
Intrinsic Dimension Estimation Using Wasserstein Distances

Adam Block
MIT

Zeyu Jia
MIT

Yury Polyanskiy
MIT

Alexander Rakhlin
MIT

Abstract

It has long been thought that high-dimensional data encountered in many practical machine learning
tasks have low-dimensional structure, i.e., the manifold hypothesis holds. A natural question, thus, is to
estimate the intrinsic dimension of a given population distribution from a finite sample. We introduce a
new estimator of the intrinsic dimension and provide finite sample, non-asymptotic guarantees. We then
apply our techniques to get new sample complexity bounds for Generative Adversarial Networks (GANs)
depending only on the intrinsic dimension of the data.

1 Introduction

Recently, practical applications of machine learning involve a very large number of features, often many more
than there are samples on which to train a model. Despite this imbalance, many modern machine learning
models work astonishingly well. One of the more compelling explanations for this behavior is the manifold
hypothesis, which posits that, though the data appear to the practitioner in a high-dimensional, ambient
space, RD, they really lie on (or close to) a low dimensional space M of “dimension” d� D, where we define
dimension formally below. A good example to keep in mind is that of image data: each of thousands of pixels
corresponds to three dimensions, but we expect that real images have some inherent structure that limits
the true number of degrees of freedom in a realistic picture. This phenomenon has been thoroughly explored
over the years, beginning with the linear case and moving into the more general, nonlinear regime, with such
works as Niyogi et al. (2008, 2011); Belkin & Niyogi (2001); Bickel et al. (2007); Levina & Bickel (2004);
Kpotufe (2011); Kpotufe & Dasgupta (2012); Kpotufe & Garg (2013); Weed et al. (2019); Tenenbaum et al.
(2000); Bernstein et al. (2000); Kim et al. (2019); Farahmand et al. (2007), among many, many others. Some
authors have focused on finding representations for these lower dimensional sets (Niyogi et al., 2008; Belkin
& Niyogi, 2001; Tenenbaum et al., 2000; Roweis & Saul, 2000; Donoho & Grimes, 2003), while other works
have focused on leveraging the low dimensionality into statistically efficient estimators (Bickel et al., 2007;
Kpotufe, 2011; Nakada & Imaizumi, 2020; Kpotufe & Dasgupta, 2012; Kpotufe & Garg, 2013; Ashlagi et al.,
2021).

In this work, our primary focus is on estimating the intrinsic dimension. To see why this is an important
question, note that the local estimators of Bickel et al. (2007); Kpotufe (2011); Kpotufe & Garg (2013)
and the neural network architecture of Nakada & Imaizumi (2020) all depend in some way on the intrinsic
dimension. As noted in Levina & Bickel (2004), while a practitioner may simply apply cross-validation to
select the optimal hyperparameters, this can be very costly unless the hyperparameters have a restricted
range; thus, an estimate of intrinsic dimension is critical in actually applying the above works. In addition, for
manifold learning, where the goal is to construct a representation of the data manifold in a lower dimensional
space, the intrinsic dimension is a key parameter in many of the most popular methods (Tenenbaum et al.,
2000; Belkin & Niyogi, 2001; Donoho & Grimes, 2003; Roweis & Saul, 2000).

We propose a new estimator, based on distances between probability distributions, as well as provide
rigorous, finite sample guarantees for the quality of the novel procedure. Recall that if µ, ν are two measures
on a metric space (M,dM ), then the Wasserstein-p distance between µ and ν is

WM
p (µ, ν)p = inf

(X,Y )∼Γ(µ,ν)
E [dM (X,Y )p] (1)

where Γ(µ, ν) is the set of all couplings of the two measures. If M ⊂ RD, then there are two natural metrics
to put on M : one is simply the restriction of the Euclidean metric to M while the other is the geodesic
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metric in M , i.e., the minimal length of a curve in M that joins the points under consideration. In the sequel,
if the metric is simply the Euclidean metric, we leave the Wasserstein distance unadorned to distinguish it
from the intrinsic metric. For a thorough treatment of such distances, see Villani (2008). We recall that the
Hölder integral probability metric (Hölder IPM) is given by

dβ,B(µ, ν) = sup
f∈CβB(Ω)

Eµ[f(X)]− Eν [f(Y )]

where CβB(Ω) is the Hölder ball defined in the sequel. When p = β = 1, the classical result of Kantorovich-
Rubinstein says that the Wasserstein and Hölder distances agree. It has been known at least since Dudley
(1969) that if a space M has dimension d, P is a measure with support M , and Pn is the empirical measure

of n independent samples drawn from P, then WM
1 (Pn,P) � n−

1
d . More recently, Weed et al. (2019) has

determined sharp rates for the convergence of this quantity for higher order Wasserstein distances in terms
of the intrinsic dimension of the distribution. Below, we find sharp rates for the convergence of the empirical

measure to the population measure with respect to the Hölder IPM: if β < d
2 , then dβ(Pn,P) � n−

β
d and if

β > d
2 then dβ(Pn,P) � n− 1

2 . These sharp rates are intuitive in that convergence to the population measure
should only depend on the intrinsic complexity (i.e. dimension) without reference to the possibly much larger
ambient dimension.

The above convergence results are nice theoretical insights, but they have practical value, too. The results
of Dudley (1969); Weed et al. (2019), as well as our results on the rate of convergence of the Hölder IPM,
present a natural way to estimate the intrinsic dimension: take two independent samples, Pn, Pαn from P
and consider the ratio of WM

p (Pn,P)/WM
p (Pαn,P) or dβ(Pn,P)/dβ(Pαn,P); as n→∞, the first ratio should

be about αd, while the second should be about α
β
d , and so d can be computed by taking the logarithm with

respect to α. The first problem with this idea is that we do not know P; to address this, we instead compute
the ratios using two independent samples. A more serious issue regards how large n must be in order for the
asymptotic regime to apply. As we shall see below, the answer depends on the geometry of the supporting
manifold.

We define two estimators: one using the intrinsic distance and the other using Euclidean distance

dn =
logα

logW1(Pn, P ′n)− logW1(Pαn, P ′αn)
d̃n =

logα

logWG
1 (Pn, P ′n)− logWG

1 (Pαn, P ′αn)
(2)

where the primes indicate independent samples of the same size and G is a graph-based metric that approxi-
mates the intrinsic metric. Before we go into the details, we give an informal statement of our main theorem,
which provides finite sample, non-asymptotic guarantees on the quality of the estimator1:

Theorem 1 (Informal version of Theorem 22). Let P be a measure on RD supported on a compact manifold
of dimension d. Let τ be the reach of M , an intrinsic geometric quantity defined below. Suppose we have N
independent samples from P where

N = Ω

(
τ−d ∨

(
volM

ωd

) d+2
2γ

∨
(

log
1

ρ

)3
)

where ωd is the volume of a d-dimensional Euclidean unit ball. Then with probability at least 1 − 6ρ, the
estimated dimension d̃n satisfies

d

1 + 4γ
≤ d̃n ≤ (1 + 4γ)d.

The same conclusion holds for dn.

Although the guarantees for dn and d̃n are similar, empirically d̃n is much better, as explained below. Note
that the ambient dimension D never enters the statistical complexity given above. While the exponential
dependence on the intrinsic dimension d is unfortunate, it is likely necessary as described below.

While the reach, τ , determines the sample complexity of our dimension estimator, consideration of the
injectivity radius, ι, is relevant for practical application. Both geometric quantities are defined formally in

1Explicit constants are given in the formal statement of Theorem 22
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the following section, but, to understand the intuition, note that, as discussed above, there are two natural
metrics we could be placing on M = suppP, the Euclidean metric and the geodesic distance. The reach is,
intuitively, the size of the largest ball with respect to the ambient metric such that we can treat points in
M as if they were simply in Euclidean space; the injectivity radius is similar, except it treats neighborhoods
with respect to the intrinsic metric. Considering that manifold distances are always at least as large as
Euclidean distances, it is unsurprising that τ . ι. Getting back to dimension estimation, specializing to
the case of β = p = 1, and recalling (2), there are now two choices for our dimension estimator: we could
use Wasserstein distance with respect to the Euclidean metric or Wasserstein distance with respect to the
intrinsic metric (which we will denote by WM

1 ). We will see that if ι ≈ τ , then the two estimators induced
by each of these distances behave similarly, but when ι � τ , the latter is better. While we wish to use
WM

1 (Pn, P
′
n) to estimate the dimension, we do not know the intrinsic metric. As such, we use the kNN

graph to approximate this intrinsic metric and introduce the measure WG
1 (Pn, P

′
n). Note that if we had

oracle access to geodesic distance dM , then the WM
1 -based estimator d̃n would only require � ι−d samples.

However, our kNN estimator of dM , unfortunately, still requires the τ−d samples. Nevertheless, there is a
practical advantage of d̃n in that the metric estimator can leverage all N = 2(1 + α)n available samples, so

that d̃n works if N & τ−d and only n & ι−d, whereas for dn we require n & τ−d itself.
A natural question: is this more complicated approach necessary? i.e., is ι � τ on real datasets? We

believe that the answer is yes. To see this, consider the case of images of the digit 7 (for example) from
MNIST (LeCun & Cortes, 2010). As a demonstration, we sample images from MNIST in datasets of size
ranging in powers of 2 from 32 to 2048, calculate the Wasserstein distance between these two samples, and
plot the resulting trend. In the right plot, we pool all of the data to estimate the manifold distances, and
then use these estimated distances to compute the Wasserstein distance between the empirical distributions.
In order to better compare these two approaches, we also plot the residuals to the linear fit that we expect
in the asymptotic regime. Looking at Figure 1, it is clear that we are not yet in the asymptotic regime if
we simply use Euclidean distances; on the other hand, the trend using the manifold distances is much more
clearly linear, suggesting that the slope of the best linear fit is meaningful. Thus we see that in order to get
a meaningful dimension estimate from practical data sets, we cannot simply use W1 but must also estimate
the geometry of the underlying distribution; this suggests that ι� τ on this data manifold. More generally,
we note that the injectivity radius, ι, is intrinsic to the geometry of the manifold and thus unaffected by
the imbedding; in contradistinction, the reach, τ , is extrinsic and thus can be made smaller by changing the
imbedding. In particular, when the obstruction to the reach being large is a “bottleneck” in the sense that
the manifold is imbedded in such a way as to place distant neighborhoods of the manifold close together in
Euclidean distance (see Figure 2 for an example), we may expect τ � ι. Intuitively, this matches the notion
that the geometry of the data would be simple if we were to have access to the “correct” coordinate system
and that the difficulty in understanding the geometry comes from its imbedding in the ambient space.

