBpKqq exp

"

N1{2pτ,gApKqq

*

.

Then, analogously to (70), for any τ P Rt´1 we can rewrite (158) as

EK|Jpζq “ E
ˆ

SK|J,τ pgR,gP,gApKq,gBpKqq

exptN1{2pτ, ḡApKqqu

ˇ

ˇ

ˇ

ˇ

pgR,gP,gApKqq “ pḡR, ζ, ḡApKqq

˙

“
1

exptN1{2pτ, ḡApKqqu

ż

SK|J,τ pḡR, ζ, ḡApKq, gBpKqqpBpKqpgBpKqq dgBpKq . (160)

By contrast, the expected value of SK|J,τ given only the row constraints is (cf. (71))

EK|Jpτ | ḡR, ζq ” E
ˆ

SK|J,τ pGq
ˇ

ˇ

ˇ

ˇ

H 1ptq,R,Gv “ ζ, pG1qR

˙

“ E
ˆ

SK|J,τ pgR,gP,gApKq,gBpKqq

ˇ

ˇ

ˇ

ˇ

pgR,gPq “ pḡR, ζq

˙

“

ż

pApKqpgApKqq

ż

SK|J,τ pḡR, ζ, gApKq, gBpKqqpBpKqpgBpKqq dgBpKq dgApKq

“ exp

"

NK̃K|Jpτ | ζq

*

. (161)

Then, analogously to (72), we define the probability density function

pK|J,τ pgApKq | ḡR, ζq dgApKq ”
EpSK|J,τ pGq1tgApKq P dgApKqu |H

1ptq,R,Gv “ ζ, pG1qRq

EpSK|J,τ pGq |H 1ptq,R,Gv “ ζ, pG1qRq

“
pApKqpgApKqq

EK|Jpτ | ḡR, ζq

„
ż

SK|J,τ pḡR, ζ, gApKq, gBpKqqpBpKqpgBpKqq dgBpKq



dgApKq . (162)

Then it follows similarly to (73) that we can rewrite (160) as

EK|Jpζq “
EK|Jpτ | ḡR, ζq ¨ pK|J,τ pḡApKq | ḡR, ζq

exptN1{2pτ, ḡApKqqu ¨ pApKqpḡApKqq
. (163)

We will show in Proposition E.14 (deferred to Section E) that (cf. (74))

max

"

›

›

›
pK|J,τ p¨ | ḡRq

›

›

›

8
: J P t´1,`1uN , }πpJq} ď

4

5
, |λ| ď

4

5
, }τ} ď τmax

*

ď ℘t,2 . (164)

It therefore remains to estimate the other two terms on the right-hand side of (163). We then note
that Definition D.5 implies that, on the event ApKq, we have (cf. (75))

ḡApKq

N1{2

(159)
“

crt´ 1sGw

N1{2

(44)
“
pΓN q

´1nrt´ 1sGw

Nψ1{2

(153)
“

pΓN q
´1Hrt´ 1sw

pNψq1{2

(152)
“

pΓN q
´1Hrt´ 1s

pNψq1{2

ˆ

vK ´ λv

p1´ λ2q1{2

˙

(51)
“
pΓN q

trδpKq ´ λδpJqs

p1´ λ2q1{2
“ oN p1q , (165)
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where the last estimate holds thanks to the restriction J,K P H˚ (see (146)). Substituting (165) into
the formula for pApKq (similar to (76)) gives

pApKqpḡApKqq “
1

p2πqpt´1q{2
exp

"

´
N

2

›

›

›

›

pΓN q
trδpKq ´ λδpJqs

p1´ λ2q1{2

›

›

›

›

2*

“ exptN ¨ oN p1qu . (166)

Meanwhile, it follows by combining (161) and (165) that (cf. (77))

EK|Jpτ | ḡR, ζq

exptN1{2pτ, ḡApKqqu
ď exp

"

N

„

K̃K|Jpτ | ζq ´

ˆ

τ,
pΓN q

trδpKq ´ λδpJqs

p1´ λ2q1{2

˙

` oN p1q

*

(167)

Substituting (164), (166), and (167) into (163), and combining with Lemma D.8, gives (cf. (78))

EK|Jpζq

℘t,2p2πqt{2
ď exp

"

N

„ˆ

1

2

›

›

›

›

τ ´
pΓN q

trδpKq ´ λδpJqs

p1´ λ2q1{2

›

›

›

›

2

` L̃K|Jpτ | ζq
˙

` oN p1q

*

. (168)

To simplify the above expression, we set τ “ τ̄pλq where

τ̄pλq ”
$˚

p1´ qq1{2p1´ λ2q1{2
(110)
“ ´

ψ1{2p1´ qq1{2

p1´ λ2q1{2
Γtét´1 .

Substituting this into (154), and recalling the definition of X̃K from Lemma A.20, we obtain

L̃K|Jpτ̄pλq | ζq »
1

N

ˆ

1, Lqp1´λ2q`λ2
´

hpt`1q ` p1´ qq1{2λζ
¯

˙

` oN p1q ” L2pλ | ζq , (169)

where L2 is defined by the last identity. By substituting the above into (168), we see that the quantity
from (158) can be upper bounded by

EK|Jpζq ď exp

"

N

„

ψp1´ qq

2p1´ λ2q
` L2pλ | ζq ` oN p1q

*

“ exp

"

N
”

A2pλ | ζq ` oN p1q
ı

*

,

for A2pλ | ζq as in the statement of the proposition. By comparing (157) with (158), we see that

EJ,K “ EpSJ |R,Aq
ż

1

"

}ζ}2

M
ď L

*

EK|JpζqQJpdζq ,

so the claim follows.

Analogously to (58), we now define

pH˚q2,˝ ”
"

pJ,Kq P pH˚q2 :
|λpJ,Kq|

α1{2
ď 10 ¨ C1pUq

*

,

so pH˚q2,˝ is a subset of pH˚q2. Then decompose Z̄2pG1q ” Z̄2,˝pG1q` Z̄2,‚pG1q where (cf. (59))

Z̄2,˝pG1q ”
ÿ

pJ,KqPpH˚q2,˝
SJpG1qSKpG1q1

"

}G1vJ}
2

M
ď L,

}G1vK}
2

M
ď L

*

. (170)

We bound Z̄2,˝pG1q as follows:
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Theorem D.9 (analogous to Theorem A.12) Suppose U satisfies Assumptions 1 and 2, and let
F 1ptq be as in (25). Recalling Proposition D.7 and (169), let Ψ2pλ | ζq be defined by

Ψ2pλ | ζq ´Ψpπ˚, $˚q ” ´ψp1´ qq `A2pλ | ζq “ ´ψp1´ qq `
ψp1´ qq

2p1´ λ2q
` L2pλ | ζq .

For Z̄2,˝pG1q as defined by (170), we have

EpZ̄2,˝pG1q |F 1ptqq

expt2 ¨ p1, logp2 chpHptqqqqu
ď

ÿ

pJ,KqPpH˚q2,˝
QpJ,Kq

ż

exp

"

N
”

Ψ2pλ | ζq ` otp1q
ı

*

QJpdζq

for QJ as in Definition D.2 and Q as in Definition D.6.

Proof We follow the proof of Theorem A.12. Suppose J,K P H˚ with λ “ λpJ,Kq as given by
Definition D.3. Recalling Definition A.7, the restriction J P H˚ implies

Hrt´ 1sJ

Nψ1{2

(38)
“

Γyrt´ 1sJ

N

(49)
“ Γ$pJq » Γ$˚

(56)
“ ψ1{2p1´ qqΓΓtét´1 .

It follows that, for all J P H˚,

pHptq, Jq

N
» ψp1´ qqpΓΓtqt´1,t´1

(36)
“ ψp1´ qq .

Since pHptq,Hpt`1qq{pNψq “ 1´ otp1q, we conclude that, for all J P H˚.

pHpt`1q, Jq

N
» ψp1´ qq ´ otp1q .

Let EJ,K be as in (156). Combining with Definition D.6 gives

EpZ̄2,˝pG1q |F 1ptqq

expt2 ¨ p1, logp2 chpHptqqqqu
ď

ÿ

pJ,KqPpH˚q2,˝
QpJ,Kq

ˆ

PpJ,Kq{QpJ,Kq

expt2 ¨ p1, log chpHptqqqu

˙

EJ,K

ď
ÿ

pJ,KqPpH˚q2,˝
QpJ,Kq

EJ ¨ EJ,K{EJ
expt2N rψp1´ qq ´ otp1qsu

ď exp
!

NΨpπ˚, $˚q
)

ÿ

pJ,KqPpH˚q2,˝
QpJ,Kq

EJ,K{EJ
exptN rψp1´ qq ´ otp1qsu

, (171)

where the last bound is by the calculation (149) from the proof of Proposition D.1. Combining with
Proposition D.7 gives the claim.

Corollary D.10 (analogous to Corollary C.1) Suppose U satisfies Assumptions 1 and 2, and let
F 1ptq be as in (25). We then have the bound

E
´

Z̄2,‚pG1q
ˇ

ˇ

ˇ
F 1ptq

¯

ď exp

"

2N

ˆ

RSpα;Uq ´ 0.1 ¨ C1pUq
2α

˙*

for Z̄2,‚pG1q “ Z̄2pG1q ´ Z̄2,˝pG1q as defined by (170).
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Proof ForEJ,K as in (156) we also have triviallyEJ,K ď 1, and combining this with the calculation
(171) gives

EpZ̄2,‚pG1q |F 1ptqq

expt2 ¨ p1, logp2 chpHptqqqqu
ď

ÿ

pJ,KqPpH˚q2,‚

QpJ,Kq

expt2N rψp1´ qq ´ otp1qsu
.

Combining Proposition A.1 with Corollary B.8 and (115) gives, with high probability,

EpZ̄2,‚pG1q |F 1ptqq

expt2NRSpα;Uqu
ď Q

´

pH˚q2,‚
¯

¨ exp

"

N ¨ 2

„

3` 1.53`
3

2
` otp1q



C1pUq
2 ¨ α

*

ď Q
´

pH˚q2,‚
¯

¨ exp

"

12.1 ¨N ¨ C1pUq
2α

*

.

For any J P t´1,`1uN , it follows by the Azuma–Hoeffding inequality that

Q

ˆ

K P t´1,`1uN :

ˇ

ˇ

ˇ

ˇ

pJ ´mptq,K ´mptqq

N

ˇ

ˇ

ˇ

ˇ

ě x

˙

ď 2 exp

"

´
Nx2

8

*

for any x ě 0. Recalling Definition D.3, it follows that for any J P H˚,

Q

ˆ

K P H˚ : |λpJ,Kq| ě l

˙

ď 2 exp

"

´
Np1´ q ` oN p1qql

2

8

*

(172)

for any l ě 0. Taking l “ 10 ¨ C1pUqα
1{2 and summing over J gives

Q
´

pH˚q2,‚
¯

ď
ÿ

JPH˚

Q

ˆ

K P H˚ : |λpJ,Kq| ě 10 ¨C1pUqα
1{2

˙

ď exp

"

´12.4 ¨N ¨C1pUq
2α

*

.

It follows by combining the above bounds that

EpZ̄2,‚pG1q |F 1ptqq

expt2NRSpα;Uqu
ď exp

"

´ 0.3 ¨N ¨ C1pUq
2α

*

,

which concludes the proof.

D.3. Analysis of second moment

In this subsection we analyze the bound from Theorem D.9.

Proposition D.11 (analogous to Lemmas C.2 and C.3) For A2pλ | ζq as in Proposition D.7, the
derivative with respect to λ at λ “ 0 satifies the estimate

dA2pλ | ζq

dλ

ˇ

ˇ

ˇ

ˇ

λ“0

“ oN p1q ` otp1qαL
1{2

provided that ζ “ Gv is compatible with the admissibility condition (62), and satisfies the bound
}ζ}2 ďML where L “ L1pUq “ 5C1pUq

2 as defined above.

79



BOLTHAUSEN NAKAJIMA SUN XU

Proof For L2pλ | ζq as defined by (169), we have

dA2pλ | ζq

dλ

ˇ

ˇ

ˇ

ˇ

λ“0

“
dL2pλ | ζq

dλ

ˇ

ˇ

ˇ

ˇ

λ“0

“
p1´ qq1{2

N

ÿ

aďM

EξU 1pphpt`1qqa ` p1´ qq
1{2ξq

EUpphpt`1qqa ` p1´ qq1{2ξq
ζa

(98)
“
p1´ qq1{2pFqph

pt`1qq, ζq

N
“
p1´ qq1{2pnpt`1q, ζq

N
.

On the other hand, it follows from the admissibility condition that ζ “ Gv must satisfy

crt´ 1sζ

N1{2

(63)
“ pΓN q

tδpJq “ oN p1q , (173)

where the last step is by the restriction J P H˚. The span of the vectors cp`q for ` ď t´ 1 — which
is the same as the span of the vectors np`q for ` ď t´ 1 — does not contain npt`1q, but recall from
(42) that

pnpt`1q,npt´1qq

Nψ

(42)
“ µt´1 .

It follows from Proposition A.6 and Lemma B.11 that µt´1 “ 1´ otp1q, so we can decompose

npt`1q

pNψq1{2
“ c‖ ` cK

where c‖ lies in the span of the vectors cp`q and has norm 1 ´ otp1q, while cK is orthogonal to the
vectors cp`q and has norm otp1q. It follows that

ˇ

ˇ

ˇ

ˇ

ˆ

npt`1q

Nψ1{2
, ζ

˙
ˇ

ˇ

ˇ

ˇ

“
|pc‖ ` cK, ζq|

N1{2

(173)
ď oN p1q `

}cK}}ζ}

N1{2
ď oN p1q ` otp1qpαLq

1{2 ,

having used Cauchy–Schwarz together with the assumption }ζ}2 ďML. In conclusion we find

dA2pλ | ζq

dλ

ˇ

ˇ

ˇ

ˇ

λ“0

“ oN p1q ` otp1qαL
1{2 ,

as claimed.

Lemma D.12 (analogous to Corollary C.9) Suppose U satisfies Assumptions 1 and 2. Recall
K2pUq from Assumption 2, and C1pUq from Lemma B.3. For L2pλ | ζq as defined by (169), we
have the bound

ˇ

ˇ

ˇ

ˇ

d2L2pλ | ζq

dλ2

ˇ

ˇ

ˇ

ˇ

ď 420 ¨ C1pUq
2K2pUq ¨ α

as long as |λ| ď 4{5 and }ζ}2{M ď L “ L1pUq “ 5C1pUq
2.

Proof Let epλq ” p1´ qq1{2p1´ λ2q1{2. Denote

Y ” Y pλ; ζq “

"

hpt`1q ` p1´ qq1{2λζ

*

` p1´ qq1{2p1´ λ2q1{2ξ1 ”Xpλ; ζq ` epλqξ1 .
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Then the function L2pλ | ζq from Proposition D.7 can be rewritten as

L2pλ | ζq ”
1

N

ÿ

aďM

logEξUpYapλ, ζqq .

Recalling the notation of (117), (118), (119), and (120), let us now define A ” AcpXq, B ”

BcpXq, ā ” p1, acpXqq, and b̄ ” p1, bcpXqq, for c “ epλq and X “ Xpλ; ζq. With this notation,
we have

d2L2pλ | ζq

dλ2
“

1

N

ÿ

aďM

"EξU 1pYaqd
2Ya
dλ2

` EξU2pYaqpdYa
dλ q

2

EξUpYaq
´

ˆ

EξU 1pYaqdYa
dλ

EξUpYaq

˙2*

.

We decompose the above as pIq ` pIIq ` pIIIq ` pIVq where (cf. Lemma C.5)

pIq ”
1

N
pX 1pλqqtpdiag AqX 1pλq “

1´ q

N
ζ tpdiag Aqζ ,

pIIq ”
2

N
e1pλqBtX 1pλq “ ´

2p1´ qq1{2λ

Np1´ λ2q1{2
Btζ ,

pIIIq ”
1

N
e2pλqā “ ´

p1´ qq1{2

Np1´ λ2q3{2
ā ,

pIVq ”
1

N
e1pλq2b̄ “

p1´ qqλ2

Np1´ λ2q
b̄ .

We bound each of the above terms, assuming |λ| ď 4{5. Applying (126) gives

|pIq| ď
1

N
}A}8}ζ}

2 ď
1

N
1.7 ¨K2pUq}ζ}

2 ď 1.7 ¨K2pUqαL “ 8.5 ¨ C1pUq
2K2pUq ¨ α .

It follows from the above definition ofX ”Xpλ; ζq that

}X}

M1{2
ď
}hpt`1q} ` }ζ}

M1{2
ď 2q1{2 ` L1{2 ď 2.5 ¨ C1pUq , (174)

with high probability. Combining (174) with Lemma C.6 gives

|pIIq| ď
8

3N
}B}}ζ} ď

8M1{2}ζ}

3N
K2pUq

ˆ

2.5 ¨ C1pUq ` 5.8 ¨
}X}

M1{2

˙

ď
8αL1{2

3
K2pUq

ˆ

2.5 ¨ C1pUq ` 5.8 ¨ 2.5 ¨ C1pUq

˙

ď 105 ¨ C1pUq
2K2pUq ¨ α .

Next, combining (174) with Lemma C.7 gives

|pIIIq| ď
4.7

N
|ā| ď

4.7 ¨M

N

"

1.1 ¨ C1pUq ` 3.7 ¨
}X}2

M

*

ď
4.7 ¨M

N

"

1.1 ¨ C1pUq ` 3.7 ¨ 2.52 ¨ C1pUq
2

*

ď 110 ¨ C1pUq
2 ¨ α .
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Finally, combining (174) with Lemma C.8 gives

|pIVq| ď
1.8

N
|b̄| ď 1.8 ¨K2pUq

ˆ

4.6 ¨ C1pUq ` 17 ¨
}X}2

M

˙

¨ α

ď 1.8 ¨K2pUq

ˆ

4.6 ¨ C1pUq ` 17 ¨
´

2.5 ¨ C1pUq
¯2
˙

¨ α ď 193 ¨ C1pUq
2K2pUq ¨ α .

