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Abstract

In this paper, we propose co-evolution models for both dynamics of opinions (people’s view on a particular
topic) and dynamics of social appraisals (the approval or disapproval towards each other). Opinion dynamics
and dynamics of signed networks, respectively, have been extensively studied. We propose a co-evolution
model, where each vertex i in the network has a current opinion vector vi and each edge (i, j) has a weight
wij that models the relationship between i, j. The system evolves as opinions and edge weights are updated
over time by the following rules:

• Opinion dynamics: The opinion of agent i is updated as a linear combination of its current opinion and
the weighted sum of neighbors’ opinions with coefficients in matrix W = [wij ].

• Appraisal dynamics: The appraisal wij is updated as a linear combination of its current value and the
agreement of the opinions of agents i and j. The agreement of opinion vi and vj is taken as the dot
product vi · vj .

We are interested in characterizing the long-time behavior of the dynamic model – i.e., whether edge weights
evolve to have stable signs (positive or negative) and structural balance (the multiplication of weights on any
triangle is non-negative).

Our main theoretical result solves the above dynamic system with time-evolving opinions V (t) =
[v1(t), · · · , vn(t)] and social tie weights W (t) = [wij(t)]n×n. For a generic initial opinion vector V (0) and
weight matrix W (0), one of the two phenomena must occur at the limit. The first one is that both sign
stability and structural balance (for any triangle with individual i, j, k, wijwjkwki ≥ 0) occur. In the special
case that V (0) is an eigenvector of W (0), we are able to obtain the explicit solution to the co-evolution equation
and give exact estimates on the blowup time and rate convergence. The second one is that all the opinions
converge to 0, i.e., limt→∞ |V (t)| = 0.

We also performed extensive simulations to examine how different initial conditions affect the network
evolution. Of particular interest is that our dynamic model can be used to faithfully detect community
structures. On real-world graphs, with a small number of seeds initially assigned ground truth opinions, the
dynamic model successfully discovers the final community structure. The model sheds lights on why community
structure emerges and becomes a widely observed, sustainable property in complex networks.

1 Introduction

We live in a continuously changing world in which social interactions dynamically shape who we are, how we
view the world and what decisions to make. Various social processes, naturally intertwined, operate on both
the properties of individuals and social ties among them. Social influence, for example, describes how people’s
behaviors, habits or opinions are shifted by those of their neighbors. Social influence leads to homophily (
similarity of node attributes between friends) and leaves traces in the network structure such as high clustering
coefficient and triadic closure (there are likely social ties among one’s friends).

Social influence and homophily, however, do not fully interpret the global network structure. One of the widely
observed structural properties in social networks is the community structure. Nodes within the same community
are densely connected and nodes from different communities are sparsely connected. Community detection is an
important topic in social network analysis and has been investigated extensively [51, 66, 47, 50, 48, 25, 68, 61, 49,
26, 37]. But why does community structure emerge and become a persistent feature? Are there social processes
that encourage or maintain the community structure?

In the literature, there have been a lot of studies of opinion dynamics, where people’s behaviors, habits or
opinions are influenced by those of their neighbors. Network models that capture social influence, such as French-
DeGroot model [21, 8], Friedkin-Johnsen model [23], Kulakowski et al. model [40, 44] naturally converge to global
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dynamics is motivated by tie dynamics that can be traced back to Schelling’s model of residential segregation [57].
In modern society, tie changes on Facebook [58] and Twitter [65, 38] can be easily triggered by disparities on their
opinions [35, 58], especially among the users who are most politically engaged.

Our goal is to analyze the evolution and in particular, the conditions that lead to sign stability and structural
balance – for any triangle with individual i, j, k, wijwjkwki ≥ 0. We call a network to reach strictly structural
balance if wijwjkwki > 0, ∀i, j, k. A structurally balanced network has two possible states: harmony, when
all edges are positive; and polarization, when there are two communities with only positive ties within each
community and negative ties across the two communities.

We show that with our dynamics model, W (t) evolves by the following matrix Riccati Equation [3]
W ′ = WWT + C, where C = V (0)V (0)T − W (0)W (0)T is a symmetric constant n × n matrix if W (0) is.
Further the opinion vector V (0) evolves by the differential equation V ′′(t) = 2|V |2 ·V −C ·V . Our main result is
to analyze the asymptotic behavior of V (t) and W (t) and prove structural balance at the limit. Our results can
be summarized in the following:

1. By analyzing the evolving equation for V (t), we show that either the network reaches strict structural
balance or |V (t)| → 0. To prove this limit behavior, one crucial observation is that the length of the opinion
vector |V (t)|2 is strictly convex, unless V (t) ≡ 0.

2. We show how to solve the general matrix Riccati equationW ′ =W 2+C,W (0) = B, for any parameter B,C.
In particular, the eigenvector corresponding to the largest eigenvalue of W (t) encodes the two communities
formed in the network; those with a positive value in the eigenvector versus those with a negative value in
the eigenvector. As a byproduct of the analysis of W (t), we also show that when V (0) is an eigenvector of
the initial matrix W (0), V (t) remains to be an eigenvector of W (t) for and structural balance must occur in
finite time. In this case we can write down exact evaluations on the blowup time and the rate convergence.

The evolving of W (t) by W ′ =WWT +C is strictly a generalization of the dynamic structural balance model
by Marvel et al. [45]. Their model captures the dynamics of edge appraisals by W ′ =W 2 and does not consider
user opinions. The behavior of our model becomes much more complex, as the initial user opinions are factored
into the system dynamics through the matrix C.

We also performed extensive simulations with different initial conditions and graph topology. We examined the
network evolution on the final convergence state (harmony v.s., polarization) and convergence rate. We observed
that a higher network density or a higher initial opinion magnitude, empirically, speeds up the convergence rate.

We tested our dynamic model on two real world graphs (Karate club graph and a political blog graph [4]).
Both networks are known to have two communities with opposing opinions. A small number of seeds, randomly
selected, are assigned with ground truth opinions and all other nodes start neural. The network evolution can
successfully detect the final community structure and recover the ground truth with good accuracy. Apart from
being a transparent and explainable label propagation algorithm, the model sheds lights on why community
structure emerges and becomes a widely observed, sustainable property in complex networks.

2 Related Work

2.1 Opinion Dynamics and Social Influence Opinions in a sociological viewpoint capture the cognitive
orientation towards issues, events or other subjects, and mathematically represent signed attitudes or certainties
of belief. Opinion dynamics is an extensively studied topic about how opinions change in a network setting with
social influence from neighbors. One of the first models of opinion dynamics, French-DeGroot model [21, 8],
considers a discrete time process of opinion {v1, v2, · · · , vn} for a group of n individuals. An edge (i, j) carries a
non-negative weight wij ≥ 0. The opinion of node i at time t+ 1 is updated by

vi(t+ 1) =
∑

j

wijvj(t).

The weight matrix W = [wij ] is taken as a stochastic matrix. The dynamics can be written as V (t+1) =WV (t).
The continuous-time counterpart is called the Abelson’s model [1] where the dynamics is defined by

(2.1)
dV (t)

dt
= −LV (t),
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where V (t) = (v1(t), v2(t), · · · vn(t))T and L is the Laplacian matrix L = I −W . Opinions following the French-
DeGroot model or the Abelson’s model typically converge unless the network is disconnected or there are stubborn
nodes (with wii = 1).

The most popular opinion dynamics model is probably the Friedkin-Johnsen model [23]. It takes a stochastic
matrixW as the influence model, and a diagonal matrix Λ = diag(λ1, · · · , λn) where λi ∈ [0, 1] is the susceptibility
of individual i to social influence. The opinions of the individuals are updated by the following process

V (t+ 1) = ΛWV (t) + (I − Λ)u,

where u is a constant vector of the individuals’ prejudices and is often taken as the initial opinion V (0). When
Λ = I the model turns to French-DeGroot model.

Most of the literature on these two models assume a fixed weight matrixW and prove asymptotic convergence
under favorable assumptions [24]. There have been extensions when W is a time-varying matrix, but W (t) is still
independent of V (t) (e.g., [14]).