3



Figure 1: Two log-log plots of comparing how W1(Pn, P
′
n) decays to how WM

1 (Pn, P
′
n) decays as n gets larger,

as well as the residuals from a linear fit. The data are images of the digit 7 from MNIST with Wasserstein
distances computed with the Sinkhorn algorithm (Cuturi, 2013). The manifold distances are approximated
by a k-NN graph, as described in Section 3.

We emphasize that, like many estimators of intrinsic dimension, we do not claim robustness to off-
manifold noise (Levina & Bickel, 2004; Farahmand et al., 2007; Kim et al., 2019). Indeed, any “fattening”
of the manifold will force any consistent estimator of intrinsic dimension to asymptotically grow to the
full, ambient dimension as the number of samples grows. Various works have included off-manifold noise in
different ways, often with the assumption that either the noise is known (Koltchinskii, 2000) or the manifold
is linear (Niles-Weed & Rigollet, 2019). Methods that do not make these simplifying assumptions are often
highly sensitive to scaling parameters that are required inputs in such methods as multi-scale, local SVD
(Little et al., 2009). Extensions of our method to such noisy settings are a promising avenue of future
research, particularly in understanding the effect of this noise on downstream applications as is done for
Lipschitz classification in metric spaces and the resulting dimension-distortion tradeoff found in Gottlieb
et al. (2016); in this work, however, we confine our theoretical study to the noiseless setting. The primary
theoretical advantage of our estimator over that of Levina & Bickel (2004); Farahmand et al. (2007) is that
we do not require the stringent regularity assumptions for our nonasymptotic rates to hold. We leave it
for future empirical works whether this weakening of assumptions allows for a better practical estimator on
real-world data sets.

Our main contributions are as follows:

• In Section 3, we introduce a new estimator of intrinsic dimension. In Theorem 22 we prove non-
asymptotic bounds on the quality of the introduced estimator. Moreover, unlike the MLE estimator of
Levina & Bickel (2004) with non-asymptotic analysis in Farahmand et al. (2007), minimal regularity
of the density of the population distribution is required for our guarantees and, unlike that suggested
in Kim et al. (2019), our estimator is both computationally efficient and has sample complexity inde-
pendent of the ambient dimension.

• In the course of proving Theorem 22, we adapt the techniques of Bernstein et al. (2000) to provide
new, non-asymptotic bounds on the quality of kNN distance as an estimate of intrinsic distance in
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Proposition 24, with explicit sample complexity in terms of the reach of the underlying space. To our
knowledge, these are the first such non-asymptotic bounds.

We further note that the techniques we develop to prove the non-asymptotic bounds on our dimension
estimator also serve to provide new statistical rates in learning Generative Adversarial Networks (GANs)
with a Hölder discriminator class:

• We prove in Theorem 25 that if µ̂ is a Hölder GAN, then the distance between µ̂ and P, as measured by
the Hölder IPM, is governed by rates dependent only on the intrinsic dimension of the data, independent
of the ambient dimension or the dimension of the feature space. In particular, we prove in great
generality that if P has intrinsic dimension d, then the rate of a Wasserstein GAN is n−

1
d . This

improves on the recent work of Schreuder et al. (2020).

The work is presented in the order of the above listed contributions, preceded by a brief section on
the geometric preliminaries and prerequisite results. We conclude the introduction by fixing notation and
surveying some related work.

Notation: We fix the following notation. We always let P be a probability distribution on RD and,
whenever defined, we let d = dim suppP. We reserve X1, . . . , Xn for samples taken from P and we denote
by Pn their empirical distribution. We reserve β for the smoothness of a Hölder class, Ω ⊂ RD is always
a bounded open domain, and ∆ is always the intrinsic diameter of a closed set. We also reserve M for a
compact manifold. In general, we denote by S the support of a distribution P and we reuse M = suppP if we
restrict ourselves to the case where S = M is a compact manifold, with Riemannian metric induced by the
Euclidean metric. We denote by volM the volume of the manifold with respect to its inherited metric and
we reserve ωd for the volume of the unit ball in Rd. When a compact manifold manifold M can be assumed
from context, we take the uniform measure on M to be the volume measure of M normalized so that M has
unit measure.

1.1 Related Work

Dimension Estimation There is a long history of dimension estimation, beginning with linear methods
such as thresholding principal components (Fukunaga & Olsen, 1971), regressing k-Nearest-Neighbors (kNN)
distances (Pettis et al., 1979), estimating packing numbers (Kégl, 2002; Grassberger & Procaccia, 2004;
Camastra & Vinciarelli, 2002), an estimator based solely on neighborhood (but not metric) information that
was recently proven consistent (Kleindessner & Luxburg, 2015), and many others. An exhaustive recent
survey on the history of these techniques can be found in Camastra & Staiano (2016). Perhaps the most
popular choice among current practitioners is the MLE estimator of Levina & Bickel (2004).

The MLE estimator is constructed as the maximum likelihood of a parameterized Poisson process. As
worked out in Levina & Bickel (2004), a local estimate of dimension for k ≥ 2 and x ∈ RD is given by

m̂k(x) =

 1

k − 1

k∑
j=1

log
Tk(x)

Tj(x)

−1

where Tj(x) is the distance between x and its jth nearest neighbor in the data set. The final estimate for
fixed k is given by averaging m̂k over the data points in order to reduce variance. While not included in the
original paper, a similar motivation for such an estimator could be noting that if X is uniformly distributed

on a ball of radius R in Rd, then E
[
log R
||X||

]
= 1

d ; the local estimator m̂k(x) is the empirical version under

the assumption that the density is smooth enough to be approximately constant on this small ball. The
easy computation is included for the sake of completeness in Appendix E. In Farahmand et al. (2007), the
authors examined a closely related estimator and provided non-asymptotic guarantees with an exponential
dependence on the intrinsic dimension, albeit with stringent regularity conditions on the density.

In addition to the estimators motivated by the volume growth of local balls discussed in the previous
paragraph, Kim et al. (2019) proposed and analyzed a dimension estimator based on Travelling Salesman
Paths (TSP). One major advantage to the TSP estimator is the lack of necessary regularity conditions on

5



the density, requiring only an upper bound of the likelihood of the population density with respect to the
volume measure on the manifold. On the other hand, the upper bound on sample complexity that that paper
presents depends exponentially on the ambient dimension, which is pessimistic when the intrinsic dimension
is substantially smaller. In addition, it is unclear how practical the estimator is due to the necessity of
computing a solution to TSP; even ignoring this issue, Kim et al. (2019) note that practical tuning of the
constants involved in their estimator is difficult and thus deploying their estimator as is on real-world datasets
is unlikely.

Manifold Learning The notion of reach was first introduced in Federer (1959), and subsequently used in
the machine learning and computational geometry communities in such works as Niyogi et al. (2008, 2011);
Aamari et al. (2019); Amenta & Bern (1999); Fefferman et al. (2016, 2018); Narayanan & Mitter (2010);
Efimov et al. (2019); Boissonnat et al. (2019). Perhaps most relevant to our work, Narayanan & Mitter
(2010); Fefferman et al. (2016) consider the problem of testing membership in a class of manifolds of large
reach and derive tight bounds on the sample complexity of this question. Our work does not fall into the
purview of their conclusions as we assume that the geometry of the underlying manifold is nice and estimate
the intrinsic dimension. In the course of proving bounds on our dimension estimator, we must estimate the
intrinsic metric of the data. We adapt the proofs of Tenenbaum et al. (2000); Bernstein et al. (2000); Niyogi
et al. (2008) and provide tight bounds on the quality of a k-Nearest Neighbors (kNN) approximation of the
intrinsic distance.

Statistical Rates of GANs Since the introduction of Generative Adversarial Networks (GANs) in Good-
fellow et al. (2014), there has been a plethora of empirical improvements and theoretical analyses. Recall
that the basic GAN problem selects an estimated distribution µ̂ from a class of distributions P minimizing
some adversarially learned distance between µ̂ and the empirical distribution Pn. Theoretical analyses aim
to control the distance between the learned distribution µ̂ and the population distribution P from which
the data comprising Pn are sampled. In particular statistical rates for a number of interesting discriminator
classes have been proven including Besov balls (Uppal et al., 2019), balls in an RKHS (Liang, 2018), and
neural network classes (Chen et al., 2020) among others. The latter paper, Chen et al. (2020) also considers
GANs where the discriminative class is a Hölder ball, which includes the popular Wasserstein GAN frame-
work of Arjovsky et al. (2017). They show that if µ̂ is the empirical minimizer of the GAN loss and the
population distribution P� LebRD then

E [dβ(µ̂,P)] . n−
β

2β+D

up to factors polynomial in log n. Thus, in order to beat the curse of dimensionality, one requires β = Ω(D);
note that the larger β is, the weaker the IPM is as the Hölder ball becomes smaller. In order to mitigate
this slow rate, Schreuder et al. (2020) assume that both P and P are distributions arising from Lipschitz
pushforwards of the uniform distribution on a d-dimensional hypercube; in this setting, they are able to
remove dependence on D and show that

E [dβ(µ̂,P)] . Ln−
β
d ∨ n− 1

2 .

This last result beats the curse of dimensionality, but pays with restrictive assumptions on the generative
model as well as dependence on the Lipschitz constant of the pushforward map. More importantly, the result
depends exponentially not on the intrinsic dimension of P but rather on the dimension of the feature space
used to represent P. In practice, state-of-the-art GANs used to produce images often choose d to be on the
order of 128, which is much too large for the Schreuder et al. (2020) result to guarantee good performance.

2 Preliminaries

2.1 Geometry

In this work, we are primarily concerned with the case of compact manifolds isometrically imbedded in some
large ambient space, RD. We note that this focus is largely in order to maintain simplicity of notation
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and exposition; extensions to more complicated, less regular sets with intrinsic dimension defined as the
Minkowski dimension can easily be attained with our techniques. The key example to keep in mind is
that of image data, where each pixel corresponds to a dimension in the ambient space, but, in reality, the
distribution lives on a much smaller, imbedded subspace. Many of our results can be easily extended to the
non-compact case with additional assumptions on the geometry of the space and tails of the distribution of
interest.