Combining the above bounds gives the claim.

Corollary D.13 (analogous to Proposition C.4) Suppose U satisfies Assumptions 1 and 2. For
Ψ2pλ | ζq as in the statement of Theorem D.9, we have the bound

ˇ

ˇ

ˇ

ˇ

d2Ψ2pλ | ζq

dλ2

ˇ

ˇ

ˇ

ˇ

ď 610 ¨ C1pUq
2K2pUq ¨ α ,

as long as |λ| ď 4{5 and }ζ}2{M ď L1pUq “ 5C1pUq
2.

Proof It follows from the definition that
ˇ

ˇ

ˇ

ˇ

d2Ψ2pλ | ζq

dλ2

ˇ

ˇ

ˇ

ˇ

ď
ψp1´ qqp1` 3λ2q

p1´ λ2q3
`

ˇ

ˇ

ˇ

ˇ

d2L2pλ | ζq

dλ2

ˇ

ˇ

ˇ

ˇ

ď 62.6 ¨ ψ `

ˇ

ˇ

ˇ

ˇ

d2L2pλ | ζq

dλ2

ˇ

ˇ

ˇ

ˇ

.

Applying Proposition A.1 and Lemma D.12 gives
ˇ

ˇ

ˇ

ˇ

d2A2pλ | ζq

dλ2

ˇ

ˇ

ˇ

ˇ

ď

"

62.6 ¨ 3 ¨ C1pUq
2 ` 420 ¨ C1pUq

2K2pUq

*

¨ α .

The claim follows.

D.4. Conclusion of second moment

In this concluding subsection we finish the proof of Theorem 1.5, and use it to deduce the lower
bound of Theorem 1.1 in the case }u}8 ă 8.
Proof [Proof of Theorem 1.5 (conclusion)] Recall that the proof of the first moment lower bound
(17) was already given at the end of §D.1. It therefore remains to show the second moment upper
bound (18), and for this we follow the proof of Theorem 1.4. Recall from (170) that we decomposed
Z̄2pG1q as the sum of Z̄2,˝pG1q and Z̄2,‚pG1q. For Z̄2,˝pG1q, we will analyze the bound from
Theorem D.9. We note that at λ “ 0 we have

Ψ2p0 | ζq´Ψpπ˚, $˚q “ ´
ψp1´ qq

2
`L2p0 | ζq

(169)
» ´

ψp1´ qq

2
`αELqpq1{2Zq

(138)
» Ψpπ˚, $˚q .

It follows by combining with (137) that

p1, logp2 chpHptqqqq `
Ψ2p0 | ζq

2
NÑ8
ÝÑ RSpα;Uq .
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Next, for |λ| ď 4{5, it follows by combining Proposition D.11 and Corollary D.13 that

Ψ2pλ | ζq ´Ψ2p0 | ζq ď
dΨ2pλ | ζq

dλ

ˇ

ˇ

ˇ

ˇ

λ“0

¨ λ`max

"ˇ

ˇ

ˇ

ˇ

d2Ψ2pλ | ζq

dλ2

ˇ

ˇ

ˇ

ˇ

: |λ| ď
4

5

*

¨
λ2

2

ď otp1qλ` 610 ¨ C1pUq
2K2pUq ¨ α ¨

λ2

2
.

Recalling that α ď αpUq as defined by (27), the above can be simplified as

Ψ2pλ | ζq ´Ψ2p0 | ζq
(27)
ď otp1q `

610 ¨ λ2

2e10C1pUq4K2pUq3
ď otp1q `

λ2

e13
.

Substituting this into the bound from Theorem D.9 gives

EpZ̄2,˝pG1q |F 1ptqq

expt2N rRSpα;Uq ` otp1qsu
ď

ÿ

pJ,KqPpH˚q2,˝
QpJ,Kq exp

"

Nλ2

e13

*

.

It follows by combining with (172) that the right-hand side is bounded by a constant. Finally, we
recall that EpZ̄2,‚pG1q was bounded by Corollary D.10, so the claim follows.

Proof [Proof of Theorem 1.1 lower bound assuming }u}8 ă 8] It follows from the first bound
from Theorem 1.5 that

E
ˆ

Z̄1

"

Z̄ ě
EpZ̄ |F ptqq

2

* ˇ

ˇ

ˇ

ˇ

F ptq

˙

ě
EpZ̄ |F ptqq

2

(17)
ě

exptNpRSpα;Uq ´ otp1qqu

2
, (175)

with high probability over the randomness of F ptq. On the other hand, the Cauchy–Schwarz in-
equality gives

E
ˆ

Z̄1

"

Z̄ ě
EpZ̄ |F ptqq

2

* ˇ

ˇ

ˇ

ˇ

F ptq

˙2

ď EpZ̄2 |F ptqq ¨ P
ˆ

Z̄ ě
EpZ̄ |F ptqq

2

ˇ

ˇ

ˇ

ˇ

F ptq

˙

.

Combining the above with the second bound from Theorem 1.5 gives, again with high probability,

P
ˆ

Z̄ ě
exptNpRSpα;Uq ´ otp1qqu

2

ˇ

ˇ

ˇ

ˇ

F ptq

˙

(175)
ě

expt2NpRSpα;Uq ´ otp1qqu{4

EpZ̄2 |F ptqq
(18)
ě

1{4

expp2Notp1qq
. (176)

Next let Pj denote probability conditional on the first j rows of G, and let Ej denote expectation
with respect to Pj . Then, as in the proof of (Talagrand, 2011b, Propn. 9.2.6), we take the martingale
decomposition

1

N

"

logZ ´ E logZ

*

“
ÿ

jďM

1

N

"

Ej logZ ´ Ej´1 logZ

*

”
ÿ

jďM

Xj .

To bound Xj , let Zj denote the normalized partition function without the j-th factor,

Zj ”
ÿ

J

ź

aďM,
a‰j

U

ˆ

pga, Jq

N1{2

˙

. (177)
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Since Zj does not depend on the j-th row ofG, we can rewrite

NXj “ Ej log
Z

Zj
´ Ej´1 log

Z

Zj
.

By Assumption 1 and the uniform bound on u ” logU , we have

1

expp}u}8q
ď
Z

Zj
ď 1 ,

which implies |NXj | ď }u}8 almost surely. It follows from the Azuma–Hoeffding bound that

P
ˆ

ˇ

ˇ

ˇ
logZ ´ E logZ

ˇ

ˇ

ˇ
ě Nε

˙

ď 2 exp

"

´Nε2

2αp}u}8q2

*

”
2

exppNspεqq
. (178)

On the other hand, if we fix any ε ą 0, then (176) implies

P
ˆ

1

N
logZ ě RSpα;Uq ´ ε´

log 2

N

˙

ě oN p1q `
1{4

expp2Notp1qq
ě

1{4

exppNspεq{2q
. (179)

Note that (178) and (179) contradict one another unless

1

N
E logZ ě RSpα;Uq ´ 2ε´

log 2

N
. (180)

It follows using (178) again that, for N large enough,

P
ˆ

1

N
logZ ď RSpα;Uq ´ 4ε

˙

(180)
ď P

ˆ

logZ ´ E logZ ď ´Nε

˙

(178)
ď oN p1q .

In the above, the left-hand side does not depend on t, so it follows that

lim inf
NÑ8

1

N
logZ ě RSpα;Uq

in probability. This gives the lower bound in Theorem 1.1 in the case }u}8 ă 8.

Appendix E. Local central limit theorem

In this section we state and prove Proposition E.13 (used in the proofs of Proposition A.13 and
Proposition D.1) and Proposition E.14 (used in the proof of Proposition D.7). Recall the calculation
of X̃J from Lemma A.20. Given J P t´1,`1uN and τ P Rt´1, we define

X ”XJ,τ “ X̃J `N
1{2cpπpJqqcrt´ 1stτ

“
hrtstπ̂

q1{2
`
p1´ qqnrt´ 1stπ́

q1{2
`N1{2cpπpJqqcrt´ 1stτ

(44)
“

hrtstπ̂

q1{2
` nrt´ 1st

"

p1´ qqπ́

q1{2
`
cpπpJqq

ψ1{2
ppΓN q

tq´1τ

*

. (181)
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Now let ζa (a ďM ) be independent scalar random variables, such that ζa has density given by (cf.
Definition B.1)

χXa,cpzq ”
UpXa ` czqϕpzq

EξUpXa ` cξq
, (182)

whereX ”XJ,τ as above, and c ” cpπpJqq ” p1´ }πpJq}2q1{2. Note that

Eζa “
EξrξUpXa ` cξqs

EξUpXa ` cξq

(8)
“ cpπpJqqF}πpJq}2pXaq . (183)

Let na P Rt´1 denote the a-th column of the matrix nrt´ 1s, and consider the random variable

W ”
1

N1{2

ÿ

aďM

pζa ´ Eζaqna “
nrt´ 1spζ ´ Eζq

N1{2
P Rt´1 . (184)

Let PJ,τ denote the law of W . We will compare PJ,τ with the gaussian distribution on Rt´1 that
has mean zero and covariance

Σ ” ΣJ,τ ”
1

N

ÿ

aďM

pVar ζaqnapnaq
t P Rpt´1qˆpt´1q . (185)

(We bound the singular values of ΣJ,τ in Lemma E.2 below.) The majority of this section is occupied
with proving the following result:

Proposition E.1 (local central limit theorem) Suppose U satisfies Assumptions 1 and 2. Recall
that PJ,τ is the law of the random variableW from (184). For any finite constant τmax, it holds with
high probability that for all J P t´1,`1uN and all }τ} ď τmax, the measure PJ,τ has a bounded
continuous density pJ,τ . Moreover, again with high probability,

sup

"

}pJ,τ ´ gJ,τ }8 : J P t´1,`1uN , }πpJq} ď
4

5
, }τ} ď τmax

*

ď
1

p2πqt´1N0.35
ď

1

N0.3
,

where gJ,τ denotes the density of the centered gaussian distribution on Rt´1 with covariance Σ ”

ΣJ,τ .

At the end of this section we will show that Proposition E.1 readily implies the required results
Propositions E.13 and E.14. Towards the proof of Proposition E.1, we introduce some notation.
Write pa for the density function of the random variable ζa ´ Eζa, so in the notation of (182) we
have

papzq “ χXa,cpz ` Eζaq “ χXa,c

ˆ

z `
EξrξUpXa ` cξqs

EξUpXa ` cξq

˙

.

The characteristic function of the random variable W from (184) (i.e., the Fourier transform of the
measure PJ,τ ) is given by the function

p̂psq ” p̂J,τ psq ” E exppips,W qq “
ź

aďM

E exp

"

ips,naqpζa ´ Eζaq
N1{2

*

“
ź

aďM

p̂a

ˆ

ps,naq

N1{2

˙

,

(186)
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where p̂a denotes the Fourier transform of pa. The Fourier transform of the gaussian density g ”
gJ,τ is given by

ĝpsq ” ĝJ,τ psq ” exp

"

´
ps,Σsq

2

*

“
ź

aďM

exp

"

´
ps,naq

2 Var ζa
2N

*

”
ź

aďM

ĝapsq . (187)

With p̂ ” p̂J,τ as in (186) and ĝ ” ĝJ,τ as in (187), we define

I1pJ, τq ”

ż

ˇ

ˇ

ˇ
p̂J,τ psq ´ ĝJ,τ psq

ˇ

ˇ

ˇ
1
!

}s} ď N0.01
)

ds , (188)

I2pJ, τ, ε2q ”

ż

ˇ

ˇ

ˇ
p̂J,τ psq ´ ĝJ,τ psq

ˇ

ˇ

ˇ
1
!

N0.01 ď }s} ď ε2N
1{2

)

ds , (189)

I3pJ, τ, ε2q ”

ż

ˇ

ˇ

ˇ
p̂J,τ psq ´ ĝJ,τ psq

ˇ

ˇ

ˇ
1
!

}s} ě ε2N
1{2

)

ds . (190)

In the analysis below we show that the integrals IjpJ, τq can be bounded uniformly over J P

t´1,`1uN such that }πpJq} ď 4{5, and any bounded range of vectors τ . The remainder of this
section is organized as follows:

• In §E.1 we bound the quantities I1 and I2 from (188) and (189).

• In §E.2, in preparation for bounding I3 from (190), we prove rough estimates concerning the
nondegeneracy of the vectors arising from the AMP iteration.

• In §E.3 we bound I3 from (190).

• In §E.4 we combine the bounds from the preceding sections to finish the proof of Proposi-
tion E.1. We then state and prove Proposition E.13 and E.14.

The analysis of this section is based on standard methods; see e.g. Petrov (1975); Borovkov (2017).

E.1. Fourier estimates at low and intermediate frequency

In this subsection we prove Lemmas E.4 and E.5, bounding the quantities I1 and I2 from (188) and
(189).

Lemma E.2 Suppose U satisfies Assumption 1 and 2, and let Σ be as in (185). Given any τmax ă

8, there is a positive constant ι1, depending on t and on τmax, such that we have the bounds

inf

"

pu,ΣJ,τuq : }u} “ 1, J P t´1,`1u2, }πpJq} ď
4

5
, }τ} ď τmax

*

ě ι1 , (191)

sup

"

pu,ΣJ,τuq : }u} “ 1, J P t´1,`1u2, }πpJq} ď
4

5
, }τ} ď τmax

*

ď
1

ι1
, (192)

with probability 1´ oN p1q.

Proof Write va ” Var ζa. Note that Assumption 2 gives, with c “ cpπpJqq ” p1´ }πpJq}2q2,

va “ vpXa, cq ”
1

2

Eξrpξ ´ ξ1q2UpXa ` cξqUpXa ` cξ
1qs

Eξ,ξ1rUpXa ` cξqUpXa ` cξ1qs
ď
K2pUq

2
. (193)
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It follows that, for any unit vector u P Rt´1, and with ςt as defined by Remark A.5, we have

pu,Σuq “
1

N

ÿ

aďM

vapna, uq
2 ď

K2pUq

2N

ÿ

aďM

pna, uq
2

“
K2pUq

2N

›

›

›
nrt´ 1stu

›

›

›

2 (44)
“

K2pUqψ

2

›

›

›
pΓN q

tu
›

›

›

2
ď
K2pUqψςt

2
,

which proves (191). Next, for any L, let MpLq Ď rM s denote the subset of indices a ď M
satisfying the condition

ma ” max

"

|phpsqqa|, |pn
p`qqa| : s ď t, ` ď t´ 1

*

ď L . (194)

It follows from Lemma A.4 that with high probability we can bound

max

"

1

M

ÿ

aďM

pphpsqqaq
4,

1

M

ÿ

aďM

ppnp`qqaq
4 : s ď t, ` ď t´ 1

*

ď ℘4

for a constant ℘4. As a result, for any finite L, we can bound

1

M

ÿ

aďM

1
!

|phpsqqa| ě L
)

ď
1

M

ÿ

aďM

pphpsqqaq
4

L4
ď
℘4

L4
,

and similarly with np`q in place of hpsq. It follows using the Cauchy–Schwarz that

1

M

ÿ

aďM

pnp`qa q
21
!

|phpsqqa| ě L
)

ď

ˆ

1

M

ÿ

aďM

pnp`qa q
4

˙1{2ˆ 1

M

ÿ

aďM

1
!

|phpsqqa| ě L
)

˙1{2

ď
℘4

L2
,

1

M

ÿ

aďM

pnp`qa q
21
!

|pnpjqqa| ě L
)

ď

ˆ

1

M

ÿ

aďM

pnp`qa q
4

˙1{2ˆ 1

M

ÿ

aďM

1
!

|pnpjqqa| ě L
)

˙1{2

ď
℘4

L2
,

where the bounds hold for all s ď t and all j, ` ď t´ 1. Combining these bounds gives, with ma as
defined in (194),

1

M

ÿ

aRMpLq

pnp`qa q
2 “

1

M

ÿ

aďM

pnp`qa q
21
!

|ma| ě L
)

ď
2t℘4

L2
. (195)

Next, it follows from the definition (181) ofX ”XJ,t that for all a ďM ,

|Xa| ď
}π̂}8

q1{2

ÿ

sďt

|phpsqqa| `

ˆ

}π̂}8

q1{2
`
ςt}τ}

ψ1{2

˙

ÿ

`ďt´1

|pnp`qqa|

ď
ςtp1` }τ}q

pqψq1{2

ÿ

sďt

ˆ

|phpsqqa| ` |pn
psqqa|

˙

. (196)
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If }τ} ď τmax where (without loss) τmax ě 1, then we obtain

max

"

|Xa| : a PMpLq

*

ď
4ςtτmaxtL

pqψq1{2
” L1 . (197)

It follows using Assumption 1 that for any finite L1 we must have

inf

"

vpx, cq :
1

2
ď c ď 1, |x| ď L1

*

ě εpL1q ą 0 .

It follows that, for any unit vector u P Rt´1, we have the lower bound

pu,Σuq ě
εpL1q

N

ÿ

aPMpLq

pna, uq
2 ě

εpL1q

N

"

›

›

›
nrt´ 1stu

›

›

›

2
´

ÿ

aRMpLq

pna, uq
2

*

(44)
ě εpL1q

"

ψ
›

›

›
pΓN q

tu
›

›

›

2
´

1

N

ÿ

aRMpLq

}na}
2

*

(195)
ě εpL1q

"

ψ

ςt
´

2t2℘4

L2

*

ě
εpL1qψ

2ςt
,

where the last inequality can be arranged by taking L large enough (note that L depends on t, and
L1 depends on L). This proves the second assertion (192).