A significant deviation from the above family considers a time-varying matrix W , by incorporating the
principle of homophily, that similar individuals interact more than dissimilar ones. This is called the bounded
confidence model [46]. A few such models (Hegselmann- Krause (HK) model [39, 28], Deffuant and Weisbuch [19])
introduced a fixed range of confidence d > 0: individual i is insensitive to opinions that fall outside its confidence
set Ii = [vi − d, vi + d], and the opinion vi is only updated by the average opinion of those opinions within Ii. In
other words, the matrixW is derived from the set of opinions at time t and thus co-evolves with the opinions. This
model generates situations when the individuals converge to a set of different opinions, and has been extended to
the multi-dimensional setting [28].

All models above have only considered the case of positive influence, that the interactions of individuals
change their opinions towards each other. It has been argued in both social settings and many physical systems
that there is negative or repulsive influence (repulsive interactions in biological systems [17] or collision avoidance
in robot swarm formation [55]). Abelson [2] argued that any attempt to persuade a person may sometimes shift
his or her opinion away from the persuader’s opinion, called the boomerang effect [5, 34]. Bhawalkar et al. [13]
presented game-theoretic models of opinion formation in social networks by maximizing agreement with friends
weighted by the strength of the relationships. Thus interactions between individuals with similar opinions move
their opinions closer; interactions between individuals with opinions that are very different shift their opinions
away from each other. Here the edge weights are fixed. Many models have included negative ties but they are
still awaiting rigorous analysis [56, 11, 42, 43, 27]. The most notable work in this direction is by Altafini [7, 6].
The model starts to be similar to Abelson’s model in Equation (2.1) with a fixed weight matrix W except that
the weights in W do not need to be non-negative. The system is shown to be Lyapunov stable [53] and studies
have focused on the initial conditions of W for the system to converge to harmony or polarization. The matrix W
is assumed to be either static or, in very recent studies [52, 53, 31], time-varying (but independent of the opinion
changes). The negative influence is closely related to signed networks and structural balance theory, which will
be discussed next.

2.2 Structural Balance and Signed Networks Notice that the structural balance theory only describes
the equilibrium state and does not provide any model on evolution or dynamics – what happens when a network
has unstable triangles? Follow up work proposed a few models, that can be categorized by discrete models or
continuous models – depending on whether the appraisal on a social tie takes binary values {+1,−1} or a real
number. Antal et al. [8] considered the discrete model where the sign of an edge is flipped if this produces more
balanced triangles than unbalanced ones. The balanced graph is clearly a stable state but the dynamics also has
many local optima called jammed states [8, 45]. A similar model is used in Andreida et al. [60]. Samin et al. [10]
considered removing the minimum number of edges to make the graph balanced, which is an NP-hard problem.

In the continuous setting, the influence-based model [44, 40] describes an influence process on a complete
graph, in which an individual i updates her appraisal of individual j based on what others positively or negatively
think of j. In other words, let us use wij to describe the type of the social tie between two individuals i, j. wij > 0
if i, j are friends and < 0 if they feel negative about each other. The absolute value of wij describes the magnitude
of the appraisal. The update rule says that the update to wij will take value

(2.2)
dwij

dt
=

∑

k

wik · wkj .
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Specifically, when wik and wkj have the same sign, the value of wij is guided to the positive direction; when wik

and wkj have opposite signs, the value of wij is guided to the negative direction. Both cases try to enforce a
balanced triangle on {i, j, k}. Empirically, it has been observed that for essentially any initial value of W , as the
matrix where the (i, j) element is wij , the system reached a balanced pattern in finite time. In [44], Marvel et al.
proved that for a random initial matrix W the system reaches a balanced matrix in finite time with probability
converging to 1 as n→ ∞. They also characterized the converged value and its relationship to the initial value.

In a recent paper [16], Cisneros-Velarde et al. considered a pure-influence model, where the self-appraisal
(such as wii) is taken out of Equation (2.2) to be a more faithful interpretation of Heider’s structural balance.
They proved that when W is symmetric their continuous-time dynamic model is exactly the gradient flow of an
energy function called dissonance [45], defined as

−
∑

[ij],[jk],[ki]∈E

wij · wjk · wki.

Dissonance characterizes the degree of violation to Heider’s structural balance axioms in the current network. The
global minimum of this energy function corresponds to signed networks that satisfy structural balance in the case
of real-values appraisals. When the initial matrix W is symmetric the authors also provided characterizations of
the critical points of the dissonance function (aka the equilibrium states of the dynamic model).

The discussions of opinion dynamics and dynamics with structural balance, so far, have focused on node
opinion changes or link appraisal changes, separately. Holme and Newman [33] presented a simple model combing
the two but did not present theoretical analysis. There is little work on combining both dynamics into a co-evolving
model, which is the focus of this paper.

3 Co-Evolution Model

Suppose there are n individuals, each one with its own opinion vi ∈ R. Define the opinion vector V =
(v1, v2, . . . , vn)

T ∈ R
n. The influence model among the n individuals is characterized as an n×n matrixW = [wij ]

with entries taking real values. A positive value of wij indicates a positive social influence between i, j, where
the opinions under the influence become similar. A negative value of wij means a negative influence and their
opinions under influence become dissimilar. In our theoretical study, we consider the case of a complete graph.
The evolution model that we introduce works for any network. In our simulations we also evaluate networks and
opinion co-evolution on a general graph.

Both the opinions of individuals and the influence matrix are dynamically evolving. Assume that the initial
opinion vector is V (0) and the initial influence matrix is W (0). In this paper we assume the initial weight matrix
W (0) is symmetric, i.e., wij(0) = wji(0), ∀i, j. Define the opinion vector and influence matrix at time t, in a
discrete-time model, as V (t) and W (t) respectively. We propose the dynamic system governing the evolution of
the relationship over integer time:

(3.3)

{

V (t+ 1) = V (t) +W (t)V (t)
W (t+ 1) =W (t) + V (t)V (t)T .

In the first equation, the opinion of an individual i is shifted by the weighted sum of its neighbors’ opinions, with
coefficients in the influence matrix W . In the second equation, the appraisal value wij between two individuals
i, j is updated by the differences of opinions vi, vj . If vi, vj generally agree (with a positive dot product), wij

moves in the positive direction; otherwise moves in the negative direction.
In a continuous-time model, the dynamics are driven by the following ODE:

(3.4)

{

V ′ =WV
W ′ = V V T .

where V ′ and W ′ is the coordinate-wise time derivative of V and W .
From this point on, we focus on solving the continuous time model. First we present a couple of basic

properties of Equation (3.4). This means we can focus on solving the system defined by Equation (3.4) without
losing generality. The detailed proof is provided in Appendix A.

Lemma 3.1.
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1. If [V (t),W (t)] solves Equation (3.4) and U is an orthogonal matrix, then [UTV, UTWU ] solves the same
Equation (3.4) with initial condition UTV (0) and UTW (0)U . In particular, W (0) is symmetric if and only
if UTW (0)U is.

2. If W (0) is symmetric, then W (t) remains symmetric for all t.

3. If a, b > 0 are positive constants, then the equation

{

V ′
1 = aW1V1
W ′

1 = bV1V
T
1

can be reduced to Equation (3.4) by taking V =
√
abV1 and W = aW1.

The main objective of this paper is to analyze how this system evolves. In particular, we care about system
evolution to reach sign stability for wij , ∀i, j, and vi, ∀i, as well as structural balance –

lim
t→T

wijwjkwki ≥ 0,

for all indices i, j, k where [0, T ) is the maximum interval on which the solution W (t) exists. Notice that in the
classical structural balance theory, the two types of stable triangles – with edge signs as either all positive (+1)
or have two negative (−1) and one positive – satisfy this property.

The evolution of W (t) and V (t) is described in the following two lemmas.

Lemma 3.2. With the co-evolution model as in Equation (3.4), the dynamics of matrix W follows the following
Matrix Riccati Type Equation

W ′ =WWT + C,

where C = V (0)V (0)T −W (0)W (0)T is a symmetric constant n × n matrix. If W (0) is symmetric, then W (t)
satisfies the Riccati equation

(3.5) W ′ =W 2 + C.

Proof. We look at W ′′:

W ′′ = (W ′)′ = (V V T )′ = V ′V T + V (V ′)T =WV V T + V (WV )T =WV V T + V V TWT

=WW ′ +W ′WT =W (WT )′ +W ′WT = (WWT )′.

In the second last step, we use the equationW ′ = (WT )′. This is becauseW ′(t) = V (t)V (t)T is always symmetric.
Thus, W ′ = WWT + C, where C is a constant matrix C = W ′(0) −W (0)W (0)T = V (0)V (0)T −W (0)W (0)T .
Notice that C is always symmetric.

