
MOTrack: Real-time Configuration Adaptation for
Video Analytics through Movement Tracking

Fubao Wu, Lixin Gao, Tian Zhou and Xi Wang
Department of Electrical and Engineering

University of Massachusetts Amherst, Amherst, MA 01002, USA
Email: fubaowu@umass.edu, lgao@engin.umass.edu, tzhou@umass.edu, xwang4@umass.edu

Abstract—Video analytics has many applications in traffic
control, security monitoring, action/event analysis, etc. With the
adoption of deep neural networks, the accuracy of video analytics
in video streams has been greatly improved. However, deep
neural networks for performing video analytics are compute-
intensive. In order to reduce processing time, many systems
switch to the lower frame rate or resolution. State-of-the-art
switching approaches adjust configurations by profiling video
clips on a large configuration space. Multiple configurations
are tested periodically and the cheapest one with a desired
accuracy is adopted. In this paper, we propose a method that
adapts the configuration by analyzing past video analytics results
instead of profiling candidate configurations. Our method adopts
a lower/higher resolution or frame rate when objects move
slow/fast. We train a model that automatically selects the best
configuration. We evaluate our method with two real-world
video analytics applications: traffic tracking and pose estimation.
Compared to the periodic profiling method, our method achieves
3%–12% higher accuracy with the same resource cost and 8–17x
faster with comparable accuracy.

Index Terms—Video Stream, Video Analytics, Object Tracking,
Machine Learning

I. INTRODUCTION

The proliferation of cameras deployed in many enterprises
and cities [1] drives the demand for video analytics. Object
detection and tracking as the common parts of video analytics
focuses on detecting and tracking objects from video streams.
Many applications in traffic control, business intelligence,
action/pose analysis, and VR/AR are built on top of object
detection and tracking [2], [3]. For example, a traffic control
center in a city wants to detect and count cars over an intersec-
tion real-time with a good detection accuracy to estimate the
traffic. Human poses and actions could be detected real-time
for virtual games or dance guidance. Recently, object detection
and tracking rely on deep neural network (DNN) models
for more accurate inferences. Each DNN module corresponds
to a frame rate and resolution, which is referred to as a
configuration.

The selection of a configuration impacts the accuracy and
resource consumption of object detection and tracking. A con-
figuration with high frame rate and resolution is considered as
an expensive configuration, and a configuration with low frame
rate and resolution is considered as a cheap configuration. For
example, an expensive configuration with 25 fps and 1080p
generally leads to a higher accuracy than a cheap configuration
with 1 fps and 240p, but consumes more resources. The

“best” configuration is the configuration that achieves a desired
accuracy with the least resource consumption.

The state-of-the-art configuration adaptation falls into two
classes: one-time profiling and periodical profiling. One-time
profiling [4]–[6] aims to profile all configurations only once
during the beginning of a video (e.g., 10 seconds), and then
chooses the best configuration above an accuracy requirement
for the video. However, it uses a fixed configuration for the
whole video and neglects the intrinsic dynamics of video
contents. Periodic profiling [2], [7], [8] determines the con-
figuration for every interval of a video through profiling the
first few frames of the interval. However, profiling periodically
costs computing resources and incurs more processing time.

Video content exhibits temporal and spatial characteristics.
Due to these characteristics, objects keep the same or similar
movement in a short period of time. Therefore, the video con-
tent could be quantified with object movement in this period.
Objects moving fast usually need expensive configurations to
track, and cheap configurations suffice for slow objects.

In this paper, we capture the object movement from past
video analytics results to guide the selection of frame rate and
resolution to adapt configurations over time. Leveraging this,
a machine learning-based classification method, MOTrack, is
utilized to obtain the relationship between object movement
and the best configuration. We obtain the estimated object
movement and corresponding configurations as labeled train-
ing data instances to automatically learn the mapping be-
tween them. Through extensive experiments on traffic tracking
and pose estimation applications on large video datasets, we
demonstrate the superiority and effectiveness of MOTrack.
Compared with two state-of-the-art configuration adaptation
approaches, MOTrack could achieve the accuracy threshold
goal with 8–17x less computation resources.

