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Shared autonomous vehicles (SAVs) will be introduced in greater numbers over the coming decade. Due to 
rapid advances in shared mobility and the slower development of fully autonomous vehicles (AVs), SAVs 
will likely be deployed before privately-owned AVs. Moreover, existing shared mobility services are 
transitioning their vehicle fleets toward those with increasingly higher levels of driving automation. 
Consequently, people who use shared vehicles on an “as needed” basis will have infrequent interactions 
with automated driving, thereby experiencing interaction gaps. Using human trust data of 25 participants, 
we show that interaction gaps can affect human trust in automated driving. Participants engaged in a 
simulator study consisting of two interactions separated by a one-week interaction gap. A moderate, inverse 
correlation was found between the change in trust during the initial interaction and the interaction gap, 
suggesting people “forget” some of their gained trust or distrust in automation during an interaction gap. 
 

INTRODUCTION 
 

Autonomous vehicles (AVs) are appealing due to their 
potential benefits in safety, mobility for the disabled, and on-
demand ride services (Fagnant and Kockelman, 2015). Several 
automakers are currently focusing on the development of 
shared autonomous vehicles (SAVs) (Narayanan et al., 2020). 
The expected release of SAVs before privately-owned AVs is 
a consequence of the high development and production costs 
of these vehicles, as well as the recent interest and innovations 
in shared mobility. Although SAVs “may be widely available 
by the 2030s” (Litman, 2017), due to technical and legislative 
constraints, not all shared mobility services will immediately 
provide high or full autonomy, but several services may 
remain partially automated. Regardless of the level of 
automation, one of the most important aspects of near- and 
long-term SAV adoption is calibrating consumer trust in a 
mode of transport that is used on an “as-needed” basis. 

Trust in automation or autonomous vehicles is not a new 
topic; however, despite three decades of research on this topic 
(Muir, 1994; Lee and See, 2004; Hoff and Bashir, 2015), few 
studies have investigated changes in human trust due to 
multiple distinct interactions with an automated system. In 
2013, Beggiato and Krems oversaw a simulator study in which 
they measured participants’ trust in a vehicle’s adaptive cruise 
control (ACC) over three identical trials. Although 
participants had multiple interactions with the vehicle, the 
trials were variably spaced (7-24 days) depending upon 
participants’ schedules. Additionally, participants' trust was 
not measured at the beginning of subsequent trials. The trust 
measurements, collected before and after trial 1, after trial 2, 
and after trial 3, allowed the researchers to observe changes in 
trust over time; however, they were unable to evaluate how 
trust changed solely during the gaps between trials, thereby 
losing some of the participants’ trust dynamics. In 2015, 
Beggiato et al. conducted a human subjects study with an on-
road vehicle with ACC capabilities. They found that across 10 
interactions, trust increased according to a power function, 
“levelling off after approximately the fifth session.” The 10 

interactions were spread over two months, but again, trust was 
only measured after an interaction and not a gap. However, an 
eight-week interaction gap was studied by Hartwich et al. 
(2019) in which they measured trust after each participant’s 
final AV simulator drive during their first visit and measured 
trust again eight weeks later before each participant’s drive in 
a real AV. A repeated measures ANOVA showed no 
significant difference between trust after the driving simulator 
trial and trust eight weeks later before the real AV trial. The 
reliability of the simulated AV and the actual AV was 100%. 
Currently though, AVs are not 100% reliable. As such, it is 
critical to understand how trust changes during an interaction 
gap with an automated system that can perform unreliably.  

We designed and conducted a human subjects study to 
answer these research questions: (i) What happens to trust in a 
partial, SAE Level 2 AV during an interaction gap of one 
week? (ii) Which aspects of trust in automation change, and 
how do they change, during an interaction gap? 

The human subjects study was conducted on a medium 
fidelity driving simulator at Purdue University. Current 
regulations and technology allow for SAE Level 2 vehicles 
(partial driving automation) to be on the road. Thus, our use of 
an SAE Level 2 AV (SAE, 2021) in the driving simulation 
mirrors current standards while providing an understanding of 
an AV interaction gap in preparation for SAVs. 
 

METHODOLOGY 
 

We define an interaction gap as a significant period of 
time between subsequent uses of an automated system. 
Interaction gaps vary in time depending upon an operator’s 
needs, preferences, or the availability of the automated system. 
Interaction gaps should not be confused with “transition gaps.” 
A transition gap is a brief period of time between subsequent 
uses of an automated system. Therefore, one interaction may 
be comprised of two or more “micro-interactions” joined 
together by one or more transition gaps. 

