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ABSTRACT
Data parallel frameworks become essential for training machine
learning models. The classic Bulk Synchronous Parallel (BSP) model
updates the model parameters through pre-defined synchronization
barriers. However, when a worker computes significantly slower
than other workers, waiting for the slow worker will lead to exces-
sive waste of computing resources. In this paper, we propose a novel
proactive data-parallel (PDP) framework. PDP enables the param-
eter server to initiate the update of the model parameter. That is,
we can perform the update at any time without pre-defined update
points. PDP not only initiates the update but also determines when
to update. The global decision on the frequency of updates will
accelerate the training. We further propose asynchronous PDP to
reduce the idle time caused by synchronizing parameter updates. We
theoretically prove the convergence property of asynchronous PDP.
We implement a distributed PDP framework and evaluate PDP with
several popular machine learning algorithms including Multilayer
Perceptron, Convolutional Neural Network, K-means, and Gaussian
Mixture Model. Our evaluation shows that PDP can achieve up to
20X speedup over the BSP model and scale to large clusters.
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1 INTRODUCTION
Machine learning (ML) has been widely applied in many fields.
In computer vision, deep learning models such as convolutional
neural networks can successfully detect objects [2], and recognize
images [15, 18, 27]. In financial services, ML plays a key role in au-
tomatically detecting frauds and checking user identification [24, 34].
For natural language processing, ML becomes essential in writing
articles and translating languages [6].
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With the explosion of data, it becomes challenging for a sin-
gle machine to train machine learning models in a timely manner.
It is essential to distribute the model training to a cluster of ma-
chines [10, 19, 28]. The most widely used data-parallel model is the
Bulk Synchronous Parallel (BSP) model [30]. In BSP, the model
parameters of ML algorithms are updated through synchronization.
Each worker processes data points until it reaches a pre-defined
synchronization point. When we adopt a parameter server archi-
tecture [19], the parameter server aggregates the processing results
from workers and updates the model parameters. During the synchro-
nization, every worker needs to wait until the model parameter has
been updated and then continue the processing. The number of data
points processed between synchronization points needs to be speci-
fied by the programmers before runtime. When a worker computes
significantly slower than other workers (i.e., becomes a straggler),
the pre-defined synchronization point will lead to excessive waste
of computing resources. Stragglers can occur in many scenario [14],
including heterogeneity and failures of hardware, unbalanced data
distribution among tasks, using transient resources in the cloud [35].
For ML algorithms, the computation-intensive tasks amplify the
waiting that can lead to significant straggler effects.

Distributed frameworks such as [19, 25, 26, 32] are proposed to
support asynchronous data-parallel models. In these frameworks,
each worker continues its data processing right after it contributes to
the model parameters. Although asynchronous models remove the
synchronization barrier, they suffer from another problem of delayed
updates. That is, before a worker contributes to the model parameter,
the model parameter may have already been updated by several
other workers. Since the number of data points to be processed still
needs to be specified before runtime, stragglers take a much longer
time to finish a batch. So stragglers usually process data from an
out-of-date model parameter, which will be less effective or even
make a negative impact on the convergence speed [3, 21].

In this paper, we propose a novel data-parallel distributed frame-
work for ML algorithms, a proactive data-parallel (PDP) framework.
PDP reduces the impact of stragglers to accelerate the training. In-
stead of specifying a pre-defined synchronization point, PDP proac-
tively decides when to update the model parameter at runtime. So the
stragglers will not slow down other workers caused by waiting. The
parameter server pulls the processing results from workers rather
than waiting for workers to push the results. The global decision
on the parameter server can provide workers with more up-to-date
model parameters to accelerate the training.

PDP exploits the fact that an update of model parameters does not
have to be performed after a pass of a fixed set of data points. The
parameter server can not only pull from workers but also determine
when to pull. The more proactively we pull, the more frequently
the model parameter is updated. So that the workers can compute
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updates from more up-to-date model parameters to potentially accel-
erate the training. However, the frequent pulling incurs overhead in
interrupting workers and communicating intermediate results. There-
fore, PDP determines the optimal time to pull at runtime according
to different algorithms and datasets.

To further reduce the waiting time during synchronization, we
propose an asynchronous proactive data-parallel (APDP) model
to support asynchronous computations. APDP removes the syn-
chronization barrier so that each worker can keep computing after
responding to the pulling from the parameter server. Each worker
uses the current model parameter to process data until the updated
model parameters arrive. We theoretically prove that APDP guar-
antees the version differences of the model parameter are at most
one among workers and the parameter server. So APDP still has the
same convergence property as the BSP model.

Our major contributions are summarized as follows.

• We propose a new proactive data-parallel framework for it-
erative ML algorithms. PDP reduces the waiting time on
workers especially when stragglers occur. PDP enables the
parameter server to pull from workers so that there are no
pre-defined synchronization points needed for workers. PDP
not only pulls from workers but also determines the optimal
time to pull. As a result, it will accelerate the training with an
appropriate frequency of model parameter update.

• We propose APDP to further reduce the waiting time by
removing synchronization barriers. Each worker keeps com-
puting with its current model parameter instead of waiting
for new model parameters. We theoretically prove that APDP
can guarantee the version differences between a worker and
the parameter server are at most one.

• We design and implement the distributed PDP and APDP.
We evaluate PDP and APDP with several well-known ML
algorithms, specifically Multilayer Perceptron, Convolutional
Neural Network, K-means, and Gaussian Mixture Model on
Google cloud clusters. We perform experiments on several
straggler scenarios. The results show that we can achieve
up to 20X speedup over synchronous models and 6X over
asynchronous models.

