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Shared autonomous vehicles (SAVs) will be introduced in greater numbers over the coming decade. Due to
rapid advances in shared mobility and the slower development of fully autonomous vehicles (AVs), SAVs
will likely be deployed before privately-owned AVs. Moreover, existing shared mobility services are
transitioning their vehicle fleets toward those with increasingly higher levels of driving automation.
Consequently, people who use shared vehicles on an “as needed” basis will have infrequent interactions
with automated driving, thereby experiencing interaction gaps. Using human trust data of 25 participants,
we show that interaction gaps can affect human trust in automated driving. Participants engaged in a
simulator study consisting of two interactions separated by a one-week interaction gap. A moderate, inverse
correlation was found between the change in trust during the initial interaction and the interaction gap,
suggesting people “forget” some of their gained trust or distrust in automation during an interaction gap.

INTRODUCTION

Autonomous vehicles (AVs) are appealing due to their
potential benefits in safety, mobility for the disabled, and on-
demand ride services (Fagnant and Kockelman, 2015). Several
automakers are currently focusing on the development of
shared autonomous vehicles (SAVs) (Narayanan et al., 2020).
The expected release of SAVs before privately-owned AVs is
a consequence of the high development and production costs
of these vehicles, as well as the recent interest and innovations
in shared mobility. Although SAVs “may be widely available
by the 2030s” (Litman, 2017), due to technical and legislative
constraints, not all shared mobility services will immediately
provide high or full autonomy, but several services may
remain partially automated. Regardless of the level of
automation, one of the most important aspects of near- and
long-term SAV adoption is calibrating consumer trust in a
mode of transport that is used on an “as-needed” basis.

Trust in automation or autonomous vehicles is not a new
topic; however, despite three decades of research on this topic
(Muir, 1994; Lee and See, 2004; Hoff and Bashir, 2015), few
studies have investigated changes in human trust due to
multiple distinct interactions with an automated system. In
2013, Beggiato and Krems oversaw a simulator study in which
they measured participants’ trust in a vehicle’s adaptive cruise
control (ACC) over three identical trials. Although
participants had multiple interactions with the vehicle, the
trials were variably spaced (7-24 days) depending upon
participants’ schedules. Additionally, participants' trust was
not measured at the beginning of subsequent trials. The trust
measurements, collected before and after trial 1, after trial 2,
and after trial 3, allowed the researchers to observe changes in
trust over time; however, they were unable to evaluate how
trust changed solely during the gaps between trials, thereby
losing some of the participants’ trust dynamics. In 2015,
Beggiato et al. conducted a human subjects study with an on-
road vehicle with ACC capabilities. They found that across 10
interactions, trust increased according to a power function,
“levelling off after approximately the fifth session.” The 10

interactions were spread over two months, but again, trust was
only measured after an interaction and not a gap. However, an
eight-week interaction gap was studied by Hartwich et al.
(2019) in which they measured trust after each participant’s
final AV simulator drive during their first visit and measured
trust again eight weeks later before each participant’s drive in
areal AV. A repeated measures ANOVA showed no
significant difference between trust after the driving simulator
trial and trust eight weeks later before the real AV trial. The
reliability of the simulated AV and the actual AV was 100%.
Currently though, AVs are not 100% reliable. As such, it is
critical to understand how trust changes during an interaction
gap with an automated system that can perform unreliably.

We designed and conducted a human subjects study to
answer these research questions: (i) What happens to trust in a
partial, SAE Level 2 AV during an interaction gap of one
week? (i1) Which aspects of trust in automation change, and
how do they change, during an interaction gap?

The human subjects study was conducted on a medium
fidelity driving simulator at Purdue University. Current
regulations and technology allow for SAE Level 2 vehicles
(partial driving automation) to be on the road. Thus, our use of
an SAE Level 2 AV (SAE, 2021) in the driving simulation
mirrors current standards while providing an understanding of
an AV interaction gap in preparation for SAVs.

METHODOLOGY

We define an interaction gap as a significant period of
time between subsequent uses of an automated system.
Interaction gaps vary in time depending upon an operator’s
needs, preferences, or the availability of the automated system.
Interaction gaps should not be confused with “transition gaps.”
A transition gap is a brief period of time between subsequent
uses of an automated system. Therefore, one interaction may
be comprised of two or more “micro-interactions” joined
together by one or more transition gaps.