Central to our study is the analysis of how complex the support of a distribution is. We measure
complexity of a metric space by its entropy:

Definition 2. Let (X, d) be a metric space. The covering number at scale ε > 0, N(X, d, ε), is the minimal
number s such that there exist points x1, . . . , xs such that X is contained in the union of balls of radius ε
centred at the xi. The packing number at scale ε > 0, D(X, d, ε), is the maximal number s such that there
exist points x1, . . . , xs ∈ X such that d(xi, xj) > ε for all i 6= j. The entropy is defined as logN(X, d, ε).

We recall the classical packing-covering duality, proved, for example, in (van Handel, 2014, Lemma 5.12):

Lemma 3. For any metric space X and scale ε > 0,

D(X, d, 2ε) ≤ N(X, d, ε) ≤ D(X, d, ε).

The most important geometric quantity that determines the complexity of a problem is the dimension of
the support of the population distribution. There are many, often equivalent ways to define this quantity in
general. One possibility, introduced in Assouad (1983) and subsequently used in Dasgupta & Freund (2008);
Kpotufe & Dasgupta (2012); Kpotufe & Garg (2013) is that of doubling dimension:

Definition 4. Let S ⊂ RD be a closed set. For x ∈ S, the doubling dimension at x is the smallest d such
that for all r > 0, the set Br(x)∩S can be covered by 2d balls of radius r

2 , where Br(x) denotes the Euclidean
ball of radius r centred at x. The doubling dimension of S is the supremum of the doubling dimension at x
for all x ∈ S.

This notion of dimension plays well with the entropy, as demonstrated by the following (Kpotufe &
Dasgupta, 2012, Lemma 6):

Lemma 5 ((Kpotufe & Dasgupta, 2012)). Let S have doubling dimension d and diameter ∆. Then N(S, ε) ≤(
∆
ε

)d
.

We remark that a similar notion of dimension is that of the Minkowski dimension, which is defined as the
asymptotic rate of growth of the entropy as the scale tends to zero. Recently, Nakada & Imaizumi (2020)
examined the effect that an assumption of small Minkowski dimension has on learning with neural networks;
their central statistical result can be recovered as an immediate consequence of our complexity bounds below.

In order to develop non-asymptotic bounds, we need some understanding of the geometry of the support,
M . We first recall the definition of the geodesic distance:

Definition 6. Let S ⊂ RD be closed. A piecewise smooth curve in S, γ, is a continuous function γ : I → S,
where I ⊂ R is an interval, such that there exists a partition I1, · · · , IJ of I such that γIj is smooth as a
function to RD. The length of γ is induced by the imbedding of S ⊂ RD. For points p, q ∈ S, the intrinsic
(or geodesic) distance is

dS(p, q) = inf {length (γ)|γ(0) = p and γ(1) = q and γ is a piecewise smooth curve in S} .

It is clear from the fact that straight lines are geodesics in RD that for any points p, q ∈ S, ||p− q|| ≤
dS(p, q). We are concerned with two relevant geometric quantities, one extrinsic and the other intrinsic.

Definition 7. Let S ⊂ RD be a closed set. Let the medial axis Med(S) be defined as

Med(S) =
{
x ∈ RD| there exist p 6= q ∈ S such that ||p− x|| = ||q − x|| = d(x, S)

}
.

In other words, the medial axis is the set of points in RD that have at least two projections to S. Define the
reach, τS of S as d(S,Med(S)), the minimal distance between a set and its medial axis.

If S = M is a compact manifold with the induced Euclidean metric, we define the injectivity radius ι = ιM
as the maximal r such that if p, q ∈ M such that dM (p, q) < r then there exists a unique length-minimizing
geodesic connecting p to q in M .
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For more detail on the injectivity radius, see Lee (2018), especially Chapters 6 and 10. The difference
between ιM and τM is in the choice of metric with which we equip M . We could choose to equip M with
the metric induced by the Euclidean distance ||·|| or we could choose to use the intrinsic metric dM defined
above. The reach quantifies the maximal radius of a ball with respect to the Euclidean distance such that
the intersection of this ball with M behaves roughly like Euclidean space. The injectivity radius, meanwhile,
quantifies the maximal radius of a ball with respect to the intrinsic distance such that this ball looks like
Euclidean space. While neither quantity is necessary for our dimension estimator, both figure heavily in the
analysis. The final relevant geometric quantity is the sectional curvature. The sectional curvature of M at
a point p ∈M given two directions tangent to M at p is given by the Gaussian curvature at p of the image
of the exponential map applied to a small neighborhood of the origin in the plane determined by the two
directions. Intuitively, the sectional curvature measures how tightly wound the manifold is locally around
each point. For an excellent exposition on the topic, see (Lee, 2018, Chapter 8).

We now specialize to consider compact, dimension dmanifoldsM imbedded in RD with the induced metric
(see Lee (2018) for an accessible introduction to the geometric notions discussed here). One measure of size
of the manifold M is the diameter, ∆, with respect to the intrinsic distance defined above. Another notion
of size is the volume measure, volM . This measure can be defined intrinsically as integration with respect
to the volume form, where the volume form can be thought of as the analogue of the Lebesgue differential
in standard Euclidean space; for more details see Lee (2018). In our setting, we could equivalently define
the volume as the d-dimensional Hausdorff measure as in Aamari et al. (2019). Either way, when we refer
to a measure µM that is uniform on the manifold, we consider the normalization such that µM (M) = 1, i.e.,
µM (·) = volM (·)/ vol(M).

With the brief digression into volume concluded, we return to the notion of the reach, which encodes a
number of local and global geometric properties. We summarize several of these in the following proposition:

Proposition 8. Let M ⊂ RD be a compact manifold isometrically imbedded in RD. Suppose that τ = τM >
0. The following hold:

(a) (Niyogi et al., 2008, Proposition 6.1)] The norm of the second fundamental form of M is bounded by 1
τ

at all points p ∈M .

(b) (Aamari et al., 2019, Proposition A.1 (ii)) The injectivity radius of M is at least πτ .

(c) (Boissonnat et al., 2019, Lemma 3) If p, q ∈M such that ||p− q|| ≤ 2τ then dM (p, q) ≤ 2τ arcsin
(
||p−q||

2τ

)
.

A few remarks are in order. First, note that the Hopf-Rinow Theorem (Hopf & Rinow, 1931) guarantees
that M is complete, which is fortuitous as completeness is a necessary, technical requirement for several
of our arguments. Second, we note that (c) from Proposition 8 has a simple geometric interpretation: the
upper bound on the right hand side is the length of the arc of a circle of radius τ containing points p, q; thus,
the maximal distortion of the intrinsic metric with respect to the ambient metric is bounded by the circle of
radius τ .

Point (a) in the above proposition demonstrates that control of the reach leads to control of local dis-
tortion. From the definition, it is obvious that the reach provides an upper bound for the size of the global
notion of a “bottleneck,” i.e., two points p, q ∈ M such that ||p− q|| = 2τ < dM (p, q). Interestingly, these
two local and global notions of distortion are the only ways that the reach of a manifold can be small, as
(Aamari et al., 2019, Theorem 3.4) tells us that if the reach of a manifold M is τ , then either there exists a
bottleneck of size 2τ or the norm of the second fundamental form is 1

τ at some point. Thus, in some sense,
the reach is the “correct” measure of distortion. Note that while (b) above tells us that ιM & τM , there
is no comparable upper bound. To see this, consider Figure 2, which depicts a one-dimensional manifold
imbedded in R2. Note that the bottleneck in the center ensures that the reach of this manifold is very small;
on the other hand, it is easy to see that the injectivity radius is given by half the length of the entire curve.
As the curve can be extended arbitrarily, the reach can be arbitrarily small relative to the injectivity radius.

We now proceed to bound the covering number of a compact manifold using the dimension and the
injectivity radius. We note that upper bounds on the covering number with respect to the ambient metric
were provided in Niyogi et al. (2008); Narayanan & Mitter (2010). A similar bound with less explicit
constants can be found in (Kim et al., 2019, Lemma 4).
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Figure 2: Curve in R2 where τ � ι.

Proposition 9. Let M ⊂ RD be an isometrically imbedded, compact, d-dimensional submanifold with in-
jectivity radius ι > 0 such that the sectional curvatures are bounded above by κ1 ≥ 0 and below by κ2 ≤ 0. If
ε < π

2
√
k1
∧ ι then

N(M,dM , ε) ≤
volM

ωd
d
(π

2

)d
ε−d.

If ε < 1√
−κ2
∧ ι then

volM

ωd
d8−dε−d ≤ D(M,dM , 2ε).

Moreover, for all ε < ι,
volM

ωd
dιd(−κ2)

d
2 e−dι

√
−κ2ε−d ≤ D(M,dM , ε).

Thus, if ε < τ , where τ is the reach of M , then

volM

ωd
d8−dε−d ≤ D(M,dM , 2ε) ≤ N(M,dM , ε) ≤

volM

ωd
d
(π

2

)d
ε−d.

The proof of Proposition 9 can be found in Appendix A and relies on the Bishop-Gromov comparison
theorem to leverage the curvature bounds from Proposition 8 into volume estimates for small intrinsic balls,
a similar technique as found in Niyogi et al. (2008); Narayanan & Mitter (2010). The key point to note is
that we have both upper and lower bounds for ε < ι, as opposed to just the upper bound guaranteed by
Lemma 5. As a corollary, we are also able to derive bounds for the covering number with respect to the
ambient metric:

Corollary 10. Let M be as in Proposition 9. For ε < τ , we can control the covering numbers of M with
respect to the Euclidean metric as

volM

ωd
d16−dε−d ≤ D(M, ||·|| , 2ε) ≤ N(M, ||·|| , ε) ≤ volM

ωd

(π
2

)d
ε−d.

The proof of Corollary 10 follows from Proposition 9 and the metric comparisons for small scales in
Proposition 8; details can be found in Appendix A.

2.2 Hölder Classes and their Complexity

In this section we make the elementary observation that complex function classes restricted to simple subsets
can be much smaller than the original class. While such intuition has certainly appeared before, especially
in designing esimators that can adapt to local intrinsic dimension, such as Bickel et al. (2007); Kpotufe
& Dasgupta (2012); Kpotufe (2011); Kpotufe & Garg (2013); Dasgupta & Freund (2008); Steinwart et al.
(2009); Nakada & Imaizumi (2020), we codify this approach below.

To illustrate the above phenomenon at the level of empirical processes, we focus on Hölder functions in
RD for some large D and let the “simple” subset be a subspace of dimension d where d� D. We first recall
the definition of a Hölder class:
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Definition 11. For an open domain Ω ⊂ Rd and a function f : Ω→ R, define the β-Hölder norm as

||f ||Cβ(Ω) = max
0≤|γ|≤|α|

sup
x∈Ω
|Dγf(x)| ∨ sup

x,y∈Ω

∣∣Dbβcf(x)−Dbβcf(y)
∣∣

||x− y||β−bβc
.