The remainder of this paper is organized as follows. Section 2
describes how the ML algorithms are implemented under a data-
parallel model. Section 3 introduces our PDP framework and Section
4 presents the design of the PDP system. We show the convergence
property of the PDP framework in Section 5. Section 6 reports
extensive evaluation results. Section 7 highlights the related works
and Section 8 finally concludes this work.

2 MACHINE LEARNING ALGORITHMS
In this section, we show how machine learning algorithms are imple-
mented under data-parallel models. We first describe the Gradient
Descent (GD) algorithm that is widely used for model training. Then,
we explain the well-known Expectation-Maximization (EM) algo-
rithm in a distributed setting. In the end, we generalize how other
algorithms can be executed in the data-parallel models.

2.1 Gradient Descent (GD) algorithm
Gradient descent is widely used in training machine learning models.
It aims to learn the model parameters θ that minimizes an objective
function known as the loss function. The loss function Q is usually
computed as the summation of losses on all data points xi in dataset
X .

Q(θ ,X ) =
∑
xi ∈X

Q(θ ,xi ) (1)

The GD algorithms iteratively re-estimate the model parameters
θ to minimize the loss function. At iteration t , the model parameters
are calculated through the gradient of the loss function on all the
data in X .

θ t+1 = θ t − ηt
∑
xi ∈X

∇Q(θ t ,xi ) (2)

where ηt is the learning rate.
In a distributed environment, each worker j holds one partition

of the dataset, X j ⊂ X , and a copy of the model parameters θ j . At
iteration t , worker j computes the total gradient дtj , by summing up
the gradients on all the data xi ∈ X j .

дtj =
∑

xi ∈X j

∇Q(θ tj ,xi ) (3)

Then, the updates from all the P workers are aggregated together to
re-estimate the model parameters as follows.

θ t+1 = θ t − ηt

P∑
j=1

дtj (4)

In a distributed environment, model parameters can be managed
with a parameter server architecture [19]. The parameter server ag-
gregates gradients from workers and accumulates them into model
parameters. The aggregation is usually performed at a synchroniza-
tion barrier. During the synchronization, workers send gradients
дtj , referred to as update, to the parameter server and wait for new
model parameters. The parameter server collects the gradients from
workers, re-estimates the model parameters following Equation (4),
and then broadcasts new model parameters to all workers.

For each update of the model parameters, processing a full batch
of data points might not be necessary. A mini-batch GD is usually
applied. Each worker j only processes a subset Bj ⊆ X j for an
update. Therefore, we can re-estimate the model parameters more
often, and the later mini-batch can make use of the more up-to-date
model parameters to potentially improve the quality of gradients.
Formally, at time t , the update дtj in Equation (3) is computed from
a mini-batch Bj instead of the whole partition X j .

дtj =
∑
xi ∈Bj

∇Q(θ tj ,xi ) (5)

In both full batch GD and mini-batch GD, batch size and conse-
quently synchronization point are pre-defined before runtime. The
fastest worker, which completes its mini-batch first, needs to wait for
other workers to finish. Therefore, synchronization leads to overhead
in a distributed environment.



2.2 Expectation-Maximization (EM) algorithm
We use the K-means algorithm as an example to introduce how
to implement EM algorithms in a distributed environment through
update aggregation. The K-means algorithm aims to partition N data
points into K clusters. Formally, we represent each cluster with a
centroid, which is the center of the cluster whose coordinators are
the average of data points belonging to the cluster. K-means finds the
assignments of all the data which minimizes the summation of the
distance between each data point and its assigned cluster centroid.
The model parameters for K-means consists of the K centroids
θ = {θ1, · · · ,θK } and the cluster assignments Z = {z1, · · · , zN }. So
the objective function Q(θ ,Z ,X ) is

Q(θ ,Z ,X ) =

N∑
i=1

K∑
k=1

[
I (zi ,k)| |xi − θ j | |

2] (6)

where I (a,b) is the indicator function which outputs 1 if and only if
a = b, otherwise it outputs 0.

The K-means algorithm re-estimates Z and θ alternatively to min-
imize Q . First, given the current centroids θ , the algorithm assigns
each data point to its nearest centroid as follows.

zi = argmin
k ∈{1, · · · ,K }

| |xi − θ j | |
2 (7)

Then, the algorithm re-estimates the centroids by averaging the
coordinates of all data points assigned to the same cluster as the
following equation.

θk =

∑N
i=1 xi I (zi ,k)∑N
i=1 I (zi ,k)

(8)

In a distributed environment, the assignments Z are computed on
workers, while the centroids θ need to be aggregated based on the
summation of xi I (zi ,k) and I (zi ,k) from every worker. To efficiently
re-estimate the centroids, we sum up the numerator and denominator
in Equation (8) at each worker as sufficient statistics. So each worker
j computes the sufficient statistics from a mini-batch Bj ⊆ X j for
cluster k as

St+1j,k =
∑
xi ∈Bj

xi I (z
t
i, j ,k) Ct+1

j,k =
∑
xi ∈Bj

I (zti, j ,k)

where zti, j represents the assignment of data xi based on model
parameter θ tj .

In the K-means, we can apply a delta change of the sufficient
statistics to the total sufficient statistics to compute the centroids.
So without synchronization, the new centroids can still be com-
puted from the sufficient statistics of all the data. On worker j, the
update is computed as the delta changes between two consecutive
computations of sufficient statistics.