To put these definitions in perspective with the literature,
Hoff and Bashir (2015) present a three-layer trust model



where trust in automation is captured by dispositional,
situational, and learned trust. Dispositional trust depends upon
an individual’s demographic factors and personality traits
while situational trust is influenced by the specific context of
an interaction. Learned trust, however, constitutes “an
operator’s evaluations of a system drawn from past experience
or the current interaction;” thus, learned trust can be classified
as a combination of “initial learned trust” and “dynamic
learned trust,” respectively (Hoff and Bashir, 2015). Thus,
initial learned trust is measured after an interaction gap
whereas dynamic learned trust is measured over the course of
an interaction.

For the purposes of this work, we measure trust at the
beginning and end of an interaction gap. We also measure
trust once during each transition gap to capture dynamic
learned trust. Thus, the interaction and transition gap(s) allow
us to measure user trust and alter experimental conditions of
the automation for the subsequent (micro-)interaction (see
Figure 1).

Measuring Trust

Previous research examined drivers’ subjective trust
assessments of a simulated SAE Level 2 AV that uses
augmented reality (AR) graphic cues to communicate with the
driver (Wu et al., 2020). However, only one survey question
on confidence is used to evaluate participants’ trust. In this
work, a holistic tool is used to capture participants’ cumulative
self-reported trust of a simulated SAE L2 AV over varying
drive conditions. This tool, a 12-item questionnaire derived
from word clusters is specifically designed to evaluate trust
between humans and automation (Jian et al., 2000). The
advantage of this questionnaire is that it utilizes both positive
and negative phrases to capture multiple dimensions of trust.
Many researchers average several or all the trust values from
this questionnaire to produce a single trust score (Beggiato and
Krems, 2013; Gold et al., 2015; Helldin et al., 2013; Verberne
et al., 2012); however, one of the original authors of the scale
demonstrates the value of observing each question's score
individually to understand the different aspects of trust
(Bisantz and Seong, 2001). The average and individual trust
scores(s) are used in the data analysis in the Results Section.

Participants

Thirty-eight participants from the West Lafayette area
completed at least a portion of the study. Two participants did
not return for the second interaction, one was dismissed for
not following instructions, two were excluded for not
receiving adequate instruction, and an additional eight were
excluded for experiencing simulator glitches unknowingly,
which may have affected their trust response. Therefore, data
from 25 participants (12 male; 13 female) is used for analysis.
The age ranged from 18-72 years (X = 26). Participants were
paid $15 per hour. Screening criteria were: (i) 18+ years (ii)
legally allowed to drive in the U.S. (iii) normal/corrected-to-
normal vision (iv) not colorblind (v) not easily susceptible to
motion sickness and (vi) no COVID-19 symptoms. Note, two
participants had an eight-day interaction gap, rather than
seven, due to a campus wide closure for inclement weather
(effect assumed to be negligible).

SAE Level 2 Driving and Simulator

Participants were tasked with monitoring a self-driving
car that simulated SAE Level 2 driving automation in an urban
area. The automated driving was simulated using the “Wizard
of Oz” technique (Wang et al., 2017) by playing a pre-
recorded drive while still granting participants the ability to
take over control through braking. Once the AV was stopped
and participants released the brake, the AV found and resumed
driving the pre-recorded route via the technique “closest
approximate simple curving” (Wu et al., 2020). The pre-
recorded drives followed one of two routes, each of which
spanned 15 blocks, had a balanced number of left and right
turns, and included 10 intersections where the AV would stop.
The study utilized a medium-fidelity driving simulator
consisting of a steering wheel, pedals, and three 55" curved
screens. The screens provided a field of view of =120°. All
simulated environments were rendered using Unreal Engine
4.18. Half of the AV interactions were designed to have high
automation transparency; therefore, AR cues were overlaid in
50% of the simulator trials via a software developed in Unity.

Experiment Design

The experiment is designed to measure participants’ trust
in an SAE Level 2 AV over the course of two interactions
separated by an interaction gap of one week. A one-week gap
is chosen to emulate intermittent uses of an SAV (e.g., airport
to hotel and back, weekly errands). Each interaction (=45 min)
consists of five micro-interactions (a tutorial and four normal
drives about 7 minutes each) separated by transition gaps (of
2-3 minutes) during which trust is measured as well as scene
and automation variables altered. Figure 1 is a visualization of
the drive order, including the interactions, the interaction gap,
the micro-interactions, and the transition gaps.

Overall reliability (automation performance), task
difficulty (weather), and risk (scene complexity) vary for each
micro-interaction. Automation transparency (head-up display)
varies between interactions. Each participant completed every
drive listed in Table 1 in varying orders, blocking for
transparency. In an attempt to eliminate additional ordering
effects, each interaction uses a balanced Latin square of size
four. A uniform number of participants per order was
intended; however, due to excluding some participants, 3/8
orders had one more or one less participant than the other five.