Our main contributions are as follows:
1) We investigate the impact of object movement on con-

figurations and propose to utilize the object movement
to guide configuration adaptation.

2) We propose a machine learning-based classification
method to predict the configuration for future frames,
which significantly reduces the cost of configuration
adaptation.

3) We experimentally demonstrate the effectiveness and
efficiency of MOTrack on traffic tracking and pose
estimation applications.



The rest of this paper is organized as follows. We intro-
duce the motivation in Section II. Section III describes our
algorithms in detail. Experimental evaluation is presented in
Section IV. Related work is introduced in Section V. We
conclude our paper in Section VI.

II. MOTIVATION

Object detection and tracking in video analytics is to detect
object positions and track objects for every frame. Tradition-
ally, every frame is expected to be processed with an expensive
DNN model for detection. However, when an object moves
slowly in a short period of the video, the frames in that period
could be skipped for an expensive DNN model. We just need
to estimate the position of the object in the skipped frames
from its previous location and momentum. Similarly, a low
resolution can be adopted for a slow-moving object. This could
save huge computation resources while still maintaining the
required accuracy. Therefore, the object movement could help
make a decision for the needed frame rate and resolution.

The object movement could be quantified with the object
moving velocity, which could be measured based on the dis-
tances of detected object keypoints between frames over time
(we call it keypoint movement velocity). Given a minimum
accuracy requirement, if the movement velocity is high in a
short period of the video, the high frame rate/resolution would
be needed to satisfy the accuracy requirement, and vice versa.

Fig. 1 shows the (normalized) keypoint movement speed
(velocity magnitude) for every 1 second interval, and the
necessary frame rate and resolution in a 4-minute dancing
video clip in the pose estimation application [9]. To show
the motivation effectively, we assume there is only one high
frame rate/resolution and one low frame rate/resolution avail-
able. We calculate the object moving speed for every second
interval. Given a minimum accuracy requirement, a frame
rate/resolution will be selected for each interval. We could
see that when the movement speed increases to a high value in
periods of around seconds 15, 30, 110, 130, 180, and 230 high-
lighted with grey backgrounds, high frame rates/resolutions are
necessary to achieve the accuracy requirement. Conversely, we
find most of the time the object moves at a low speed and
thus a low frame rate/resolution is needed. It shows the strong
correlation between the movement speed and the frame rate
or resolution needed.

III. MOVEMENT FEATURES AND PREDICTION MODEL

We propose to quantify the correlation of target objects in
different periods of a video with some movement features.
A movement feature of one target object describes how the
keypoints of the object move. In addition to the movement
features describing each keypoint, we also consider some
dense features for the dynamics of the whole object. Then,
we develop a model that learns how to dynamically adjust the
configurations based on the proposed features.

We utilize the movement information of target objects to
dynamically decide which frames should be analyzed in detail
and which frames can be skipped. The physical movement of

0 50 100 150 200
0.000

0.005

Sp
ee

d

0 50 100 150 200

10

20

Fra
me

 ra
te

0 50 100 150 200
Tim e (sec)

500

1000

Re
so

lu
tio

n 
(w

id
th
)

Fig. 1: The correlation between movement speed and the necessary
frame rate/resolution for the accuracy requirement

an object is inertial, which leads to the velocity and accelera-
tion of the object. Then for skipped frames, we estimate the
location of the target object.

We first introduce some key concepts and notations of our
algorithm. Our algorithm tries to find small periods of a video
for processing with different resolutions and frame rates. We
attach a timestamp ti to each frame i considering a real-time
video playout rate of 25 frames/second. It can be derived easily
by counting how many frames are skipped from the playout
rate of the video. Similarly, our algorithm also memorizes the
resolution of each frame. The width and height of a frame
i are represented with Wi and Hi respectively. Therefore, a
sequence of frames can be represented as follows:

[(t1,W1,H1), · · · , (tn,Wn,Hn)] (1)

Then the position p(i) of one point with coordinate (x, y) at
frame i is represented with the following vector (normalized):

p⃗(i) = [x(i)/W (i), y(i)/H(i)]T (2)

where x(i) and y(i) indicate X and Y coordinates of the point
in frame i. When there are multiple keypoints such as a, b,
c in one object, the corresponding positions are denoted as
pa(i), pb(i) and pc(i), respectively.