If W (0) is symmetric, then W (t) is always symmetric (by Lemma 3.1 (2)) and WWT =W 2.

Remark that matrix C in our setting is a special symmetric matrix. Specifically, C+W (0)W (0)T = V (0)V (0)T

has rank one. This property turns out to be useful for characterization of the system behavior.

Lemma 3.3. The evolution of V (t) satisfies

(3.6) V ′′(t) = 2|V |2 · V − C · V

Proof. Here, we use W 2 =W ′ − C (Equation (3.5)), W ′ = V V T and V ′ =WV .

V ′′ = (V ′)′ = (WV )′ =W ′V +WV ′ = V V TV +WWV = |V |2V +W 2V = |V |2V + (W ′ − C)V

= |V |2V + (V V T − C)V = 2|V |2V − CV.
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4 Analysis of the Opinion and Social Tie Evolution

Our analysis has two parts. First we focus on the opinion evolution model (Equation (3.6)). Here we provide
analysis of the asymptotic behavior for V (t). Then we study the social tie evolution (Equation (3.5)) forW (t). By
solving Riccati equation explicitly for W (t) we are able to provide more detailed characterization of the evolving
behavior.

4.1 Analysis of Opinion Evolution By analyzing the opinion evolution (Equation (3.6)), our main result is
the following.

Theorem 4.1. Let [0, T ) be the maximum interval of existence for the solution (V (t),W (t)) of the differential
equation in Equation (3.4). For generic initial values V (0) and W (0), either

1. structural balance condition limt→T wijwjkwki > 0, ∀i, j, k holds, or

2. T = +∞, limt→∞ |V (t)| = 0 and limt→∞ V ′(t) = 0.

Furthermore, in the first case, the normalized opinion vector V (t)
|V (t)| converges, i.e., limt→T

V (t)
|V (t)| exists.

The theorem says that structural balance is always achieved, unless the opinions converge to a zero vector, in
which case the entire network becomes neutral. We can consider the second case as a boundary case of structural
balance.

The rest of the subsection will focus on proving this theorem. An important observation is that the norm of
V , |V (t)|2, is a convex function. The detailed proof is in Appendix B.

Lemma 4.1. The length function ϕ(t) := V TV = |V (t)|2 is strictly convex and ϕ′′(t) > 0 unless V (t) ≡ 0.

Now, let us understand Equation (3.6) using coordinates. Since the matrix C is symmetric, by the orthogonal
diagonalization theorem, there exists an orthogonal matrix

U = [β1, · · · , βn] = [uij ]n×n

such that Cβi = aiβi, i = 1, 2, · · · , n, where a1, · · · , an are eigenvalues of C. By our assumption that
C = V (0)V (0)T −W (0)W (0)T , the eigenvalues a1, · · · , an are non-positive except for one. So we may assume
a1 ≥ 0 and a2, · · · , an ≤ 0. Because β1, · · · , βn form an orthonormal basis of Rn, we can write

V (t) =
n
∑

i=1

λi(t)βi = Uλ, where λ = [λ1, · · · , λn]T .

This implies that V ′(t) =
∑n

i=1 λ
′
i(t)βi, V

′′(t) =
∑n

i=1 λ
′′
i (t)βi, |V (t)|2 =

∑n
j=1 λ

2
j (t) and C · V =

∑n
i=1 aiλiβi.

Therefore, Equation (3.6) becomes

n
∑

i=1

λ′′i (t) · βi =
n
∑

i=1

(2(

n
∑

k=1

λ2k)− ai)λi · βi

Since β1, · · · , βn are independent, we obtain the system of ODE with λ = [λ1, · · · , λn]T in the form

(4.7) λ′′i (t) = (2

n
∑

k=1

λ2k − ai)λi(t), i = 1, 2, · · · , n.

Denote W = [wij(t)]. Then W
′ = V · V T implies

W ′ = U · λ · λT · UT

Therefore, w′
ij(t) =

∑n
k,l=1 uikujlλkλl and wij(t) =

∑n
k,l=1(

∫ t

0
λk(s) · λl(s)ds)uikujl + wij(0).

Our next goal is to show the following proposition,
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Proposition 4.1. If T < +∞ or if T = +∞ and limt→T |V (t)| = L > 0, then there exists one term ψhh among

ψkl(t) =
∫ t

0
λk(s)λl(s)ds which has the maximum growth rate as t→ T and limt→T ψhh(t) = +∞.

Assuming the proposition 4.1, Theorem 4.1 follows. Indeed, the leading term in wij(t) is uihujhψhh as t→ T .
Therefore the sign of wij is the same as the sign of uihujhψhh. The leading term of wijwjkwki as t→ T is

u2ihu
2
jhu

2
khψ

2
hh ≥ 0.

This shows that structural balance occurs eventually for generic initial values. Here the generic condition is used
to ensure that all entries uij of the orthogonal matrix [uij ] are not zero and ψhh is the unique term with the
maximum growth rate. Finally, if T = ∞ and limt→∞ |V (t)| = 0, then by Corollary B.1, limt→∞ V ′(t) = 0.

The proof for proposition 4.1 is fairly technical and can be found in Appendix B.

4.2 Analysis of Social Tie Evolution The analysis on the evolution of V in the previous section shows
convergence. To further understand the community formed at the limit of convergence, we need to study the
evolution of W . The following theorem explains the reason behind the appearance of structure balance when at
least one eigenvalue of W (t) tends to infinity. This was proved in [45]. We include the statement here and the
proof in Appendix C.1 for completeness.

Theorem 4.2. ([45]) Suppose W (t), t ∈ [0, T ), is a continuous family of symmetric matrices such that

1. W (t) has a unique largest eigenvalue, denoted by β1(t), which tends to infinity as t→ T ,

2. all eigenvectors of W (t) are time independent, and

3. all components of the β1(t) eigenvector are not zero.

Then
wijwjkwki > 0, ∀i, j, k, i 6= j, j 6= k, i 6= k,

for all time t close to T , i.e., the structural balance of the whole graph is satisfied.
If (2) does not hold, we have

wijwjkwki ≥ 0, ∀i, j, k, i 6= j, j 6= k, i 6= k.

Furthermore, the two antagonistic communities are given by U+ = {i ∈ V |ui > 0} and U− = {i ∈ V |ui < 0}
where u = [u1, ..., un]

T is a β1(t) eigenvector. All edges connecting vertices within the same community are
positive while edges connecting two vertices in different communities are negative. When one of U+, U− is empty,
the network has only one community.

The model in [45] is the Riccati equation W ′ = W 2, whose solution is W (t) = W (0)(1 −W (0)t)−1. As a
consequence, Marvel et. al. [45] showed that structure balance occurs in the Riccati equationW ′ =W 2 for generic
initial parameterW (0) with a positive eigenvalue at finite time. Our model strictly generalizes the previous model
and consider how the initial opinions may influence the system evolution. In the following we show how to solve
the general Riccati equation and also when an eigenvalue goes to infinity.

With most of the details in the Appendix, we carry out rigorous analysis of the general form of the matrix
Riccati equation as stated below.

(4.8)

{

W ′ =W 2 + C
W (0) = B.

For general matrices B,C we can solve for W (t) as shown in the following theorem. The proof details can be
found in Appendix C.2.