Each drive, or micro-interaction, has 10 events in the
form of four-way intersections. Two factors are varied for
each intersection: automation reliability and risk. Reliability
varies at each intersection based on the AV’s braking
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Figure 1: The drive order and sequence of events that participants engaged in
while completing the study



Table 1: Variation of factors across the drives. Each drive includes five high
risk intersections.

Drive Automation Task Overall  # Low Reliability
(Micro-Interaction) Transparency Difficulty Reliability Intersections
A High Low 100% 0
B High Low 80% 2
C High High 80% 2
D High High 60% 4
E Low Low 100% 0
F Low Low 80% 2
G Low High 80% 2
H Low High 60% 4

behavior. Low reliability intersections entail an abrupt stop
(deceleration < 25m from crosswalk) while high reliability
intersections involve a smooth stop (deceleration > 60m from
crosswalk). Risk varies randomly at each intersection with the
absence or presence of pedestrians. Low risk intersections
contain no pedestrians while high risk ones contain eight
pedestrians (two per crosswalk). Five of the 10 intersections in
each drive are randomly assigned to be high risk.

Task difficulty varies by the weather in the scene. High
task difficulty includes fog and snow, limiting the visibility of
road signs, pedestrians, and other objects in the scene. Low
task difficulty conditions simulate sun with perfect visibility.

Overall reliability is correlated with task difficulty so
that increased task difficulty results in lower overall reliability.
Overall reliability has three levels: 100% reliable, 80%
reliable, and 60% reliable where 10/10, 8/10, and 6/10
intersections are reliable, respectively. 100% reliable drives
only occur with low task difficulty while 60% reliable drives
only occur with high task difficulty. 80% reliable drives occur
in an equal number of high and low task difficulty conditions.
Thus, four combinations of overall reliability and task
difficulty exist for each drive, as seen in Table 1.

Finally, automation transparency is varied between two
levels: high and low. High transparency involves AR cues,
visualized using bounding boxes for traffic signs, pedestrians,
and cars, as well as path-prediction lines for pedestrians and
cars (see Figure 2). Low transparency has no AR cues. Table 1
shows that the four combinations of overall reliability and task
difficulty exist for high and low transparency, producing eight
drives. Although all these variables affect human trust, this
work only focuses on the effects of an interaction gap on trust.

Experiment Procedure

Participants were given instructions to monitor the
driving behavior of a self-driving car, where the lane position,
vehicle speed, braking, and all other driving functionality was
controlled by the vehicle. If at any point they felt the driving
was unreliable, they were instructed to bring the car to a
complete stop. Once stopped, the self-driving car would
resume driving. Participants completed an eight-intersection
tutorial at the beginning of each interaction to practice braking
and to become familiar with the user interface.

Throughout the experiment, participants completed
questionnaires regarding their perceived cumulative trust of
the AV after each drive. Cumulative trust refers to one’s
current trust of the AV based on a// drives, not just the most
recent. The survey consisted of 12 questions measured on a 7-
point Likert scale adapted from (Jian et al., 2000) to be

articipant completing a micro-interaction on high transparency.

Figure 2:

specific to the SAE Level 2 simulator vehicle. An example
statement of the adapted survey is: “The self-driving car is
reliable.” Additionally, to ensure a uniform notion of trust,
participants were given an adapted definition of trust from Lee
and See (2004): “Trust is defined as your attitude that the AV
will help you achieve your goal of driving safely in a situation
characterized by uncertainty and vulnerability.”

RESULTS

Changes in Trust During the Interaction Gap

Inspired by the Ebbinghaus Forgetting Curve (Murre and
Dros, 2015), we hypothesize that a participant’s change in
trust across the interaction gap is inversely related to their
change in trust across the first interaction. Trust in this section
refers to a participant’s average trust score, the mean of their
12 responses to the items in the aforementioned questionnaire
(Jian et al., 2000).

To test this hypothesis, the overall change in trust across
the first interaction is correlated with the change in trust across
the interaction gap. The overall change in trust across the first
interaction is determined by subtracting each participant’s
trust after the tutorial from their trust at the end of drive 4. The
change in trust across the interaction gap is determined by
subtracting participants’ trust at the end of drive 4 from
participants’ trust when they returned at the onset of the
second interaction. The Pearson’s product-moment correlation
between the change in trust over the interaction gap and
interaction 1 is negative, statistically significant, and moderate
(r=-0.57,95% CI [-0.79, -0.23], t(23) = -3.35, p <.003). The
moderate correlation coefficient (r = -0.57) with its 95%
confidence interval ([-0.79, -0.23]) provides compelling
evidence that changes in trust across the interaction gap are
inversely correlated to changes in trust across interaction 1.