A. Movement Features

We extract the movement information of each object into
a set of features from its past video analytics results. The
features are described below.

1) Keypoint Movement Velocity: An object in a frame
can be represented as a set of keypoints detected, such as
4 bounding box corner points in an object. This keypoint
movement velocity feature captures how a keypoint moves
across frames in the screen space. We measure the pixel
velocity of a point p using consecutive frames. Assume that
we have two consecutive frame i−1 and i taking at time ti−1

and ti respectively. Then, the velocity of this point at frame i
can be quantified as:

v⃗f (i) =
p⃗(i)− p⃗(i− 1)

ti − ti−1
(3)



where p⃗(i−1) and p⃗(i) indicate the normalized position of the
object at frame i−1 and frame i in the screen space. Therefore,
for an object with n keypoints, we derive the keypoint velocity
feature of the object on frame i as a vector of the v⃗f for all
keypoints as follows:

Vf (i) = [v⃗1f (i), · · · , v⃗kf (i), · · · , v⃗nf (i)] (4)

where v⃗kf (i) represents the velocity of keypoint k at frame i.
2) Object Movement Velocity: To capture more fine-grained

features, we propose another object movement feature to
complement previous movement features. Previous keypoint
movement velocity feature only captures the corner’s move-
ment of an object across frames, which is also noisy. Here the
object movement velocity is based on the robust optical flow
[10] calculated only with pixel values of detected objects. It
could recover the object’s motion at each pixel and apparent
velocities of movement of brightness pattern in a frame.

We capture the optical flow velocities of all the pixel points
as our object movement velocity. To capture each pixel point’s
optical flow, we consider two consecutive frames i− 1 and i
taking at time ti−1 and ti. For one pixel k at location (x, y, t)
with its brightness I(x, y, t) from frame i−1 to (x+∆x, y+
∆y, t + ∆t) in frame i with its brightness I(x + ∆x, y +
∆y, t+∆t), its brightness is assumed to keep constancy and
transformed with the Taylor series, we obtain this equation,

∂I

∂x
u+

∂I

∂y
v = −∂I

∂t
(5)

Where u and v are the optical flow of point (x, y) along x and
y direction. ∂I

∂x , ∂I
∂y , and ∂I

∂t are the derivatives of the image
intensity at (x, y, t) in the corresponding directions.

To get u and v with the one equation, we extend with more
points over a small neighborhood by introducing nearby pixels
within a window and solve the multiple equations with the
least-squares principle [10]. Then, the optical flow velocity for
that pixel k inside an object in frame i is O⃗k(i) = (u, v)k(i).

Therefore, for one object with n pixels in the detected
bounding box, we have movement feature O(i) at frame i,

O(i) = [O⃗1(i), O⃗2(i), ..., O⃗k(i), ..., O⃗n(i)] (6)

3) Keypoint Relative Movement Velocity: A highly relative
movement among an object keypoints would indicate a drastic
change. For some applications containing multiple correlated
keypoints, such as pose estimation with 17 keypoints (e.g.,
arms, hands, etc.), the relative velocity can be adopted among
different keypoints. We should use a higher resolution to check
what happens to the object or even double-check whether there
is something wrong with the previous tracking result. This
feature captures the change by relative keypoint movements.

The relative velocity feature Vr of an object at the frame
i is a triangle matrix of each pair of the keypoints among n
keypoints as the following equation.

Vr(i) =


0 v⃗r

1,2(i) v⃗r
1,3(i) · · · v⃗r

1,n(i)

0 0 v⃗r
2,3(i) · · · v⃗r

2,n(i)
· · ·
0 0 0 · · · 0

 (7)

where v⃗r
p,q(i), p, q ∈ [1, n] indicates the relative velocity

from point p compared to point q at frame i. It is formulated
as the following equation.

v⃗r
a,b(i) =

r⃗a,b(i)− r⃗a,b(i− 1)

ti − ti−1
(8)

where r⃗a,b(i) = p⃗a(i) − p⃗b(i) indicates the relative vector
distance from point a to point b at frame i. p⃗a(i) and p⃗b(i)
are the coordinates of two points a and b on the same object
at frame i.