Theorem 4.3. The solution W (t) is given by the explicit formula that W (t) = −Z(t) · Y (t)−1, where

Y (t) =

∞
∑

n=0

(−1)nt2nCn

(2n)!
+

∞
∑

n=0

(−1)n+1t2n+1CnB

(2n+ 1)!
(4.9)

Z(t) =

∞
∑

n=0

(−1)n+1t2nCnB

(2n)!
+

∞
∑

n=0

(−1)n+1t2n+1Cn+1

(2n+ 1)!
.(4.10)
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In our co-evolution model, B = W (0) is assumed to be symmetric. Thus C is also symmetric. This allows
us to simplify the solution further, as shown in Appendix C.3. Then we analyze a special case when BC = CB.
In this case we can characterize the conditions when structural balance is guaranteed to occur, with details in
Appendix C.1, C.4, and C.5. Specifically, using a basic fact that two commuting symmetric matrices can be
simultaneously orthogonally diagonalized [32], we can get the following theorem where the conditions of the
eigenvalues of B,C for structural balance are characterized:

Theorem 4.4. Suppose W (t) solves the Riccati equation W ′ = W 2 + C, W (0) = B where B,C are symmetric
with BC = CB. Then eigenvalues of W (t) converge to elements in (−∞,∞] as t → T ; meanwhile there is sign
stability, i.e., limt→T wij(t) ∈ [−∞,∞] exists for all i, j. If U is an orthogonal matrix such that

UTCU = diag(a21, · · · , a2k,−d21, · · · ,−d2l , 0, · · · , 0)
UTBU = diag(λ1, · · · , λk, µ1, · · · , µl, δ1, · · · , δh).

where ai, dj > 0, then W (t) is given by the following explicit function,

(4.11)

W (t) =U · diag( a1 sin (a1t) + cos (a1t)λ1

cos (a1t)− 1
a1

sin (a1t)λ1
, · · · , ak sin (akt)) + cos (akt)λk

cos (akt)− 1
ak

sin (akt)λk
,

− d1 sinh (d1t)− cosh (d1t)µ1

cosh (d1t)− 1
d1

sinh (d1t)µ1

, · · · ,− dl sinh (dlt)− cosh (dlt)µl

cosh (dlt)− 1
dl
sinh (dlt)µl

,

δ1
1− tδ1

, · · · , δh
1− tδh

) · UT .

Further, structural balance
lim
t→T

wijwjkwki ≥ 0

occurs in the finite time for W (t) if W (t) has an unique largest eigenvalue and one of the following conditions
holds:

1. There exists some δi > 0,

2. There exists some ai > 0,

3. there exists some µi > di.

In our co-evolution model, BC = CB happens when V (0) is a eigenvector of W (0), an interesting initial
condition. To see that, recall B = W (0), C = V (0)V (0)T − W (0)W (0)T , and W (0) = W (0)T . To check if
BC = CB, we just need to check if W (0)V (0)V (0)T = V (0)V (0)TW (0) and apply the following Lemma (Proof
in Section C.5).

Lemma 4.2. Suppose A is a symmetric matrix and v is a non-zero column vector. Then AvvT = vvTA is
equivalent to Av = αv, i.e., v is an eigenvector of A.

Further, the equation in our co-evolution model, i.e., Equation (3.5), satisfies C + B2 = V (0)V (0)T . Notice
that the right-hand side V (0)V (0)T is an n × n matrix with rank one. This property actually ensures that the
conditions characterized in Theorem 4.4 are met and thus structural balance is guaranteed. At the same time,
the convergence rate is O( 1

|T−t| ), which is proved by Lemma C.2 in Appendix C.4.

Corollary 4.1. For Equation (3.4), if V (0) 6= 0 is an eigenvector of W (0), then V (t) remains to be an
eigenvector of W (t) for all t and structural balance must occur in finite time for W (t).

If V (0) = 0, the system stays at the fixed point with V remaining zero and the weight matrix unchanged.
The case when V (0) is an eigenvector of W (0) includes a few interesting cases in practice. When W (0) = 0

or W (0) = I, this models a group of individuals that start as complete strangers with uniform self-appraisals.
Their non-homogeneous initial opinions V (0) may drive the network to be segmented over time. Finally the fact
that V (t) remains an eigenvector of W (t) for all t follows from Equation (C.7) in Appendix C.
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A Model

Lemma 3.1.

1. If [V (t),W (t)] solves Equation (3.4) and U is an orthogonal matrix, then [UTV, UTWU ] solves the same
Equation (3.4) with initial condition UTV (0) and UTW (0)U . In particular, W (0) is symmetric if and only
if UTW (0)U is.

2. If W (0) is symmetric, then W (t) remains symmetric for all t.

3. If a, b > 0 are positive constants, then the equation

{

V ′
1 = aW1V1
W ′

1 = bV1V
T
1

can be reduced to Equation (3.4) by taking V =
√
abV1 and W = aW1.

Proof. Part (1) follows from standard computation and that UUT = UTU = I for an orthogonal matrix U . Also,
a matrix A is symmetric if and only if UTAU is symmetric.

For part (2), note that the equationW ′ = V V T implies thatW ′(t) is always symmetric, i.e., W ′(t) =W ′(t)T .
Now if W (0) is symmetric, then W (t) and WT (t) are solutions of the same differential equation W ′(t) =W ′(t)T

with the same initial value. By the uniqueness theorem of the solution of ordinary differential equation,
W (t) =WT (t).

Part (3) follows by rewriting Equation (3) as

{

(
√
abV1)

′ = (aW1)(
√
abV1)

(aW1)
′ = (

√
abV1)(

√
abV1)

T .

Take V =
√
abV1 and W = aW1. This becomes Equation (3.4).

B Evolution of Opinion Dynamics

Lemma 4.1. The length function ϕ(t) := V TV = |V (t)|2 is strictly convex and ϕ′′(t) > 0 unless V (t) ≡ 0.

Proof. Recall that ϕ(t) = |V (t)|2.

ϕ′(t) = (V ′)TV + V TV ′ = (WV )TV + V TWV = 2V TWV.

Therefore,

ϕ′′(t) = 2((V ′)TWV + V TW ′V + V TWV ′) = 2((WV )TWV + V TV V TV + V TWWV )

= 2(|WV |2 + |V |4 + V TWTWV ) = 2(2|WV |2 + |V |4) = 2(2|V ′(t)|2 + |V (t)|4) ≥ 0
(B.1)

Now if ϕ′′(t0) = 0, then V ′(t0) = V (t0) = 0 by Equation (B.1). This shows that V (t) is the solution of the ODE
(Equation (3.6)) with the initial condition V (t0) = V ′(t0) = 0. But 0 is also the solution. Therefore, by the
uniqueness of solution of ODE with initial value, V (t) ≡ 0. This ends the proof.

Corollary B.1. If V (t) solves Equation (3.6), then

(B.2) |V ′(t)|2 = |V (t)|4 − V TCV.

In particular, if limt→T V (t) = 0, then limt→T V
′(t) = 0.

Indeed, by (|V (t)|2)′ = 2V TV ′ and Equation (3.6) that V ′′ = 2|V |2V − CV , we have (|V (t)|2)′′ =
2(V ′)TV ′ +2V TV ′′ = 2|V ′(t)|2 +2V T (2|V |2V −CV ) = 2|V ′(t)|2 +4|V |4 − 2V TCV. Comparing it with Equation
(B.1), we see the corollary holds. The last statement of the corollary follows from Equation (B.2).
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We now prove Proposition 4.1 using several lemmas. For simplicity, if f(t) is a function defined on an open
internal (a, b) (here b may be +∞), we say f has property P (e.g., positive, non-negative, monotonic, convex
etc) near b if there exists ε > 0 such that the restriction of f on the interval (b − ε, b) (if b < +∞) or ( 1ε ,∞) (if
b = +∞) has property P . For example, t4 + 3t3 − 9t2 + t − 5 is positive and convex near +∞. The notation
Ck(a, b) stands for all functions f(t) for which f, f ′, · · · , f (k) are continuous on the interval (a, b).

Lemma B.1. Suppose f ∈ C2(a, b) and p(t) > 0 on (a, b) such that

(B.3) f ′′(t) = p(t)f(t) on (a, b)

and f(t) is not identically zero on any sub-interval. Then

1. f has at most one root in (a, b).

2. f has the same sign near b (i.e., always positive or negative).

3. f is monotonic near b.

4. the limit limt→b− f(t) exists (the limit may be ±∞)).

Furthermore, if g′′(t) ≥ q(t)g(t) and q ≥ 0 on (a, b), then either g(t) > 0 near b or g(t) ≤ 0 near b.

Proof. To see part (1), if f has two roots in (a, b), then since f is not identically zero on any interval, there exist
two adjacent roots f(c) = f(d) where c < d and f has no roots in the open interval (c, d). By replacing f by −f if
necessary, we may assume that the restriction function f |(c,d) > 0. Then by Equation (B.3), f ′′(t) = p(t)f(t) > 0
on (c, d). Therefore f |[c,d] is a convex function which has two minimum values at c, d. This implies that f |[c,d] ≡ 0
which contradicts the assumption.

Part (2) follows from the part (1) easily.
To see part (3), we first show that f ′(t) has at most two roots in the open interval (a, b). Suppose otherwise

that f ′(t) has three roots in (a, b). Then by the Mean Value Theorem, f ′′(t) has two roots in (a, b), one in each
interval bounded by roots of f ′(t). But f ′′(t) = p(t)f(t) with p(t) > 0 says f and f ′′ have the same roots. This
implies that f has two roots in (a, b) which contradicts the part (1). Since f ′ has only two roots, it follows that
f ′(t) > 0 near b or f ′(t) < 0 near b. Therefore f is monotonic near b.