To put these definitions in perspective with the literature, 
Hoff and Bashir (2015) present a three-layer trust model 



where trust in automation is captured by dispositional, 
situational, and learned trust. Dispositional trust depends upon 
an individual’s demographic factors and personality traits 
while situational trust is influenced by the specific context of 
an interaction. Learned trust, however, constitutes “an 
operator’s evaluations of a system drawn from past experience 
or the current interaction;” thus, learned trust can be classified 
as a combination of “initial learned trust” and “dynamic 
learned trust,” respectively (Hoff and Bashir, 2015). Thus, 
initial learned trust is measured after an interaction gap 
whereas dynamic learned trust is measured over the course of 
an interaction. 

For the purposes of this work, we measure trust at the 
beginning and end of an interaction gap. We also measure 
trust once during each transition gap to capture dynamic 
learned trust. Thus, the interaction and transition gap(s) allow 
us to measure user trust and alter experimental conditions of 
the automation for the subsequent (micro-)interaction (see 
Figure 1). 
 
Measuring Trust 

Previous research examined drivers’ subjective trust 
assessments of a simulated SAE Level 2 AV that uses 
augmented reality (AR) graphic cues to communicate with the 
driver (Wu et al., 2020). However, only one survey question 
on confidence is used to evaluate participants’ trust. In this 
work, a holistic tool is used to capture participants’ cumulative 
self-reported trust of a simulated SAE L2 AV over varying 
drive conditions. This tool, a 12-item questionnaire derived 
from word clusters is specifically designed to evaluate trust 
between humans and automation (Jian et al., 2000). The 
advantage of this questionnaire is that it utilizes both positive 
and negative phrases to capture multiple dimensions of trust. 
Many researchers average several or all the trust values from 
this questionnaire to produce a single trust score (Beggiato and 
Krems, 2013; Gold et al., 2015; Helldin et al., 2013; Verberne 
et al., 2012); however, one of the original authors of the scale 
demonstrates the value of observing each question's score 
individually to understand the different aspects of trust 
(Bisantz and Seong, 2001). The average and individual trust 
scores(s) are used in the data analysis in the Results Section. 
 
Participants 
 Thirty-eight participants from the West Lafayette area 
completed at least a portion of the study. Two participants did 
not return for the second interaction, one was dismissed for 
not following instructions, two were excluded for not 
receiving adequate instruction, and an additional eight were 
excluded for experiencing simulator glitches unknowingly, 
which may have affected their trust response. Therefore, data 
from 25 participants (12 male; 13 female) is used for analysis.  
The age ranged from 18-72 years (x̅ = 26). Participants were 
paid $15 per hour. Screening criteria were: (i) 18+ years (ii) 
legally allowed to drive in the U.S. (iii) normal/corrected-to-
normal vision (iv) not colorblind (v) not easily susceptible to 
motion sickness and (vi) no COVID-19 symptoms. Note, two 
participants had an eight-day interaction gap, rather than 
seven, due to a campus wide closure for inclement weather 
(effect assumed to be negligible). 

SAE Level 2 Driving and Simulator 
 Participants were tasked with monitoring a self-driving 
car that simulated SAE Level 2 driving automation in an urban 
area. The automated driving was simulated using the “Wizard 
of Oz” technique (Wang et al., 2017) by playing a pre-
recorded drive while still granting participants the ability to 
take over control through braking. Once the AV was stopped 
and participants released the brake, the AV found and resumed 
driving the pre-recorded route via the technique “closest 
approximate simple curving” (Wu et al., 2020). The pre-
recorded drives followed one of two routes, each of which 
spanned 15 blocks, had a balanced number of left and right 
turns, and included 10 intersections where the AV would stop. 
The study utilized a medium-fidelity driving simulator 
consisting of a steering wheel, pedals, and three 55'' curved 
screens. The screens provided a field of view of ≈120°. All 
simulated environments were rendered using Unreal Engine 
4.18. Half of the AV interactions were designed to have high 
automation transparency; therefore, AR cues were overlaid in 
50% of the simulator trials via a software developed in Unity. 
 