∆St+1j,k = St+1j,k − Stj,k ∆Ct+1
j,k = C

t+1
j,k −Ct

j,k

Those updates can be aggregated through a centralized server
or in a decentralized way as well. The model parameter θ tk can be
computed from the update on worker j as

θ t+1k =
Stk + ∆S

t+1
j,k

Ct
k + ∆C

t+1
j,k

(9)

When using a centralized server, the new model parameter θ t+1k can
be sent back to j or broadcast to all the workers. Or θ t+1k is directly
apply to θ t+1p,k at any worker p that performs the re-estimation.

2.3 Other Machine Learning Algorithms
Many other machine learning algorithms can also be executed in
a distributed fashion. Many ML algorithms try to learn a model
through iteratively processing the given data. Each data point con-
tributes updates towards the final model through update aggregation.
So we can distribute the workload of processing data among workers
while aggregating the updates to re-estimate the model. Similar to K-
means, other algorithms, such as Gaussian Mixture Model (GMM),
Nonnegative Matrix Factorization (NMF), and Latent Dirichlet Allo-
cation (LDA), can also be implemented using a data-parallel model.
As long as there are some sufficient statistics that can be aggregated,
the algorithms can be executed under data-parallel models. In each
iteration, we compute the sufficient statistics of all the data points
based on current model parameters. Then we re-estimate the model
parameters from sufficient statistics to maximize the likelihood.
Specifically, each worker maintains a local copy of the model param-
eters and computes sufficient statistics (updates). Then the parameter
server aggregates the updates from all the workers and re-estimates
the model parameters through a synchronization barrier.

3 PROACTIVE DATA-PARALLEL
FRAMEWORK

We propose a novel Proactive Data-Parallel (PDP) model to solve
the problem of the slowdown caused by stragglers. In this section,
we first give an overview of PDP in using a pulling mechanism to
enable updating model parameters at any time. We then describe
how PDP determines the optimal time to update model parameters.
At last, we show the workflow of PDP and how we further reduce
the idle time on workers with asynchronous computation.

3.1 Overview of PDP
PDP is designed to address the straggler problem to accelerate the
training. A straggler is a worker that works significantly slower
than other workers. To parallelize the computation, people typically
distribute the workload to several workers. After every worker fin-
ishes its own workload, we perform a synchronization on the model
parameter. However, the workload on each worker is pre-defined.
When there is a straggler, all the workers have to wait for the strag-
gler which leads to excessive waste of computing resources. Even
we update model parameters in an asynchronous manner, a straggler
takes a much longer time than other workers to contribute from an
out-of-date model parameter. The pre-defined workload will make
the updates from stragglers less effective or even make a negative
impact on the convergence speed.

PDP determines the synchronization point based on how much
workload has been done globally. Instead of assigning a workload
to each worker beforehand, PDP monitors the global progress all
the time. Therefore, the parameter server can use the global view
of the progress to make a better synchronization point. To help the
parameter server monitor the progress, workers periodically send



reports which contain the count of processed data points. We will
discuss more details about the reports in Section 4.3.

At the synchronization point, the parameter server pulls from all
the workers and aggregates them to the model parameter. Using the
pulling mechanism, workers can keep processing the data points
without waiting for other workers. Meanwhile, the stragglers can
contribute in time. Since the pulling decision is the key in deter-
mining the efficiency of PDP, we will first describe the high-level
idea.

3.2 Pulling Decision
A good pulling decision helps the PDP framework to accelerate the
training. The more frequently the model parameter is updated, the
workers can compute updates from more up-to-date model param-
eters to potentially accelerate the training. However, the frequent
pulling incurs higher communication overhead and occupies more
computing time. When the benefit of updating the model parameter
covers the overhead, it is worthwhile to update. However, it is hard
to quantify the benefit directly. Our goal is to accelerate the training,
in other words, increase the convergence speed. We can estimate the
relationship between the convergence speed and a pulling point to
decide the optimal pulling time. Here, the pulling point k represents
the number of data points we need to process from all the workers
between two pullings.

We derive the relationship between convergence speed and dif-
ferent pulling points to find the optimal k. Generally, convergence
speed is the ratio of the final loss function gain and the total training
time which can only be learned after the training is completed. In
order to find a good k at the beginning of the training process, we
estimate the convergence speed after processing a number of data
points. We measure the gain of loss function based on the model
parameters after processing these data points. Therefore, the optimal
pulling point k should have the highest gain as follows.

K∗ = argmax
k

(дain(k,N )) (10)

Where the gain function дain(k,N ) presents the gain of loss function
after processing N data points while updating the model parameter
for processing every k data points. The gain function is affected not
only by N and k , but also the starting model parameter, and the order
of data points that are selected to process. We will show the details
of how we select N and k to estimate дain(k,N ) in Section 4.2.

3.3 Synchronous PDP
The update of the model parameter can be performed through syn-
chronization. In contrast with the widely-used bulk synchronous
parallel (BSP) model, PDP does not need a pre-defined synchroniza-
tion barrier. As shown in Figure 1a, the parameter server in BSP
waits for all the workers to finish their computation and then synchro-
nize the model parameter update. Therefore, a faster worker needs
to wait for the slowest worker to finish, which leads to excessive
waste of computing resources especially when there are stragglers.
Also, it is hard to determine the number of data points that need to
be processed for synchronization. That number usually varies for
different algorithms, datasets, and infrastructure we use.