Lemma E.3 (Taylor expansion of characteristic function) Suppose U satisfies Assumptions 1
and 2. Let p̂a be as in (186), and recall that it depends on both J and τ . It holds with high
probability that

max

"ˇ

ˇ

ˇ

ˇ

p̂apsq ´

ˆ

1´
ps,naq

2 Var ζa
2N

˙ˇ

ˇ

ˇ

ˇ

: J P t´1,`1uN , }πpJq} ď
4

5
, }τ} ď N0.01

*

ď
}s}3

N1.4

for all s P Rt´1 and all a ďM .

Proof It is well-known that for all x P R we have
ˇ

ˇ

ˇ

ˇ

eix ´

ˆ

1` ix´
x2

2

˙
ˇ

ˇ

ˇ

ˇ

ď
|x|3

6
.

We also note that Lemma B.3 implies the third moment bound

E
ˆ

ˇ

ˇ

ˇ
ζa ´ Eζa

ˇ

ˇ

ˇ

3
˙

ď 8Ep|ζa|3q “
8Eξr|ξ|3UpXa ` cξqs

EξUpXa ` cξq
ď 8

ˆ

C1pUq ` p8|Xa|q
3

˙

.

As a consequence, for all s P Rt´1 we have
ˇ

ˇ

ˇ

ˇ

p̂apsq ´

ˆ

1´
ps,naq

2 Var ζa
2N

˙ˇ

ˇ

ˇ

ˇ

ď
|ps,naq|

3

6N3{2
E
ˆ

ˇ

ˇ

ˇ
ζa ´ Eζa

ˇ

ˇ

ˇ

3
˙

ď
4|ps,naq|

3

3N3{2

ˆ

C1pUq ` p8|Xa|q
3

˙

. (198)

By combining Lemma B.15 with the bound (196) and the restriction }τ} ď N0.01, we must have
}X}8 ď N0.021 with high probability. Therefore, with high probability,

4|ps,naq|
3

3N3{2

ˆ

C1pUq ` p8|Xa|q
3

˙

ď
4}s}3t3{2N0.03

3N3{2

ˆ

C1pUq ` p8|Xa|q
3

˙

ď
}s}3

N1.4
.

Combining with (198) concludes the proof.
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Lemma E.4 (low-frequency estimate) Suppose U satisfies Assumption 1 and 2. In the notation
of (188), we have

max

"

I1pJ, τq : J P t´1,`1uN , }πpJq} ď
4

5
, }τ} ď N0.01

*

ď
1

N0.38

with probability 1´ oN p1q.

Proof Recall from (193) that Var ζa ď K2pUq{2. Combining with Lemma B.15 gives, with high
probability,

ps,naq
2 Var ζa

2N
ď
}s}2tp}na}8q

2K2pUq

4N
ď
}s}2tK2pUq

4N0.98
ď
}s}2

N0.97
,

We have | logp1 ´ xq ` x| ď x2 for all x small enough, so if }s} ď N0.01, then combining with
Lemma E.3 gives

ˇ

ˇ

ˇ

ˇ

log p̂apsq `
ps,naq

2 Var ζa
2N

ˇ

ˇ

ˇ

ˇ

ď
}s}3

N1.4
`

ˆ

}s}2

N0.97
`
}s}3

N1.4

˙2

ď
}s}3

N1.4
`

ˆ

2}s}2

N0.97

˙2

ď
2}s}3

N1.4
ď

1

N1.39
.

Summing the above over a ď M gives that the multiplicative error between p̂psq and ĝpsq is small
for all }s} ď N0.01. Therefore, with high probability, we have the bound

I1pJ, τq ď

ż

ĝpsq

"

exp

ˆ

M

N1.39

˙

´ 1

*

ds ď
p2πqpt´1q{2

N0.385pdet Σq1{2
ď

1

N0.38
,

uniformly over all J P t´1,`1uN and all }τ} ď N0.01.

Lemma E.5 (moderate-frequency estimate) Suppose U satisfies Assumption 1 and 2. With the
notation of (189), for any finite constant τmax, we can choose ε2 depending on τmax such that

sup

"

I2pJ, τ, ε2q : J P t´1,`1uN , }πpJq} ď
4

5
, }τ} ď τmax

*

ď
1

exppN0.01q

with probability 1´ oN p1q.

Proof It follows from the bound (198) in the proof of Lemma E.3 that, with high probability, we
have

|p̂psq| ď ĝpsq exp

"

4}s}3

3N3{2

ÿ

aďM

}na}
3
´

C1pUq ` p8|Xa|q
3
¯

*

for all s P Rt´1. Recall the bound (196) onX “XJ,τ . If we assume without loss of generality that
τmax ě 1, then combining (196) with Lemma A.4 gives, with high probability,

sup

"

4

3N

ÿ

aďM

}na}
3
´

C1pUq ` p8|Xa|q
3
¯

: J P t´1,`1un, }τ} ď τmax

*

ď pτmaxq
3℘1 ,
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where ℘1 is a finite constant. On the other hand, by Lemma E.2, with high probability

ĝpsq ď exp

"

´
ι1}s}

2

2

*

.

It follows that, with high probability,

|p̂psq| ď exp

"

´
ι1}s}

2

2
`
pτmaxq

3℘1}s}
3

N1{2

*

.

To ensure that the quadratic term dominates the cubic term, we restrict to }s} ď ε2N
1{2 where

ε2 ”
ι1

4pτmaxq
3℘1

.

For this choice of ε2 we find that, with high probability, we have the bound

I2pJ, τ, εq ď

ż

}s}ěN0.01

exp

"

´
ι1}s}

2

4

*

ds ď
1

exppN0.01q

uniformly over all J P t´1,`1uN and }τ} ď τmax.

E.2. Non-degeneracy of TAP iterates

In this subsection we prove some preliminary results which will be used in §E.3 to estimate the
quantity I3 from (190).

Lemma E.6 If B is any k ˆM matrix such that BBt “ Ik, then B must have a k ˆ k submatrix
U such that

| detU | ě

ˆ

k!

Mk

˙1{2

.

Proof We argue by induction on k. If k “ 1 then B consists of a single row which is a unit vector
in RM , so clearly B must have an entry with absolute value at least 1{M1{2. Now suppose k ě 2
and that the claim has been proved up to k´1. Denote the columns ofB as b1, . . . ,bM where each
ba P Rk. Since

ÿ

aďM

}ba}
2 “ trpBBtq “ k ,

there must exist at least one index a ďM with

}ba}
2 ě

k

M
.

We assume without loss that a “ 1. Let O be a k ˆ k orthonormal matrix such that Ob1 “

}b1}e1, where e1 denotes the first standard basis vector in Rk. Let B̄ ” OB, and note that B̄B̄t “

OBBtOt “ Ik, so B̄ also has orthonormal rows. We can further decompose

B̄ “ OB “

ˆ

}b1} ˚

0 B̃

˙
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where 0 denotes the zero vector in Rk´1, and B̃ is a pk ´ 1q ˆ pM ´ 1q matrix with orthonormal
rows. It follows from the inductive hypothesis that B̃ has a pk ´ 1q ˆ pk ´ 1q submatrix Ũ with

| det Ũ | ě

ˆ

pk ´ 1q!

pM ´ 1qk´1

˙1{2

.

As a result, B̄ has a k ˆ k submatrix Ū with

| det Ū | “

ˇ

ˇ

ˇ

ˇ

det

ˆ

}b1} ˚

0 Ũ

˙ ˇ

ˇ

ˇ

ˇ

ě }b1} ¨ | det Ũ | ě
k1{2

M1{2

ˆ

pk ´ 1q!

pM ´ 1qk´1

˙1{2

ě

ˆ

k!

Mk

˙1{2

.

The claim follows by noting that U “ OtŪ is a submatrix of the original matrix B.

Corollary E.7 If B is any k ˆM matrix such that }BBt ´ Ik}8 ď 1{p3kq, then B has a k ˆ k
submatrix U with

| detU | ě
1

3

ˆ

k!

Mk

˙1{2

. (199)

(In the above, as elsewhere, } ¨ }8 denotes the entrywise maximum absolute value of the matrix.)

Proof Denote the rows of B as u1, . . . ,uk where each u` P RM . Consider the Gram–Schmidt
orthogonalization of these vectors: for each ` ď k, we decompose

u` ” u`,‖ ` u`,K ”
ÿ

jď`´1

c`,ju
j ` u`,K

where u`,‖ is the orthogonal projection of u` onto the span of u1, . . . ,u`´1. Then for all j ď `´ 1
we must have

0 “ pu`,K,ujq “ pu`,ujq ´
ÿ

iď`´1

1ti ‰ juc`,ipu
i,ujq ´ c`,j}u

j}2 .

Abbreviate ε ” εpkq ” 1{p3kq, so the assumptions imply that }uj}2 ě 1 ´ ε while |pui,ujq| ď ε
for all i ‰ j. Rearranging the above gives an upper bound for |c`,j | in terms of the other coefficients
c`,i (i ‰ j). If we further denote cmax ” maxt|c`,j | : ` ď k, j ď `´ 1u, then we have

cmax ď
ε

1´ ε

"

1` pk ´ 2qcmax

*

.

Rearranging the inequality gives the bound

cmax ď
ε

1´ ε

Nˆ

1´
εpk ´ 2q

1´ ε

˙

“
ε

1´ εpk ´ 1q
ď

3ε

2
.

From this bound we can deduce that for all ` ď k we have

}u`,‖}2 “

›

›

›

›

ÿ

jď`´1

c`,ju
j

›

›

›

›

2

ď

ˆ

3ε

2

˙2"

p`´ 1qp1` εq ` p`´ 1qp`´ 2qε

*

ď

ˆ

3ε

2

˙2 4k

3
“ ε .
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It follows that }u`,K}2 “ }u`}2´}u`,‖}2 ě 1´2ε. (We also have trivially }u`,K}2 ď }u`}2 ď 1`ε.)
Let R denote the Gram–Schmidt matrix, so R is k ˆ k lower triangular with entries

R`,j “
1

}u`,K}

"

1t` “ ju ´ 1t` ă juc`,j

*

.

Since R is lower triangular, its determinant is simply the product of its diagonal entries, so

1

p1` εqk
ď detR “

ź

`ďk

1

}u`,K}
ď

1

p1´ 2εqk
.

By construction, B́ “ RB is a kˆM matrix with orthonormal rows, so Lemma E.6 implies that B́
has a k ˆ k submatrix Ú with

| det Ú | ě

ˆ

k!

Mk

˙1{2

.

Therefore U “ R´1Ú is a k ˆ k submatrix of the original matrix B, with

| detU | “
| det Ú |

detR
ě p1´ 2εqk

ˆ

k!

Mk

˙1{2

“

ˆ

1´
2

3k

˙kˆ k!

Mk

˙1{2

ě
1

3

ˆ

k!

Mk

˙1{2

,

where the bound holds for all k ě 1.

Lemma E.8 Suppose U satisfies Assumption 1 and 2. Recall from (44) that the matrix crt´ 1s is
pt ´ 1q ˆM with orthonormal rows. Let MpLq Ď rM s be as defined in the proof of Lemma E.2
(see (194)). If B “ BpLq is the submatrix of crt´ 1s with column indices in MpLq, then with high
probability it satisfies

}B}8 ď
tςtL

pNψq1{2
.

It is possible to choose L “ Lptq large enough such that, with high probability, }BBt ´ It´1}8 ď

1{p4tq.

Proof It follows using (44) that for each ` ď t´ 1,
´

pcp`qqa

¯2
“

ˆ

ÿ

jďt´1

ppΓN q
´1q`,jpn

pjqqa

pNψq1{2

˙2

ď
tpςtq

2

Nψ

ÿ

jďt´1

´

pnpjqqa

¯2
. (200)

Applying (200) for a PMpLq gives the claimed bound on }BpLq}8. On the other hand, by applying
(200) for a R MpLq and combining with the bound (195) from the proof of Lemma E.2, we find,
with high probability,

ÿ

aRMpLq

´

pcp`qqa

¯2
ď
tpςtq

2

Nψ

ÿ

jďt´1

ÿ

aRMpLq

´

pnpjqqa

¯2 (195)
ď

Mt2pςtq
2

Nψ
¨

2t℘4

L2
,

which can be made ď 1{p4tq by choosing L large enough. Then, for any `, j ď t´ 1, we have
ˇ

ˇ

ˇ

ˇ

ÿ

aPMpLq

pcp`qqapc
pjqqa ´ 1t` “ ju

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ÿ

aRMpLq

pcp`qqapc
pjqqa

ˇ

ˇ

ˇ

ˇ

ď
1

4t
,

which shows that the matrix B “ BpLq satisfies }BBt ´ It´1}8 ď 1{p4tq as desired.
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Corollary E.9 Let MpLq Ď rM s be as in Lemma E.8, where L “ Lptq. With high probability,
the matrix nrt ´ 1s has disjoint pt ´ 1q ˆ pt ´ 1q submatrices A1, . . . , AtN0.9u, all involving only
columns indexed by MpLq, such that each Ai has minimal singular value lower bounded by a
positive constant ι2 (depending on t).

Proof Let B “ BpLq be the submatrix of crt´ 1s guaranteed by Lemma E.8, so

}B}8 ď
tςtL

pNψq1{2
, }BBt ´ I} ď

1

4t
.

ThenB satisfies the conditions of Corollary E.7, so it has a pt´1qˆpt´1q submatrix U1 satisfying
the determinant lower bound (199). Let B1 be the matrix obtained by deleting U1 from B. Then for
all N large enough we have

›

›

›
pB1qpB1q

t ´ It´1

›

›

›

8
ď

1

4t
` t

ˆ

tςtL

pNψq1{2

˙2

ď
1

3t
.

Thus B1 also satisfies the conditions of Corollary E.7, so it has a pt ´ 1q ˆ pt ´ 1q submatrix
U2 which also satisfies the determinant lower bound (199). Repeating the same argument, we
see that with high probability the original matrix B has disjoint pt ´ 1q ˆ pt ´ 1q submatrices
U1, . . . , UtN0.9u, all satisfying (199). Recalling (44), the corresponding submatrices of nrt´ 1s are
given by Ai ” pNψq1{2ΓNUi, and

| detAi| ě
pNψqpt´1q{2| detUi|

ςt
ě

ˆ

Nψ

M

˙pt´1q{2
ppt´ 1q!q1{2

3ςt
” ι̂2 .

Take any A “ Ai, and denote its singular values σ1 ě . . . ě σt´1 ě 0. Note that σ1 ď t}A}8 ď
tL, where the last bound holds since A only involves columns of nrt´ 1s indexed by a PMpLq (as
in Lemma E.8). Then

σt´1 ě
| detA|

pσ1q
t´2

ě
ι̂2

ptLqt´2
” ι2 .

This concludes the proof.

E.3. Fourier estimates at high frequency

The main result of this subsection is the following lemma:

Lemma E.10 (high-frequency estimate) Suppose U satisfies Assumption 1 and 2. With the nota-
tion of (190), it holds for any τmax ă 8 and any ε2 ą 0 that

max

"

I3pJ, τ, ε2q : J P t´1,`1uN , }πpJq} ď
4

5
, }τ} ď τmax

*

ď
1

exppN0.8q

with probability 1´ oN p1q.
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Towards the proof of Lemma E.10, recall that the random variable ζa has density given by (182).
Thus

p̂apsq “ E exp

"

is
´

ζa ´ Eζa
¯

*

“
χ̂Xa,cpsq

exppisEζaq
. (201)

We also denote qx,cpzq ” Upx` czqϕpzq, and note that

χ̂x,cpsq “
q̂x,cpsq

EξUpx` cξq
“
q̂x,cpsq

q̂x,cp0q
. (202)

Note that Jensen’s inequality implies

ˇ

ˇ

ˇ
q̂x,cpsq ´ q̂x1,c1psq

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

ż

eisz
´

Upx` czq ´ Upx1 ` c1zq
¯

ϕpzq dz

ˇ

ˇ

ˇ

ˇ

ď

ż

ˇ

ˇ

ˇ
Upx` czq ´ Upx1 ` c1zq

ˇ

ˇ

ˇ
ϕpzq dz , (203)

and the last expression is bounded by Lemma B.2.

Corollary E.11 Suppose U satisfies Assumption 1. Given any ε ą 0 and any L ă 8, it is possible
to choose K large enough (depending on ε and L) such that

sup

"

|χ̂x,cpsq| :
1

2
ď c ď 2, |x| ď L, |s| ě K

*

ď ε ,

where χx,c is as defined by (182).

Proof Recall from (202) the relation

χ̂x,cpsq “
q̂x,cpsq

EξUpx` cξq
“
q̂x,cpsq

q̂x,cp0q
.

By Assumption 1, the denominator q̂x,cp0q “ EξUpx` cξq is strictly positive for any given x P R,
c ą 0. On the other hand, it follows from Lemma B.2 and (203) that q̂x,cp0q is continuous in px, cq.
It follows that

inf

"

EξUpx` cξq :
1

2
ď c ď 2, |x| ď L

*

ă 8

for any finite L. Therefore it suffices to show the claim with qx,c in place of χx,c. By Lemma B.2
again, given any ε ą 0, we can choose η1 small enough such that

›

›

›
q̂x,c ´ q̂x1,c1

›

›

›

8
ď

ż

ˇ

ˇ

ˇ
Upx` czq ´ Upx1 ` c1zq

ˇ

ˇ

ˇ
ϕpzq dz ď

ε

2

as long as c, c1 P r1{2, 2s, x, x1 P r´L,Ls, and maxt|x ´ x1|, |c ´ c1|u ď η1. Let txiu be a finite
η1-net of r´L,Ls, and let tcju be a finite η1-net of r1{2, 2s. It follows by the Riemann–Lebesgue
lemma that there exists K finite such that

sup

"

max
i,j
|q̂xi,cj psq| : |s| ě K

*

ď
ε

2
.