Experiment Design 
 The experiment is designed to measure participants’ trust 
in an SAE Level 2 AV over the course of two interactions 
separated by an interaction gap of one week. A one-week gap 
is chosen to emulate intermittent uses of an SAV (e.g., airport 
to hotel and back, weekly errands). Each interaction (≈45 min) 
consists of five micro-interactions (a tutorial and four normal 
drives about 7 minutes each) separated by transition gaps (of 
2-3 minutes) during which trust is measured as well as scene 
and automation variables altered. Figure 1 is a visualization of 
the drive order, including the interactions, the interaction gap, 
the micro-interactions, and the transition gaps. 
 Overall reliability (automation performance), task 
difficulty (weather), and risk (scene complexity) vary for each 
micro-interaction. Automation transparency (head-up display) 
varies between interactions. Each participant completed every 
drive listed in Table 1 in varying orders, blocking for 
transparency. In an attempt to eliminate additional ordering 
effects, each interaction uses a balanced Latin square of size 
four. A uniform number of participants per order was 
intended; however, due to excluding some participants, 3/8 
orders had one more or one less participant than the other five. 

Each drive, or micro-interaction, has 10 events in the 
form of four-way intersections. Two factors are varied for 
each intersection: automation reliability and risk. Reliability 
varies at each intersection based on the AV’s braking  

 
Figure 1: The drive order and sequence of events that participants engaged in 
while completing the study 



Table 1: Variation of factors across the drives. Each drive includes five high 
risk intersections. 

 
 
behavior. Low reliability intersections entail an abrupt stop 
(deceleration < 25m from crosswalk) while high reliability 
intersections involve a smooth stop (deceleration > 60m from  
crosswalk). Risk varies randomly at each intersection with the 
absence or presence of pedestrians. Low risk intersections 
contain no pedestrians while high risk ones contain eight 
pedestrians (two per crosswalk). Five of the 10 intersections in 
each drive are randomly assigned to be high risk. 
 Task difficulty varies by the weather in the scene. High 
task difficulty includes fog and snow, limiting the visibility of 
road signs, pedestrians, and other objects in the scene. Low 
task difficulty conditions simulate sun with perfect visibility. 
 Overall reliability is correlated with task difficulty so 
that increased task difficulty results in lower overall reliability. 
Overall reliability has three levels: 100% reliable, 80% 
reliable, and 60% reliable where 10/10, 8/10, and 6/10 
intersections are reliable, respectively. 100% reliable drives 
only occur with low task difficulty while 60% reliable drives 
only occur with high task difficulty. 80% reliable drives occur 
in an equal number of high and low task difficulty conditions. 
Thus, four combinations of overall reliability and task 
difficulty exist for each drive, as seen in Table 1. 
 Finally, automation transparency is varied between two 
levels: high and low. High transparency involves AR cues, 
visualized using bounding boxes for traffic signs, pedestrians, 
and cars, as well as path-prediction lines for pedestrians and 
cars (see Figure 2). Low transparency has no AR cues. Table 1 
shows that the four combinations of overall reliability and task 
difficulty exist for high and low transparency, producing eight 
drives. Although all these variables affect human trust, this 
work only focuses on the effects of an interaction gap on trust. 
 
Experiment Procedure 

Participants were given instructions to monitor the 
driving behavior of a self-driving car, where the lane position, 
vehicle speed, braking, and all other driving functionality was 
controlled by the vehicle. If at any point they felt the driving 
was unreliable, they were instructed to bring the car to a 
complete stop. Once stopped, the self-driving car would 
resume driving. Participants completed an eight-intersection 
tutorial at the beginning of each interaction to practice braking 
and to become familiar with the user interface. 

Throughout the experiment, participants completed 
questionnaires regarding their perceived cumulative trust of 
the AV after each drive. Cumulative trust refers to one’s 
current trust of the AV based on all drives, not just the most 
recent. The survey consisted of 12 questions measured on a 7-
point Likert scale adapted from (Jian et al., 2000) to be  

 
Figure 2: Participant completing a micro-interaction on high transparency. 
 
specific to the SAE Level 2 simulator vehicle. An example 
statement of the adapted survey is: “The self-driving car is 
reliable.” Additionally, to ensure a uniform notion of trust, 
participants were given an adapted definition of trust from Lee 
and See (2004): “Trust is defined as your attitude that the AV 
will help you achieve your goal of driving safely in a situation 
characterized by uncertainty and vulnerability.” 
 