Seventeen participants’ trust increased, one participant’s
trust remained the same, and seven participants’ trust
decreased during interaction 1. Observing these participants
across the gap: (i) 12/17 of those whose trust increased during
interaction 1 decreased during the interaction gap (ii) 1/1 of
those whose trust remained the same during interaction 1
increased during the interaction gap (iii) 6/7 of those whose
trust decreased during interaction 1 increased during the
interaction gap. Thus, 18 of the 25 participants performed
according to our hypothesis that trust will increase or decrease
over an interaction gap, depending upon if trust decreases or
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Figure 3: Inverse trust correlation between the first interaction and the
interaction gap is shown by a scatter plot and linear line of best fit.

increases, respectively, during interaction 1 (see Figure 3).

Aspects of Trust that Change During the Interaction Gap
Each phrase in the empirical, 12-item questionnaire
developed by Jian et al. (2000) relates to a different aspect of
trust or distrust. Five items relate to distrust while seven relate
to trust; for simplicity, both trusting and distrusting items will

be referred to as aspects of trust. This definition agrees with
Jian et al.’s (2000) finding that trust and distrust are indeed
opposites and not different concepts. The trust described in the
prior section is an average of the 12-item questionnaire which
gives a strong measure of overall trust. However, to perceive
which aspects of trust are most affected by an interaction gap,
this section regards each trust item individually.

The change in magnitude for each aspect of trust, across
the first interaction and then across the interaction gap, is
determined. Then, a Pearson correlation test is performed on
these changes in trust for each of the 12 aspects of trust. Table
2 provides the correlation coefficient, confidence interval, t-
value, p-value, strength, direction, and significance for each
aspect of trust. Strength is evaluated on a 3-point scale with
the three points being: weak (0 < r <.33), moderate (.33 <r <
.67), and strong (.67 < r < 1). Schober et al. (2018)
recommend exercising caution when oversimplifying strengths
of correlations on scales such as these; thus, the strengths in
Table 2 are starting points for interpreting the correlation.

The interaction gap and the first interaction are
negatively correlated for every aspect of trust; however, four
of the twelve aspects of trust (deceptive, underhanded,
harmful, and dependable) are not statistically significant.
Deceptive arguably has no correlation (= -0.09) and the
greatest p-value (p = 0.665). The remaining eight aspects of
trust have either a moderate or strong correlation, with
suspicious as the only aspect with a strong correlation (r = -
.80). Integrity, reliable, and trust all have nearly identical
correlation coefficients (» =-0.52, -0.55, -0.52) and confidence
intervals ([-0.76, -0.15], [-0.78, -0.20], [-0.76, -0.15]).

DISCUSSION

Trust During the Interaction Gap

The fact that the Pearson’s product-moment correlation
between ATiy,1 and ATg,p is negative, statistically significant,
and moderate ( =-0.57, 95% CI [-0.79, -0.23], t(23) = -3.35,

Table 2: Individual Jian et al. (200) Survey Factors - Correlating the
Interaction Gap to Interaction 1

Aspect of Trust ¥ 95% CI t-value p-value Strength Direction Sig.
Deceptive -0.09 [-0.47,0.32] -044  0.665 Weak Neg. No
Underhanded -0.27 [-0.60,0.14] -1.35  0.190 Weak Neg. No
Suspicious -0.80 [-0.91,-0.59] -6.35 <.001 Strong Neg. Yes
Wary -0.61 [-0.81,-0.28] -3.69  0.001 Moderate Neg. Yes
Harmful -0.37  [-0.67,0.02] -194  0.065 Moderate Neg. No
Confident -0.48 [-0.74,-0.11] -2.65 0.014 Moderate Neg. Yes
Security -0.40 [-0.69, 0] <210 0.047  Moderate Neg. Yes
Integrity -0.52 [-0.76,-0.15] -2.89  0.008 Moderate Neg. Yes
Dependable -0.26  [-0.59,0.15] -1.28 0.214 Weak Neg. No
Reliable -0.55 [-0.78,-0.20] -3.15  0.005 Moderate Neg. Yes
Trust -0.52 [-0.76,-0.15] -2.90 0.008  Moderate Neg. Yes
Familiar -0.57 [-0.79,-0.23] -3.33  0.003 Moderate Neg. Yes

p <.003) suggests that people “forget” some of their gained
trust or distrust. During periods of no interaction with
automation (interaction gaps), the effects of trust building or
reducing experiences from the previous interaction begin to
fade. Figure 3 shows the inverse correlation between the first
interaction and the interaction gap. A slope m =-0.57 implies
that trust in the SAE Level 2 AV increases or decreases more
during the first interaction than it decreases or increases during
the interaction gap, respectively. Therefore, changes in trust
over the interaction gap typically revert foward participants’
initial trust in the automation.