Define the Hölder ball of radius B, denoted by CβB(Ω), as the set of functions f : Ω→ R such that ||f ||Cβ(Ω) ≤
B. If (M, g) is a Riemannian manifold of class Cbβc+1 (see Lee (2018)), and f : M → R we define the
Hölder norm analogously, replacing |Dγf(x)| with ||∇γf(x)||g, where ∇ is the covariant derivative.

It is a classical result of Kolmogorov & Tikhomirov (1993) that, for a bounded, open domain Ω ⊂ RD,
the entropy of a Hölder ball scales as

logN
(
CβB(Ω), ||·||∞ , ε

)
�
(
B

ε

)D
β

as ε ↓ 0. As a consequence, we arrive at the following result, whose proof can be found in Appendix A for
the sake of completeness.

Proposition 12. Let S ⊂ Ω ⊂ Rd be a path-connected closed set contained in an open domain Ω. Let
F̃ = CβB(Ω) and let F = F̃|S. Then,

D

(
S,
( ε
B

) 1
β

)
≤ logD(F, ||·||∞ , 2ε) ≤ logN(F, ||·||∞ , ε) ≤ 3β2 log

(
2B

ε

)
N

(
S,
( ε

2B

) 1
β

)
.

Note that the content of the above result is really that of Kolmogorov & Tikhomirov (1993), coupled
with the fact that restriction from Rd to M preserves smoothness.

If we apply the easily proven volumetric bounds on covering and packing numbers for S a Euclidean
ball to Proposition 12, we recover the classical result of Kolmogorov & Tikhomirov (1993). The key insight
is that low-dimensional subsets can have covering numbers much smaller than those of a high-dimensional
Euclidean ball: if the “dimension” of S is d, then we expect the covering number of S to scale like ε−d.
Plugging this into Proposition 12 tells us that the entropy of F, up to a factor logarithmic in 1

ε , scales like

ε−
d
β � ε−

D
β . An immediate corollary of Lemma 5 and Proposition 12 is:

Corollary 13. Let S ⊂ RD be a closed set of diameter ∆ and doubling dimension d. Let S ⊂ Ω open and F

be the restriction of CβB(Ω) to S. Then

logN(F, ||·||∞ , ε) ≤ 3β2

(
2B∆β

ε

) d
β

log

(
2B

ε

)
.

Proof. Combine the upper bound in Proposition 12 with the bound in Lemma 5. �

The conclusion of Corollary 13 is very useful for upper bounds as it tells us that the entropy for Hölder

balls scales at most like ε−
d
β as ε ↓ 0. If we desire comparable lower bounds, we require some of the geometry

discussed above. Combining Proposition 12 and Corollary 10 yields the following bound:

Corollary 14. Let M ⊂ RD be an isometrically imbedded, compact submanifold with reach τ > 0 and let
ε ≤ τ . Suppose Ω ⊃M is an open set and let F′ be the restriction of CβB(Ω) to M . Then for ε ≤ τ ,

volM

ωd
d16−d

(
2B

ε

) d
β

≤ logD(F′, ||·||∞ , 2ε) ≤ logN(F′, ||·||∞ , ε) ≤ 3β2 log

(
2B

ε

)
volM

ωd
d
(π

2

)d(2B

ε

) d
β

.

If we set F = CβB(M), then we have that for all ε < ι,

volM

ωd
dιd(−κ2)

d
2 e−dι

√
−κ2ε−

d
β ≤ logN(F, ||·||∞ , ε) ≤ 3β2 log

(
2B

ε

)
volM

ωd
d
(π

2

)d
ε−

d
β .
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In essence, Corollary 14 tells us that the rate of ε−
d
β for the growth of the entropy of Hölder balls is

sharp for sufficiently small ε. The key difference between the first and second statements is that the first
is with respect to an ambient class of functions while the second is with respect to an intrinsic class. To
better illustrate the difference, consider the case where β = B = 1, i.e., the class of Lipschitz functions on
the manifold. In both cases, asymptotically, the entropy of Lipschitz functions scales like ε−d; if we restrict
to functions that are Lipschitz with respect to the ambient metric, then the above bound only applies for
ε < τ ; on the other hand, if we consider the larger class of functions that are Lipschitz with respect to the
intrinsic metric, the bound applies for ε < ι. In the case where ι� τ , this can be a major improvement.

The observations in this section are undeniably simple; the real interest comes in the diverse applications
of the general principle, some of which we detail below. As a final note, we remark that our guiding principle
of simplifying function classes by restricting them to simple sets likely holds in far greater analysis than is
explored here; in particular, Sobolev and Besov classes (see, for example, (Giné & Nickl, 2016, §4.3)) likely
exhibit similar behavior.

3 Dimension Estimation

We outlined the intuition behind our dimension estimation in the introduction. In this section, we formally
define the estimator and analyse its theoretical performance. We first apply standard empirical process
theory and our complexity bounds in the previous section to upper bound the expected Hölder IPM (defined
in (1)) between empirical and population distributions:

Lemma 15. Let S ⊂ RD be a compact set contained in a ball of radius R. Suppose that we draw n inde-
pendent samples from a probability measure P supported on S and denote by Pn the corresponding empirical
distribution. Let P ′n denote an independent identically distributed measure as Pn. Then we have

E [dβ,B(Pn,P)] ≤ E [dβ,B(Pn, P
′
n)] ≤ 16B inf

δ>0

(
2δ +

3
√

6√
n
β

√
log

1

δ

∫ 1

δ

√
N(S, ||·|| , ε)dε

)
.

In particular, there exists a universal constant K such that if N(S, ||·|| , ε) ≤ C1ε
−d for some C, d > 0, then

E [dβ(Pn,P)] ≤ CβB
(

1 +
√

log n1{d=2β}

)(
n−

β
d ∨ n− 1

2

)
.

holds with C = KC1.

The proof uses the symmetrization and chaining technique and applies the complexity bounds of Hölder
functions found above; the details can be found in Appendix E.

We now specialize to the case where β = B = 1, due to the computational tractability of the resulting
Wasserstein distance. Applying Kantorovich-Rubenstein duality (Kantorovich & Rubinshtein, 1958), we see
that this special case of Lemma 15 recovers the special p = 1 case of Weed et al. (2019). From here on, we
suppose that d > 2 and our metric on distributions is d1,1 = W1.

We begin by noting that if we have 2n, independent samples from P, then we can split them into two
data sets of size n, and denote by Pn, P

′
n the empirical distributions thus generated. We then note that

Lemma 15 implies that if suppP ⊂M and M is of dimension d, then

E [W1(Pn, P
′
n)] ≤ CM,dn

− 1
d .

If we were to establish a lower bound as well as concentration of W1(Pn, P
′
n) about its mean, then we could

consider the following estimator. Given a data set of size 2(α+1)n, we can break the data into four samples,
Pn, P

′
n each of size n and Pαn, P

′
αn of size αn. Then we would have

dn := − 1

logα

(
W1(Pαn,P ′αn)
W1(Pn,P ′n)

) =
logα

logW1(Pn, P ′n)− logW1(Pαn, P ′αn)
≈ d.

Which distance on M should be used to compute the Wasserstein distance, the Euclidean metric ||·|| or
the intrinsic metric dM (·, ·)? As can be guessed from Corollary 14, asymptotically, both will work, but for
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finite sample sizes when ι � τ , the latter is much better. One problem remains, however: because we are
not assuming M to be known, we do not have access to dM and thus we cannot compute the necessary
Wasserstein cost. In order to get around this obstacle, we recall the graph distance induced by a kNN graph:

Definition 16. Let X1, . . . , Xn ∈ RD be a data set and fix ε > 0. We let G(X, ε) denote the weighted graph
with vertices Xi and edges of weight ||Xi −Xj || between all vertices Xi, Xj such that ||Xi −Xj || ≤ ε. We
denote by dG(X,ε) (or dG if X, ε are clear from context) the geodesic distance on the graph G(X, ε). We
extend this metric to all of RD by letting

dG(p, q) = ||p− πG(p)||+ dG(πG(p), πG(q)) + ||q − πG(q)||

where πG(p) ∈ argminXi ||p−Xi||.

We now have two Wasserstein distances, each induced by a different metric; to mitigate confusion, we
introduce the following notation:

Definition 17. Let X1, . . . , Xn, X
′
1, . . . , X

′
n ∈ RD, sampled independently from P such that suppP ⊂M . Let

Pn, P
′
n be the empirical distributions associated to the data X,X ′. Let W1(Pn, P

′
n) denote the Wasserstein

cost with respect to the Euclidean metric and WM
1 (Pn, P

′
n) denote the Wasserstein cost associated to the

manifold metric, as in (1). For a fixed ε > 0, let WG
1 (Pn, P

′
n) denote the Wasserstein cost associated to the

metric dG(suppPn∪suppP ′n,ε)
. Let dn, d̂n, and d̃n denote the dimension estimators from (3) induced by each

of the above metrics.

Given sample distributions Pn, P
′
n, we are able to compute W1(Pn, P

′
n) and WG

1 (Pn, P
′
n) for any fixed ε,

but not WM
1 (Pn, P

′
n) because we are assuming that the learner does not have access to the manifold M . On

the other hand, adapting techniques from Weed et al. (2019), we are able to provide a non-asymptotic lower
bound on W1(Pn, P

′
n) and WM

1 (Pn, P
′
n):

Proposition 18. Suppose that P is a measure on RD such that suppP = M , where M is a d-dimensional,
compact manifold with reach τ > 0 and such that the density of P with respect to the uniform measure on M
is lower bounded by w > 0. Suppose that

n >
d volM

4wωd

(τ
8

)−d
.

Then, almost surely,

W1(Pn,P) ≥ 1

32

(
d volM

4wωd

) 1
d

n−
1
d .

If we assume only that

n >

(
d(−κ2)

d
2 volM

4wωd
edι
√
−κ2

)
ι−d

then, almost surely,

WM
1 (Pn,P) ≥ 1

32

(
d volM

4wωd

) 1
d

(−κ2)
1
2 eι
√
−κ2n−

1
d .