RESULTS 
 

Changes in Trust During the Interaction Gap 
 Inspired by the Ebbinghaus Forgetting Curve (Murre and 
Dros, 2015), we hypothesize that a participant’s change in 
trust across the interaction gap is inversely related to their 
change in trust across the first interaction. Trust in this section 
refers to a participant’s average trust score, the mean of their 
12 responses to the items in the aforementioned questionnaire 
(Jian et al., 2000). 
 To test this hypothesis, the overall change in trust across 
the first interaction is correlated with the change in trust across 
the interaction gap. The overall change in trust across the first 
interaction is determined by subtracting each participant’s 
trust after the tutorial from their trust at the end of drive 4. The 
change in trust across the interaction gap is determined by 
subtracting participants’ trust at the end of drive 4 from 
participants’ trust when they returned at the onset of the 
second interaction. The Pearson’s product-moment correlation 
between the change in trust over the interaction gap and 
interaction 1 is negative, statistically significant, and moderate 
(r = -0.57, 95% CI [-0.79, -0.23], t(23) = -3.35, p < .003). The 
moderate correlation coefficient (r = -0.57) with its 95% 
confidence interval ([-0.79, -0.23]) provides compelling 
evidence that changes in trust across the interaction gap are 
inversely correlated to changes in trust across interaction 1. 
 Seventeen participants’ trust increased, one participant’s 
trust remained the same, and seven participants’ trust 
decreased during interaction 1. Observing these participants 
across the gap: (i) 12/17 of those whose trust increased during 
interaction 1 decreased during the interaction gap (ii) 1/1 of 
those whose trust remained the same during interaction 1 
increased during the interaction gap (iii) 6/7 of those whose 
trust decreased during interaction 1 increased during the 
interaction gap. Thus, 18 of the 25 participants performed 
according to our hypothesis that trust will increase or decrease 
over an interaction gap, depending upon if trust decreases or  



 
Figure 3: Inverse trust correlation between the first interaction and the 
interaction gap is shown by a scatter plot and linear line of best fit. 
 
increases, respectively, during interaction 1 (see Figure 3). 
 
Aspects of Trust that Change During the Interaction Gap 
 Each phrase in the empirical, 12-item questionnaire 
developed by Jian et al. (2000) relates to a different aspect of 
trust or distrust. Five items relate to distrust while seven relate 
to trust; for simplicity, both trusting and distrusting items will 
be referred to as aspects of trust. This definition agrees with 
Jian et al.’s (2000) finding that trust and distrust are indeed 
opposites and not different concepts. The trust described in the 
prior section is an average of the 12-item questionnaire which 
gives a strong measure of overall trust. However, to perceive 
which aspects of trust are most affected by an interaction gap, 
this section regards each trust item individually. 
 The change in magnitude for each aspect of trust, across 
the first interaction and then across the interaction gap, is 
determined. Then, a Pearson correlation test is performed on 
these changes in trust for each of the 12 aspects of trust. Table 
2 provides the correlation coefficient, confidence interval, t-
value, p-value, strength, direction, and significance for each 
aspect of trust. Strength is evaluated on a 3-point scale with 
the three points being: weak (0 ≤ r < .33), moderate (.33 ≤ r < 
.67), and strong (.67 ≤ r ≤ 1). Schober et al. (2018) 
recommend exercising caution when oversimplifying strengths 
of correlations on scales such as these; thus, the strengths in 
Table 2 are starting points for interpreting the correlation. 
 The interaction gap and the first interaction are 
negatively correlated for every aspect of trust; however, four 
of the twelve aspects of trust (deceptive, underhanded, 
harmful, and dependable) are not statistically significant. 
Deceptive arguably has no correlation (r = -0.09) and the 
greatest p-value (p = 0.665). The remaining eight aspects of 
trust have either a moderate or strong correlation, with 
suspicious as the only aspect with a strong correlation (r = -
.80). Integrity, reliable, and trust all have nearly identical 
correlation coefficients (r = -0.52, -0.55, -0.52) and confidence 
intervals ([-0.76, -0.15], [-0.78, -0.20], [-0.76, -0.15]). 
 

DISCUSSION 
 

Trust During the Interaction Gap 
 The fact that the Pearson’s product-moment correlation 
between ΔTint,1 and ΔTgap is negative, statistically significant, 
and moderate (r = -0.57, 95% CI [-0.79, -0.23], t(23) = -3.35,  

Table 2: Individual Jian et al. (200) Survey Factors -  Correlating the 
Interaction Gap to Interaction 1 