Interestingly, both increases in trust (positive first
interaction) and decreases in trust (negative first interaction)
with the SAE level 2 AV were mitigated after the interaction
gap. This means that participants whose trust in the AV
increased while interacting with it were not as trusting of it a
week later. Additionally, those whose trust in the AV
diminished while interacting with it were not as distrusting of
it a week later. In other words, humans tend to revert toward
their initial perceptions of, or even their dispositions to trust,
automated mobility. As SAVs are introduced in coming years,
researchers and designers should strive to deliver poignant
experiences so trust can be readily retained.

Aspects of Trust During the Interaction Gap

Perceptions of Deception, Underhandedness, and
Harmfulness Remain or Increase Over the Interaction Gap.
There are no significant correlations between the interaction
gap and interaction 1 for neither deceptive, underhanded, nor
harmful perceptions. In fact, 92%, 88%, and 80% of
participants found the AV to be equally or more deceptive,
underhanded, and harmful after the interaction gap,
respectively. Therefore, it can be inferred that a one-week
interaction gap rarely reduces perceptions of deception,
underhandedness, or harmfulness; rather, users will perceive
the AV to have the same, or even an increased, tendency to
deceive and/or harm.

Suspicions Either Don’t Change or Change Inversely
Over the Interaction Gap. Eighty-four percent of participants
found the AV to be equally or more suspicious after the gap.
Every participant whose suspicions drastically changed (n=7)
during interaction 1 had their suspicions revert to or toward
their initial suspicion after the gap, supporting the high inverse
correlation (» = -0.81). These results suggest that suspicions
rarely decrease during a gap except when suspicions were
significantly heightened during a prior interaction.



Wariness Either Doesn’t Change or Changes Inversely
Over the Interaction Gap. Similar to the other four aspects of
distrust, 76% of participants were equally or more wary of the
AV after the interaction gap. However, nearly half of the
participants whose trust changed during interaction 1 had their
trust revert over the interaction gap, thereby supporting the
moderate correlation ( =-0.61).

Confidence Holds Steady or Increases over the
Interaction Gap. Eighty percent of participants were equally
or more confident in the AV after the gap. This appears at
odds with the five aspects of distrust, signifying confidence is
interpreted differently and is indeed a distinct aspect of trust.

Security Primarily Holds Steady over the Interaction
Gap. Sixty percent of participants had no change in perceived
security of the AV over the gap while only 24% had an
inverse change in trust during the interaction gap.

Dependability Primarily Holds Steady over the
Interaction Gap. Similar to perceived security, 60% of
participants had no change in perceived dependability of the
AV over the gap.

Integrity, Trust and, Reliability Perform Similarly Over
the Interaction Gap. In this context, integrity, trust, and
reliability refer to participants’ perceived integrity, perceived
trust, and perceived reliability of the AV. The three aspects
nearly all have the same correlation coefficient (» = -0.52, -
.52, -0.55) on almost identical confidence intervals. Over the
interaction gap, integrity, trust, and reliability had a similar
number of participants whose trust increased (n=9,8,7) and
decreased (n=7,6,5), respectively. These results suggest that
integrity, trust, and reliability are closely related aspects of
trust and are “forgotten” similarly over an interaction gap.

Familiarity Remains Constant or Decreases Over the
Interaction Gap. For 96% of participants, their familiarity
with the AV increased or remained constant (with respect to
the tutorial) over interaction 1. Then 88% of participants
indicated that their familiarity with the AV decreased or
stayed constant over the gap. Thus, the inverse correlation (r =
-0.57) between the gap and interaction 1 mainly applies to an
increase during interaction 1 and a decrease over the gap.
Consequently, this signifies that gains in familiarity are strong
in dynamic learned trust while weaker in initial learned trust.

CONCLUSION

This work is a foundational contribution toward an
understanding of how trust changes during time spans of no
interaction with an automation. We show that an inverse
correlation exists between changes in trust during an
interaction gap and an initial interaction. Additionally, we
determined that specific aspects of trust in automation are
affected differently over an interaction gap. Future work
includes identifying which aspects of trust correspond to
design features in autonomous vehicles as well as examining
multiple interaction gaps and gaps of varying lengths.
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