An easy proof, based on the techniques (Weed et al., 2019, Proposition 6) can be found in Appendix E.
Similarly, we can apply the same proof technique as Lemma 15 to establish the following upper bound:

Proposition 19. Let M ⊂ RD be a compact manifold with positive reach τ and dimension d > 2. Further-
more, suppose that P is a probability measure on RD with suppP ⊂ M . Let X1, . . . , Xn, X

′
1, . . . , X

′
n ∼ P be

independent with corresponding empirical distributions Pn, P
′
n. Then if diamM = ∆, we have:

E
[
WM

1 (Pn,P)
]
≤ E

[
WM

1 (Pn, P
′
n)
]
≤ C

(
volM

nωd

) 1
d

√
log

(
nωd∆d

d volM

)
.
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The full proof is in Appendix E and applies symmetrization and chaining, with an upper bound of
Corollary 14. We note, as before, that a similar asymptotic rate is obtained by Weed et al. (2019) in a
slightly different setting.

We noted above (3) that we required two facts to make our intuition precise. We have just shown that
the first holds; we turn now to the second: concentration. To make this rigorous, we need one last technical
concept: the T2-inequality.

Definition 20. Let µ be a measure on a metric space (M,d). We say that µ satisfies a T2-inequality with
constant c2 if for all measures ν � µ, we have

W2(µ, ν) ≤
√

2c2D(ν||µ)

where D(ν||µ) = Eµ
[
log dν

dµ

]
is the well-known KL-divergence.

The reason that the T2 inequality is useful for us is that Bobkov & Götze (1999) tell us that such an
inequality implies, and is, by Gozlan et al. (2009), equivalent to Lipschitz concentration. We note further
that W1(Pn, P

′
n) is a Lipschitz function of the dataset and thus concentrates about its mean. The constant

in the T2 inequality depends on the measure µ and upper bounds for specific classes of measures are both
well-known and remain an active area of research; for a more complete survey, see Bakry et al. (2014). We
have the following bound:

Proposition 21. Let P be a probability measure on RD that has density with respect to the (normalized)
volume measure of M , lower bounded by w and upper bounded by W , where M is a d-dimensional manifold
with reach τ > 0 and diamM = ∆. Then we have:

c2 ≤
2τ2

d− 1

W

w
exp

(
d log 3 +

3d2∆2

τ2

)
. (3)

In order to bound the T2 constant in our case, we rely on the landmark result of Otto & Villani (2000) that
relates c2 to another functional inequality, the log-Sobolev inequality (Bakry et al., 2014, Chapter 5). There
are many ways to control the log-Sobolev constant in various situations, many of which are covered in Bakry
et al. (2014). We use results from Wang (1997b), which incorporate the intrinsic geometry of the distribution,
as our bound. A detailed proof can be found in Appendix B. We note that many other estimates with under
slightly different conditions exits, such as that in Wang (1997a), which requires second-order control of the
density of the population distribution with respect to the volume measure and the bound in Block et al.
(2020), which provides control using a measure of nonconvexity. With added assumptions, we can gain much
sharper control over c2; for example, if we assume a positive lower bound on the curvature of the support,
we can apply the well-known Bakry-Émery result (Bakry & Émery, 1985) and get dimension-free bounds.
As another example, if we may assume stronger contol on the curvature of M beyond that guaranteed by
the reach, we can remove the exponential dependence on the reach entirely. For the sake of simplicity and
because we already admit an exponential dependence on the intrinsic dimension, we present only the more
general bound here. We now provide a non-asymptotic bound on the quality of the estimator d̃n.

Theorem 22. Let P be a probability measure on RD and suppose that P has a density with respect to the
(normalized) volume measure of M lower bounded by w, where M is a d-dimensional manifold with reach
τ > 0 such that d ≥ 3 and diamM = ∆. Furthermore, suppose that P satisfies a T2 inequality with constant
c2. Let γ > 0 and suppose α, n satisfy

n ≥ max

[
d volM

4wωd

(
8

ι

)d
,

(
8c2
∆2

log
1

ρ

) 2d
d−5

]

α ≥ max

[
log

2
2γ

(
nωd∆

d

d volM

)
, (48w)

1
γ , 3

d
γ

]
αn ≥ d volM

2wωd

(
16π

τ

)d
log

(
d volM

ρωd

(
16π

τ

)d)
.
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Suppose we have 2(α + 1)n samples drawn independently from P. Then, with probability at least 1− 6ρ, we
have

d

1 + 3γ
≤ d̃n ≤ (1 + 3γ)d.

If ι is replaced by τ above, we get the same bound with the vanilla estimator dn replacing d̃n.

We note that we have not made every effort to minimize the constants in the statement above, with our
emphasis being the dependence of these sample complexity bounds on the relevant geometric quantities. As
an immediate consequence of Theorem 22, due to the fact that d is discrete, we can control the probability
of error with sufficiently many samples. We may also apply Proposition 21 to replace c2 with our upper
bound in terms of the reach.

Corollary 23. Suppose we are in the situation of Theorem 22 and that P has density upper bounded by W
with respect to the normalized uniform measure on M . Suppose further that α, n satisfy

n ≥ max

[
d volM

4wωd

(
8

ι

)d
,

(
8

2τ2

∆2(d− 1)

W

w
exp

(
d log 3 +

3d2∆2

τ2

)
log

1

ρ

) 2d
d−5

]

α ≥ max

[
log2d2

(
nωd∆

d

d volM

)
, (48w)3d, 33d2

]
αn ≥ d volM

2wωd

(
16π

τ

)d
log

(
d volM

ρωd

(
16π

τ

)d)
.

Then if we round d̃n to the nearest integer, and denote the resulting estimator by d′n, we have with probability

at least 1−6ρ, d′n = d. Again, replacing ι by τ in the previous display yields the same result with d̂n replaced
by the vanilla estimator dn.

Proof. Note that because d ∈ N, if
∣∣∣d̃n − d∣∣∣ ≤ 1

2 , then rounding d̂n to the nearest integer exactly recovers d.

Setting γ < 1
4d , and plugging into the result of Theorem 22, along with an application of Proposition 21 to

bound c2, concludes the proof. �

While the appearance of ι in Theorem 22 and Corollary 23 may seem minor, it is critical for any practical
estimator. While αn = Ω

(
τ−d

)
, we may take n as small as Ω

(
ι−d
)
. Thus, using d̃n instead of the naive

estimator dn allows us to leverage the entire data set in estimating the intrinsic distances, even on the small
sub-samples. From the proof, it is clear that we want α to be as large as possible; thus if we have a total
of N samples, we wish to make n as small as possible. If ι � τ then we can make n much smaller (scaling
like ι−d) than if we were to simply use the Euclidean distance. As a result, on any data set where ι � τ ,

the sample complexity of d̃n can be much smaller than that of dn.
There are two parts to the proof of Theorem 22: first, we need to establish that our metric dG approx-

imates dM with high probability and thus d̃n ≈ d̂n; second, we need to show that d̂n is, indeed, a good
estimate of d. The second part follows from Propositions 19 and 18, and concentration; a detailed proof can
be found in Appendix C. For the first part of the proof, in order to show that d̂n ≈ d̃n, we demonstrate that
dM ≈ dG in the following result:

Proposition 24. Let P be a probability measure on RD and suppose that suppP = M , a geodesically convex,
compact manifold of dimension d and reach τ > 0. Suppose that we sample X1, . . . , Xn ∼ P independently.
Let λ ≤ 1

2 and G = G(X, τλ). If for some ρ < 1,

n ≥ wB
(
τλ2

8

)−1

log
N
(
M,dM ,

τλ2

8

)
ρ

where for any δ > 0
wB(δ) = inf

p∈M
P(BMδ (p))

with BMδ (p) the metric ball around p of radius δ. Then, with probability at least 1− ρ, for all x, y ∈M ,

(1− λ) dM (x, y) ≤ dG(x, y) ≤ (1 + λ)dM (x, y).
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The proof of Proposition 24 follows the general outline of Bernstein et al. (2000), but is modified in two
key ways: first, we control relevant geometric quantities by τ instead of by the quantities in Bernstein et al.
(2000); second, we provide a quantitative, nonasymptotic bound on the number of samples needed to get a
good approximation with high probability. The details are deferred to Appendix D.

This result may be of interest in its own right as it provides a non-asymptotic version of the results
from Tenenbaum et al. (2000); Bernstein et al. (2000). In particular, if we suppose that P has a density
with respect to the uniform measure on M and this density is bounded below by a constant w > 0, then
Proposition 24 combined with Proposition 9 tells us that if we have

n &
volM

w

(
τλ2

)−d
log

(
volM

ρτλ2

)
samples, then we can recover the intrinsic distance of M with distortion λ. We further note that the
dependence on τ, λ, d is quite reasonable in Proposition 24. The argument requires the construction of a
τλ2-net on M and it is not difficult to see that one needs a covering at scale proportional to τλ in order to
recover the intrinsic metric from discrete data points. For example, consider Figure 2; were a curve to be
added to connect the points at the bottleneck, this would drastically decrease the intrinsic distance between
the bottleneck points. In order to determine that the intrinsic distance between these points (without the
connector) is actually quite large using the graph metric estimator, we need to set ε < τ , in which case
these points are certainly only connected if there exists a point of distance less than τ to the bottleneck
point, which can only occur with high probability if n = Ω

(
τ−1

)
. We can extend this example to arbitrary

dimension d by taking the product of the curve with rSd−1 for r = Θ(τ); in this case, a similar argument
holds and we now need Ω

(
τ−d

)
points in order to guarantee with high probability that there exists a point

of distance at most τ to one of the bottleneck points. In this way, we see that the τ−d scaling is unavoidable
in general. Note that the other estimators of intrinsic dimension mentioned in the introduction, in particular
the MLE estimator of Levina & Bickel (2004), implicitly require the accuracy of the kNN distance for their
estimation to hold; thus these estimators also suffer from the τ−d sample complexity. Finally, we remark
that Kim et al. (2019) presents a minimax lower bound for a related hypothesis testing problem and shows
that minimax risk is bounded below by a local analogue of the reach raised to a power that depends linearly
on the intrinsic dimension.

4 Application of Techniques to GANs

In this section, we note that our techniques are not confined to the realm of dimension estimation and,
in fact, readily apply to other problems. As an example, consider the unsupervised learning problem of
generative modeling, where we suppose that there are samples X1, . . . , Xn ∼ P independent and we wish to
produce a sample X̂ ∼ P̂ such that P̂ and P are close. Statistically, this problem can be expressed by fixing
a class of distributions P and using the data to choose µ̂ ∈ P such that µ̂ is in some sense close to P. For
computational reasons, one wishes P to contain distributions from which it is computationally efficient to
sample; in practice, P is usually the class of pushforwards of a multi-variate Gaussian distribution by some
deep neural network class G. While our statistical results include this setting, they are not restricted and
apply for general classes of distributions P.