For pose estimation application, we only consider the pairs
in relative velocity features Vr that have high impacts on
relative movements, such as the wrists to shoulders, and the
ankles to hips.

4) Object Size Change Speed: In addition to object move-
ment velocity features, we also capture the whole object
morphing by the object size change. The object size in an
image is a great indicator for shape morphing and Z-axis
movement of the real-world object. The change ratio of
the object size represents how fast the morphing or Z-axis
movement happens.

The size can be directly acquired from the video analyt-
ics result. For simplicity, we use the size of the bounding
box of the target object to approximate the object size. By
representing the size of the object in frame i with Si, we can
formulate the object size change speed feature SC(i) at frame
i as follows:

SC(i) =
Si − Si−1

ti − ti−1
(9)

When the bounding box is used, the size Si can be computed
as follows where xmax = maxk p⃗

kx represents the maximum
X-coordinate among all the keypoints of the object.

S(i) =
(xmax − xmin) · (ymax − ymin)

WiHi
(10)

Similarly, xmin, ymin and ymax denote the minimum
X-coordinate, minimum Y-coordinate, and maximum Y-
coordinate respectively.

B. Feature Smoothing

The feature estimation using two frames is not reliable
enough, as it can be affected by some random noises or a
single failure in tracking. Since physical movement in the
real-world is inertial, we use the exponential moving average
to smooth the features as the final estimation. For a feature
F, we derive its final value F̂(i) for frame i based on its
instantaneous estimation F(i) and the smoothed value on the
previous F̂(i− 1). We formulate this procedure as follows:

F̂(i) = αF(i) + (1− α)F̂(i− 1) (11)

where F can be Vf , Vr, SC or O, and α is the smooth factor
in [0, 1]. Therefore, we use X = [V̂f (i), V̂r(i), ŜC(i), Ô(i)]
as our features.



C. Estimation of Skipped Frames

We estimate the positions of a target object in the skipped
frames through their previous locations and movement infor-
mation. A frame j’s object position is assumed to be inferred
with our DNN detector. Assuming that there are S skipped
frames, we would estimate the keypoint p in the skipped
frames, p⃗(j + 1), p⃗(j + 2),..., p⃗(j + S) with the movement
velocity vector F̂ (j). If the current frame j has one object
position with a vector coordinate p⃗(j) in x and y dimension,
and the estimated movement velocity for this position is F̂ (j),
then that position coordinate in the next skipped frame k is
estimated as:

p⃗(k) = p⃗(k − 1) +
F̂ (j)

S
(12)

where k = j + 1, j + 2, ..., j + S.

D. Model for Configuration Prediction

We train a model that predicts which configurations are used
for future frames. The frame rate determines the time interval
until the next frame. Therefore, the training data is a set of
features and configuration pairs generated from many video
streams. The ground truth configuration is the configuration
that requires the lowest computing resources, but still satisfies
a certain accuracy requirement.

We model this problem as a multi-class and multi-output
classification problem. Among many classical classification
models, random forest classification is an efficient machine
learning model, which minimizes both bias and variance on
an ensemble of decision trees and deals with high dimensional
data very well. A complex and expensive deep learning
model is left for future work. We adopt the random forest
classification model [11] for prediction and obtain accurate
results. In our prediction model, frame rate and resolution are
two targets, which are learned respectively with a classification
model.

IV. EXPERIMENTAL EVALUATION

We evaluate our video analytics method, MOTrack, on two
applications–pose estimation and traffic tracking, on one server
with two Quadro RTX 5000 GPU, and compare it with two
state-of-the-art configuration adaption methods.

A. Applications and Datasets

Traffic tracking localizes and tracks the pedestrian and
vehicles indoors or outdoors from videos based on the Deep-
Sort model [12]. The video analytics result in each frame
for each object is represented by the object’s bounding box.
Pose estimation localizes anatomical keypoints or parts from
a human body [9] based on the OpenPose model [13]. Each
object in a frame has 17 keypoints as the video analytics result.