 
 
p < .003) suggests that people “forget” some of their gained 
trust or distrust. During periods of no interaction with 
automation (interaction gaps), the effects of trust building or 
reducing experiences from the previous interaction begin to 
fade. Figure 3 shows the inverse correlation between the first 
interaction and the interaction gap. A slope m = -0.57 implies 
that trust in the SAE Level 2 AV increases or decreases more 
during the first interaction than it decreases or increases during 
the interaction gap, respectively. Therefore, changes in trust 
over the interaction gap typically revert toward participants’ 
initial trust in the automation. 
 Interestingly, both increases in trust (positive first 
interaction) and decreases in trust (negative first interaction) 
with the SAE level 2 AV were mitigated after the interaction 
gap. This means that participants whose trust in the AV 
increased while interacting with it were not as trusting of it a 
week later. Additionally, those whose trust in the AV 
diminished while interacting with it were not as distrusting of 
it a week later. In other words, humans tend to revert toward 
their initial perceptions of, or even their dispositions to trust, 
automated mobility. As SAVs are introduced in coming years, 
researchers and designers should strive to deliver poignant 
experiences so trust can be readily retained. 
 
Aspects of Trust During the Interaction Gap  

Perceptions of Deception, Underhandedness, and 
Harmfulness Remain or Increase Over the Interaction Gap. 
There are no significant correlations between the interaction 
gap and interaction 1 for neither deceptive, underhanded, nor 
harmful perceptions. In fact, 92%, 88%, and 80% of 
participants found the AV to be equally or more deceptive, 
underhanded, and harmful after the interaction gap, 
respectively. Therefore, it can be inferred that a one-week 
interaction gap rarely reduces perceptions of deception, 
underhandedness, or harmfulness; rather, users will perceive 
the AV to have the same, or even an increased, tendency to 
deceive and/or harm. 
 Suspicions Either Don’t Change or Change Inversely 
Over the Interaction Gap. Eighty-four percent of participants 
found the AV to be equally or more suspicious after the gap. 
Every participant whose suspicions drastically changed (n=7) 
during interaction 1 had their suspicions revert to or toward 
their initial suspicion after the gap, supporting the high inverse 
correlation (r = -0.81). These results suggest that suspicions 
rarely decrease during a gap except when suspicions were 
significantly heightened during a prior interaction. 



 Wariness Either Doesn’t Change or Changes Inversely 
Over the Interaction Gap. Similar to the other four aspects of 
distrust, 76% of participants were equally or more wary of the 
AV after the interaction gap. However, nearly half of the 
participants whose trust changed during interaction 1 had their 
trust revert over the interaction gap, thereby supporting the 
moderate correlation (r = -0.61). 
 Confidence Holds Steady or Increases over the 
Interaction Gap. Eighty percent of participants were equally 
or more confident in the AV after the gap. This appears at 
odds with the five aspects of distrust, signifying confidence is 
interpreted differently and is indeed a distinct aspect of trust. 
 Security Primarily Holds Steady over the Interaction 
Gap. Sixty percent of participants had no change in perceived 
security of the AV over the gap while only 24% had an 
inverse change in trust during the interaction gap. 
 Dependability Primarily Holds Steady over the 
Interaction Gap. Similar to perceived security, 60% of 
participants had no change in perceived dependability of the 
AV over the gap.   
 Integrity, Trust and, Reliability Perform Similarly Over 
the Interaction Gap. In this context, integrity, trust, and 
reliability refer to participants’ perceived integrity, perceived 
trust, and perceived reliability of the AV. The three aspects 
nearly all have the same correlation coefficient (r = -0.52, -
.52, -0.55) on almost identical confidence intervals. Over the 
interaction gap, integrity, trust, and reliability had a similar 
number of participants whose trust increased (n=9,8,7) and 
decreased (n=7,6,5), respectively. These results suggest that 
integrity, trust, and reliability are closely related aspects of 
trust and are “forgotten” similarly over an interaction gap. 
 Familiarity Remains Constant or Decreases Over the 
Interaction Gap. For 96% of participants, their familiarity 
with the AV increased or remained constant (with respect to 
the tutorial) over interaction 1. Then 88% of participants 
indicated that their familiarity with the AV decreased or 
stayed constant over the gap. Thus, the inverse correlation (r = 
-0.57) between the gap and interaction 1 mainly applies to an 
increase during interaction 1 and a decrease over the gap. 
Consequently, this signifies that gains in familiarity are strong 
in dynamic learned trust while weaker in initial learned trust. 
 

CONCLUSION 
 
 This work is a foundational contribution toward an 
understanding of how trust changes during time spans of no 
interaction with an automation. We show that an inverse 
correlation exists between changes in trust during an 
interaction gap and an initial interaction. Additionally, we 
determined that specific aspects of trust in automation are 
affected differently over an interaction gap. Future work 
includes identifying which aspects of trust correspond to 
design features in autonomous vehicles as well as examining 
multiple interaction gaps and gaps of varying lengths. 
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