In order to make the problem more precise, we require some notion of distance between distributions.
We use the notion of the Integral Probability Metric (Müller, 1997; Sriperumbudur et al., 2012) associated

to a Hölder ball CβB(Ω), as defined above. We suppose that suppP ⊂ Ω and we abbreviate the corresponding
IPM distance by dβ,B . Given the empirical distribution Pn, the GAN that we study can be expressed as

µ̂ ∈ argmin
µ∈P

dβ,B(µ, Pn) = argmin
µ∈P

sup
f∈CβB(Ω)

Eµ[f ]− Pnf.

In this section, we generalize the results of Schreuder et al. (2020). In particular, we derive new estimation
rates for a GAN using a Hölder ball as a discriminating class, assuming that the population distribution P is
low-dimensional; like Schreuder et al. (2020), we consider the noised and potentially contaminated setting.
We have
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Theorem 25. Suppose that P is a probability measure on RD supported on a compact set S and suppose we
have n independent Xi ∼ P with empirical distribution Pn. Let ηi be independent, centred random variables

on RD such that E
[
||ηi||2

]
≤ σ2. Suppose we observe X̃i such that for at least (1− ε)n of the X̃i, we have

X̃i = Xi + ηi; let the empirical distribution of the X̃i be P̃n. Let P be a known set of distributions and define

µ̂ ∈ argmin
µ∈P

dβ,B(µ, P̃n).

Then if there is some C1, d such that N(S, ||·|| , δ) ≤ C1ε
−d, we have

E [dβ,B(µ̂,P)] ≤ inf
µ∈P

dβ,B(µ,P) +B(σ + 2ε) + CβB
√

log n
(
n−

β
d ∨ n− 1

2

)
where C is a constant depending linearly on C1.

We note that the log n factor can be easily removed for all cases β 6= d
2 by paying slightly in order to

increase the constants; for the sake of simplicity, we do not bother with this argument here. The proof of
Theorem 25 is similar in spirit to that of Schreuder et al. (2020), which in turn follows Liang (2018), with
details in Appendix E. The key step is in applying the bounds in Lemma 15 to the arguments of Liang
(2018).

We compare our result to the corresponding theorem (Schreuder et al., 2020, Theorem 2). In that
work, the authors considered a setting where there is a known intrinsic dimension d and the population
distribution P = g#U

(
[0, 1]d

)
, the push-forward by an L-Lipschitz function g of the uniform distribution on

a d-dimensional hypercube; in addition, they take P to be the set of push-forwards of U
(
[0, 1]d

)
by functions

in some class F, all of whose elements are L-Lipschitz. Their result, (Schreuder et al., 2020, Theorem 2),
gives an upper bound of

E [dβ,1(µ̂,P)] ≤ inf
µ∈P

dβ,1(µ,P) + L(σ + 2ε) + cL
√
d
(
n−

β
d ∨ n− 1

2

)
. (4)

Note that our result is an improvement in two key respects. First, we do not treat the intrinsic dimension d
as known, nor do we force the dimension of the feature space to be the same as the intrinsic dimension. Many
of the state-of-the-art GAN architectures on datasets such as ImageNet use a feature space of dimension 128
or 256 (Wu et al., 2019); the best rate that the work of Schreuder et al. (2020) can give, then would be n−

1
128 .

In our setting, even if the feature space is complex, if the true distribution lies on a much lower dimensional
subspace, then it is the true, intrinsic dimension, that determines the rate of estimation. Secondly, note
that the upper bound in (4) depends on the Lipschitz constant L; as the function classes used to determine
the push-forwards are essentially all deep neural networks in practice, and the Lipschitz constants of such
functions are exponential in depth, this can be a very pessimistic upper bound; our result, however, does not
depend on this Lipschitz constant, but rather on properties intrinsic to the probability distribution P. This
dependence is particularly notable in the noisy regime, where σ, ε do not vanish; the large multiplicative
factor of L in this case would then make the bound useless.

We conclude this section by considering the case most often used in practice: the Wasserstein GAN.

Corollary 26. Suppose we are in the setting of Theorem 25 and S is contained in a ball of radius R for
R ≥ 1

2 . Then,

E [W1(µ̂,P)] ≤ inf
µ∈P

W1(µ,P) + σ + 2Rε+ CR
√

log nn−
1
d .

The proof of the corollary is almost immediate from Theorem 25. With additional assumptions on the
tails of the ηi, we can turn our expectation into a high probability statement. In the special case with
neither noise nor contamination, i.e. σ = ε = 0, we get that the Wasserstein GAN converges in Wasserstein
distance at a rate of n−

1
d , which we believe explains in large part the recent empirical success in modern

Wasserstein-GANs.
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A Proofs from Section 2

Proof of Proposition 12. We apply the method from the classic paper (Kolmogorov & Tikhomirov, 1993),
following notation introduced there as applicable. For the sake of simplicity, we assume that β is an integer;
the generalization to β 6∈ N is analogous to that in Kolmogorov & Tikhomirov (1993). Let ∆β = ε

2B and let
x1, . . . , xs be a ∆-connected ∆ net on S. For 0 ≤ k ≤ β and 1 ≤ i ≤ s, define

γk(f) =

⌊∣∣∣∣Dkf(xi)
∣∣∣∣

εk

⌋
εk =

ε

∆k

where ||·|| is the norm on tensors induced by the ambient (Euclidean) metric and Dk is the kth application
of the covariant derivative. Let γ(f) =

(
γki (f)

)
i,k

be the matrix of all γki (f) and let Uγ be the set of all f

such that γ(f) = γ. Then the argument in the proof of (Kolmogorov & Tikhomirov, 1993, Theorem XIV)
applies mutatis mutandis and we note that Uγ are 2ε neighborhoods in the Hölder norm. Thus it suffices
to bound the number of possible γ. As in Kolmogorov & Tikhomirov (1993), we note that the number of
possible values for γk1 is at most 2B

εk
. Given the row

(
γki
)

0≤k≤β , there are at most (4e+ 2)β+1 values for the

next row. Thus the total number of possible γ is bounded by

(
(4e+ 2)β+1

)s β∏
k=1

2B

εk
= (4e+ 2)(β+1)s

β∏
k=1

2B

ε

( ε

2B

) k
β

= (4e+ 2)(β+1)s

(
2B

ε

) β
2

.

By definition of the covering number and the fact that S is path-connected, we may take

s = N(S,∆) = N

(
S,
( ε

2B

) 1
β

)
.
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Taking logarithms and noting that log(4e + 2) ≤ 3 concludes the proof of the upper bound.
The middle inequality is Lemma 3. For the lower bound, we again follow Kolmogorov & Tikhomirov

(1993). Define

ϕ(x) =

{
a
∏D
i=1

(
1− x2

i

) β
2 ||x||∞ ≤ 1

0 otherwise

with a a constant to be set. Choose a 2∆-separated set x1, . . . , xss with ∆ =
(
ε

2B

) 1
β and consider the set of

functions

gσ =
s∑
i=1

σi∆
βϕ

(
x− xi

∆

)
where σi ∈ {±1} and σ varies over all possible sets of signs. The results of Kolmogorov & Tikhomirov (1993)
guarantee that the gσ form a 2ε-separated set in F if a is chosen such that gσ ∈ F and there are 2s such
combinations. By definition of packing numbers, we may choose

s = D

(
F,
( ε
B

) 1
β

)
.

This concludes the proof of the lower bound. �

Proof of Proposition 9. We note first that the second statement follows from the first by applying (b) and
(c) to Proposition 8 to control the curvature and injectivity radius in terms of the reach. Furthermore, the
middle inequality in the last statement follows from Lemma 3. Thus we prove the first two statements.

A volume argument yields the following control:

N
(
M, ||·||g , r

)
≤ volM

infp∈M volB ε
2
(p)

where B ε
2
(p) is the ball around p of radius ε

2 with respect to the metric g. Thus it suffices to lower bound
the volume of such a ball. Because ε < ι, we may apply the Bishop-Gromov comparison theorem (Gray,
2004, Theorem 3.17) to get that

volBε(p) ≥
2π

d
2

Γ
(
d
2

) ∫ ε

0

(
sin
(
t
√
κ1

)
√
κ1

)d−1

dt = ωd

∫ ε

0

(
κ
− 1

2
1 sin (t

√
κ1)
)d−1

dt

where κ1 is an upper bound on the sectional curvature. We note that for t ≤ π
2
√
κ1

, we have sin
(
t
√
κ1

)
≥

2
π t
√
κ1 and thus

volBε(p) ≥ ωd
∫ ε

0

(
2

π
t

)d−1

dt =
ωd
d

(
2

π

)d−1

εd.

The upper bound follows from control on the sectional curvature by τ , appearing in (Aamari et al., 2019,
Proposition A.1), which, in turn, is an easy consequence of applying the Gauss formula to (a) of Proposition
8.

We lower bound the packing number through an analogous argument as the upper bound for the covering
number, this time with an upper bound on the volume of a ball of radius ε, again from (Gray, 2004, Theorem
3.17), but this time using a lower bound on the sectional curvature. In particular, we have for ε < ι,

volBε(p) ≤ ωd
∫ ε

0

(
sin
(
t
√
κ2

)
√
κ2

)d−1

dt = ωd

∫ ε

0

(
sinh (t

√
−κ2)√

−κ2

)d−1

dt

where κ2 is a lower bound on the sectional curvature. Note that for t ≤ 1√
−κ2

, we have

sinh (t
√
−κ2)√

−κ2
≤ cosh(2)t ≤ 4t.
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Thus,

volBε(p) ≤ ωd
∫ ε

0

(4t)d−1dt =
ωd
d

4dεd.