For synchronous PDP, the synchronization is initiated by the pa-
rameter server. As shown in Figure 1b, the parameter server first

(a) BSP

Worker 1 Worker 2

pulling request

Parameter
Server

updateupdate

model param.

Sync. 
Barrier

Sync. 
Barrier

(b) PDP (Sync.)

Figure 1: Illustration of BSP (a) and PDP (Sync.) (b) on a cluster
with one parameter server and two workers

broadcasts pull requests to all the workers in the synchronization.
When workers reply to the parameter server, they pause the compu-
tation and wait for the new model parameter. So the convergence
property in PDP can be still guaranteed as the same as BSP.

3.4 Asynchronous PDP
To make full use of the computation resources, we propose an asyn-
chronous proactive data-parallel (APDP) model to further eliminate
the idle time on workers during synchronization. After a worker
sends updates, the computation has to pause in synchronous models.
Any delay in synchronizing the updates, aggregating the updates to
the model parameter, or sending the new model parameter will make
idle time get longer. Since we still have the current model parameter,
we can make use of the idle time to keep processing data. As shown
in Figure 2b, after sending the updates, workers continue the com-
putation with the current model parameters instead of waiting for
the updated model parameters. Therefore, more data points can be
processed instead of waiting.

Parameter
Server Worker 1 Worker 2

update

model param. update

model param.

(a) BAP (b) APDP

Figure 2: Illustration of BAP (a) and APDP (b) on a cluster with
one parameter server and two workers

The asynchronous variant of PDP further reduces the waiting
time. Comparing to the basic asynchronous parallel (BAP) model
that is used in many frameworks [1, 9, 19, 26], APDP limits the
delay updates. As shown in Figure 2a, BAP makes each worker
pushes its update to the parameter server by its own choice. So there
is no waiting for the stragglers. However, the BAP still requires a
pre-defined number of data points to be processed for each update.
When the straggling situation occurs, the slow worker takes a much
longer time to contribute its updates that are based on an out-of-date



model parameter. It will make the updates less effective or even
makes a negative impact.

In contrast to the BAP model, APDP guarantees the version dif-
ferences between workers and the parameter server are at most one.
Although the delay updates from the current model parameter still
make the update inconsistent with the model parameter in the param-
eter server, we can bound the impact. We will show the theoretical
analysis of the convergence property in Section 5.

4 DISTRIBUTED PDP SYSTEM
Now we represent our PDP distributed system. We first show an
overview of the system. Then we explain the design of the parameter
server and worker separately.

4.1 Overview of PDP system
Figure 3 shows an overview of the parameter server and workers, as
well as the interactions between them. The parameter server manages
the model parameters while the workers compute the updates from
input data. For the parameter server, it controls the re-estimation of
the model parameters. It also monitors the progress of workers to
determine when to pull the updates from workers. The pulling deter-
mination module derives the pulling point based on the performance
statistics of the parameter server and workers. For workers, each
worker computes updates and reports its progress that is the number
of data points processed from the last pulling.

Figure 3: Design of PDP framework

The parameter server and workers interact with each other through
module communication. The parameter server broadcasts pulling
requests to all the workers when the number of data points processed
from all workers reachesK∗. Then the workers reply to the parameter
server with its update. After accumulating updates to the model pa-
rameters, the parameter server broadcasts the new model parameters.
The performance monitoring module helps the parameter server to
determine when to pull. So the workers send the worker performance
statistics along with the update.

4.2 Parameter Server Design
The parameter server maintains and re-estimates the model parame-
ters, meanwhile, it pulls updates and determines when to pull. When
the number of data points processed reaches K∗ from the last pulling,

the parameter server broadcasts the pulling requests. As described
in Section 3.2, the gain function дain(k,N ) is a key factor for the
efficiency of the PDP framework.

4.2.1 Estimate Gain Function. Based on Equation (10), the
optimal k is estimated from the gain of loss function for process-
ing N data points. Mathematically, the gain function дain(k,N ) =

Q(θNk ,X )−Q(θ0,X ), where θ0 and θNk are the initial and final model
parameters. To avoid additional overhead, we estimate дain(k,N )

during the training. We add a probing phase at the beginning of the
training and keep the training progress. Generally, a large N , such as
a full epoch, is more accurate to estimate дain(k,N ). However, the
large N will increase the probing phase and delay the time to find
the best K∗. To quickly estimate дain(k,N ), we only use a portion
of a full batch to compute the дain(k,N ). We use a probe ratio pr
towards the full batch to indicate the size of N . By default, we select
pr = 0.01 for each k. We show that 0.5 is sufficient based on the
experiments in Section 6.3. But the user can choose another pr to
achieve a better estimation of дain(k,N ) or less probing time.

We adopt a multiplicative strategy to fast approach the optimal K∗

instead of checking every possible k. From literature researches [5,
7, 20] and our experiments, we observed that the optimal mini-batch
size is usually around 1% to 20% of the total data volume. Therefore,
we start from the most possible optimal mini-batch k0 = 0.1 ∗M and
gradually explore the optimal k from both sides. First, we compute
дain(k0,pr ∗ M) after processing one batch of pr ∗ M data points.
Then, we compute дain(k1,pr ∗M) where k1 is half of previous k0.
If the gains are smaller than k0, we explore the other direction for
larger k . For the case that дain(k0/2,pr ∗M) is better, we iteratively
decrease the k1 by half until a certain k has a smaller gain. Since each
update incurs overhead in pulling and updating model parameters at
the parameter server, the processing time of k data points cannot be
shorter than this overhead. When we reach the minimum possible k ,
we stop probing. For the other case that дain(k0 ∗ 2,pr ∗M) is better,
we iteratively increase the k2 by 2 until a certain k has a smaller gain
or pr ∗M reaches. Then the parameter server broadcasts the optimal
K∗ to every worker for count reports.