Part (4) follows from the well-known theorem that if h(t) is monotonic in an open interval (a, b), then the
limit limt→b− h(t) always exists (limit value of the limit may be ±∞).

Finally, to prove the last statement, we consider two cases. In the first case, there are no sequence {rm} of
roots of g such that limm→∞ rm = b. Then clearly g(t) > 0 or g(t) < 0 near b. In the remaining case, we have an
increasing sequence of roots, r1 < r2 < · · · < rm < · · · of f such that limm→∞ rm = b. We claim that g|[r1,b) ≤ 0.
Suppose otherwise that g(t0) > 0 for some t0 ∈ (r1, b). Let c (respectively d) be the largest (respectively smallest)
root of g such that c < t0 (respectively d > t0). By the assumption, both c and d exist. Furthermore c < t0 < d
and g has no root in the interval (c, d). Therefore, due to g(t0) > 0, g|(c,d) > 0. By the condition g′′ = qg, with
q ≥ 0, we see that q′′|(c,d) ≥ 0. Therefore g(t) is convex on [c, d] and has two minimum values 0(= g(c) = g(d)).
But that implies g|[c,d] = 0 and contradicts g(t0) > 0.

Corollary B.2. Suppose λ(t) = [λ1(t), · · · , λn(t)]T solves the ODE Equation (4.7) and a1 ≥ 0, a2, · · · , an ≤ 0
on the maximum interval [0, T ). Then

1. limt→T |V (t)|2 = limt→T

∑n
k=1 λ

2
k(t) exists.

2. For all i, limt→T λ
2
i (t) exists.

3. Assuming that limt→T |V (t)|2 = ∞, for i 6= j, either λ2i (t) ≥ λ2j (t) near T or λ2i (t) ≤ λ2j (t) near T .

4. For limt→T |V (t)|2 <∞, then all limits limt→T λ
2
k(t) are finite and can be ordered.

Proof. For (1), by Lemma 4.1, φ(t) = |V (t)|2 is convex in [0, T ). Hence φ(t) is monotonic near T and limt→T φ(t)
exists.
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For (2), let us assume V (t) is not identically zero. Otherwise the result holds trivially. If i ≥ 2, then
by Equation (4.7), ai ≤ 0 and Lemma 4.1, we have 2|V (t)|2 − ai > 0 on [0, T ) and λ′′i (t) = pi(t)λi(t),
where pi(t) = 2|V (t)|2 − ai > 0. Therefore by Lemma B.1, limt→T λ

2
i (t) exists. If i = 1, we have

λ21(t) = |V (t)|2−∑n
k=2 λ

2
k(t). Now if limt→T |V (t)|2 < +∞, then limt→T λ

2
k(t) < +∞, for k = 2, · · · , n. Therefore,

limt→T λ
2
1(t) = limt→T (|V (t)|2 −∑n

k2
λ2k) exists and is finite. If limt→T |V (t)|2 = +∞, then 2|V (t)|2 − a1 > 0 for

t near T . The equation λ′′1(t) = (2|V (t)|2 − a1)λ1(t) is of the form λ′′1(t) = p1(t)λ1(t) where p1(t) > 0 near T .
Therefore by Lemma B.1(4), limt→T λ

2
1(t) exists.

For (3), since λ2i ≥ λ2j is the same as |λi| ≥ |λj | and if λi solve Equation (4.7) so is −λi(t). The assumption

that limt→T |V (t)|2 = ∞ implies |V (t)|2 − ak ≥ 0 for t near T . We may assume, using Lemma B.1(2), that
λi(t) ≥ 0 and λj(t) ≥ 0 near T . Our goal is to show, under the assumption that λi, λj ≥ 0 near T , either λi ≥ λj
or λi ≤ λj near T . Without loss of generality, we may assume that aj ≥ ai and ai ≤ 0 (Note a1 ≥ 0 and
a2, · · · , an ≤ 0). Then using Equation (4.7), we have

(λi − λj)
′′ = λ′′i − λ′′j = (2|V (t)|2 − ai)λi − (2|V (t)|2 − aj)λj

= (2|V (t)|2 − ai)(λi − λj) + (aj − ai)λj ≥ (2|V (t)|2 − ai)(λi − λj).

Since aj − ai ≥ 0 and λj ≥ 0. Now due to ai ≤ 0, 2|V (t)|2 − ai ≥ 0. Therefore (λi − λj)
′′ ≥ q(t)(λi − λj) when

q ≥ 0 near T . By the last proof of Lemma B.1, we see either λi > λj or λi ≤ λj near T . This ends the proof.
Part (4) follows from part (2) and the assumption which implies limt→T λ

2
k are finite real numbers. Therefore,

we can order them.

Now, let us prove Proposition 4.1.

Proposition 4.1. If T < +∞ or if T = +∞ and limt→T |V (t)| = L > 0, then there exists one term ψhh among

ψkl(t) =
∫ t

0
λk(s)λl(s)ds which has the maximum growth rate as t→ T and limt→T ψhh(t) = +∞.

Proof. There are two cases depending on the maximum interval of existence [0, T ) being finite, i.e., T < +∞ or
infinite [0,+∞), i.e., T = +∞.

Case 1. T < +∞. Recall the basic global existence of solution to ODE [62].

Theorem B.1. (Existence) Suppose F (t, x) ∈ C1(R × R
m) and [t0, T ) is the maximum interval of existence of

the solution x(t) to x′(t) = F (t, x(t)) with x(t0) = x0. Then the path {(t, x(t))|t ∈ [t0, T )} does not lie in any
bounded set in R× R

n.

Now, for T < +∞, Theorem B.1 implies limt→T |V (t)| = +∞. Indeed, if limt→T |V (t)| < +∞, then V (t) is

bounded on [0, T ). This implies W ′(t) = V (t) · V (t)T is bounded. but W (t) = W (0) +
∫ t

0
W ′(s)ds. Therefore

W(t) is bounded. This implies the solution (V (t),W (t)) for t ∈ [0, T ) lies in a bounded set in R
n × R

n×n which
contradicts Theorem B.1.

Now limt→T |V (t)|2 = limt→T

∑n
j=1 λ

2
j (t) = +∞ implies, by Corollary B.2(2), there exists i for which

limt→T λ
2
i (t) = +∞. Furthermore, by Corollary B.2(3), there exists an index h for which λ2h(t) ≥ λ2j (t) near

T for all j. Thus λ2h(t) has the largest growth rate tending +∞ as t→ T .
For generic initial value V (0) and W (0), λ2h(t) is the unique term of maximum growth rate. Therefore, we

see that part (1) of Therem 4.1 holds.

Case 2. If T = +∞, let us assume that the limit limt→T |V (t)| = L > 0 and show that structural balance
occurs eventually.

By Corollary B.2, we may assume that λ2h(t) ≥ λ2j (t) for t near ∞ for all j (if limt→T |V (t)|2 = ∞) or

limt→T λ
2
h(t) = max{limt→T λ

2(t)|i = 1, ..., n} <∞. Let L′ = limt→T λ
2
h(t). Then L

′ > 0 since L > 0. In the case
of limt→T |V (t)|2 = ∞ < ∞, for generic initial value, we may assume that limt→T λ

2
h(t) is the unique maximum

value among all limt→T λ
2
i (t), i = 1, ..., n. Then we see that

∫ t

0

|λ2h(s)|ds ≥ (t− t0)L
′′ + c0

for some constants L′′ > 0 and c0. It tends to +∞ as t→ ∞.
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Furthermore, by the Cauchy inequality,

(

∫ t

0

λi(s)λj(s)ds)
2 ≤

∫ t

0

λ2i (s)ds ·
∫ t

0

λ2j (s)ds

and
∫ t

0

λ2i (s)ds ≤
∫ t

0

λ2h(s)ds+ c1

for t large, we see the growth rate of
∫ t

0
λi(s)λj(s)ds is at most that of

∫ t

0
λ2h(s)ds as t→ ∞. This shows, by the

same argument, that the growth rate of wij(t) is dominated by uihujh
∫ t

0
λ2h(s)ds. Therefore, structural balance

occurs again for generic initial values.
Finally, we prove that in Case 1 or in Case 2 that T = ∞ such that limt→∞ |V (t)| = L > 0, the limit

limt→∞ V (t)/|V (t)| exists.
By corollary B.1 (2), limt→T λi exists in [−∞,∞]. Therefore, if limt→∞ |V (t)| = L is a finite positive

number, then limt→∞ V (t) exists in R
n − {0}. Hence limt→∞ V (t)/|V (t)| exists. In the remaining cases, we have

limt→T |V (t)| = ∞. In this case, by the argument above, we see that λi(t) has the same sign near T . We claim
that the function λi/λj is monotonic near T . Indeed, by the quotient rule for derivative, the sign of derivative of
λi/λj is the same as that of h(t) = λ′iλj −λ′jλi. Now h′(t) = λ′′i λj −λ′′j λi = (2|V |2−ai)λiλj − (2|V |2−aj)λjλi =
(aj − ai)λiλj . Therefore, either h

′(t) has the same sign for t near T (when ai 6= aj) or h
′(t) = 0 (when ai = aj).