Existing video stream datasets do not have enough high
resolutions or length of videos available for video analytics .
We create video stream datasets from Youtube (dataset sources
are public in: https://rb.gy/pofzby). Traffic tracking dataset
contains 60 video clips of survelliance indoors, and mixed

pedestrians and vehicles on the street. The objects in these
videos move generally fast, but most of time are steady, with
their moving speed difference between consecutive second
averaging 15 pixels/second (p/s). However, the pose estimation
dataset consists of 75 video clips of dancing, body condition-
ing and other workouts, in which an object moves dramatically
with its moving speed difference averaging 23 p/s. Table I
shows the dataset statistics.

TABLE I: Video dataset statistics

Dataset Total length
(min).

Object no.
(each video)

Keypoint no.
(each object)

Speed
difference

Traffic tracking 600 Various 4 15 p/s
Pose estimation 750 Single 17 23 p/s

To train a random forest model, we have to obtain the train-
ing data ground truth–configuration for each feature, which is
not practical to label manually. We utilize a heuristic approach
to find the corresponding configuration for each interval in
video analytics to generate labeled data instances. We explore
all the available frame rate and resolution configurations.
Given a minimum accuracy threshold, we select the lowest
frame rate and resolution configuration as the ground truth to
achieve the minimum processing time while maintaining the
accuracy above that threshold in each estimated interval.

In our prediction model, we split the video dataset into a
training dataset and test dataset for each application. Specifi-
cally, we use each video clip as the test dataset and other video
clips as the training dataset. 5-fold cross-validation is utilized
to obtain the best model, then it is applied to the test dataset.
In our experiment, we adopt one minimum accuracy threshold
of 0.92 as an example to show our results. Other thresholds
show the similar results. The processing time shown in all the
figures below is the average total time for processing each
one-second interval of videos.

B. Metrics and Configurations

Traffic tracking uses detected bounding boxes’ intersection
over union to calculate the accuracy [14]. Pose estimation
accuracy is calculated with the object keypoint similarity
metric from COCO pose estimation dataset [15]. The ground
truth for measuring video analytics accuracy is based on the
most expensive configuration with the highest frame rate and
resolution [2].

For the prediction model, we care about how accurate our
prediction model predicts the correct configuration, so we use
the “accuracy” to measure the average prediction accuracy for
predicting the frame rate and resolution. There are 25 classes
for 1 frame/second, 2 frame/second, ..., and 25 frame/second.
The video resolutions considered are: 1120x832, 960x720,
640x480, 480x352 and 320x240. In total, we have 125 classes
in the configuration space.

C. Impact of Features on Prediction Accuracy

Here we show the different features’ impact on the pre-
diction accuracy. We evaluate the impact of each feature on
the prediction accuracy by removing the features one by one



for each application. Table II shows the impact of different
features on the prediction accuracy. “All” means we use all the
proposed features for each application. “x-” symbol ahead of
each feature name denotes we remove this feature from “All”.
It shows our prediction method achieves an accuracy from
0.794 to 0.865 with all the proposed features. When we remove
one of the features, the accuracy has been degraded to a
different extent. Each feature is indispensable and contributed
in some way to predict the configuration.

TABLE II: Impact of features on prediction accuracy

Feature\Application Traffic tracking Pose estimation
All 0.865 0.794
x- Keypoint movement velocity 0.838 0.785
x- Keypoint relative velocity N/A 0.783
x- Object movement velocity 0.803 0.766
x- Object size change 0.846 0.789

D. Video Analytics Performance

We show the performance of MOTrack on the whole video
datasets and one-minute video clips, and compare it with
two state-of-the-art configuration adaptation methods: one-
time profiling and periodic profiling.

One-time profiling is operated only once at the beginning
of video analytics [5]. The profiling interval x is 10 sec. For
periodic profiling [2], the profiling interval t for each time
window is 1 sec, and the time window is 4 sec, which are
same parameter settings from the references for comparisons.

Fig. 2(a) shows the accuracy and Fig. 2(b) shows the pro-
cessing time. From these results, MOTrack achieves 3%-12%
higher accuracy with the same processing time compared to
one-time profiling and 8–17x faster with the similar accuracy
compared to periodic profiling.