94



GARDNER FORMULA FOR ISING PERCEPTRON MODELS AT SMALL DENSITIES

For any |x| ď L and 1{2 ď c ď 2, we can find xi, cj with maxt|x´ xi|, |c´ cj |u ď η1, so

sup

"

q̂x,cpsq : |s| ě K

*

ď ε

by combining the previous bounds. This concludes the proof.

Corollary E.12 Suppose U satisfies Assumption 1. Let χx,c be as defined by (182). Then

sup

"

|χ̂x,cpsq| :
1

2
ď c ď 2, |x| ď L, |s| ě ε

*

ď 1´ ε1 ă 1

for any finite L and any ε ą 0, where ε1 is a small positive constant depending on U , L, and ε.

Proof By Lemma E.11, we can choose K large enough such that

sup

"

|χ̂x,cpsq| :
1

2
ď c ď 2, |x| ď L, |s| ě K

*

ď
1

2
.

For any given x, c, let ζ be a random variable with density χx,c. For any s ‰ 0,

|χ̂x,cpsq| “

"

´

E cospsζq
¯2
`

´

E sinpsζq
¯2
*1{2

ă 1

by Jensen’s inequality. It follows from Lemma B.2 and (203) that χ̂x,cpsq is continuous in px, c, sq,
so

sup

"

|χ̂x,cpsq| :
1

2
ď c ď 2, |x| ď L, ε ď |s| ď K

*

ă 1

by compactness considerations. The claim follows.

Proof [Proof of Lemma E.10] For any subset of indices T “ tip1q, . . . , ipt´ 1qu Ď rM s denote

φT psq ”
ź

`ďt´1

p̂ip`qps`q

for s P Rt´1. It follows from (201) and Plancherel’s identity that the L2 norm of the function
p̂apsq is the same as the L2 norm of the function χXa,cpsq defined by (182). We also note that
Assumption 1 implies

}χx,c}
2 “

ż

Upx` czq2ϕpzq2

pEξUpx` cξqq2
dz ď

1

p1πq1{2

ż

Upx` czqϕpzq

pEξUpx` cξqq2
dz “

1

EξUpx` cξq
.

By compactness considerations (similarly as for (90)), we must have

inf

"

EξUpx` cξq :
1

2
ď c ď 2, |x| ď L1

*

ě c̄1pU,L
1q .

If T ĎMpLq (as defined by Lemma E.8), then it follows by combining the above with (197) that

}φT }2 “
ź

`ďt´1

}pip`q}2 ď

ˆ

sup

"

}χx,c}2 :
1

2
ď c ď 2, |x| ď L

*˙t´1

ď

ˆ

1

c̄1pU,L1q

˙t

” ℘5 .
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Now letA1, . . . , AtN0.9u be the submatrices of nrt´1s guaranteed (with high probability) by Corol-
lary E.9. Let Ti denote the subset of column indices involved in Ai, and note

|p̂psq| ď
ź

iďtN0.9u

ˇ

ˇ

ˇ

ˇ

φTi

ˆ

pAiq
ts

N1{2

˙ˇ

ˇ

ˇ

ˇ

.

Moreover, each individual factor φTi has modulus at most one. Combining with the preceding L2

bound gives
ż

ˇ

ˇ

ˇ

ˇ

φTi

ˆ

pAiq
ts

N1{2

˙
ˇ

ˇ

ˇ

ˇ

2

ds “
N pt´1q{2p}φTi}2q

2

| detAi|
ď
N pt´1q{2p℘5q

2

pι2qt´1
.

It follows using the Cauchy–Schwarz inequality that

ż

ˇ

ˇ

ˇ

ˇ

φT1

ˆ

pA1q
ts

N1{2

˙

φT2

ˆ

pA2q
ts

N1{2

˙
ˇ

ˇ

ˇ

ˇ

ds ď
N pt´1q{2p℘5q

2

pι2qt´1
.

On the other hand, if }s} ě ε2N
1{2, then the least singular value bound from Corollary E.9 implies

max

"

|ps,naq|

N1{2
: a P Ti

*

“
}pAiq

ts}8

N1{2
ě
}pAiq

ts}

pNtq1{2
ě
ι2ε2

t1{2
.

Recall again that for a P MpLq, |Xa| is bounded by (197). Combining with the result of Corol-
lary E.12 gives

ˇ

ˇ

ˇ

ˇ

φTi

ˆ

pAiq
ts

N1{2

˙
ˇ

ˇ

ˇ

ˇ

ď sup

"

|χ̂x,cpsq| :
1

2
ď c ď 2, |x| ď L1, |s| ě

ι2ε2

t1{2

*

ď 1´ ε1 ă 1 .

To conclude we note that the quantity I3pJ, τ, ε2q from (190) can be bounded by I3,g ` I3,p where
I3,g is the integral of ĝJ,τ , while I3,p is the integral of p̂J,τ . By (187) and Lemma E.2, we have with
high probability

I3,g ”

ż

ˇ

ˇ

ˇ
ĝJ,τ psq

ˇ

ˇ

ˇ
1
!

}s} ě ε2N
1{2

)

ds ď
1

exppN0.9q
.

By the previous calculations, we also have with high probability

I3,p ď

"
ż

ˇ

ˇ

ˇ

ˇ

ź

i“1,2

φTi

ˆ

pAiq
ts

N1{2

˙ˇ

ˇ

ˇ

ˇ

ds

*

¨ sup

"N0.9
ź

i“3

ˇ

ˇ

ˇ

ˇ

φTi

ˆ

pAiq
ts

N1{2

˙ˇ

ˇ

ˇ

ˇ

: |s| ě ε2N
1{2

*

ď
N pt´1q{2p℘5q

2

pι2qt´1
p1´ ε1qN

0.85
ď

1

exppN0.8q
.

This concludes the proof.

E.4. Conclusion of local CLT

In this concluding subsection we prove the local CLT Proposition E.1, and apply it to deduce Propo-
sitions E.13 and E.14.
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Proof [Proof of Proposition E.1] Recall that p̂J,τ and ĝJ,τ are defined by (186) and (187). It follows
by combining Lemmas E.4, E.5, and E.10 that for any finite constant τmax, we have

sup

"
ż

ˇ

ˇ

ˇ
p̂J,τ psq ´ ĝJ,τ psq

ˇ

ˇ

ˇ
ds : J P t´1,`1uN , }πpJq} ď

4

5
, }τ} ď τmax

*

ď
1

N0.35

with high probability. Inverting the Fourier transform shows that, with high probability, the random
variableW from (184) has a bounded continuous density function pJ,τ , which satisfies

sup

"

}pJ,τ ´ gJ,τ }8 : J P t´1,`1uN , }πpJq} ď
4

5
, }τ} ď τmax

*

ď
1

p2πqt´1N0.35
ď

1

N0.3
,

as claimed.

We now define the transformed gaussian density

gJ,τ pzq ” ψ1{2| det ΓN |gJ,τ

ˆ

ψ1{2ΓN pz ´N
1{2τq ´

nrt´ 1sEζ
N1{2

˙

, (204)

where Eζ is as in (183).

Proposition E.13 (density bound for first moment) Suppose U satisfies Assumptions 1 and 2.
Then we have

sup

"

›

›

›
pJ,τ p¨ | ḡRq ´ gJ,τ p¨q

›

›

›

8
: J P t´1,`1uN , }τ} ď τmax

*

ď
1

N0.25

with high probability, where pJ,τ p¨ | ḡRq is as in (72), while gJ,τ is as in (204).

Proof Recall that Proposition E.1 above estimates the density pJ,τ of the random variableW from
(184),

W “
nrt´ 1spζ ´ Eζq

N1{2
P Rt´1 , (205)

where each ζa has density given by (182). On the other hand, let ξ P RM be a random vector with
independent coordinates, such that ξa has density

p̃apzq – U
´

pX̃Jqa ` cz
¯

exp

"

N1{2τ tcrt´ 1seaz

*

ϕpzq ,

where c “ cpπpJqq, X̃J is as in Lemma A.20, and– denotes equality up to a normalizing constant.
We see from (72) that pJ,τ p¨ | ḡRq is the density of the random variable crt ´ 1sξ, for ξ as we have
just described. Note that

p̃a

ˆ

z `N1{2τ tcrt´ 1sea

˙

– U

ˆ

pX̃Jqa ` c
!

z `N1{2τ tcrt´ 1sea

)

˙

ϕpzq

(181)
“ U

´

pXJ,τ qa ` cz
¯

ϕpzq
(182)
– χXa,cpzq ,
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so it follows that ξ ´ N1{2crt ´ 1stτ is equidistributed as ζ for ζ as in (205). Thus pJ,τ p¨ | ḡRq is
the same as the density of

crt´ 1s
´

ζ `N1{2crt´ 1stτ
¯

(44)
“
pΓN q

´1nrt´ 1sζ

pNψq1{2
`N1{2τ

(72)
“
pΓN q

´1W

ψ1{2
`
pΓN q

´1nrt´ 1sEζ
pNψq1{2

`N1{2τ .

It follows by making a change of variables that

pJ,τ pz | ḡRq “ ψ1{2| det ΓN |pJ,τ

ˆ

ψ1{2ΓN pz ´N
1{2τq ´

nrt´ 1sEζ
N1{2

˙

.

Comparing with (204), we have
›

›

›
pJ,τ p¨ | ḡRq ´ gJ,τ p¨q

›

›

›

8
“ ψ1{2| det ΓN |

›

›

›
pJ,τ ´ gJ,τ

›

›

›

8
,

so the result follows from Proposition E.1.

Proposition E.14 (density bound for second moment) Suppose U satisfies Assumptions 1 and 2.
Then the bound (164) holds with high probability, where pK|J,τ p¨ | ḡR, ζq is as in (162).

Proof Through we abbreviate c “ cpπpKqq. First we slightly modify the definition from (182): let
σ P RM be a random vector with independent coordinates, such that each σa has density given by
χXa,epλq for

X “XK|J,τ pζq ” X̃K ` c ¨

ˆ

λζ ` p1´ λ2q1{2N1{2crt´ 1stτ

˙

and epλq “ c ¨ p1´λ2q1{2. In this definition, X̃K is as in Lemma D.8, and λ “ λpJ,Kq. We define
also (cf. (184))

W 1 ”
nrt´ 1spσ ´ Eσq

N1{2
P Rt´1 . (206)

On the other hand, let ξ P RM be a random vector with independent coordinates, such that ξa has
density

p̃apzq – U

ˆ

pX̃Kqa ` c
´

λζa ` p1´ λ
2q1{2z

¯

˙

exp

"

N1{2τ tcrt´ 1seaz

*

ϕpzq .

We see from (162) that pK|J,τ p¨ | ḡR, ζq is the density of the random variable crt´ 1sξ. Note that

p̃a

ˆ

z `N1{2τ tcrt´ 1sea

˙

– U

ˆ

XK|J,τ pζq ` c ¨ p1´ λ
2q1{2z

˙

ϕpzq – χXa,epλq ,

which implies that ξ ´N1{2crt´ 1stτ is equidistributed as σ. Thus pK|J,τ p¨ | ḡR, ζq is the same as
the density of

crt´ 1s
´

σ `N1{2crt´ 1stτ
¯

“
pΓN q

´1W 1

ψ1{2
`
pΓN q

´1nrt´ 1sEσ
pNψq1{2

`N1{2τ

for σ andW 1 as defined above. It follows by a minor modification of Proposition E.1 (replacingW
from (184) withW 1 from (206)) that pK|J,τ p¨ | ḡR, ζq can be uniformly approximated by a gaussian
density. The claim follows.

98



GARDNER FORMULA FOR ISING PERCEPTRON MODELS AT SMALL DENSITIES

Appendix F. Concentration of partition function

In this section we prove Propositions 1.6, 1.7, and 1.9; and use these to conclude the proof of
Theorem 1.1. The section is organized as follows:

• As commented earlier, both Propositions 1.6 and 1.7 rely on a bound for near-isotropic gaus-
sian processes, Proposition F.1, which is proved in §F.1. See Remark F.2 for further discussion
of this result.

• In §F.2 we give the proof of Proposition 1.6.

• In §F.3 we give the proof of Proposition 1.9, and use this to deduce that the free energy of the
smoothed model (22) is given by the replica symmetric formula (Corollary F.10).

• In §F.4 we give the proof of Proposition 1.7, and conclude the proof of Theorem 1.1.

Recall from §1.4 that Assumption 1 implies (20), where we can assume without loss that EpUq Ď
r´EmaxpUq, EmaxpUqs for some finite EmaxpUq.

F.1. Bounds for near-isotropic gaussian processes

The following is a variant of (Talagrand, 2011b, Cor. 8.2.5):

Proposition F.1 Let c P p0, 1{12s. Let v1, . . . ,vn be unit vectors in Rn such that pvi,vjq ď c for
all i ‰ j. Then

P
ˆ

1

n

ˇ

ˇ

ˇ

!

i ď n : pg,viq P EpUq
)
ˇ

ˇ

ˇ
ď γ

˙

ď γ1{p25cq

for all logp5{cq{plog nq ď γ ď γ0 “ γ0p|EpUq|, EmaxpUqq and n large enough.

Remark F.2 We point out that there are two main differences between Proposition F.1 and (Tala-
grand, 2011b, Cor. 8.2.5). First, (Talagrand, 2011b, Cor. 8.2.5) considers the event tpg,viq ě au,
and the proof relies crucially on Gordon’s inequality. By contrast, Proposition F.1 considers the
event tpg,viq P EpUqu, where it does not seem possible to apply standard gaussian comparison
inequalities. As a result we rely on more ad hoc arguments which yield a weaker bound, in the sense
that (Talagrand, 2011b, Cor. 8.2.5) holds for γ polynomially small in n while Proposition F.1 holds
only for γ decaying logarithmically in n.

The proof of Proposition F.1 is given at the end of this subsection. We begin with some prepara-
tory lemmas:

Lemma F.3 (used in proof of Lemma F.4) Let c P p0, 1q and denote η1pcq “ 1{ logp4{cq. For
any K P N there exists n0pc,Kq ă 8 such that the following holds for all n ě n0pc,Kq: if
v1, . . . ,vn are unit vectors in Rn and m ď η1pcq log n, then there must exist K distinct indices
m ă i1 ă . . . ă iK ď n such that

max

"

›

›

›
Pm

´

via ´ vib
¯›

›

›
: a, b ď K

*

ď c ,

where Pm denotes the orthogonal projection onto the span of tv1, . . . ,vmu.
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Proof Suppose for contradiction that for all m ă i1 ă . . . ă iK ď n we have

max

"

›

›

›
Pm

´

via ´ vib
¯›

›

›
: a, b ď K

*

ą c . (207)

Let U denote the disjoint union of Um`1, . . . , Un, where Ui is a copy of

Bm

ˆ

Pmvi,
c

2

˙

”

ˆ

span
!

v1, . . . ,vm
)

˙

XB

ˆ

Pmvi,
c

2

˙

.

Note that if x P BpPmvi, c{2q then }x} ď }Pmvi} ` c{2 ď 3{2, so we have a natural mapping
i : U Ñ Bmp0, 3{2q. By the assumption (207), each point in Bmp0, 3{2q has at most K´ 1 distinct
preimages under the mapping i, so

pn´mq volB

ˆ

Pmvi,
c

2

˙

“ volU ď pK ´ 1q volBm

ˆ

0,
3

2

˙

.

If m1 “ dim spantv1, . . . ,vmu ď m, then it follows that

n´m ď pK ´ 1q

ˆ

3{2

c{2

˙m1

ď K

ˆ

3

c

˙η1pcq logn

“ K exp

"

logp3{cq

logp4{cq
log n

*

,

which yields a contradiction for n large enough (depending on c and K).

Lemma F.4 Let c P p0, 1q and denote η1pcq “ 1{ logp4{cq. There exists n0pcq ă 8 such that the
following holds for all n ě n0pcq: if v1, . . . ,vn are unit vectors in Rn with pvi,vjq ď c for all
i ‰ j, then the vectors can be re-indexed in such a way that

max

"

›

›

›
Pmvm`1

›

›

›
: 1 ď m ď η1pcq log n

*

ď p3cq1{2 ,

where Pm denotes the orthogonal projection onto the span of tv1, . . . ,vmu. (The claim is non-
trivial only if c ă 1{3.)

Proof We shall assume the vectors are indexed such that for all 1 ď ` ď n we have
›

›

›
P`´1v

`
›

›

›
“ min

"

›

›

›
P`´1v

k
›

›

›
: ` ď k ď n

*

. (208)

Now suppose for the sake of contradiction that for some m ď η1pcq log n we have

›

›

›
Pmvm`1

›

›

›

(208)
“ min

"

›

›

›
Pmvk

›

›

›
: m` 1 ď k ď n

*

ą p3cq1{2 . (209)

Take K “ 2 ` r1{cs. By Lemma F.3, for all n large enough we can find indices m ă i1 ă . . . ă
iK ď n such that

max

"

›

›

›
Pm

´

via ´ vib
¯›

›

›
: a, b ď K

*

ď c . (210)
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As a consequence, for any a ‰ b where a, b ď K, we have
ˆ

pI ´ Pmqv
ia , pI ´ Pmqv

ib

˙

“ pvia ,vibq ´ pPmvia , Pmvibq

“ ´}Pmvia}2 `

"

pvia ,vibq ´
´

Pmvia , Pmpv
ib ´ viaq

¯

*

ď ´c ,

where the last bound uses (209), (210), and the assumption that pvi,vjq ď c for all i ‰ j. If we let

xa ”
pI ´ Pmqv

ia

}pI ´ Pmqvia}
,

then the above implies that pxa,xbq ď ´c for all a ‰ b. It follows that

0 ď

›

›

›

›

ÿ

aďK

xa
›

›

›

›

2

“
ÿ

a,bďK

pxa,xbq ď K
´

1´ cpK ´ 1q
¯

,

which gives a contradiction since we chose K ě 2` 1{c.