If h′(t) = 0, then λi/λj is a constant near T and the claim follows. If h′(t) has the same sign near T , then h(t)
is strictly monotonic near T . Therefore, h(t) has the same sign for t near T . As a consequence we see that λi/λj
is a monotonic near T . In particular, the limit limt→T λi(t)/λj(t) exists. Since limt→T

∑n
k=1 λk(t)

2 = ∞, this

implies the limit limt→T
λi(t)√∑
n
j=1

λj(t)2
= limt→T

±1√∑
n
j=1

λj(t)2/λi(t)2
exists for any index i. The last statement is

the same as that limt→T V (t)/|V (t)| exists.
This ends the proof of Theorem 4.1.

Corollary B.3. Suppose limt→T |V (t)| = ∞. Then A := limt→T W (t)2/|V (t)|2 exists and limt→T V/|V | is an
eigenvector of A associated to the eigenvalue one.

To see this, let v be limt→T V/|V |. From W 2 = V V T − C and limt→T |V (t)| = ∞, we see that
W 2/|V |2 = (V/|V |)(V/|V |)T − C/|V |2 implies limt→T W

2/|V |2 = vvT . Since vvT v = v due to |v|2 = 1, the
result follows.

We end the appendix by making several remarks and a conjecture.
The 1-dimensional case of equation V ′′(t) = (2|V (t)|2 − C) · V (t), V (t) ∈ R

n is y′′(t) = 2y3(t) − cy(t). The
function f(t) = a

sinh (at+b) solves f ′′ = 2f3 + a2f and g(t) = a
sin(at+b) solves g′′ = 2g3 − a2g. We may assume

a > 0. Therefore, if b < 0, then both f and g exist only on a finite maximum interval (it is [0,− b
a ) for f(t)), i.e.,

T < +∞. If b > 0, then the function f(t) exists on [0,+∞) but the function g(t) exists only on a finite interval
[0, T ). It indicates that if C has a positive eigenvalue a1 > 0, then the solution λ1(t) may exist only on a finite
interval.

This prompts us to conjecture that

Conjecture B.1. If the initial value matrix C = V (0)V (0)T − W (0)W (0)T has a positive eigenvalue (i.e.,
a1 > 0), then the maximum interval [0, T ) of existence for the solution (V (t),W (t)) of the co-evolution equation
V ′ =WV and W ′ = V V T is finite, i.e., T < +∞.

If the conjecture holds, by Theorem 4.1, we see structural balance must occur eventually for generic initial
value C which has a positive eigenvalue. Therefore, it also justifies our experimental observation that structural
balance occurs almost all the time.

C Analysis of Social Tie Evolution

C.1 Structural Balance with W (t)

Theorem C.1. ([45]) Suppose W (t), t ∈ [0, T ), is a continuous family of symmetric matrices such that
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1. W (t) has a unique largest eigenvalue, denoted by β1(t), which tends to infinity as t→ T ,

2. all eigenvectors of W (t) are time independent, and

3. all components of the β1(t) eigenvector are not zero.

Then

wijwjkwki > 0, ∀i, j, k, i 6= j, j 6= k, i 6= k,

for all time t close to T , i.e., the structural balance of the whole graph is satisfied.
If (2) does not hold, we have

wijwjkwki ≥ 0, ∀i, j, k, i 6= j, j 6= k, i 6= k.

Proof. Let all eigenvalues of W (t) be β1, ..., βn and β1 be the unique largest eigenvalue. Then

W (t) = H · diag(β1(t), · · · , βn(t)) ·HT ,

for some time independent orthogonal matrix H whose first column is the β1 eigenvector. This implies that
wij =

∑

kHik · βk(t) · Hjk. Since all βi(t) < β1(t) for i 6= 1, the growth rate of wij(t) as t → T is the same as
Hi1β1(t)Hj1.

Therefore, the sign of wij is the same as the sign of Hi1 ·Hj1. Thus,

sgn(wijwjkwki) = sgn(Hi1Hj1Hj1Hk1Hk1Hi1) = sgn(H2
i1H

2
j1H

2
k1) > 0.

The same argument shows that above sign is non-negative if some component of the eigenvector is zero.

C.2 Solution to the General Riccati Equation We first focus on solving a general form of the matrix
Riccati equation as stated below.

(C.4)

{

W ′ =W 2 + C
W (0) = B.

The equation in our co-evolution model, i.e., Equation (3.5), satisfies C + B2 = V (0)V (0)T . Notice that the
right-hand side V (0)V (0)T is an n × n matrix with rank one, which is a special condition. The analysis in this
subsection applies for general matrices B,C.

By using a result in Reid [54], we can turn the matrix Riccati equation to a linear ODE system.

Lemma C.1. ([54]) The ODE system in Equation (C.4) is equivalent to the following system

(C.5)

{

Y ′ = Z Y (0) = I
Z ′ = −CY Z(0) = −B,

where Y ′ = −WY and Z = −WY , and Y, Z,W ∈ R
n×n.

Proof. First, we show that we can get Equations (C.5) from Equations (C.4), i.e., (C.4) ⇒ (C.5).
We know that Y exists and Z = −WY . Thus, Y ′ = Z. Then

Z ′ = −W ′Y −WY ′

= −(W 2 + C)Y −W (−WY )

= −W 2Y − CY +W 2Y

= −CY.

At the same time, Z(0) = −W (0)Y (0) = −W (0) = −B. Thus, this direction is satisfied.
Second, let us prove that Equation (C.4) can be obtained from Equation (C.5).
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Since Y (0) = I, by continuity, Y (t)−1 exists for t ∈ [0, ε], for ε > 0. Since Z = −WY , we have W = −ZY −1.
Note (Y −1)′ = −Y −1 · Y ′ · Y −1, since Y · Y −1 = I ⇒ Y ′ · Y −1 + Y · (Y −1)′ = 0. Therefore:

W ′ = −Z ′ · Y −1 − Z · (Y −1)′

= CY · Y −1 − Z(−Y −1 · Y ′ · Y −1)

= C + Z · Y −1 · (−WY ) · Y −1

= C − Z · Y −1 ·W
= C +W 2.

Clearly W (0) = −Z(0) = B. This completes the proof.

From Lemma C.1, we can focus on solving the linear Ordinary Differential Equation (ODE) in Equation (C.5),
which can be written in a matrix form. The analysis below is new.

[

Y
Z

]′

=

[

0 I
−C 0

] [

Y
Z

]

,

where we define A =

[

0 I
−C 0

]

∈ R
2n×2n in block form and X =

[

Y
Z

]

∈ R
2n×n.

Now, let us solve the evolution equation X ′ = AX, where X(0) =

[

I
−B

]

. It is well known that the solution

is,

(C.6) X(t) = (

∞
∑

n=0

tnAn

n!
)X(0).

Let us compute An using the block multiplication of matrices [20, 9].

A2 =

[

0 I
−C 0

] [

0 I
−C 0

]

=

[

−C 0
0 −C

]

.

It implies:

A2n =

[

(−1)nCn 0
0 (−1)nCn ,

]

A2n+1 = A2n ·A =

[

(−1)nCn 0
0 (−1)nCn

]

·
[

0 I
−C 0

]

=

[

0 (−1)nCn

(−1)n+1Cn+1 0

]

.

Recall that W = −ZY −1. Now we are ready to solve for W .