(a) Accuracy (b) Processing time

Fig. 2: Comparison of MOTrack with one-time profiling and periodic
profiling on traffic tracking and pose estimation

To check the configuration adaptation effects in detail, we
test on a one-minute video clip for each application, and show
the comparison results in Fig. 3 and Fig. 4.

Fig. 3 shows the accuracy and processing time on traffic
tracking. Compared to periodic profiling, we can see that
MOTrack maintains a similar accuracy over time to periodic
profiling, but much less processing time over time. This is
because MOTrack has more frequent adaptation operations
based on frames, but with an inexpensive adaption algorithm.
Compared to one-time profiling, MOTrack maintains a much
better accuracy over time and costs similar processing time.

For pose estimation on Fig. 4, MOtrack also demonstrates
the similar accuracy over time compared to periodic profiling
and shows more frequent configuration adaptation over time
due to the drastic changes of human pose movements. Mean-
while, MOTrack maintains a much better accuracy over time
and takes less processing time compared to one-time profiling.

Fig. 5 shows how close our configuration adaptation to the
ground truth (configuration) on those video clips. The ground
truth has the minimum processing time above the accuracy
requirement. MOTrack obtains a very close result over time,
with only an average of 5% more time than the ground truth.

(a) Accuracy (b) Processing time

Fig. 3: Accuracy and processing time for one video clip on traffic
tracking

(a) Accuracy (b) Processing time

Fig. 4: Accuracy and processing time for one video clip on pose
estimation

(a) Traffic tracking (b) Pose estimation

Fig. 5: Processing time of MOTrack and ground truth configuration
for one video clip on traffic tracking and pose estimation

E. Time for Configuration Adaptation

Here we compare MOTrack’s configuration adaptation time
with periodic profiling’s on the test datasets. MOTrack adopts
a machine learning-based prediction to do the configuration
adaptation. Periodic profiling uses profiling configurations to
adapt configurations.

Fig. 6 shows the average (configuration) adaptation time on
the two applications. MOTrack takes about 97%-98% less time



than the periodic profiling’s adaptation time. The efficiency of
configuration adaptation has been greatly improved with the
MOTrack method.

Fig. 6: Configuration adaptation time of MOTrack compared with
periodic profiling

V. RELATED WORK

Existing research for video pipeline resource management
and optimization mainly develops algorithms through special-
ized DNN models or through adjusting configurations with
costly profiling [2], [5], [7], [16]. MCDNN [4], NoScope
[17] and Focus [18] optimize video analytics with resource-
light specialized DNN models to detect objects. The core of
specialized DNN models is to train compressed DNN models
with fewer layers or parameters on a few objects that typically
appear on video streams. Some other researchers consider
the temporal and spatio-temporal characteristics of videos.
Samvit et al. [19] utilize the cross camera spatio-temporal
characteristics to remain or improve inference for scalable
camera deployment. Our work effectively utilizes the spatio-
temporal characteristics to capture object movement features
for configuration adaptation dynamically.

VideoStorm [5] processes live video streams over large
clusters by profiling each video query in the cluster and change
configurations to maximize the performance. AWStream [7]
and JetStream [8], however, consider the wide-area network
changing by profiling video query to achieve the trade-off of
accuracy and bandwidth. Chameleon [2] considers profiling
video segments periodically to obtain the best configuration.
Our paper avoids the fixed period scheduling and overcomes
the expensive profiling for configuration adaptation.

VI. CONCLUSION

In this paper, we propose a configuration adaption algorithm
for video analytics through movement tracking. Considering
estimating object movement information from past object
tracking results, we devise a machine learning-based method
to predict effectively and efficiently the configuration over time
dynamically. This reduces the cost of expensive profiling and
overcomes the fixed period of configuration adaptation. Our
results suggest that our method can make smart decisions
under different video analytics applications, which achieves
better accuracy and less resource cost compared to state-of-
the-art methods.

VII. ACKNOWLEDGMENT

This work was supported in part by National Science
Foundation Grants CNS-1815412 and CNS-1908536.