4.2.2 Pull Updates. When the number of data points reaches
the optimal pulling point K∗, the parameter server broadcasts the
pulling requests. The parameter server monitors the progress of
workers by counting the reports sent by each worker after the last
pulling. If each worker sends a counter of one for each data points
it processed, the parameter server only needs to count them until
K∗ is reached. However, this will bring a huge overhead for both
the parameter server and workers. It is not necessary to check every
data points that have been processed either. Only the data points that
are close to reaching K∗ matter. Also, due to the communication
overhead, the report itself takes time to reach the parameter server.
Therefore, instead of counting the reports from workers for the
accurate number of data points that have been processed, we estimate
when the overall progress is about to reach K∗.

To estimate when to pull, we need to know the processing speed
of each worker in runtime. But we want to limit the overhead of the
count report. So the workers will send the count report when each
worker reaches the 1/4 of K∗/P where P is the number of workers.
Then we use the time we received the count report between 1/4, 1/2,



and 3/4 to estimate when to pull. For example, for worker i, we have
the time to processed K∗/P as ti . Then time we broadcast the pulling
requests from the last pulling will be T = 1/

∑P
i=1 t

−1
i .

4.3 Worker Design
The main job of the workers is to compute updates and monitor
the processed data points. The workers compute updates using their
copy of the model parameters and respond to pulling requests and
the arrived model parameters. After receiving a pulling request,
the worker first finishes its atomic computation on the current data
point. Then it sends out the accumulated updates since the last
pulling. After processing the current data point, the worker pauses
the computation and renews the model parameters. So the next data
point can make use of the latest model parameters.

During the processing of data, the worker sends the count report
to the parameter server. As described in Section 4.2.2, each worker
knows the optimal K∗ and sends the count report for every K∗/P/4
data points that have been processed. Therefore, there will be 3 count
reports for each pulling which will not bring much overhead.

5 CONVERGENCE PROPERTY OF APDP
MODEL

In this section, we use GD algorithms as an example to analyze the
convergence property of APDP.

As described in Section 3, the gradient to re-estimate parameter θ t

is computed based on both of parameters θ t−1 and θ t under APDP.
Here we use At to represent all the data we process in mini-batch
At at iteration t . In At , we divide the data into two parts Bt and Ct ,
which depends on the parameters we use. Suppose θ t−1 is applied to
a subset Bt and θ t is applied to Ct . The re-estimation of the model
parameters using a learning rate ηt can be written as

θ t+1 = θ t − ηt

∑

xi ∈Bt

∇Q(θ t−1,xi ) +
∑

x j ∈Ct

∇Q(θ t ,x j )

 (11)

To bound the expected loss, we use the instantaneous regret
Q(θ t ,X ) − Q(θ∗,X ) to show the loss difference between θ t and
θ∗, where θ∗ = argminθ Q(θ ,X ). By bounding the average regret
from a sequence Θ = {θ1, ...,θT } of parameters when T increase,
we can say θT converges to θ∗.

In APDP, the gradients that are computed on model parame-
ters θ t come from two sets Bt+1 and Ct . We denote the total set
as Ãt = Ct + Bt+1. So the instantaneous regret is computed as
Q(θ t , Ãt ) − Q(θ∗, Ãt ), where Q(θ t , Ãt ) =

∑
xi ∈Ãt

Q(θ t ,xi ). Since
the loss function Q is convex, the average regret we want to bound
is as follows.

R[Θ] :=
1
T

T∑
t=1

[
Q(θ t , Ãt ) −Q(θ∗, Ãt )

]
(12)

⩽
1
T

T∑
t=1

〈
∇Q(θ t , Ãt ),θ

t − θ∗
〉

(13)

⩽
1
T

T∑
t=1

〈
д̃t ,θ t − θ∗

〉
(14)

Here we denote д̃t as the subdifferentials for Q , that is, д̃t =∑
xi ∈Ãt

∇Q(θ t ,xi ) =
∑
i ∈Ãt

дti where дti = ∇Q(θ t ,xi ).
To prove the regret bounds of GD in APDP, we can bound

each instantaneous regret
〈
дt ,θ t − θ∗

〉
at a given iteration t . So

we first derive the following auxiliary lemma which bound the regret〈∑
j ∈Bt д

t−1
j ,θ

t−1 − θ∗
〉
+
〈∑

i ∈Ct д
t
i ,θ

t − θ∗
〉
. Then we show how

the total regrets are bounded in theorem 5.1.

THEOREM 5.1. Suppose the loss function Q is convex and Lip-
schitz continuous with a constant L, and maxθ,θ ′∈Θ D(θ | |θ ′) ⩽ F 2,
given ηt = σ/

√
t for some constant σ > 0 and maximum mini-batch

size as M , the regret of GD in APDP is bounded by

R[Θ] ⩽
3σM2L2

√
T

+
F 2

σ
√
T

and consequently for σ = F/ML and we obtain the bound

R[Θ] ⩽
4MFL
√
T

The proof is shown in the document 1.