Theorem C.2. The solution W (t) is given by the explicit formula that W (t) = −Z(t) · Y (t)−1, where

Y (t) =

∞
∑

n=0

(−1)nt2nCn

(2n)!
+

∞
∑

n=0

(−1)n+1t2n+1CnB

(2n+ 1)!
(4.9)

Z(t) =

∞
∑

n=0

(−1)n+1t2nCnB

(2n)!
+

∞
∑

n=0

(−1)n+1t2n+1Cn+1

(2n+ 1)!
.(4.10)
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Proof. According to Equation (C.6),

X(t) =
∞
∑

n=0

t2nA2n

(2n)!
·X(0) +

∞
∑

n=0

t2n+1A2n+1

(2n+ 1)!
·X(0)

=

∞
∑

n=0

(−1)nt2n

(2n)!

[

Cn 0
0 Cn

] [

1
−B

]

+

∞
∑

n=0

(−1)nt2n+1

(2n+ 1)!

[

0 Cn

−Cn+1 0

] [

1
−B

]

=

∞
∑

n=0

(−1)nt2n

(2n)!

[

Cn

−CnB

]

+

∞
∑

n=0

(−1)n+1t2n+1

(2n+ 1)!

[

CnB
Cn+1

]

=

[

∑∞
n=0

(−1)nt2nCn

(2n)! +
∑∞

n=0
(−1)n+1t2n+1CnB

(2n+1)!
∑∞

n=0
(−1)n+1t2nCnB

(2n)! +
∑∞

n=0
(−1)n+1t2n+1Cn+1

(2n+1)!

]

,

[

Y
Z

]

.

C.3 When B,C are both symmetric In our model, we assume that the initial tie matrixW (0) is symmetric.
Thus the social tie evolution follows W ′ =W 2 +C, where W (0) = B, both B and C are symmetric. We are able
to derive more detailed closed form solutions for the matrix Riccati equation in this setting.

Since C is symmetric, there exists an orthogonal matrix U such that UTCU is a diagonal matrix: UTCU =
diag{a21, · · · , a2k,−d21, · · · ,−d2l , 0, · · · , 0}, where ai > 0, dj > 0. Furthermore, if BC = CB, by the simultaneous
diagonalization theorem, we may choose U such that both UTCU and UTBU are diagonal. By Lemma 3.1(1),
without loss of generality, we are going to solve the equation with the initial opinion vector UTV (0) and initial
weight matrix UTW (0)U . This leads to a system as below

{

(UTWU)′ = (UTWU)2 + UTCU
UTW (0)U = UTBU.

The solution of this system can be easily transformed back to the solution to the original system by conjugation.
For simplicity, the (i, j)-th entry of a matrix M will be denoted by Mij . Define βii the ith diagonal element of
UTBU , i.e., βii = (UTBU)ii.

Let us now work out explicitly the matrices Y and Z in Theorem 4.3.

1. For the positive eigenvalue a2i of C,

∞
∑

n=0

(−1)nt2na2ni
(2n)!

= cos (ait)

∞
∑

n=0

(−1)n+1t2n+1a2ni
(2n+ 1)!

= − 1

ai
sin (ait).

Thus, (UTY U)ii = cos (ait)− 1
ai

sin (ait) · βii. Similarly, we have

∞
∑

n=0

(−1)n+1t2na2ni
(2n)!

= − cos (ait)

∞
∑

n=0

(−1)n+1t2n+1a2n+2
i

(2n+ 1)!
= −ai sin (ait).

So, (UTZU)ii = − cos (ait)βii − ai sin (ait).

2. For the zero eigenvalues of C, i.e., ci = 0, we have (UTY U)ii = 1− t · βii and (UTZU)ii = −βii.
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3. For the negative eigenvalue ci = −d2i , we have

(UTY U)ii =

∞
∑

n=0

t2nd2ni
(2n)!

+ (−1)

∞
∑

n=0

t2n+1d2ni
(2n+ 1)!

βii = cosh (dit)−
1

di
sinh (dit)βii

(UTZU)ii =

∞
∑

n=0

(−1)
t2nd2ni
(2n)!

βii +

∞
∑

n=0

t2n+1d2n+2
i

(2n+ 1)!
= − cosh (dit)βii + di sinh (dit).

So we can summarize the above formulas as: UTY U = D1 −D2U
TBU and UTZU = D3 −D1U

TBU , where

D1 = diag{cos (a1t), · · · , cos (akt), cosh (d1t), · · · , cosh (dlt), 1, · · · , 1},
D2 = diag{sin(a1t)/a1, · · · , sin(akt)/ak, sinh(d1t)/d1, · · · , sinh(dlt)/dl, 1, · · · , 1},
D3 = diag{−a1 sin(a1t), · · · ,−ak sin(akt), d1 sinh(d1t), · · · , dl sinh(dlt), 0, · · · , 0},

C.4 When both B,C are symmetric and BC = CB Now, we consider the special case that BC = CB.
Using a basic fact that two commuting symmetric matrices can be simultaneously orthogonally diagonalized [32].
Let U be an orthogonal matrix such that

UTCU = diag(a21, · · · , a2k,−d21, · · · ,−d2l , 0, · · · , 0)
UTBU = diag(λ1, · · · , λk, µ1, · · · , µl, δ1, · · · , δh).

where ai, dj > 0.
In this case we can further simplify the solution.

(C.7)

W =− Z · Y −1

=U diag(
a1 sin (a1t) + cos (a1t)λ1

cos (a1t)− 1
a1

sin (a1t)λ1
, · · · , ak sin (akt)) + cos (akt)λk

cos (akt)− 1
ak

sin (akt)λk
,

− d1 sinh (d1t)− cosh (d1t)µ1

cosh (d1t)− 1
d1

sinh (d1t)µ1

, · · · ,− dl sinh (dlt)− cosh (dlt)µl

cosh (dlt)− 1
dl
sinh (dlt)µl

,

δ1
1− tδ1

, · · · , δh
1− tδh

)UT .

Note that above equation for W (t) implies that V (t) is an eigenvector of W (t) for all time t.
Now we are ready to analyze the behavior of W over time in the case of a symmetric initial condition matrix

W (0). We start with a technical lemma.

Lemma C.2. 1. If a > 0, then there exists T ∈ (0, πa ), such that for all λ

lim
t→T

a sin (at) + λ cos(at)

−λ
a sin (at) + cos(at)

= +∞.

2. If d > 0, then there exists T ∈ (0,∞], such that

lim
t→T

cosh(dt)µ− d sinh(dt)

cosh(dt)− µ
d sinh(dt)

= +∞,

if and only if µ > d. In the case µ ≤ d, the limit for T = ∞ exists and is finite.

3. If δ > 0, then there exists T = 1
δ , such that

lim
t→T

δ

1− tδ
= +∞.

For all cases mentioned above, the convergence rate is O( 1
|T−t| ).
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Proof. For (1), we reorganize
a sin (at) + λ cos(at)

−λ
a sin (at) + cos(at)

= λ
cot (at) + a

λ

cot (at)− λ
a

,

Since cot (at) is strictly decreasing from ∞ to −∞ in the range (0, πa ), there exists a T ∈ (0, πa ), such that

cot (at) = λ
a . As t approaches T from the left, cot (at)− λ

a > 0.
When t→ T the numerator becomes

λ(
λ

a
+
a

λ
) =

λ2 + a2

a
> 0.

This confirms (i).
Then we consider the convergence rate as t→ T .

λ
cot (at) + a

λ

cot (at)− λ
a

= λ
cot (−a(T − t) + aT ) + a

λ

cot (−a(T − t) + aT )− λ
a

= λ
(λa + a

λ ) cot (a(T − t))

1 + λ2

a2

.

The Taylor series of cot (x) is 1
x − x

3 + o(x). Given that (T − t) → 0, the convergence rate is O( 1
|T−t| ).

For (2), reorganize
cosh(dt)µ− d sinh(dt)

cosh(dt)− µ
d sinh(dt)

=
coth(dt)µ− d

coth(dt)− µ
d

.

Since the function coth(dt) is strictly decreasing from ∞ to 1, if µ > d, there exists T ∈ (0,∞) such
that coth(dT ) = µ/d. Furthermore, as t approaches T from the left, the denominator is positive. But

limt→T coth(dt)µ− d = µ2−d2

d > 0. It follows that

lim
t→T

cosh(dt)µ− d sinh(dt)

cosh(dt)− µ
d sinh(dt)

= +∞.