Lemma F.5 Let v1, . . . ,vm be unit vectors in Rn (for any m,n) such that

max

"

›

›

›
P`´1v

`
›

›

›
: 1 ď ` ď m

*

ď c1 ď
1

2
,

where P`´1 denotes the orthogonal projection onto the span of tv1, . . . ,v`´1u. Let g be a standard
gaussian random vector in Rn. There exists γ0 “ γ0p|EpUq|, EmaxpUqq ą 0 such that

P
ˆ

1

m

ˇ

ˇ

ˇ

!

i ď m : pg,viq P EpUq
)
ˇ

ˇ

ˇ
ď γ

˙

ď γ1{p8pc1q2q

for all 1{m ď γ ď γ0.

Proof We shall assume without loss thatmγ is integer-valued. Let ui ” pg,viq, so that puiq defines
a (centered) gaussian random vector indexed by i ď n. For each i we can decompose ui ” ζi ` ξi
where ζi ” pg, Pi´1v

iq; at the first step ζ1 “ 0. Define a parameter

s ” spUq ď max

"

10, EmaxpUq,

ˆ

ˇ

ˇ

ˇ
log |EpUq|

ˇ

ˇ

ˇ

˙1{2*

, (211)

and define the random subset of indices

B ”

"

i ď m : |ζi| ď s

*

.

Let Ωγ denote the event of interest,

Ωγ ”

"

1

m

ˇ

ˇ

ˇ

!

i ď m : ui P EpUq
)ˇ

ˇ

ˇ
ď γ

*

.
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On the event Ωγ there must be a subset A Ď rms of size mγ such that ui R EpUq for all i R A.
Therefore

PpΩγq ď P
ˆ

|B| ď
m

2

˙

`
ÿ

|A|“mγ

P
ˆ

ui R EpUq @i R A; |B| ą
m

2

˙

. (212)

To bound the above we will consider a fixed subset A, without loss A “ tm ´mγ ` 1, . . . ,mu.
Define

G` ” σ

ˆ

pζi, ξiq : 1 ď i ď `

˙

.

Let τ0 ” 0 and define the increasing sequence

τ` ” inf

"

i ą τ`´1 : i ď m, |ζi| ď s

*

.

Note that since ζ` P G`´1, the τ` are stopping times with respect to the filtration G`. We take the
usual convention that inf ∅ ” 8, so the set of finite stopping times corresponds exactly to the setB.
Let fpiq ” 1tui R EpUqu. It follows from the assumption that ξi has the law of a gaussian random
variable which is independent of Gi, and has variance between 1´pc1q2 ě 3{4 and 1. Therefore we
have

p` ” E
ˆ

1tτ` ă 8ufpτ`q

ˇ

ˇ

ˇ

ˇ

Gτ`´1

˙

“ 1tτ` ă 8uP
ˆ

uτ` “ ζτ` ` ξτ` R EpUq

ˇ

ˇ

ˇ

ˇ

Gτ`´1

˙

ď max

"

P
ˆ

Z R
EpUq ´ x

λ

˙

:

ˆ

3

4

˙1{2

ď λ ď 1, |x| ď s

*

.

To bound the above, note that the set λ´1pEpUq ´ xq has Lebesgue measure at least |EpUq| (since
λ ď 1), and is contained in the interval r´5s{2, 5s{2s (by the assumption s ě EmaxpUq from (211),
together with the restriction λ ě p3{4q1{2). It follows that

p` ď 1´ |EpUq|ϕ

ˆ

5s

2

˙

ď 1´
1

p2πq1{2
exp

"

´
7s2

2

*

,

where the last bound uses the assumption s2 ě | log |EpUq|| from (211). It then follows by iterated
expectations that

P
ˆ

ui R EpUq @i R A; |B| ą
m

2

˙

ď E
„

ź

jďm{2

1tτj ă 8ufpτjq



ď E
„ˆ

ź

jďm{2´1

1tτj ă 8ufpτjq

˙

E
ˆ

1tτrm{2s ă 8ufpτrm{2sq

ˇ

ˇ

ˇ

ˇ

Gτrm{2s´1

˙

ď

ˆ

1´
1

p2πq1{2
exp

"

´
7s2

2

*˙m{2

ď exp

"

´
m expp´7s2{2q

2p2πq1{2

*

.

Substituting this bound into (212) and accounting for the number of choices of A gives

PpΩγq ď P
ˆ

|B| ď
m

2

˙

` exp

"

m

„

Hpγq ´ expp´7s2{2q

2p2πq1{2

*

,
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where H denotes the binary entropy function, and satisfies Hpγq ď γ logpe{γq. If we take γ “
expp´4s2q, then

Hpγq ´ expp´7s2{2q

2p2πq1{2
ď

1

expp7s2{2q

ˆ

1` 4s2

expps2{2q
´

1

2p2πq1{2

˙

ď
´1

6 expp7s2{2q
,

where the last bound uses the assumption s ě 10 from (211). It follows that

PpΩγq ď P
ˆ

|B| ď
m

2

˙

` exp

"

´
m

6 expp7s2{2q

*

, (213)

and it remains to bound the probability that |B| ď m{2. To this end, note each ζi is a gaussian
random variable with variance at most pc1q2, so

Pp|ζi| ě sq ď Ppc1|Z| ě sq ď
c1

s
exp

"

´
s2

2pc1q2

*

.

It follows by Markov’s inequality and the preceding bound that

P
ˆ

|B| ď
m

2

˙

“ P
ˆ

|Bc| ě
m

2

˙

ď 2 max

"

Pp|ζi| ě sq : i ď m

*

ď
2c1

s
exp

"

´
s2

2pc1q2

*

ď
1

2
exp

"

´
s2

2pc1q2

*

,

where the last bound follows trivially from the bounds c1 ď 1 and s ě 10 (from (211)). Ifm ě 1{γ,
then

s2

2
¨ 6 expp7s2{2q “

3s2

expps2{2q
¨

1

γ
ď

1

γ
ď m,

so that (213) is dominated by the first term. It follows that

PpΩγq ď exp

"

´
s2

2pc1q2

*

“ γ1{p8pc1q2q ,

provided γ “ expp´4s2q for s satisfying (211), and m ě 1{γ. This concludes the proof.

Proof [Proof of Proposition F.1] As in Lemma F.4, let η1pcq “ 1{ logp4{cq. Let

m “

Z

1

2
η1pcq log n

^

, L “

Z

n´ n1{2

m

^

.

By repeatedly applying Lemma F.4, we see that there exists a re-indexing of v1, . . . ,vn such that

max

"

›

›

›
P`m,i´1v`m`i

›

›

›

2
: 0 ď ` ď L´ 1, 1 ď i ď m

*

ď p3cq1{2 ” c1 ď
1

2
,

where P`m,i´1 denotes the orthogonal projection onto the span of tv`m`1, . . . ,v`m`i´1u. Let

N` ”

ˇ

ˇ

ˇ

ˇ

!

1 ď i ď m : pg,v`m`iq P EpUq
)

ˇ

ˇ

ˇ

ˇ

.
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Note that ifN` ě 2mγ for at least n{p2mq indices 0 ď ` ď L´1, then we will have pg,viq P EpUq
for at least nγ indices 1 ď i ď n. It follows by combining with Markov’s inequality that

P
ˆ

1

n

ˇ

ˇ

ˇ

!

i ď n : pg,viq P EpUq
)ˇ

ˇ

ˇ
ď γ

˙

ď P
ˆ

ÿ

`ďL

1tN` ď 2mγu ě
n

3m

˙

ď
3m

n

ÿ

0ď`ďL´1

PpN` ď 2mγq .

Applying Lemma F.5 gives, for 1{m ď 2γ ď γ0 “ γ0p|EpUq|, EmaxpUqq,

P
ˆ

1

n

ˇ

ˇ

ˇ

!

i ď n : pg,viq P EpUq
)
ˇ

ˇ

ˇ
ď γ

˙

ď 4p2γq1{p24cq .

The claim follows.

F.2. Polynomial concentration of free energy

In this subsection we give the proof of Proposition 1.6. Towards this end, we first state and prove
Lemma F.6 below. This is an adaptation of (Talagrand, 2011b, Propn. 8.2.6) (see also (Talagrand,
2011b, Lem. 9.2.2)), using Proposition F.1 in place of (Talagrand, 2011b, Cor. 8.2.5).

Lemma F.6 Let µ be any probability measure on t´1,`1uN with weights proportional to wpJq
such that 0 ď wpJq ď 1{2N for all J P t´1,`1uN , and

W “
ÿ

J

wpJq ě e´Nτ

for τ “ expp´12q. If P denotes the law of a standard gaussian vector g in RN , then

P
ˆ

µ

ˆ"

J P t´1,`1uN :
pg, Jq

N1{2
P EpUq

*˙

ď
γ

4

˙

(217)
ď γ11{2 ,

for expp14q{N ď γ ď γ0 “ γ0p|EpUq|, EmaxpUqq and N large enough.

Proof First, it follows by a direct application of (Talagrand, 2011b, Lem. 9.2.1) that since W ě

expp´Nτq, we have

µb2

ˆ"

pJ1, J2q P t´1,`1u2N :
pJ1, J2q

N
ě p8τq1{2

*˙

ď
1

expp2Nτq
. (214)

We then proceed to adapt the proof of (Talagrand, 2011b, Propn. 8.2.6). Let

Qn ”

"

J1:n ” pJ1, . . . , Jnq P t´1,`1unN :
pJk, J `q

N
ď p8τq1{2 @1 ď k ă ` ď n

*

.

It follows from (214) (and taking a union bound over all 1 ď k ă ` ď n) that

µbnpQnq
(214)
ě 1´

n2

2 expp2Nτq
ě

1

2
, (215)
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where the last inequality holds provided n ď exppNτq. Next define

ΩγpJ
1:nq ”

"

g :
1

n

ˇ

ˇ

ˇ

ˇ

"

` ď n :
pg, J `q

N1{2
P EpUq

*

ď γ

*

.

If we take c “ p8τq1{2, then c ď 1{12 by the assumption τ “ expp´12q, and so Proposition F.1
implies that for every J1:n P Qn we have the bound

P
´

ΩγpJ
1:nq

¯

ď γ1{p25cq , (216)

for logp5{cq{plog nq ď γ ď γ0 and n large enough. Define the random variable

Υγ ”
ÿ

J1:nPQn

µbnpJ1:nq1
!

g P ΩγpJ
1:nq

)

,

and note that Markov’s inequality combined with (216) gives

P
ˆ

Υγ ě
1

4

˙

ď
EΥγ

1{4
“ 4

ÿ

J1:nPQn

µbnpJ1:nqP
´

ΩγpJ
1:nq

¯ (216)
ď 4γ1{p25cq . (217)

On the other hand, we can lower bound

Γ ” µ

ˆ"

J P t´1,`1uN :
pg, Jq

N1{2
P EpUq

*˙

“
ÿ

J1:n

µbnpJ1:nq
1

n

ˇ

ˇ

ˇ

ˇ

"

` ď n :
pg, J `q

N1{2
P EpUq

*ˇ

ˇ

ˇ

ˇ

ě γ
ÿ

J1:nPQn

µbnpJ1:nq1
!

g R ΩγpJ
1:nq

)

“ γ

ˆ

µbnpQnq ´Υγ

˙

(215)
ě γ

ˆ

1

2
´Υγ

˙

.

As a consequence, if Γ ď γ{4, we must have Υγ ě 1{4. It follows that

P
ˆ

Γ ď
γ

4

˙

ď P
ˆ

Υγ ě
1

4

˙

(217)
ď 4γ1{p25cq ,

again for logp5{cq{plog nq ď γ ď γ0 and n large enough. Recall moreover that for (215) to hold
we must have n ď exppNτq, so we must ultimately require

γ0 ě γ ě
logp5{cq

Nτ
“

logp5{p8τq1{2q

Nτ
.

The claim follows by recalling τ “ expp´12q and c “ p8τq1{2.

We now proceed to prove Proposition 1.6. This is an adaptation of the proof of (Talagrand,
2011b, Propn. 9.2.6), using the above result Lemma F.6 in place of (Talagrand, 2011b, Propn. 8.2.6).
Proof [Proof of Proposition 1.6] As in the proof of Theorem 1.1 in the bounded case, let Pj denote
probability conditional on the first j rows of G, and let Ej denote expectation with respect to Pj .
Then, as in the proof of (Talagrand, 2011b, Propn. 9.2.6), we letW ” Z{2N and decompose

1

N

"

logNτW ´ E logNτW

*

“
ÿ

jďM

1

N

"

Ej logNτW ´ Ej´1 logNτW

*

”
ÿ

jďM

Xj .
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To bound Xj , recall (177) and denote

Wj ”
Zj
2N

”
ÿ

J

wjpJq ”
ÿ

J

1

2N

ź

aďM,
a‰j

U

ˆ

pga, Jq

N1{2

˙

.

Note that 0 ďW ďWj ď 1. SinceWj does not depend on the j-th row ofG, we can rewrite

NXj “ Ej
ˆ

logNτW ´ logNτWj

˙

´ Ej´1

ˆ

logNτW ´ logNτWj

˙

.

Recall that 0 ďW ďWj , so ifWj ď e´Nτ then logNτWj “ ´Nτ “ logNτW . It follows that

Lj ” logNτWj ´ logNτW “ 1
!

Wj ě e´Nτ
)

ˆ

logNτWj ´ logNτW

˙

P r0, Nτ s .

Recall that Pj denotes probability conditional on all rows ofG except the j-th one, and note Ej´1 “

EjEj where Ej is expectation with respect to Pj . We can rewrite Xj “ ´ 9xj ` :xj where

N 9xj ” Ej
„

´

logNτWj ´ logNτW
¯

;Wj ě e´Nτ


“ EjLj P r0, Nτ s ,

N :xj ” Ej´1

„

´

logNτWj ´ logNτW
¯

;Wj ě e´Nτ


“ Ej´1Lj “ EjpN 9xjq . (218)

For comparison let X̄j “ ´ 9zj ` :zj where 9zj ” 9xj ´ 9ej and :zj ” :xj ´ :ej , for

N 9ej ” Ej
„

Lj ;
W

Wj
ă
δ1e14

4N



“ Ej
„

Lj ;
W

Wj
ă
δ1e14

4N



P r0, Nτ s ,

N:ej ” Ej´1

„

Lj ;
W

Wj
ă
δ1e14

4N



“ Ej´1

„

Lj ;
W

Wj
ă
δ1e14

4N



“ EjpN 9ejq .

Similarly to Lemma F.6, let µj be the probability measure on t´1,`1uN with weights proportional
to wjpJq. Then note the assumption Upxq ě δ11tx P EpUqu implies

W

Wj
ě δ1µj

ˆ"

J P t´1,`1uN :
pgj , Jq

N1{2
P EpUq

*˙

” δ1Γj .

Since 0 ď Lj ď Nτ , we can use Markov’s inequality to bound

0 ď EjpN 9ejq “ N:ej ď Nτ Ej´1

„

1
!

Wj ě e´Nτ
)

Pj
ˆ

W

Wj
ă
δ1e14

4N

˙

ď Nτ

ˆ

δ1e14

N

˙11{2

(219)
where the last inequality is by Lemma F.6. It follows using Markov’s inequality again that

P
ˆ

ÿ

jďM

ˇ

ˇ

ˇ
Xj ´ X̄j

ˇ

ˇ

ˇ
ě

1

2N2

˙

ď 2N2
ÿ

jďM

E
´

9ej ` :ej

¯ (219)
ď N3

ˆ

δ1e14

N

˙11{2

. (220)
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It remains to bound the random variables X̄j “ ´ 9zj ` :zj . Using Jensen’s inequality,

exppN :zjq ď Ej´1 exppN 9zjq ď 1` Ej´1

„

Wj

W
;Wj ě e´Nτ ,

Wj

W
ď

4N

δ1e14



.

It then follows by using Lemma F.6 again that the above can be bounded by

1` Ej´1

„

Wj

W
;Wj ě e´Nτ ,

Wj

W
ď

4N

δ1e14



ď 1`

ż 4N{pδ1e14q

0
Pj´1

ˆ

Wj ě e´Nτ ;
Wj

W
ě u

˙

du

ď 1`
4

δ1γ0
`

ż 8

4{pδ1γ0q

ˆ

4

δ1u

˙11{2

du ď C0 ” C0p|EpUq|, EmaxpUq, δ
1q . (221)

It follows that we can choose λ0 small enough (depending on C0) such that for all 0 ď λ ď λ0,

Ej´1

„

exppNλ|X̄j |q



ď exppNλ:zjq ¨ Ej´1

„

exppNλ 9zjq



ď exppNλ:zjq ¨

ˆ

Ej´1 exppN 9zjq

˙λ

ď pC0q
2λ ď 2 .

It follows by the martingale Bernstein’s inequality (see e.g. (Talagrand, 2011b, eq. (A.41))) that

P
ˆ
ˇ

ˇ

ˇ

ˇ

ÿ

jďM

X̄j

ˇ

ˇ

ˇ

ˇ

ě t

˙

ď 2 exp

ˆ

´
Ntλ

2
min

"

1,
tλ

2

*˙

for all t ě 0. In particular, taking t “ plogNq{N1{2 gives

P
ˆ
ˇ

ˇ

ˇ

ˇ

ÿ

jďM

X̄j

ˇ

ˇ

ˇ

ˇ

ě
logN

N1{2

˙

ď exp

ˆ

´
λ2plogNq2

2

˙

. (222)

The claimed bound follows by combining (220) with (222).