REFERENCES

[1] “Artificial intelligence surveillance cameras security.”
https://www.theverge.com/2018/1/23/16907238/artificial-intelligence-
surveillance-cameras-security, 2018, accessed: 2018-1-23.

[2] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica,
“Chameleon: scalable adaptation of video analytics,” in Proceedings
of the 2018 Conference of the ACM Special Interest Group on Data
Communication, 2018, pp. 253–266.

[3] L. Chen, H. Ai, R. Chen, and Z. Zhuang, “Aggregate tracklet appearance
features for multi-object tracking,” IEEE Signal Processing Letters,
vol. 26, no. 11, pp. 1613–1617, 2019.

[4] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A. Krishna-
murthy, “Mcdnn: An approximation-based execution framework for deep
stream processing under resource constraints,” in Proceedings of the 14th
Annual International Conference on Mobile Systems, Applications, and
Services, 2016, pp. 123–136.

[5] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and
M. J. Freedman, “Live video analytics at scale with approximation and
delay-tolerance,” in 14th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 17), 2017, pp. 377–392.

[6] T. Zhang, A. Chowdhery, P. Bahl, K. Jamieson, and S. Banerjee, “The
design and implementation of a wireless video surveillance system,”
in Proceedings of the 21st Annual International Conference on Mobile
Computing and Networking, 2015, pp. 426–438.

[7] B. Zhang, X. Jin, S. Ratnasamy, J. Wawrzynek, and E. A. Lee,
“Awstream: Adaptive wide-area streaming analytics,” in Proceedings
of the 2018 Conference of the ACM Special Interest Group on Data
Communication, 2018, pp. 236–252.

[8] A. Rabkin, M. Arye, S. Sen, V. S. Pai, and M. J. Freedman, “Aggregation
and degradation in jetstream: Streaming analytics in the wide area,”
in 11th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 14), 2014, pp. 275–288.

[9] M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele, “2d human
pose estimation: New benchmark and state of the art analysis,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June
2014.

[10] M. Kharbat, N. Aouf, A. Tsourdos, and B. A. White, “Robust brightness
description for computing optical flow.” in BMVC. Citeseer, 2008, pp.
1–10.

[11] A. Liaw, M. Wiener et al., “Classification and regression by randomfor-
est,” R news, vol. 2, no. 3, pp. 18–22, 2002.

[12] X. Hou, Y. Wang, and L.-P. Chau, “Vehicle tracking using deep sort
with low confidence track filtering,” in 2019 16th IEEE International
Conference on Advanced Video and Signal Based Surveillance (AVSS).
IEEE, 2019, pp. 1–6.

[13] G. H. Martınez, “Openpose: Whole-body pose estimation,” 2019.
[14] J. Yu, Y. Jiang, Z. Wang, Z. Cao, and T. Huang, “Unitbox: An advanced

object detection network,” in Proceedings of the 24th ACM international
conference on Multimedia, 2016, pp. 516–520.

[15] M. R. Ronchi and P. Perona, “Benchmarking and error diagnosis in
multi-instance pose estimation,” in The IEEE International Conference
on Computer Vision (ICCV), Oct 2017.

[16] W.-J. Kim and C.-H. Youn, “Lightweight online profiling-based config-
uration adaptation for video analytics system in edge computing,” IEEE
Access, vol. 8, pp. 116 881–116 899, 2020.

[17] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia, “Noscope:
Optimizing deep cnn-based queries over video streams at scale.” Proc.
VLDB Endow., vol. 10, no. 11, pp. 1586–1597, 2017.

[18] K. Hsieh, G. Ananthanarayanan, P. Bodik, S. Venkataraman, P. Bahl,
M. Philipose, P. B. Gibbons, and O. Mutlu, “Focus: Querying large video
datasets with low latency and low cost,” in 13th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 18), 2018,
pp. 269–286.

[19] S. Jain, G. Ananthanarayanan, J. Jiang, Y. Shu, and J. Gonzalez, “Scaling
video analytics systems to large camera deployments,” in Proceedings
of the 20th International Workshop on Mobile Computing Systems and
Applications, 2019, pp. 9–14.