6 EXPERIMENTS
In this section, we evaluate our PDP framework to show its perfor-
mance with several well-known ML algorithms. We use two EM
algorithms, K-means and Gaussian Mixture Model (GMM), and two
GD algorithms, Multi-Layer Perceptron (MLP) and Convolutional
Neural Network (CNN) to show the efficiency of PDP and APDP
under both homogeneous clusters and heterogeneous clusters. We
also examine the effectiveness of the pull decisions in PDP. Finally,
we test the scalability to show PDP can scale to large clusters.

6.1 Experiment Settings
We first describe our experiment settings including the algorithms,
dataset, benchmark models, and testing environments. We build
our PDP framework and implement the EM algorithms and GD
algorithms using C++. We use OPEN MPI [13] to implement the
distributed protocol for synchronous and asynchronous communica-
tions. Our code is publicly available 2.

6.1.1 Algorithms and Datasets. We test four representative
ML applications to explore the performance of our PDP framework.
We apply the K-means and Gaussian Mixture Model (GMM) [23]
for the EM algorithms and Multilayer Perceptron (MLP) and Con-
volutional Neural Network (CNN) for the GD algorithms. We use
publicly available datasets MASS 3 and HIGGS 4 from the high-
energy physics field to evaluate the K-means and GMM algorithms.
For the MLP and CNN, we test them on real-world dataset MNIST 5

and synthetic dataset. The summary of the datasets is shown in
Table 1.

For K-means and GMM, we select K = 50 as the number of
clusters. So the total parameter size is K × (d + 1), d is the number of
dimensions. Since K-means has been discussed in Section 2.2, now
we explain the implementation of other algorithms.
1https://drive.google.com/file/d/141cPnxRKRxtDq_vWx2nh8aBMV9iw5Wju
2https://github.com/haku117/PDP
3http://archive.ics.uci.edu/ml/datasets/HEPMASS
4http://archive.ics.uci.edu/ml/datasets/HIGGS
5http://yann.lecun.com/exdb/mnist/



Table 1: Dataset Summary

Datasets Points Dimensions Algorithms
MASS 7,000,000 27

EM: K-means/GMM
HIGGS 11,000,000 28
MNIST 60,000 28x28 → 10

GD: MLP/CNN
Synthetic 1,000,000 1000x20 → 1

GMM: The goal of GMM is to specify how likely a given data
point Xi is generated from the j-th Gaussian distribution with the
mean c j and covariance matrix Σj , where j ∈ 1, 2, ...,k . θ j = (c j , Σj ).
The objective function is f = 1

n
∑n
i=1 log(

∑k
j=1w jP(xi |θ j )) The

statistics include three k-dimensions vectors, T , S and C which are
computed as Tj =

∑n
i=1 γi jX

2
i ; Sj =

∑n
i=1 γi jXi ;Cj =

∑n
i=1 γi j

The computation of update is to first compute the new value γ ′i j .
Let δ = γ ′i j − γi j , then summarize the statistics by: Tj = Tj + δX 2

i ,
Sj = Sj + δXi , and Cj = Cj + δ . Finally, the parameter server
recomputes the model parameters as w j = Cj/n, c j = Sj/Cj , and
Σj = Tj/Cj − S2j /C

2
j .

MLP: We set up a 3-layer Multi-Layer perceptron model for the
MNIST dataset. There are 28 ∗ 28 = 784 input neurons and 10 output
neurons. We set up 300 neurons in the hidden layer. Neurons are
activated via the sigmoid function.

CNN: We design a CNN that has two convolutional layers with
10 and 20 2x2 kernels respectively. We use max-pooling and ReLU
activation functions for each convolutional layer.

6.1.2 Benchmark models. We compare our PDP and APDP
with synchronous model BSP and Asynchronous model BAP. Since
the pulling determines the number of data points between two up-
dates of model parameters, it is equivalent to a mini-batch size in
BSP and BAP. Our PDP model is able to automatically determine
the optimal global batch size, we do not need to set it up in advance.
For BSP and BAP, we use 1% of input data as the mini-batch size
following the literature researches [5, 7, 20]. Note that, since MLP
and CNN are much more computation-intensive, we apply 0.2% as
their mini-batch size.

6.1.3 Cluster Setting. We conduct our experiments on a Google
Cloud cluster. We choose two types of instances to test the perfor-
mance and scalability of our framework. One type is n1-standard8
with 8 CPU cores at 2.0-GHz and 7.5GB memory which is treated
as a straggler. The other type is n2-highcpu8 with 8 CPU cores at
2.8-GHz and 7.5GB memory.

We organize instances into homogeneous clusters and hetero-
geneous clusters. We use 16 n2-highcpu8 instances to construct a
homogeneous environment. We design two scenarios for the hetero-
geneous clusters with 16 instances as well. First, a static heteroge-
neous cluster contains two types of instances. We further simulate
the different slowdowns by limiting the maximum CPU usage of
slow workers. So we can show the performance with different scenar-
ios. Second, in a dynamic heterogeneous cluster, the running speed
of a worker may change over time. We simulate it by dynamically
limiting the maximum CPU usage of a worker.

6.2 Efficiency of PDP framework
In this subsection, we evaluate the efficiency of our framework by
comparing synchronous PDP and APDP with the BSP and BAP
models. In the following, we evaluate the convergence speed on
homogeneous clusters and heterogeneous clusters respectively.