F.3. Exponential concentration for smoothed model

In this subsection we give the proof of Proposition 1.9, showing concentration for the log-partition
function of the smoothed model (22).

Theorem F.7 ((Pisier, 1986)) If f : Rn Ñ R is C1, and X and Y are independent standard
gaussian random variables in Rn, then for any convex function g : RÑ R it holds that

Eg
´

fpXq ´ fpY q
¯

ď Eg
ˆ

π

2
p∇fpXq, Y q

˙

.

In particular, taking gpxq “ exppsxq for any real number s gives

E exp

"

s
´

fpXq ´ fpY q
¯

*

ď E exp

"

s2π2

8
}∇fpXq}2

*

.

In the case that ∇f is bounded, this recovers the standard theorem of Tsirelson et al. (1976) (see
also Borell, 1975) on concentration of Lipschitz functionals of gaussian random variables.
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We also recall that if G is an M ˆN matrix with i.i.d. standard gaussian entries and M ď N ,
then the maximum singular value smaxpGq satisfies the tail bound

P
ˆ

smaxpGq ě pC2Nq
1{2 ` t

˙

ď
2

exppc2t2q
(223)

for all t ě 0, where c2 and C2 are absolute constants. See for instance (Rudelson and Vershynin,
2010, Propn. 2.4) where the result is in fact stated more generally for matrices with independent
subgaussian entries (with mean zero and unit variance). From this bound it is straightforward to
deduce the following:

Lemma F.8 If G is an M ˆN matrix with i.i.d. standard gaussian entries and M ď N , then we
can take c2 “ 1{C2 ď 1 in the bound (223). With this choice of constants, we have

E exp
´

ϑsmaxpGq
2
¯

ď 16N expp2ϑC2Nq

for all 0 ď ϑ ď c2{2 “ 1{p2C2q.

Proof It follows by a change of variables that

Epϑq ” E exp
´

ϑsmaxpGq
2
¯

“

ż 8

0
P
ˆ

exppϑsmaxpGq
2q ě x

˙

dx

“ 2ϑ

ż 8

0
u exppϑu2q ¨ P

ˆ

smaxpGq ě u

˙

du ď (I)` (II) ,

where (I) is the contribution to the integral from u ď pC2Nq
1{2, while (II) is the contribution from

u ě pC2Nq
1{2. We then have the trivial bound

(I) ď 2ϑ

ż pC2Nq1{2

0
u exppϑu2q du ď 2ϑ exppϑC2Nq

ż pC2Nq1{2

0
u du

“ ϑC2N exppϑC2Nq ď
N

2
exppϑC2Nq ,

where the last inequality uses the assumption ϑ ď c2{2 “ 1{p2C2q. For the other term, it follows
from the singular value tail bound (223) (and again using ϑ ď c2{2 “ 1{p2C2q) that

(II) ď 4ϑ

ż 8

0

ˆ

pC2Nq
1{2 ` u

˙

exp

"

ϑ
´

pC2Nq
1{2 ` u

¯2
´ c2u

2

*

du

ď 4ϑ exppϑC2Nq

ż 8

0

ˆ

pC2Nq
1{2 ` u

˙

exp

"

2ϑpC2Nq
1{2u´

c2u
2

2

*

du .

Completing the square and making another change of variables gives

(II) ď 4ϑ exp

"ˆ

1`
2ϑ

c2

˙

ϑC2N

*
ż 8

´8

ˇ

ˇ

ˇ

ˇ

u`

ˆ

1`
2ϑ

c2

˙

pC2Nq
1{2

ˇ

ˇ

ˇ

ˇ

exp

"

´
c2u

2

2

*

du

ď
4ϑ

pc2q
1{2

expp2ϑC2Nq

ż 8

´8

ˇ

ˇ

ˇ

ˇ

u

pc2q
1{2
` 2pC2Nq

1{2

ˇ

ˇ

ˇ

ˇ

exp

"

´
u2

2

*

du

ď expp2ϑC2Nq
4ϑp2πq1{2

c2

´

1` 2N1{2
¯

ď 6p2πq1{2 ¨N expp2ϑC2Nq .

Combining the bounds for (I) and (II) gives the claimed bound.
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Lemma F.9 Suppose U satisfies Assumption 1, and letZpηq be as defined by (22). If f “ logZpηq
viewed as a function of the gaussian disorder G, then there exists a finite constant C1pU ; ηq such
that

E exp

ˆ

s2}∇fpGq}2
˙

ď 16N ¨ exp

"

N ¨ 6C2C1pU ; ηq2s2

*

for all |s| ď pc2q
1{2{p2C1pU ; ηqq, where C2 and c2 are the constants from Lemma F.8.

Proof Recall that Uη ” U ˚ ϕη, and denote uη ” logUη. Denote the probability meausure

µηpJq ”
wηpJq

Zpηq
“

1

Zpηq

ź

aďM

Uη

ˆ

pga, Jq

N1{2

˙

“
1

Zpηq

ź

aďM

Uηp∆aq ,

where we abbreviate ∆a “ pg
a, Jq{N1{2. Then

ˇ

ˇ

ˇ

ˇ

df

dga,i

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ÿ

J

µηpJqpuηq
1p∆aq

Ji

N1{2

ˇ

ˇ

ˇ

ˇ

ď
1

N1{2

ÿ

J

wpJq|puηq
1p∆aq| .

Note that if puηq1 were uniformly bounded, then f would be A-Lipschitz with A “ }puηq1}8{N1{2,
and the desired exponential concentration for logZpηq would follow from standard concentration
theorems for Lipschitz functionals of gaussians. Since puηq1 may be unbounded, we cannot conclude
that f is Lipschitz. However, we note that

puηq
1pxq “

EξrξUpx` ηξqs
ηEξUpx` ηξq

ď C1pU ; ηq
´

1` |x|
¯

,

where the last bound holds by an obvious extension of Lemma B.3 (using Assumption 1). Therefore
ˇ

ˇ

ˇ

ˇ

df

dga,i

ˇ

ˇ

ˇ

ˇ

ď
C1pU ; ηq

N1{2

ˆ

1`
ÿ

J

µηpJq|∆a|

˙

“
C1pU ; ηq

N1{2

ˆ

1` x|∆a|yη

˙

,

where x¨yη denotes expectation over µη. It follows that

}∇f}2 ď C1pU ; ηq2
ÿ

aďM

ˆ

1` x|∆a|yη

˙2

ď 2C1pU ; ηq2
ÿ

aďM

ˆ

1` px|∆a|yηq
2

˙

ď 2C1pU ; ηq2
ÿ

aďM

ˆ

1` xp∆aq
2yη

˙

“ 2C1pU ; ηq2
"

M `
}GJ}2

N

*

ď 2C1pU ; ηq2
"

M ` smaxpGq
2

*

,

where smaxpGq denotes the maximum singular value of G, as above. Taking the expectation over
G and applying Lemma F.8 gives

E exp

ˆ

s2}∇fpGq}2
˙

ď 16N ¨ exp

"

2
´

M ` 2C2N
¯

C1pU ; ηq2s2

*

,

where the bound holds provided |s| ď pc2q
1{2{p2C1pU ; ηqq. The result follows by recalling that we

assumed M ď N and C2 ě 1.
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Proof [Proof of Proposition 1.9] Let G1 be an independent copy of G. It follows by Theorem F.7
and Lemma F.9 that

E exp

"

s
´

fpGq ´ EfpGq
¯

*

ď E exp

"

s
´

fpGq ´ fpG1q
¯

*

ď E exp

"

s2π2

8
}∇fpGq}2

*

ď 16N ¨ exp

"

N ¨ 8C2C1pU ; ηq2s2

*

,

for all |s| ď pc2q
1{2{p3C1pU ; ηqq. Thus, for x ě 0, it holds for 0 ď s ď pc2q

1{2{p3C1pU ; ηqq that

P
ˆ

fpGq ´ EfpGq ě Nx

˙

ď E exp

"

s
´

fpGq ´ EfpGq
¯

´Nsx

*

ď 16N ¨ exp

"

N
´

8C2C1pU ; ηq2s2 ´ sx
¯

*

.

A similar bound holds for x ď 0. In any case it is clear that we can take s small enough to obtain
exponential decay. In particular, for x ě 0 small enough we can let

s “
x

16C2 ¨ C1pU ; ηq2
ď

pc2q
1{2

3C1pU ; ηq
,

where the last bound holds for x ď 5pC2q
1{2C1pU ; ηq. This results in the bound

P
ˆ

ˇ

ˇ

ˇ
fpGq ´ EfpGq

ˇ

ˇ

ˇ
ě Nx

˙

ď 32N ¨ exp

"

´
Nx2

32C2C1pU ; ηq2

*

,

which concludes the proof.

Corollary F.10 Suppose U satisfies Assumptions 1 and 2, and let Zpηq be as in (22). Then

lim
NÑ8

1

N
logZpηq “ RSpα;Uηq

for all 0 ă α ď αopUq.

Proof Recall from (102) that if 0 ă α ď αopUq, then we will also have α ď αpUηq for η small
enough. The upper bound on Zpηq follows from the upper bound in Theorem 1.1, which was
already proved at the end of Section C. For the lower bound on Zpηq, we argue similarly as in the
proof of the Theorem 1.1 lower bound for the case }u}8 ă 8, but using the concentration result
from Proposition 1.9 in place of the Azuma–Hoeffding bound. To this end, let Z̄pηq be defined as
Z̄ from (144), but with Uη in place of U . It follows from Theorem 1.5 (by the same calculation
leading to (176)) that, with high probability,

P
ˆ

1

N
log Z̄pηq ě RSpα;Uηq ´ otp1q

ˇ

ˇ

ˇ

ˇ

F ptq

˙

ě
1

exppNotp1qq
.

On the other hand, it follows from Proposition 1.9 that, again with high probability,

P
ˆ

1

N
logZ ě

1

N
E logZpηq ` x

ˇ

ˇ

ˇ

ˇ

F ptq

˙

ď 35N ¨ exp

"

´
Nx2

35C2C1pU ; ηq2

*
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for sufficiently small x ą 0. The above two bounds are in contradiction with one another unless

1

N
E logZpηq ě RSpα;Uηq ´ oN p1q .

It then follows by another application of Proposition 1.9 that

P
ˆ

1

N
logZpηq ď RSpα;Uηq ´ oN p1q ´ x

˙

ď P
ˆ

1

N
logZpηq ď

1

N
E logZpηq ´ x

˙

ď 35N ¨ exp

"

´
Nx2

35C2C1pU ; ηq2

*

for sufficiently small x ą 0. This yields the lower bound for Zpηq and concludes the proof.

F.4. Comparison with smoothed model and conclusion

In this subsection we prove Proposition 1.7 which gives the comparison between the quantities Z
and Zpηq from (1) and (22). We then conclude the proof of the main theorem.
Proof [Proof of Proposition 1.7] Some of the steps below are similar to the steps in the proof of
Proposition 1.6. Let

Vk ”
1

2N

ÿ

J

"

ź

aďk

Uη

ˆ

pga, Jq

N1{2

˙*"

ź

kăaďM

U

ˆ

pga, Jq

N1{2

˙*

.

RecallW ” Z{2N , and write W̃ ” Zpηq{2N . Note V0 “W , and VM “ W̃ . Let us also define

Vk,˝ ”
1

2N

ÿ

J

"

ź

aăk

Uη

ˆ

pga, Jq

N1{2

˙*"

ź

kăaďM

U

ˆ

pga, Jq

N1{2

˙*

”
ÿ

J

wk,˝pJq . (224)

Note that Vk,˝ ě maxtVk´1,Vku. We can then decompose

1

N
E
ˆ

logNτ W̃ ´ logNτW

˙

“
1

N

ÿ

kďM

E
ˆ

logNτ Vk ´ logNτ Vk´1

˙

“
ÿ

kďM

yk

(compare with (218)). LetGk,˝ be the probability measure on t´1,`1uN with weights proportional
to wk,˝pJq as defined by (224). Write x¨yk,˝ for expectation with respect to Gk,˝. Abbreviate

Uk ” U

ˆ

pgk, Jq

N1{2

˙

, Ũk ” Uη

ˆ

pgk, Jq

N1{2

˙

.

Recalling that Upxq ą δ11tx P EpUqu (from (20)), we have

Vk
Vk,˝

“ xUkyk,˝ ě δ1Gk,˝

ˆ"

J P t´1,`1uN :
pgk, Jq

N1{2
P EpUq

*˙

” δ1Γk,˝ .

For η small enough we will also have Uηpxq ą δ11tx P EpUqu, so we can also bound

Vk´1

Vk,˝
“ xŨkyk,˝ ě δ1Gk,˝

ˆ"

J P t´1,`1uN :
pgk, Jq

N1{2
P EpUq

*˙

“ δ1Γk,˝ .
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We also have from (Talagrand, 2011b, Lem. 8.3.10) that if x, y, z ď 1, then
ˇ

ˇ

ˇ

ˇ

logApxzq ´ logApyzq

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

logA x´ logA y

ˇ

ˇ

ˇ

ˇ

¨ 1
!

z ě e´A
)

.

Combining the above bounds gives

|Nyk| ď E
ˇ

ˇ

ˇ

ˇ

logNτ

´

Vk,˝xUkyk,˝

¯

´ logNτ

´

Vk,˝xŨkyk,˝

¯

ˇ

ˇ

ˇ

ˇ

ď E
„ˇ

ˇ

ˇ

ˇ

logNτ xUkyk,˝ ´ logNτ xŨkyk,˝

ˇ

ˇ

ˇ

ˇ

;Vk,˝ ě e´Nτ


ď (I)` (II) ,

for (I) and (II) defined by

(I) ” NτP
ˆ

Vk,˝ ě e´Nτ , δ1Γk,˝ ă
e14

4N

˙

,

(II) ” E
„

log

"

1`

ˇ

ˇ

ˇ

ˇ

xŨkyk,˝ ´ xUkyk,˝
δ1Γk,˝

ˇ

ˇ

ˇ

ˇ

*

;Vk,˝ ě e´Nτ ,Γk,˝ ě
e14

4N



.

Combining with Lemma F.6 gives (similarly to (219))

(I) ď Nτ

ˆ

e14

N

˙11{2

.

Meanwhile, using the bound logp1` xq ď x together with the Cauchy–Schwarz inequality gives

(II) ď E
„ˇ

ˇ

ˇ

ˇ

xŨkyk,˝ ´ xUkyk,˝
δ1Γk,˝

ˇ

ˇ

ˇ

ˇ

;Vk,˝ ě e´Nτ ,Γk,˝ ě
e14

4N



ď
1

δ1

"

E
„

´

xŨk ´ Ukyk,˝

¯2


¨ E
„

1

pΓk,˝q2
;Vk,˝ ě e´Nτ ,Γk,˝ ě

e14

4N

*1{2

.

For the first factor we note that

E
„

´

xŨk ´ Ukyk,˝

¯2


ď

B

E
”

pŨk ´ Ukq
2
ı

F

k,˝

“ E
„

´

Uηpξq ´ Upξq
¯2


ď oηp1q .

For the second factor, applying Lemma F.6 again gives (similarly to (221))

E
„

1

pΓk,˝q2
;Vk,˝ ě e´Nτ ,Γk,˝ ě

e14

4N



ď

ż p4N{e14q2

0
P
ˆ

e14

4N
ď Γk,˝ ď

1

y1{2

˙

dy

ď

ˆ

γ0

4

˙2

`

ż p4N{e14q2

pγ0{4q2

ˆ

4

y1{2

˙11{2

dy ď
e12

pγ0q
7{2

,

where γ0 “ γ0p|EpUq|, EmaxpUqq is as in Proposition F.1. Altogether it follows that

|Nyk| ď Nτ

ˆ

e14

N

˙11{2

`
oηp1qe

6

δ1pγ0q
7{4

,

112



GARDNER FORMULA FOR ISING PERCEPTRON MODELS AT SMALL DENSITIES

and the claim follows by summing over k ďM “ Nα.

We now finally finish the proof of the main theorem:
Proof [Proof of Theorem 1.1 (conclusion)] The proof of the upper bound was given at the end of
Section C, after the proof of Theorem 1.4. The proof of the lower bound in the case }u}8 ă 8 was
given at the end of Section D, after the proof of Theorem 1.5. It remains to prove the lower bound
in the case }u}8 “ 8. We follow the proof sketch given at the end of Section 1. It follows from
Propositions 1.6 and 1.7 that

P
ˆˇ

ˇ

ˇ

ˇ

1

N
logNτ

ˆ

Z

2N

˙

´
1

N
E logNτ

ˆ

Zpηq

2N

˙ˇ

ˇ

ˇ

ˇ

ě
plogNq2

N1{2
` oηp1q

˙

ď oN p1q . (225)

Given ε ą 0, we can choose η small enough such that the oηp1q error above is at most ε in absolute
value. By Proposition 1.8 together with Corollary F.10, for 0 ă α ď αopUq and η small enough we
have

P
ˆ

1

N
logZpηq ď RSpα;Uq ´ 2ε

˙

ď P
ˆ

1

N
logZpηq ď RSpα;Uηq ´ ε

˙

ď oN p1q . (226)

It follows from Corollary B.8 that RSpα;Uq ě log 2 ´ τ{4 for 0 ă α ď αpUq, so taking ε ď τ{8
in the above gives

0 ď
1

N

"

E logNτ

ˆ

Zpηq

2N

˙

´ E log

ˆ

Zpηq

2N

˙*

ď τP
ˆ

1

N
log

Zpηq

2N
ď ´

τ

2

˙

(226)
ď oN p1q .