The volume argument tells us that

N
(
M, ||·||g , r

)
≥ volM

supp∈M volBr(p)

and the result follows.
If we wish to extend the range of ε, we pay with a constant exponential exponential in d, reflecting the

growth in volume of balls in negatively curved spaces. In particular, we can apply the same argument and

note that as sinh(x)
x is increasing, we have

sinh (t
√
−κ2)√

−κ2
≤ sinh(ι

√
−κ2)

ι
√
−κ2

t ≤ eι
√
−κ2

ι
√
−κ2

t

for all t < ι. Thus for all ε < ι. We have:

N(M, ||·||g , ε) ≥
volM

ωd
dιd(−κ2)

d
2 e−dι

√
−κ2ε−d

as desired. �

Proof of Corollary 10. Let BRD
ε (p) be the set of points in RD with Euclidean distance to p less than ε and

let BMε (p) be the set of points in M with intrinsic (geodesic) distance to p less than ε. Then, if ε ≤ 2τ ,
combining the fact that straight lines are geodesics in RD and (d) from Proposition 8 gives

BMε (p) ⊂ BRD
ε (p) ∩M ⊂ BM

2τ arcsin( ε
2τ )(p)

In particular, this implies

N
(
M,dM , 2τ arcsin

( ε
2τ

))
≤ N(M, ||·|| , ε) ≤ N(M,dM , ε)

D
(
M,dM , 2τ arcsin

( ε
2τ

))
≤ D(M, ||·|| , ε) ≤ D(M,dM , ε)

whenever ε ≤ 2τ . Thus, applying Proposition 9, we have

N(M, ||·|| , ε) ≤ N(M,dM , ε) ≤
volM

ωd
d
(π

2

)d
ε−d

and similarly,

D(M, ||·|| , 2ε) ≥ D
(
M,dM , 2τ arcsin

( ε
τ

))
≥ volM

ωd
d16−dε−d

using the fact that arcsin(x) ≤ 2x for x ≥ 0. The result follows. �

B Proof of Proposition 21

As stated in the body, we bound the T2 constant c2 by the log-Sobolev constant of the same measure. We
thus first define a log-Sobolev inequality:

Definition 27. Let µ be a measure on M . We say that µ satisfies a log-Sobolev inequality with constant
cLS if for all real valued, differentiable functions with mean 0 f : M → R, we have:∫

M

f2 log(f2)dµ ≤ cLS
∫
M

||∇f ||2 dµ

where ∇ is the Levi-Civita connection and ||·|| is the norm with respect to the Riemannian metric.
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While in the main body we cited Otto & Villani (2000) for the Otto-Villani theorem, we actually need a
slight strengthening of this result. For technical reasons, Otto & Villani (2000) required the density of µ to
have two derivatives; more recent works have eliminated that assumption. We have:

Theorem 28 (Theorem 5.2 from Gigli & Ledoux (2013)). Suppose that µ satisfies the log-Sobolev inequality
with constant cLS. Then µ satisfies the T2 inequality with constant c2 ≤ 2cLS.

We now recall the key estimate from Wang (1997b) that controls the log-Sobolev constant for the uniform
measure on a compact manifold M2:

Theorem 29 (Theorem 3.3 from Wang (1997b)). Let M be a compact, d-dimensional manifold with diameter
∆. Suppose that RicM � −K for some K ∈ R. Let µ be the uniform measure on M (i.e., the volume measure
normalized so that µ(M) = 1). Then µ satisfies a log-Sobolev inequality with

cLS ≤
(
d+ 2

d

)d
e2K(d+1)∆2 − 1

K
e1+d∆2K+ .

We are now ready to complete the proof.

Proof of Proposition 21. By the Holly-Stroock perturbation theorem (Holley & Stroock, 1986), we know that
if µ is the uniform measure on M normalized such that µ(M) = 1, and µ satisfies a log-Sobolev inequality
with constant c′LS then P satisfies a log-Sobolev constant with cLS ≤ W

w c
′
LS . By (a) from Proposition 8, we

have that the sectional curvatures of M are all bounded below by − 2
τ2 and thus RicM � −(d− 1) 2

τ2 (for the

relationship between the Ricci tensor and the sectional curvatures, see Lee (2018)). Noting that d+2
d ≤ 3

and plugging into the results of Theorem 29, we get that

c′LS ≤
2τ2

d− 1
exp

(
d log 3 +

3∆2d2

τ2

)
.

Combining this with the Holly-Stroock result and Theorem 28 concludes the proof. �

C Proof of Theorem 22

We first prove the following lemma on the concentration of W1(Pn, P
′
n).

Lemma 30. Suppose that P is a probability measure on (T, d) and that it satisfies a T2(c2)-inequality. Let
X1, . . . , Xn, X

′
1, . . . , X

′
n denote independent samples with corresponding empirical distributions Pn, P

′
n. Then

the following inequalities hold:

P (|W1(Pn, P
′
n)− E [W1(Pn, P

′
n)]| ≥ t) ≤ 2e−

nt2

8c2

P (|W1(Pn, P
′
n)− E [W1(Pn, P

′
n)]| ≤ t) ≤ 2e−

nt2

8c2 .

Proof. We note that by Gozlan et al. (2009), in particular the form of the main theorem stated in (van
Handel, 2014, Theorem 4.31), it suffices to show that, as a function of the data, W1(Pn, P

′
n) is 2√

n
-Lipschitz.

Note that by symmetry, it suffices to show a one-sided inequality. By the triangle inequality,

W1(Pn, P
′
n) ≤W1(Pn, µ) +W1(P ′n, µ)

for any measure µ and thus it suffices to show that W1(Pn, µ) is 1√
n

-Lipschitz in the Xi. By (van Handel,

2014, Lemma 4.34), there exists a bijection between the set of couplings between Pn and µ and the set of

2We remark that some works, including Wang (1997b), define the log-Sobolev constant to be the inverse of our cLS . We
translate their theorem into our terms by taking the recipricol.
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ordered n-tuples of measures µ1, . . . , µn such that µ = 1
n

∑
i µi. Thus we see that if X, X̃ are two data sets,

then

W1(Pn, µ)−W1(P̃n, µ) ≤ sup
1
n

∑n
i=1 µi=µ

[
1

n

n∑
i=1

∫ (
d(Xi, y)− d(X̃i, y)

)
dµi(y)

]

≤ sup
1
n

∑n
i=1 µi=µ

[
1

n

n∑
i=1

∫
d(Xi, X̃i)dµi(y)

]

=
1

n

∑
d(Xi, X̃i)

≤ 1

n

√√√√n
n∑
i=1

d(Xi, X̃i)2 ≤ 1√
n
d⊗n(X, X̃).

The identical argument applies to WM
1 . �

We are now ready to show that d̂n is a good estimator of d.

Proposition 31. Suppose we are in the situation of Theorem 22 and we have

n ≥ max

(
d volM

4wωd

( ι
8

)−d
,

(
8c2
∆2

log
1

ρ

) d
2d−5

)

α ≥ max

(
log

d
2γ

(
nωd∆

d

d volM

)
, (Cw)

1
γ

)
Then with probability at least 1− 4ρ, we have

d

1 + 3γ
≤ d̂n ≤ (1 + 3γ)d.

Proof. By Proposition 19 and Lemma 30, we have that with probability at least 1 − e−
nt2

8c2 , we have

WM
1 (Pn, P

′
n) ≤ C

(
volM

nωd

) 1
d

√
log

(
nωd
d volM

)
+ t.

By Proposition 18 and Lemma 30 and the left hand side of Proposition 19, we have that with probability at

least 1− e−
αnt2

8c2 ,

WM
1 (Pαn, P

′
αn) ≥ 1

32

(
d volM

4wωd

) 1
d

(αn)−
1
d − t

all under the assumption that

n >
d volM

4wωd

( ι
8

)−d
.

Setting t = ∆(αn)−
5
4d , we see that, as α > 1, with probability at least 1 − 2e−

nt2

8c2 , we simultaneously have

WM
1 (Pn, P

′
n) ≤ C

(
volM

nωd

) 1
d

√
log

(
nωd∆d

d volM

)

WM
1 (Pαn, P

′
αn) ≥ 1

64

(
d volM

4wωd

) 1
d

(αn)−
1
d .

Thus, in particular,

WM
1 (Pn, P

′
n)

WM
1 (Pαn, P ′αn)

≤
C
(

volM
nωd

) 1
d
√

log
(

nωd
d volM

)
1
64

(
d volM
4wωd

) 1
d

(αn)−
1
d

≤ Cw 1
dα

1
d

√
log

(
nωd∆d

d volM

)
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Thus we see that

d̂n =
logα

log
W1(Pn,P ′n)
W1(Pαn,P ′αn)

≥ logα

1
d logα+ + 1

d logw + 1
2 log log

(
nωd∆d

d volM

)
=

d

1 +
log(Cw)+ d

2 log log

(
nωd∆d

d volM

)
logα

Now, if

n ≥ max

(
d volM

4wωd

(τ
8

)−d
,

(
8c22
∆2

log
1

ρ

) d
2d−5

)

α ≥ max

(
log

d
2γ

(
nωd∆

d

d volM

)
, (Cw)

1
γ

)
Then with probability at least 1 − 2ρ,

d̂n ≥
d

1 + 2γ
.

An identical proof holds for the other side of the bound and thus the result holds. �

We are now ready to prove the main theorem using Proposition 31 and Proposition 24.

Proof of Theorem 22. Note first that

w

(
ιλ2

8

)
≥ wωd

d

(π
2

)−d( ιλ2

8

)d
(5)

N

(
M,dM ,

ιλ2

8

)
≤ volM

ωd
d
(π

2

)d( ιλ2

8

)−d
(6)

by Proposition 9. Setting λ = 1
2 , we note that by Proposition 24, if the total number of samples

2(α+ 1)n ≥

(
wωd
d

(π
2

)−d( ιλ2

8

)d)−1

log

(
volM

ρωd
d
( τ

16π

)−d)
then with probability at least 1 − ρ, we have

1

2
dM (p, q) ≤ dG(p, q) ≤ 3

2
dM (p, q)

for all p, q ∈M . Thus by the proof of Proposition 31 above,

WM
1 (Pn, P

′
n)

WM
1 (Pαn, P ′αn)

≤ 1 + λ

1− λ
Cw

1
dα

1
d

√
log

(
nωd∆d

d volM

)
.

Thus as long as α ≥
(

1+λ
1−λ

) d
γ

= 3
d
γ , then we have with probability at least 1 − 3ρ,

d̃n ≥
d

1 + 3γ
.

A similar computation holds for the other bound.
To prove the result for dn, note that if we replace the ιs by τ in (5) and (6), then the result still holds

by the second part of Proposition 9. Then the identical arguments apply, mutatis mutandis, after skipping
the step of approximating dM by dG. �
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D Metric Estimation Proofs

In order to state our result, we need to consider the minimal amount of probability mass that P puts on any
intrinsic ball of a certain radius in M . To formalize this notion, we define, for δ > 0,

wB(δ) = inf
p∈M

P
(
BMδ (p)

)
.