6.2.1 Convergence Speed on Homogeneous Clusters. We
first evaluate our PDP framework on homogeneous clusters, where
every worker computes at the same speed. In Figure 4, we show
the performance for different ML algorithms. For EM algorithms,
we demonstrate the evaluation results for K-means algorithm on
the MASS dataset in Figure 4a and GMM algorithm on the HIGGS
dataset in Figure 4b. Since there is almost no additional waiting for
workers on homogeneous clusters, PDP has a similar convergence
speed as the BSP model. The value jump of the objective function in
K-means around 25 seconds is when a full batch of data has been
processed. In BAP model, it uses the assignments from out-of-date
centroids to update the model parameter. So the convergence of
the model parameter is slower. APDP can still outperform other
models since it reduces the idle time during synchronization. APDP
decreases the objective function faster from the beginning of the
training and it achieves around 2X speedup towards BSP and 6X
towards the BAP model.
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Figure 4: Runtime comparison among BSP, BAP and PDP

For GD algorithms like MLP in Figure 4c and CNN in Figure 4d,
PDP and APDP achieve similar performance. Due to the stochastic
nature of GD algorithms, these algorithms are not very sensitive to
pulling decisions. As a result, although PDP and APDP can find a
better update frequency, the speedup is not significant. Since they are
more computation-intensive, the communication time is relatively
short. So the waiting time during synchronization is not much to
save for APDP. Generally, APDP is about 1.3X faster than BSP and
BAP for MLP and 2.8X faster for CNN.

6.2.2 Convergence Speed on Heterogeneous Clusters.
The pulling mechanism in the PDP framework makes each worker



contribute as much as they could. So that it can reduce the waiting
time of fast workers when we train on heterogeneous clusters. In
this subsection, we show the performance of our PDP framework in
a variety of heterogeneous environments. We also use the HIGGS
dataset for the K-means and GMM algorithms and the MNIST
dataset for the MLP and CNN algorithms.

Static Heterogeneous Cluster: We first test the performance on
a cluster with a worker that computes constantly slow. We set up
a cluster with 16 workers, and one of them is a straggler which
works slower than the other three. In order to show the impact of the
straggler, we set up one straggler with different speeds, ranging from
1X slower to 9X slower. It is clear in the Figure 5 that no matter how
slow the straggler is, the PDP and APDP framework outperforms
the BSP and BAP model.
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Figure 5: Convergence time comparison on static heterogeneous
clusters. The X axis indicates the speed of the slowest worker

When the straggler is 9X slower than the normal workers, the
PDP framework is about 4X faster than the BSP and 2.6X faster
than the BAP model for the K-means algorithm. The delay is not as
much because of the high ratio of communication time compared to
the computation time. So APDP can further reduce the convergence
time around 7X towards BSP and 5X towards the BAP model. A
similar phenomenon is found in GMM. For GMM, PDP can speed
up 3.2X and 2.4X towards BSP and BAP models. While APDP can
speedup 7X and 4.6X towards BSP and BAP models For MLP and
CNN, the computation time is dominant in training. So both PDP
and APDP can reach a good speedup. Also, PDP can find a better
update frequency when a straggler occurs. So APDP can achieve
up to 20X faster than the BSP model and 6X faster than the BAP
model.

Dynamic Heterogeneous Cluster: We also evaluate the perfor-
mance when the processing speed of workers changes over time.
This is a common phenomenon on private clusters and multi-tenant
clouds where a limited amount of hardware resources is shared by
multiple users. We designed our dynamic scenario as all workers
periodically become slower or faster. The processing speed of the
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Figure 6: Runtime comparison on dynamic heterogeneous clus-
ters.

whole cluster gets changed noticeably. To simulate it, we randomly
change the maximum CPU usage of all workers every 5 seconds.

We illustrate the training time in Figure 6. For the K-means and
GMM algorithms, PDP and APDP decrease the objective function
faster than the BSP and BAP models by about 6X and 2.1X. Espe-
cially when the algorithm almost converges, the PDP framework
decreases the objective function faster. For the MLP and CNN algo-
rithms, the PDP and APDP reach a similar convergence time. That
is because they are more computation-intensive. The influence of
the waiting time for synchronizing model parameters is relatively
shorter than computation time. Generally, the speedup over the BSP
model reaches up to 10X on dynamic heterogeneous clusters.
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Figure 7: Impact of pulling

6.3 Impact of PDP Decisions
The pulling decision highly affects the performance of the PDP
framework. Here, we show the impact of pulling point k inдain(k,N )

in Figure 7. On homogeneous clusters, K-means and GMM prefer
a larger mini-batch size, which is a portion of 10−4 and 5 × 10−5
towards the full batch. For MLP, it prefers a smaller size which is
2 × 10−5 which is only around 20 data points per update. On hetero-
geneous clusters, the trend is similar to homogeneous clusters. In



PDP, we can find either the optimal or a little larger k which has the
same scale with the convergence time increasing less than 3%.

Second, we examine the impact of pulling for N in дain(k,N ),
which is based on the number of data to check for one update and
the number of different k we need to probe. We select the different
N in terms of the probe ratio pr . According to the probing ratio
described in Section 4, a smaller pr indicates a smaller probing
time but the probe result is not necessarily far away from the actual
value. As shown in Figure 8, a small pr = 0.01 is able to help us
determine optimal k. For K-means and MLP, we observe the same
phenomenon.