It follows by combining with (225) and (226) that

P
ˆ

1

N
logNτ

ˆ

Z

2N

˙

ď RSpα;Uq ´ log 2´ 4ε

˙

ď oN p1q .

Since RSpα;Uq ´ log 2´ 4ε ě ´τ{4´ 4ε ě ´τ , it follows that in fact

P
ˆ

1

N
logZ ď RSpα;Uq ´ 4ε

˙

ď oN p1q ,

as claimed.

Appendix G. Review of AMP for perceptron

In §G.1 and G.2 we prove Lemma A.16. In the rest of the section, we give a heuristic derivation
of the state evolution recursions introduced in Definition A.2. We emphasize that §G.1 and G.2 are
rigorous, while §G.3–G.4 are not (and are intended only to provide intuition). For rigorous deriva-
tions of the asymptotics described in §G.3–G.4, we again refer the reader to Bayati and Montanari
(2011); Bolthausen (2014).
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G.1. Gaussian conditioning results

Suppose for simplicity that t, F : R Ñ R are two smooth functions. Let Z denote a standard
gaussian random variable. Suppose we have pq, ψq such that (cf. (9))

ˆ

q
ψ

˙

“

ˆ

Ertpψ1{2Zq2s

αErF pq1{2Zq2s

˙

. (227)

Let mp0q “ 0 P RN , np0q “ 0 P RM , mp1q “ q1{21 P RN , np1q “ pψ{αq1{21 P RM . The AMP
iteration in this setting is given by (cf. (14) and (15))

mpt`1q “ t

ˆ

Gtnptq

N1{2
´ βmpt´1q

˙

P RN , (228)

npt`1q “ F

ˆ

Gmptq

N1{2
´ β1npt´1q

˙

P RM , (229)

where the Onsager coefficients are defined as (cf. (30))
ˆ

β
β1

˙

“

ˆ

αEF 1pq1{2Zq

Et1pψ1{2Zq

˙

.

A preliminary observation is the following:

Lemma G.1 LetG be anyMˆN matrix with real entries. Suppose r is a unit vector in RN , while
c is a unit vector in RM . DenoteRa ” ear

t for a ďM , and denoteCi ” cpeiq
t for i ď N . Let VR

be the span of all theRa; let VC be the span of all the Ci; and let V ” VRC ” VR ` VC. Then

projV pGq “ pGrqrt ` cpGtcqt ´ pctGrqcrt ” Γ
´

r, c, Gr, Gtc
¯

where projV denotes orthogonal projection onto V .

Proof Write p¨, ¨q for the Frobenius inner product. TheRa form an orthonormal basis for VR, so

projVR
pGq “

ÿ

aďM

pG,RaqRa “
ÿ

aďM

pGrqaear
t “ Grrt .

Similarly, the Ci form an orthonormal basis for VC, so

projVC
pGq “

ÿ

iďN

pG,CiqCi “
ÿ

iďN

pGtcqicpeiq
t “ cctG .

The lemma follows by noting that the matrix Γ “ Γpr, c, Gr, Gtcq lies in V , and satisfies the
conditions pG´ Γ,Raq “ 0 for all a ďM , as well as pG´ Γ,Ciq “ 0 for all i ď N .

Corollary G.2 Let G be an M ˆ N random matrix with jointly gaussian entries. Suppose r is a
unit vector in RN , while c is a unit vector in RM , and let V ” VRC as in Lemma G.1. Then

E
ˆ

G

ˇ

ˇ

ˇ

ˇ

Gr,Gtc

˙

“ Γ
´

r, c,Gr,Gtc
¯

” Γ (230)

as long as projV pGq is independent ofG´ projV pGq.
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Proof Conditioning on Gr amounts to conditioning on the Frobenius inner products pG,Raq for
all a ď M . Similarly, conditioning on Gtc amounts to conditioning on the inner products pG,Ciq
for all i ď N . By Lemma G.1, projV pGq equals Γ, which is a measurable function of pGr,Gtcq.
If G ´ Γ is independent of Γ, then it follows that Γ equals the conditional expectation of G given
pGr,Gtcq.

Let rp1q, . . . , rptq be the Gram–Schmidt orthogonalization of the vectors mp1q, . . . ,mptq. Like-
wise let cp1q, . . . , cptq be the Gram–Schmidt orthogonalization of the vectors np1q, . . . ,nptq. Let
Gp1q ” G, and suppose recursively that Gpsq has been defined. Let Gpsqrpsq “ x̄psq, pGpsqqtcpsq “
ȳpsq, and define (cf. (230))

Gps`1q ” Gpsq ´ Γ

ˆ

rpsq, cpsq, x̄psq, ȳpsq
˙

” Gpsq ´ Γpsq . (231)

We also define a corresponding σ-field

F‹ptq ” σ

ˆ

px̄psq : s ď tq, pȳpsq : s ď tq

˙

. (232)

The next lemma records some basic facts about F‹ptq.

Lemma G.3 For the AMP iteration described above, the random variables
ˆ

´

mpsq,npsq, rpsq, cpsq : s ď t` 1
¯

,
´

Gmp`q,Gtnp`q,Grp`q,Gtcp`q,Γp`q : ` ď t
¯

˙

are all measurable with respect to F‹ptq.

Proof Recall that the initial vectors mp0q, np0q, mp1q, np1q are fixed and deterministic, so they are
measurable with respect to the trivial σ-field F‹p0q. From these we can also obtain the deterministic
vectors rp1q and cp1q. Next we consider the σ-field F‹p1q: it is clear that Γp1q is F‹p1q-measurable.
Next note that

x̄p1q “ Grp1q “
Gmp1q

}mp1q}
, ȳp1q “ Gtcp1q “

Gtnp1q

}np1q}
,

so we see that Gmp1q and Gtnp1q are measurable with respect to F‹p1q. We can then apply the
AMP iteration (228) and (229) to obtain mp2q and np2q, so these are also measurable with respect to
F‹p1q. It follows by Gram–Schmidt orthogonalization that rp2q and cp1q are also F‹p1q-measurable.

Now suppose inductively that the claim holds up to F‹pt´ 1q, and consider the σ-field F‹ptq.
Then the matrix Γptq is clearly F‹ptq-measurable. Next note that (231) implies

G “ Gp1q “ Γp1q `Gp2q “ . . . “
t´1
ÿ

s“1

Γpsq `Gptq ,

where the Γpsq, s ď t´ 1, are all measurable with respect to F‹pt´ 1q Ď F‹ptq. Therefore

Grptq “
t´1
ÿ

s“1

Γpsqrptq ` x̄ptq
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is F‹ptq-measurable, as isGtcptq. Recall from the Gram–Schmidt orthogonalization that

rptq “
mptq ´

ř

sďt´1pm
ptq, rpsqqrpsq

}mptq ´
ř

sďt´1pm
ptq, rpsqqrpsq}

,

which we can rearrange to obtain an expression for mptq. It follows from this thatGmptq is F‹ptq-
measurable, as isGtnptq. We can then apply the AMP iteration (228) and (229) to obtain mpt`1q and
npt`1q, so these are also measurable with respect to F‹ptq. Finally, it follows by Gram–Schmidt
orthogonalization that rpt`1q and cpt`1q are also F‹ptq-measurable. This verifies the inductive
hypothesis and proves the claim.

G.2. Projection and resampling

In this subsection we give the proof of Lemma A.16. For notational convenience, the roles of G
andG1 through this section are switched from the main body of the paper.

Definition G.4 (similar to Definition A.14) Given F‹pt´ 1q as in (232), consider the linear sub-
spaces

VRptq ” span

"

eapm
psqqt : 1 ď a ďM, 1 ď s ď t

*

,

VCptq ” span

"

np`qpeiq
t : 1 ď i ď N, 1 ď ` ď t

*

.

It follows from Lemma G.3 that these (random) subspaces are measurable with respect to F‹pt´1q.
Let V‹ptq “ VRptq ` VCptq, and let projt denote orthogonal projection onto V‹ptq.

We remark that V‹ptq is very similar to the (random) subspace VRC “ VRptq ` VCpt´ 1q which
appears in the proof of Lemma A.16. We will address the discrepancy between V‹ptq and VRC in
the proof of Lemma A.16, below. The following is a straightforward consequence of the preceding
lemmas and the definition:

Corollary G.5 Let G be an M ˆN matrix with i.i.d. standard gaussian entries. With F‹ptq as in
(232),

E
´

G
ˇ

ˇ

ˇ
F‹ptq

¯

“
ÿ

sďt

Γpsq “ G´Gpt`1q “ projtpGq ,

where projt is the orthogonal projection onto the (random) subspace V‹ptq from Definition G.4.
Moreover, conditional on F‹pt ´ 1q, Gpt`1q is distributed as a standard gaussian element of the
(F‹pt´ 1q-measurable) subspace V‹ptqK, and is independent of F‹ptq.

Proof Note that the recursive definition (231) implies

Gptq “ Gpt´1q ´ Γpt´1q “ . . . “ G´
t´1
ÿ

s“1

Γpsq . (233)

By induction, conditional on F‹pt´2q, the random matrixGptq is distributed as a standard gaussian
element of the (F‹pt ´ 2q-measurable) subspace V‹pt ´ 1qK, and is independent of F‹pt ´ 1q.
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It follows that Gptq has jointly gaussian entries conditional on F‹pt ´ 1q. We also have from
Lemma G.3 that the vectors rptq and cptq are measurable with respect to F‹pt´ 1q. Note that

Gps`1qrpsq “ pGpsq ´ Γpsqqrpsq “ 0 P RM

by the construction of Γpsq, and likewise pGps`1qqtcpsq “ 0. As a result

Γps`1qrpsq “

ˆ

Grrt ` cctG´ pctGrqcrt
˙ps`1q

rpsq “ 0 P RM ,

and similarly pΓps`1qqtcpsq “ 0 P RN . One can then show by induction that for all s ă t we have
Gptqrpsq “ 0 P RM , and likewise pGptqqtcpsq “ 0 P RN . It follows that

ˆ

Gptq ´ Γptq, eapr
psqqt

˙

“ 0 “

ˆ

Gptq ´ Γptq, cpsqpeiq
t
˙

for all s ď t. This shows that Γptq is the orthogonal projection ofGptq onto V‹ptq. We further have,
for all ` ď t,

ˆ

G´
ÿ

sďt

Γpsq
˙

rp`q
(233)
“ Gpt`1qrp`q “ 0 P RM ,

ˆ

G´
ÿ

sďt

Γpsq
˙t

cp`q
(233)
“ pGpt`1qqtcp`q “ 0 P RN .

This shows that Γp1q` . . .`Γptq is the orthogonal projection ofG onto V‹ptq. It follows thatGpt`1q

is the orthogonal projection ofG onto V‹ptqK. On the other hand, the σ-field F‹ptq is generated by
F‹pt´ 1q and the orthogonal projection of Gptq onto V‹ptq. Since Gptq is standard gaussian given
F‹pt ´ 1q, it follows that Gpt`1q and F‹ptq are independent given F‹pt ´ 1q. We can therefore
apply Corollary G.2 (conditional on F‹pt´ 1q) to conclude that

E
´

Gptq
ˇ

ˇ

ˇ
F‹ptq

¯

“ Γ

ˆ

rptq, cptq, x̄ptq, ȳptq
˙

“ Γptq . (234)

It follows that

E
´

G
ˇ

ˇ

ˇ
F‹ptq

¯

(231)
“ E

ˆ

ÿ

sďt´1

Γpsq `Gptq
ˇ

ˇ

ˇ

ˇ

F‹ptq

˙

“
ÿ

sďt´1

Γpsq ` E
ˆ

Gptq
ˇ

ˇ

ˇ

ˇ

F‹ptq

˙

(234)
“

ÿ

sďt

Γpsq
(233)
“ G´Gpt`1q ,

which concludes the proof.

The next result is similar to Lemma A.16:

Lemma G.6 Let G be an M ˆ N matrix with i.i.d. gaussian entries, and use it to define F‹ptq
as in (232). As in Definition G.4, let projt denote the orthogonal projection onto the F‹pt ´ 1q-
measurable subspace V‹ptq. Then, for any bounded measurable function f : RMˆN Ñ R, we
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have

E
ˆ

fpGpt`1qq

ˇ

ˇ

ˇ

ˇ

F‹ptq

˙

“ E
ˆ

fpGpt`1qq

ˇ

ˇ

ˇ

ˇ

F‹pt´ 1q

˙

(235)

“ E
ˆ

f
´

G1 ´ projtpG
1q

¯

ˇ

ˇ

ˇ

ˇ

F‹pt´ 1q

˙

(236)

whereG1 is an independent copy ofG.

Proof We saw in Corollary G.5 that Gpt`1q and F‹ptq are independent conditional on F‹pt ´ 1q,
so the first claim (235) follows. Since G and G1 are independent, if we condition on F‹pt ´ 1q
then the random matrixG1´projtpG

1q is also distributed as a standard gaussian element of V‹ptqK.
This implies (236).

Remark G.7 We can also give a more explicit description of the projection of G1 onto V‹ptq, al-
though it is not needed in the above proof of Lemma G.6. DefineG‚p1q ” G1, and recursively

G‚pt`1q ” G‚ptq ´ Γ‚ptq ” G‚ptq ´ Γ

ˆ

rptq, cptq,G‚ptqrptq, pG‚ptqqtrptq
˙

. (237)

Note that Γ‚ptq is defined using the vectors rptq and cptq that came from G, not G1. As in Defini-
tion G.4, we let projt denote the orthogonal projection onto the F‹pt ´ 1q-measurable subspace
V‹ptq. We then claim that

projtpG
1q “ G1 ´G‚pt`1q (237)

“
ÿ

sďt

Γ‚ptq . (238)

This is very similar to the proof of Corollary G.5, but in fact simpler because G and G1 are inde-
pendent, which implies that G1 is independent of the random subspace V‹ptq. Arguing as before,
we have by constructionG‚ps`1qrpsq “ 0 and pG‚ps`1qqtcpsq “ 0. One can then show by induction
that for all s ă t we haveG‚ptqrpsq “ 0 and pG‚ptqqtcpsq “ 0. This implies, for all ` ď t,

ˆ

G1 ´
ÿ

sďt

Γ‚psq
˙

rp`q
(237)
“ G‚pt`1qrp`q “ 0 P RM ,

ˆ

G1 ´
ÿ

sďt

Γ‚psq
˙t

cp`q
(237)
“ pG‚pt`1qqtcp`q “ 0 P RN .

It follows from this that G‚pt`1q is orthogonal to V‹ptq. This verifies (238), since we see that the
right-hand side of (238) lies in V‹ptq.

Proof [Proof of Lemma A.16] Recall that, for notational convenience, the roles ofG andG1 in this
section are switched from the statement of Lemma A.16. Thus, for the purposes of the proof, we
use G for the AMP iteration (228) and (229), and this defines F‹ptq as in (232). We also let R and
C be as in Definition A.15, but withG andG1 switched. The σ-field F ptq from (16) is very closely
related to F‹pt´ 1q, but is not exactly the same: indeed, we can see from the proof of Lemma G.3
that

F ptq “ σ

ˆ

F‹pt´ 1q, x̄ptq
˙

“ σ

ˆ

F‹pt´ 1q,Gmptq,npt`1q

˙

.
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By a similar (but simpler) argument as in Corollary G.5, we see that

E
´

G
ˇ

ˇ

ˇ
F ptq

¯

“
ÿ

sďt´1

Γpsq ` rptqx̄ptqpx̄ptqqt “ projRCpGq “ GRC ,

where projRC denotes orthogonal projection onto VRC as in Definition A.14, except that VRC here
is defined for G rather than G1. Conditional on F pt ´ 1q, the random matrix G ´ projRCpGq is
distributed as a standard gaussian element of the F pt´ 1q-measurable vector space pVRCq

K, and is
conditionally independent of F ptq. Therefore

E
´

fpGq
ˇ

ˇ

ˇ
F ptq

¯

“ E
„

f
´

GRC `

´

G1 ´ projRCpG
1q

¯¯

ˇ

ˇ

ˇ

ˇ

F ptq



“ E
´

fpG1q
ˇ

ˇ

ˇ
R,C,GRC

¯

.

This concludes the proof.