We need a few lemmata:

Lemma 32. Fix ε > 0 and a set of xi ∈M and form G(x, ε). If the set of xi form a δ-net for M such that
δ ≤ ε

4 , then for all x, y ∈M ,

dG(x, y) ≤
(

1 +
4δ

ε

)
dM (x, y).

Proof. This is a combination of (Bernstein et al., 2000, Proposition 1) and (Bernstein et al., 2000, Theorem
2). �

Lemma 33. Let 0 < λ < 1 and let x, y ∈M such that ||x− y|| ≤ 2τλ(1− λ). Then

(1− λ)dM (x, y) ≤ ||x− y|| ≤ dM (x, y).

Proof. Note that 2τλ(1−λ) ≤ τ
2 so we are in the situation of Proposition 8 (e). Let ` = dM (x, y). Rearranging

the bound in Proposition 8 (e) yields

`

(
1− `

2τ

)
≤ ||x− y|| ≤ `.

Thus it suffices to show that
`

2τ
≤ λ.

Again applying Proposition 8, we see that

` ≤ τ

(
1−

√
1− 2 ||x− y||

τ

)
.

Rearranging and plugging in ||x− y|| ≤ 2τλ(1− λ) concludes the proof. �

The next lemma is a variant of (Niyogi et al., 2008, Lemma 5.1).

Lemma 34. Let wB(δ) be as in Proposition 24 and let N(M, δ) be the covering number of M at scale δ.

If we sample n ≥ w
(
δ
2

)−1
log

N(M, δ2 )
ρ points independently from P, then with probability at least 1 − ρ, the

points form a δ-net of M .

Proof. Let y1, . . . , yN be a minimal δ
2 -net of M . For each yi the probability that xi is not in B δ

2
(yi) is

bounded by 1− wB
(
δ
2

)
by definition. By independence, we have

P
(
∀i xj 6∈ B δ

2
(yi)

)
≤
(

1−)Bw

(
δ

2

))n
≤ e−nwB( δ2 ).

By a union bound, we have

P
(
∃i such that ∀j xj 6∈ B δ

2
(yi)

)
≤ N

(
M,

δ

2

)
e−nwB( δ2 ). (7)

If n satisfies the bound in the statement then the right hand side (7) is controlled by ρ. �
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Note that for any measure P, a simple union bound tells us that wB(δ) ≤ N (M, δ)
−1

and that equality,
up to a constant, is achieved for the uniform measure. This is within a log factor of the obvious lower bound
given by the covering number on the number of points required to have a δ-net on M .

With these lemmata, we are ready to conclude the proof:

Proof of Proposition 24. Let ε = τλ ≤ 2τλ(1 − λ) by λ ≤ 1
2 . Let δ = λε

4 = τλ2

4 . By Lemma 34, with high
probability, the xi form a δ-net on M ; thus for the rest of the proof, we fix a set of xi such that this condition
holds. Now we may apply Lemma 32 to yield the upper bound dG(x, y) ≤ (1 + λ)dM (x, y).

For the lower bound, for any points p, q ∈ M there are points xj0 , xjm such that dM (p, xj0) ≤ δ and
dM (q, xjm) ≤ δ by the fact that the xi form a δ-net. Let xj1 , . . . , xjm−1 be a geodesic in G between xj0 and
xjm . By Lemma 33 and the fact that edges only exist for small weights, we have

dM (p, q) ≤ dM (p, xj0) + dM (xjm , q) +
m∑
i=1

dM
(
xji−1

, xji
)

≤ (1− λ)−1

(
||p− xj0 ||+ ||xjm − q||+

m∑
i=1

∣∣∣∣xji−1
− xji

∣∣∣∣)
= (1− λ)−1dG(p, q).

Rearranging concludes the proof. �

E Miscellany

Proof of Lemma 15. By symmetrization and chaining, we have

E

[
sup
f∈F

1

n

n∑
i=1

f(Xi)− f(X ′i)

]
≤ 2E

[
sup
f∈F

1

n

n∑
i=1

εif(Xi)

]
≤ 2 inf

δ>0

[
8δ +

8
√

2√
n

∫ B

δ

√
logN(F, ||·||∞ , ε)dε

]

≤ 2B inf
δ>0

[
8δ +

8
√

2√
n

∫ 1

δ

√
logN

(
F, ||·||∞ ,

ε

2R

)
dε

]

≤ 2B inf
δ>0

[
8δ +

8
√

2√
n

∫ 1

δ

√
3β2 log

1

ε
N(S, ||·|| , ε)dε

]

where the last step follows from Proposition 12. The first statement follows from noting that
√

log 1
ε is

decreasing in ε, and thus allowing it to be pulled from the integral. If β > d
2 , the second statement follows

from plugging in δ = 0 and recovering a rate of n−
1
2 . If β < d

2 , then the second statement follows from

plugging in δ = n−
β
d . �

Proof of Proposition 18. We follow the proof of (Weed et al., 2019, Proposition 6) and use their notation.
In particular, let

Nε

(
P,

1

2

)
= inf

{
N(S, dM , ε)|S ⊂M and P(S) ≥ 1

2

}
.

Applying a volume argument in the identical fashion to Proposition 9, but lower bounding the probability
of a ball of radius ε by w multiplied by the volume of said small ball, we get that

Nε

(
P,

1

2

)
≥ volM

2wωd
d8−dε−d

if ε ≤ τ . Let

ε =

(
volM

4wωd
d8−d

) 1
d

n−
1
d
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and assume that

n >
volM

4wωd
d8−d (τ)

−d

Let
S =

⋃
1≤i≤n

BMε
2

(Xi).

Then because

Nε

(
P,

1

2

)
> n

by our choice of ε, we have that P(S) < 1
2 . Thus if X ∼ P then we have with probability at least 1

2 ,
dM (X, {X1, . . . , Xn}) ≥ ε

2 . Thus the Wasserstein distance between P and Pn is at least ε
4 . The first result

follows. We may apply the identical argument, instead using intrinsic covering numbers and the bound in
Proposition 9 to recover the second statement. �

Proof of Proposition 19. By Kantorovich-Rubenstein duality and Jensen’s inequality, we have

E
[
WM

1 (Pn,P)
]
≤ E

[
sup
f∈F

1

n

n∑
i=1

f(Xi)− E [f(Xi)]

]
≤ E

[
sup
f∈F

1

n

n∑
i=1

f(Xi)− f(X ′i)

]
= E

[
WM

1 (Pn, P
′
n)
]

where F is the class of functions on M that are 1-Lipschitz with respect to dM . Note that, by translation
invariance, we may take the radius of the Hölder ball F to be ∆. By symmetrization and chaining,

E

[
sup
f∈F

1

n

n∑
i=1

f(Xi)− f(X ′i)

]
≤ 2E

[
sup
f∈F

1

n

n∑
i=1

εif(Xi)

]
≤ 2 inf

δ>0

[
8δ +

8
√

2√
n

∫ ∆

δ

√
logN(F, ||·||∞ , ε)dε

]

≤ inf
δ>0

[
8δ +

8
√

2√
n

∫ ∆

δ

√
3 log

(
2∆

ε

)
d volM

ωd

(π
2

)d(2

ε

) d
2

dε

]

≤ 2∆ inf
δ>0

[
8δ +

8
√

6√
n

√
d volM

ωd

(π
2

) d
2

√
log

1

δ

∫ 1

δ

(
∆

ε

)− d2
dε

]

where the last step comes from Corollary 14 and noting that after recentering, F contains functions f such
that ||f ||L∞(M) ≤ ∆ and ||∇f ||L∞(M) ≤ 1. Setting

δ =
π

2

(
d volM

nωd∆d

) 1
d

gives

E
[
WM

1 (Pn, P
′
n)
]
≤ C

(
volM

nωd

) 1
d

√
log

(
nωd∆d

d volM

)
for some C ≤ 48, which concludes the proof. �

Proof of Theorem 25. By bounding the supremum of sums by the sum of suprema and the construction of
µ̂,

dβ,B(µ̂,P) ≤ dβ,B(µ̂, P̃n) + dβ,B(P̃n,P) ≤ inf
µ∈P

dβ,B(µ, P̃n) + dβ,B(P̃n,P)

≤ inf
µ∈P

dβ,B(µ,P) + 2dβ,B(P̃n,P)

≤ inf
µ∈P

dβ,B(µ,P) + 2dβ,B(P̃n, Pn) + 2dβ,B(Pn,P).
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Taking expectations and applying Lemma 15 bounds the last term. The middle term can be bounded as
follows:

dβ,B(P̃n, Pn) = sup
f∈CβB(Ω)

1

n

n∑
i=1

f(Xi)− f(X̃i) ≤ sup
f∈CβB(Ω)

1

n

n∑
i=1

f(Xi)− f(Xi + ηi) + 2Bε

≤ sup
f∈CβB(Ω)

1

n

n∑
i=1

B ||ηi||+ 2Bε

where the first inequality follows from the fact that if f ∈ CβB(Ω) then ||f ||∞ ≤ B and the contamination
is at most ε. The second inequality follows from the fact that f is B-Lipschitz. Taking expectations and
applying Jensen’s inequality concludes the proof. �

Proof of Corollary 26. Applying Kantorovich-Rubenstein duality, the proof follows immediately from that of
Theorem 25 by setting β = 1, with the caveat that we need to bound B and the Lipschitz constant separately.
The Lipschitz constant is bounded by 1 by Kantorovich duality. The class is translation invariant, and so
|||f ||∞ − E[f ]| ≤ 2R by the fact that the Euclidean diameter of S is bounded by 2R. The result follows. �

Lemma 35. Let X be distributed uniformly on a centred (`2) ball in Rd of radius R. Then,

E
[
log

R

||X||

]
=

1

d
.

Proof. Note that by scaling it suffices to prove the case R = 1. By changing to polar coordinates,

E
[
log

1

||X||

]
=

∫
S1

∫ 1

0

(
log 1

r

)
rd−1drdθ∫

S1

∫ 1

0
rd−1drdθ

= −d
∫ 1

0

(log r) rd−1dr.

Substituting u = log r and applying integration by parts then gives

−d
∫ 1

0

(log r) rd−1dr =

[
rd

d
− rd log r

] ∣∣∣∣r=1

r=0

=
1

d

as desired. �

29


	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Geometry
	2.2 Hölder Classes and their Complexity

	3 Dimension Estimation
	4 Application of Techniques to GANs
	A Proofs from Section 2
	B Proof of Proposition 21
	C Proof of Theorem 22
	D Metric Estimation Proofs
	E Miscellany