Finish
probing

(a) K-means

Finish
probing

(b) MLP

Figure 8: Impact of probe ratio

6.4 Scalability
We further evaluate our PDP framework on the large-scale clusters
to test its scalability. The scalability of different frameworks is tested
on a homogeneous cluster and a static heterogeneous cluster with a
delay up to 5 times slower than the normal run and there are 10%
of the workers can be the straggler. We vary the total number of
workers from 4 to 120.

We observe very good scalability results compared with BSP and
BAP on both homogeneous and heterogeneous clusters in Figure 9.
In BSP, the communication overhead grows dramatically. Using
the same optimal batch size, which only incurs 1% overhead on
communication on 4 workers, the overhead for 120 workers spends
99% of the training time. For BAP, it outperforms BSP since there
is no synchronization cost. But the stale model parameters will still
slow down the convergence speed. For our PDP, we automatically
balance the ratio between data computation and update of model
parameters by determining when to pull. So we still have a good
speedup compared to BSP and BAP.
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Figure 9: Scalability evaluation on PDP, BSP and BAP models

So with a large cluster of workers, the mini-batch size needs to
get much larger than small clusters. In this scalability test, we select

a mini-batch size as 5% of the total input data for BSP. It limits the
synchronization overhead to less than 10% of the total training time.
But the larger mini-batch size will make the time to use an up-to-date
model parameter much later. So BSP will still be relatively slower.

7 RELATED WORKS
Many distributed frameworks [17, 22, 25, 32] adopt a centralized
parameter server [19] for distributed implementation of machine
learning algorithms. Machine learning algorithms infer models by
refining model parameters. In a parameter server based distributed
framework, workers compute the updates on the model parame-
ters. The parameter server gathers the updates from workers and
accumulates the updates to the model parameters.

Parameter server based distributed frameworks can update the
model parameters in a synchronous fashion. That is, sending updates
from workers and accumulating updates on the parameter server can
be performed at a synchronization barrier. Each worker has to pause
its computation of updates and wait for new model parameters from
the parameter server to continue. A classic synchronous model is
the bulk synchronous parallel (BSP) model [10, 28, 30]. However,
synchronization may slow down the computation since workers have
to wait for each other to reach the synchronization barrier. This is
particularly true when there are stragglers that compute significantly
slower than others [8, 14, 33] or using transient resources [35].

Several distributed systems have been proposed to reduce the
synchronization overhead. For example, in K-sync SGD in [12], the
parameter server waits for k workers to reach their synchronization
points then updates the model parameters. The stale synchronous
parallel (SSP) model [16] allows workers to skip synchronization
barriers. However, each worker can skip at most a fixed number
of steps (bounded staleness) before synchronization. SSP reduces
the wait on synchronization but the faster workers still need to wait
after the bounded staleness threshold is reached. FlexRR [14] com-
bines the SSP model with the dynamic peer-to-peer reassignment of
work among workers to further address the problem of stragglers.
However, the overhead of migrating data can be huge.

FSP [31] and Sync-on-the-fly [35] propose a flexible synchro-
nization barrier to reduce the impact of stragglers. Each worker can
suspend the computation of updates when synchronizing with each
other. Thus, synchronization barriers can be established at any time.
Adaptive batch sizes are also proposed to optimize the mini-batch
size during machine learning [4, 11]. However, even we determine
the best mini-batch size, the computing resources are still wasted
when all the workers pause during synchronization.

In contrast to the synchronous parallel model, the update of the
model parameters from each worker can be sent to the parameter
server in an asynchronous manner. Each worker sends the update
to the parameter server at its own pace. Without waiting for other
workers, the parameter server accumulates this update and sends
the new model parameters back to the worker. Frameworks such
as [19, 25, 26, 32] are used to support this asynchronous parallel
model. MLNET [22] deploys a communication layer to implement
asynchronous aggregation and ASYNC [29] build on top of Spark
to support asynchronous computation. DistBelief [9] and Tensor-
Flow [1] also support deep learning applications with asynchronous
computation.



The asynchronous parallel model removes the synchronization
overhead but usually suffers from the stale computation where work-
ers use stale model parameters to compute updates. The stale compu-
tation of ML algorithms can slow down the convergence speed. To
reduce the stale computation, K-async SGD in [12] waits for K work-
ers to finish their mini-batch and then updates the model parameters.
ASYNC [29] enables the workers and/or the parameter server to
bookkeep (log) parameters to construct a dynamic dependence graph
for the implementation with a partial broadcast of model parameters.
These frameworks reduce the stale computation but still require a
pre-defined model parameter update point. Stragglers can still slow
down the computation.

Our PDP framework can update the model parameter at any time.
Meanwhile, APDP is asynchronous. That is, workers do not wait for
the update of the model parameters at the parameter server. Further,
the framework determines when workers provide updates online.
As a result, stragglers will not slow down the update of model
parameters.

8 CONCLUSION
We propose a proactive data-parallel framework that enables the
parameter server to initiate the update of model parameters at any
time. PDP pulls from workers so that there are no pre-defined update
points for workers and avoid workers waiting for each other. The
parameter server cannot only pull from workers but also determine
when to pull. The global decision on the parameter server can provide
workers with more up-to-date model parameters to accelerate the
training. We further propose asynchronous PDP to further reduce
the idle time caused by synchronization. We theoretically prove
the convergence property of APDP which shows the same result as
PDP. We design and implement the PDP framework to determine the
optimal time to pull from workers. Extensive experiments show that
the PDP model consistently outperforms state-of-the-art solutions.
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