G.3. AMP iterates at t “ 2 and t “ 3

Returning to the AMP iteration (228) and (229) we have (cf. (38) and (39))

mp2q ” tpHp2qq “ t

ˆ

Gtnp1q

N1{2

˙

“ t

ˆ

ψ1{2Gt np1q

pNψq1{2

˙

“ tpψ1{2Gtcp1qq “ tpψ1{2ȳp1qq ,

np2q ” F php2qq “ F

ˆ

Gmp1q

N1{2

˙

“ F

ˆ

q1{2G
mp1q

pNqq1{2

˙

“ F pq1{2Grp1qq “ F pq1{2x̄p1qq . (239)

It follows using (227) that }mp2q}2 » Nq, }np2q}2 » Nψ, and moreover (cf. (32))

pmp2q,mp1qq

Nq
»

ˆ

1

q

˙1{2

Etpψ1{2Zq ” λ1 ” ρ1 ,

pnp2q,np1qq

Nψ
»

ˆ

α

ψ

˙1{2

EF pq1{2Zq ” γ1 ” µ1 . (240)

Therefore in the Gram–Schmidt orthogonalization we have

rp2q “
pmp2qqK

}pmp2qqK}
»

mp2q ´ λ1m
p1q

rNqp1´ pλ1q
2qs1{2

,

cp2q “
pnp2qqK

}pnp2qqK}
»

np2q ´ γ1n
p1q

rNψp1´ pγ1q
2qs1{2

. (241)

We can express the m, n vectors in terms of the r, c vectors as

mp2q

pNqq1{2
» λ1r

p1q `

´

1´ pλ1q
2
¯1{2

rp2q ,

np2q

pNψq1{2
» γ1c

p1q `

´

1´ pγ1q
2
¯1{2

cp2q . (242)
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At the next step of the AMP iteration we have (cf. (239))

mp3q ” tpHp3qq “ t

ˆ

Gtnp2q

N1{2
´ βmp1q

˙

“ t

ˆ

pGp2qqtpnp2qqK

N1{2
`
pΓp1qqtnp2q

N1{2
´ βmp1q

˙

,

np3q ” tphp3qq “ F

ˆ

Gmp2q

N1{2
´ β1np1q

˙

“ F

ˆ

Gp2qpmp2qqK

N1{2
`

Γp1qmp2q

N1{2
´ β1np1q

˙

. (243)

In order to evaluate pΓp1qqtnp2q{N1{2, we calculate
"

rrtGt

N1{2

*p1q

np2q “
mp1q

Nq1{2
px̄p1q,np2qq “

mp1q

Nq1{2
px̄p1q, F pq1{2x̄p1qqq » βmp1q ,

"

Gtcct

N1{2

*p1q

np2q “
ȳp1q

N1{2

pnp1q,np2qq

pNψq1{2
» ψ1{2γ1ȳ

p1q ,

"

pctGrqrct

N1{2

*p1q

np2q “
1

N1{2

1tG1

Nα1{2

pnp1q,np2qq

Npqψq1{2
mp1q “ O

ˆ

1

N1{2

˙

mp1q .

In order to evaluate Γp1qmp2q{N1{2, we calculate
"

Grrt

N1{2

*p1q

mp2q “
x̄p1q

N1{2

pmp1q,mp2qq

pNqq1{2
» q1{2λ1x̄

p1q ,

"

cctG

N1{2

*p1q

mp2q “
np1q

Nψ1{2
pȳp1q,mp2qq “

np1q

Nψ1{2
pȳp1q, tpψ1{2ȳp1qqq » β1np1q ,

"

pctGrqcrt

N1{2

*p1q

mp2q “
1

N1{2

1tG1

Nα1{2

pmp1q,mp2qq

Npqψq1{2
np1q “ O

ˆ

1

N1{2

˙

np1q .

Substituting this back into (243) gives the decomposition (cf. (38), (39), and (239))

mp3q ” tpHp3qq » t

ˆ

ψ1{2

"

γ1ȳ
p1q `

´

1´ pγ1q
2
¯1{2

ȳp2q
*˙

,

np3q ” F php3qq » F

ˆ

q1{2

"

λ1x̄
p1q `

´

1´ pλ1q
2
¯1{2

x̄p2q
*˙

. (244)

It follows that (240) continues to hold (approximately) with mp3q, np3q in place of mp2q, np2q. We
also see by combining (239) with (244) that

pHp2q,Hp3qq

Nψ
»

1

N

ˆ

ȳp1q, γ1ȳ
p1q `

´

1´ pγ1q
2
¯

ȳp2q
˙

» γ1 ” µ1 ,

php2q,hp3qq

Mq
»

1

M

ˆ

x̄p1q, λ1x̄
p1q `

´

1´ pλ1q
2
¯

x̄p2q
˙

» λ1 ” ρ1 , (245)

from which we obtain (cf. (33))

pmp2q,mp3qq

Nq
»

1

q
E

«

t

ˆ

ψ1{2

"

γ1Z `
´

1´ pγ1q
2
¯1{2

ξ

*˙

tpψ1{2Zq

ff

” ρpγ1q “ ρpµ1q ” ρ2 ,

pnp2q,np3qq

Nψ
»
α

ψ
E

«

F

ˆ

q1{2

"

λ1Z `
´

1´ pλ1q
2
¯1{2

ξ

*˙

F pq1{2Zq

ff

” µpλ1q “ µpρ1q ” µ2 .

(246)
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It follows that (cf. (34))
ˆ

mp3q

pNqq1{2
, rp2q

˙

»

ˆ

mp3q

pNqq1{2
,

mp2q ´ λ1m
p1q

rNqp1´ pλ1q
2qs1{2

˙

»
ρ2 ´ pλ1q

2

r1´ pλ1q
2s1{2

” λ2 ,

ˆ

np3q

pNψq1{2
, cp2q

˙

»

ˆ

np3q

pNψq1{2
,

np2q ´ γ1n
p1q

rNψp1´ pγ1q
2qs1{2

˙

»
µ2 ´ pγ1q

2

r1´ pγ1q
2s1{2

” γ2 . (247)

Then in the Gram–Schmidt orthogonalization we have (cf. (241))

rp3q »
mp3q ´ pNqq1{2pλ1r

p1q ` λ2r
p2qq

rNqp1´ pλ1q
2 ´ pλ2q

2qs1{2
,

cp3q »
np3q ´ pNψq1{2pγ1c

p1q ` γ2c
p2qq

rNψpp1´ pγ1q
2 ´ pγ2q

2qs1{2
.

We can express the m, n vectors in terms of the r, c vectors as (cf. (43), (44), and (242))

mp3q

pNqq1{2
» λ1r

p1q ` λ2r
p2q `

´

1´ pλ1q
2 ´ pλ2q

2
¯1{2

rp3q ,

np3q

pNψq1{2
» γ1c

p1q ` γ2c
p2q `

´

1´ pγ1q
2 ´ pγ2q

2
¯1{2

cp3q . (248)

G.4. AMP iterates at t “ 4

At the next step of the AMP iteration we have (cf. (243))

mp4q ” tpHp4qq “ t

ˆ

pGp3qqtpnp3qqK

N1{2
`
pΓp2qqtnp3q

N1{2
`
pΓp1qqtnp3q

N1{2
´ βmp2q

˙

,

np4q ” F php4qq “ F

ˆ

Gp3qpmp3qqK

N1{2
`

Γp2qmp3q

N1{2
`

Γp1qmp3q

N1{2
´ β1np2q

˙

. (249)

For the purposes of evaluating pΓpsqqnp3q for s “ 1, 2 we calculate

"

rrtG

N1{2

*p1q

np3q “
rp1q

N1{2
px̄p1q,np3qq

»
rp1q

N1{2
NαE

„ˆ

λ1Z `
´

1´ pλ1q
2
¯1{2

ξ

˙

F pq1{2Zq



“ pNqq1{2βλ1r
p1q ,

"

Gcct

N1{2

*p1q

np3q “
ȳp1q

N1{2
pcp1q,np3qq “ ψ1{2γ1ȳ

p1q .

Substituting back into (249) gives (cf. (38), (39), (239), and (244))

mp4q ” tpHp4qq » t

ˆ

ψ1{2

"

γ1ȳ
p1q ` γ2ȳ

p2q `

´

1´ pγ1q
2 ´ pγ2q

2
¯1{2

ȳp3q
*˙

,

np4q ” F php4qq » F

ˆ

q1{2

"

λ1x̄
p1q ` λ2x̄

p2q `

´

1´ pλ1q
2 ´ pλ2q

2
¯1{2

x̄p3q
*˙

. (250)
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It follows that (240) continues to hold (approximately) with mp4q, np4q in place of mp2q, np2q.
Likewise, (247) continues to approximately hold with mp4q, np4q in place of mp3q, np3q. We also
have (cf. (245))

pHp3q,Hp4qq

Nψ
» pγ1q

2 ` γ2

´

1´ pγ1q
2
¯1{2 (247)

“ µ2 ,

php3q,hp4qq

Mq
» pλ1q

2 ` λ2

´

1´ pλ1q
2
¯1{2 (247)

“ ρ2 ,

from which we obtain (cf. (33) and (246))

pmp4q,mp3qq

Nq
» ρpµ2q ” ρ3 ,

pnp4q,np3qq

Nψ
» µpρ2q ” µ3 . (251)

It then follows that (cf. (34) and (247))
ˆ

mp4q

pNqq1{2
, rp3q

˙

»

ˆ

mp4q

pNqq1{2
,
mp3q{pNqq1{2 ´ λ1r

p1q ´ λ2r
p2q

r1´ pλ1q
2 ´ pλ2q

2s1{2

˙

»
ρ3 ´ pλ1q

2 ´ pλ2q
2

r1´ pλ1q
2 ´ pλ2q

2s1{2
” λ3 ,

ˆ

np4q

pNψq1{2
, cp3q

˙

»

ˆ

np4q

pNψq1{2
,
np3q{pNψq1{2 ´ γ1c

p1q ´ γ2c
p2q

r1´ pγ1q
2 ´ pγ2q

2s1{2

˙

»
µ3 ´ pγ1q

2 ´ pγ2q
2

r1´ pγ1q
2 ´ pγ2q

2s1{2
” γ3 . (252)

In summary, using the notation (35), we have (cf. (38), (39), (239), (244), and (250))

mpt`1q ” tpHpt`1qq » t

ˆ

ψ1{2

"

γ1ȳ
p1q ` . . .` γt´1ȳ

pt´1q ` p1´ Γt´1q
1{2ȳptq

*˙

, (253)

npt`1q ” F phpt`1qq » F

ˆ

q1{2

"

λ1x̄
p1q ` . . .` λt´1x̄

pt´1q ` p1´ Λt´1q
1{2x̄ptq

*˙

, (254)

where the coefficients are defined recursively: we start with λ1 ” ρ1 and γ1 ” µ1 as in (240) (cf.
(32)). For s ě 1 we let ρs`1 ” ρpµsq and µs`1 ” µpρsq as in (246) and (251) (cf. (33)). Then, as
in (247) and (252) (cf. (34)), we can define recursively the constants

λs “
ρs ´ Λs´1

p1´ Λs´1q
1{2

, γs “
µs ´ Γs´1

p1´ Γs´1q
1{2

. (255)

We use these to define the matrices Γ and Λ as in (36) and (37). Then (253) and (254) can be
rewritten as (38) and (39). The Gram–Schmidt orthogonalization (242) and (248) then correspond
(approximately) to (43) and (44).

G.5. Idealized moment calculation

In this subsection we present a simplified version of the moment calculations that appear in this
paper. For expository purposes, we will make several non-rigorous simplifications in what follows,

122



GARDNER FORMULA FOR ISING PERCEPTRON MODELS AT SMALL DENSITIES

and will be loose in our handling of error terms. The mathematically rigorous moment calculation
appears in the proofs in the main body of this paper. By contrast, the purpose of this subsection is
to informally highlight some of the basic techniques underlying the proofs.

As at the start of Section A, we consider the perceptron model (1) with an independent copyG1

of the disorder matrix G. Then, rather than condition on the AMP filtration (16), we pretend that
we have access to an exact TAP solution pm,nq forG1:

m ” thpHq “ th

ˆ

pG1qtn

N1{2
´ βm

˙

, β “ αEpFqq1pq1{2Zq (256)

n ” Fqphq “ Fq

ˆ

G1m

N1{2
´ β1n

˙

, β1 “ 1´ q , (257)

(i.e., the equations (10) and (11) withG1 in place ofG). We assume that H{ψ1{2 and h{q1{2 behave
like standard gaussian vectors, in the sense of Lemma A.4. Let

S˚ ”

"

J P t´1,`1uN : J ´m K spantm,Hu

*

,

where K indicates approximate orthogonality. This is a simplification of the condition (19), which
is formalized by (142). We shall estimate the contribution to (1) only from configurations in S˚,

Z˚ ”
ÿ

JPS˚

ź

aďM

U

ˆ

peaq
tG1J

N1{2

˙

.

The quantity Z˚ above is an informal version of (143), and is moreover essentially similar to the
quantity Z̄ appearing in Theorem 1.5 (cf. (144)).

We will assume for simplicity that U is t0, 1u-valued, and let SJ refer to the event that J gives a
positive contribution to the sum Z˚ above. Recall that G is an independent copy of G1, and define
the events (cf. (60) and (61))

R ”
"

Gm

N1{2
“ h` β1n

*

(258)

C ”
"

Gtn

N1{2
“ H` βm

*

(259)

We next pretend that G1 is gaussian given the TAP equations (256) and (257) — that is to say, the
probability of SJpG1q given the TAP solution is the same as PpSJpGq |m,n,R,Cq. In the proofs,
this heuristic is formalized by Lemma A.16.

We will estimate PpSJpGq |m,n,R,Cq for J P S˚. Note that for such J we can decompose

J

N1{2
“

m

N1{2
`
J ´m

N1{2
“

m

N1{2
` p1´ qq1{2v , (260)

where v is a unit vector orthogonal to spantm,Hu. Now note that the event C of (259) implies

A “
"

ntGv

N
“
pH` βm,vq

N1{2
“ 0

*

, (261)
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where the middle equality is by (259), and the last equality is by the restriction J P S˚. It follows
by orthogonality considerations (formalized by Lemma A.19) and Bayes’s rule that

PpSJpGq |m,n,R,Cq “ PpSJpGq |m,n,R,Aq .

Applying Bayes’s rule gives

PpSJpGq |m,n,R,Aq “
P̃pSJpGq |m,n,RqP̃pA |m,n,R, SJpGqq

P̃pA |m,n,Rq
, (262)

where P̃ denotes the tilted gaussian measure (cf. (69))

dP̃
dP
“ exp

"

τpG,nvtq ´
τ2}n}2

2

*

.

The identity (262) holds for any τ P R. We next explain how to choose τ to facilitate the compu-
tation of the factors appearing on the right-hand side of (262). Note that we have been informal in
conditioning on events of zero probability; in the main text of the paper this is formalized by dealing
with densities rather than probabilities.

We first consider the factor P̃pSJpGq |m,n,Rq appearing in the numerator on the right-hand
side of (262). On the event R of (258), it follows using the decomposition (260) that

GJ

N1{2
“
Gm

N1{2
`
GpJ ´mq

N1{2
“ h` β1n` p1´ qq1{2Gv .

Under the tilted measure P̃p¨ |Rq, the difference G ´ τnvt has the law of an M ˆ N matrix with
i.i.d. standard gaussian entries, so we have

P̃pSJpGq |m,n,Rq “
ź

aďM

EξU
ˆ

peaq
t
´

h` pβ1 ` p1´ qq1{2τqn` p1´ qq1{2ξ
¯

˙

.

To simplify the above, it is natural to choose τ “ ´β{p1´ qq1{2 “ ´p1´ qq1{2. This results in

P̃pSJpGq |m,n,Rq .“ exp

"

NαELqpq1{2Zq

*

for Lq as defined by (26), and Z a standard gaussian.
The denominator on the right-hand side of (262) is easy to estimate for any τ : it is the probability

that (261) holds, where again we note that G ´ τnvt has the law of an M ˆ N matrix with i.i.d.
standard gaussian entries. It follows that

1

P̃pA |m,n,Rq
.
“ exp

"

τ2}n}2

2

*

.
“ exp

"

Nψp1´ qq

2

*

,

where the last equality is for our particular choice τ “ ´p1´ qq1{2.
It remains to consider the other factor P̃pA |m,n,R, SJpGqq in the numerator on the right-hand

side of (262), and we claim this is .
“ 1: indeed,

Ẽ
ˆ

ntGv

N

ˇ

ˇ

ˇ

ˇ

m,n,R, SJ

˙

“
pτnvt,nvtq

N
`

1

N

ˆ

n,
EξrξUph` p1´ qq1{2ξqs
EξUph` p1´ qq1{2ξq

˙

“
τ}n}2

N
`
pn, p1´ qq1{2F phqq

N
“ 0 ,
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so P̃pA |m,n, SJpGq,Rq
.
“ 1 by (local) central limit theorem considerations. This is formalized

by the local CLT estimates of Section E.
Substituting the above calculations into (262) gives, for any J P S˚,

PpSJpGq |m,n,R,Aq .“ exp

"

N

„

ψp1´ qq

2
` αELqpq1{2Zq

*

. (263)

It remains to estimate the size of S˚. To this end, we can let P be the uniform measure on
t´1,`1uN , and consider the change of measure

dQ

dP
“

exptpH, Jqu

exptplog chpHq, 1qu
.

The mean of the measure Q is exactly m, so S˚ has large probability under Q. It follows that

|S˚|

2N
“ PpS˚q “ EQ

„

1tS˚u
dQ

dP



.
“

exptpH,mqu

exptplog chpHq, 1qu
.

We then apply Stein’s identity and the fixed point equation (9) to estimate

pH,mq

N
.
“ Erψ1{2Z thpψ1{2Zqs “ ψE th1pψ1{2Zq “ ψE

”

1´ thpψ1{2Zq2
ı

“ ψp1´ qq .

Rearranging the above calculations leads to

|S˚|
.
“ exp

"

N

„

E log
´

2 chpq1{2Zq
¯

´ ψp1´ qq

*

. (264)

Combining (263) and (264) gives

1

N
logEpZ˚pGq |m,n,R,Cq .“ RSpα;Uq

for RSpα;Uq as in (29).
The above is a simplified presentation of the first moment calculation appearing in Section C.

The two main simplifications were (i) the assumption that the disorder is gaussian conditional on an
exact TAP solution satisfying (256) and (256); and (ii) the restriction to configurations J P S˚. The
above calculation then shows that the conditional expectation of the partition function restricted
to S˚ matches the replica symmetric formula. In Section C we remove these simplifications by
computing the first moment of the unrestricted partition function (1) conditional on the AMP fil-
tration. We show the main contribution to the conditional first moment comes from configurations
J which approximately satisfy (19) (which is similar to the S˚ restriction). This already implies
that the asymptotic free energy is upper bounded by the replica symmetric value. For the lower
bound, we may restrict the partition function in any way that is convenient to the calculation, and
in Section D we compute the second moment of the partition function restricted to (19) (and with a
further technical restriction; see (144)).
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