If µ ≤ d, the function is smooth on [0,∞) and the limit is finite as t→ ∞.
For convergence rate, we rewrite the function:

µ
coth (dt)− d

µ

coth (dt)− µ
d

= µ
coth (−d(T − t) + dT )− d

µ

coth (−d(T − t) + dT )− µ
d

= µ
(µd − d

µ ) coth (d(T − t))

µ2

d2 − 1
.

The Taylor series of coth (x) is 1
x + x

3 − o(x). Given that (T − t) → 0, the convergence rate is O( 1
(T−t) ).

The limit in case (3) is obvious when δ > 0. Now we look at its convergence rate. Here T = 1
δ . Rewrite the

function as
δ

1− tδ
=

1
1
δ − t

=
1

T − t
=

1

(T − t)
.

Thus, its convergence is O( 1
(T−t) ).

From the above analysis, we can know the convergence rate is O( 1
(T−t) ), which is an inverse proportional

function, under any case.

By Equation (4.11) and Lemma C.2, we know that some diagonal entry of W converges to the infinity at a
finite time T under some appropriate conditions.

C.5 Structural Balance when BC = CB In the following, we prove Theorem 4.4 which characterizes the
conditions for structural balance, when BC = CB.

Theorem C.3. Suppose W (t) solves the Riccati equation W ′ = W 2 + C, W (0) = B where B,C are symmetric
with BC = CB. Then eigenvalues of W (t) converge to elements in (−∞,∞] as t → T ; meanwhile there is sign
stability, i.e., limt→T wij(t) ∈ [−∞,∞] exists for all i, j. If U is an orthogonal matrix such that

UTCU = diag(a21, · · · , a2k,−d21, · · · ,−d2l , 0, · · · , 0)
UTBU = diag(λ1, · · · , λk, µ1, · · · , µl, δ1, · · · , δh).
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where ai, dj > 0, then W (t) is given by the following explicit function,

(4.11)

W (t) =U · diag( a1 sin (a1t) + cos (a1t)λ1

cos (a1t)− 1
a1

sin (a1t)λ1
, · · · , ak sin (akt)) + cos (akt)λk

cos (akt)− 1
ak

sin (akt)λk
,

− d1 sinh (d1t)− cosh (d1t)µ1

cosh (d1t)− 1
d1

sinh (d1t)µ1

, · · · ,− dl sinh (dlt)− cosh (dlt)µl

cosh (dlt)− 1
dl
sinh (dlt)µl

,

δ1
1− tδ1

, · · · , δh
1− tδh

) · UT .

Further, structural balance
lim
t→T

wijwjkwki ≥ 0

occurs in the finite time for W (t) if W (t) has an unique largest eigenvalue and one of the following conditions
holds:

1. There exists some δi > 0,

2. There exists some ai > 0,

3. there exists some µi > di.

Proof. Since the eigenvalues of W (t) remains the same as UTWU for any orthogonal matrix U , we see the
convergence of eigenvalues of W (t) from Equation (4.11). Due to the convergence of the eigenvalues in (−∞,∞],
we see that limt→T wij(t) ∈ [−∞,∞] exists for all i, j. This means that we have sign stability, that all weights
wij , ∀i, j, have fixed signs, as t→ T .

To see structure balance, by Theorem 4.2, it suffices to check if the largest eigenvalue tends to infinity. We
examine the solution W as described in Equation (4.11) and use Lemma C.2.

1. If there exists δi > 0, structural balance occurs because limt→ 1
δi

δ
1−tδi

= +∞.

2. If there exists ai > 0, structural balance occurs because of Lemma C.2(1).

3. If µj > dj , structural balance occurs because of Lemma C.2 (2).

Now we are ready to discuss our co-evolution model (Equation (3.4)). First, the condition BC = CB when
B =W (0) and C = V (0)V (0)T −W (0)W (0)T means that V (0) is an eigenvector of W . We finish the proof here.

Lemma 4.2. Suppose A is a symmetric matrix and v is a non-zero column vector. Then AvvT = vvTA is
equivalent to Av = αv, i.e., v is an eigenvector of A.

Proof. Clearly if Av = αv, then A and vvT commute. Conversely, if A and vvT commute, we can find an
orthogonal matrix U such that UTAU and UT vvTU are diagonal. We may assume that the (1, 1) entry λ of
UT vvTU is not zero. This shows the first column c of U is an eigenvector for vvT associated to λ. But v is also
an eigenvector of vvT associate to λ. Therefore c is a non-zero scalar multiplication of v. But we also know that
c is an eigenvector of A. Therefore, v is an eigenvector of A.

For Equation (3.4), we have an additional condition B2 + C = V (0)V (0)T which has rank one. In the
discussion below, we need the following fact about the eigenvalues and eigenvectors of rank-1 symmetric matrices
H = uuT where u ∈ R

n − {0}. The matrix H has eigenvalues ||u||2 and 0 such that the associated eigenvectors
are u and z’s which are perpendicular to u, i.e., uT z = 0. Therefore, the unique largest positive eigenvalue is
||u||2 with the associated eigenvector u.

Corollary 4.1. For Equation (3.4), if V (0) 6= 0 is an eigenvector of W (0), then V (t) remains to be an
eigenvector of W (t) for all t and structural balance must occur in finite time for W (t).
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Proof. When V (0) is not a zero vector, V (0)V (0)T is a symmetric matrix with one positive eigenvalue and
(n − 1) zero eigenvalue. Furthermore, V (0) is an eigenvector associated to the largest positive eigenvalue. Now,
since W (0) and C commute, we may simultaneously orthogonally diagonalize both. Since B2 + C = V (0)V (0)T

is diagonal with only one positive diagonal entry, using the same notation as above, we see that all numbers
a21 + λ21, ...., a

2
k + λ2k, µ

2
1 − d21, ..., µ

2
l − d2l , δ

2
1 , ..., δ

2
n are zero except one of them which is positive. If a2i + λ2i > 0,

then ai > 0 exists and the condition (2) holds. If µ2
i − d2i > 0, then µi > di exists and the condition (3) holds. If

δ2i + 0 > 0, then δi > 0 and the condition (1) holds. Thus, by Theorem 4.4, the structural balance must occur in
the finite time for W (t).

C.6 Extensions and Conjectures General Graphs The discussion so far has assumed a complete graph.
For a connected graph G, with our evolution model, our conjecture is that all the weights and opinions will go to
extreme values. This appears to be the case for all simulations we have run. The reason is that it is hard for the
weights to converge to finite values. One exception is that all the opinions are 0. But this is not a stable state.
Any small perturbation on the opinion will break this stable state.

At convergence, however, there might be more than 2 communities. The reason is that the edges with negative
weights may not be in any triangle of the graph. Thus, multiple communities can be separated by the negative
edges and it does not break the structure balance requirement.

High Dimensional Opinions When each node has multiple opinions on different issues, its opinion can be
represented as a m-dimensional vector, where m is the number of opinions in one node. Each entry of the weight
matrix is a m×m matrix instead of a real number.

For the high dimensional setting, our equation for a general graph is:

(C.8)

{

V ′
i =

∑

j∼iWijVj
W ′

ij = ViV
T
j , i ∼ j

where i ∼ j means that there exists an edge between nodes i and j. Then, we have the following theorem:

Theorem C.4. If the graph has no self-loop and consider tie matrices W to be symmetric, i.e., W = WT , then
Equation (C.8) is the gradient flow of the dissonance function:

F (V,W ) =
1

2

∑

i∼j

V T
i ·Wij · Vj .

Proof. Since each opinion vector is m-dimensional, we can write it as Vi = [(vi)a] ∈ R
m. Similarly, the edge

weight Wij can be written as an m×m matrix [(wij)ab] ∈ R
m×m. Note that W =WT means (wij)ab = (wji)ba.

Equation (C.8) is the same as:
{

(vi)
′
a =

∑

j∼i

∑m
b=1(wij)ab(vj)b

(wij)
′
ab = (vi)a(vj)b, i ∼ j.

Due to i ∼ j implies i 6= j, the derivative of F are:

∂F

∂(wij)ab
=

1

2
(vi)a(vj)b +

1

2
(vj)b(vi)a , (wij)

′
ab.

∂F

∂(vi)a
=

1

2

∑

j∼i

(vj)b(wji)ba +
1

2

∑

k∼i

(wik)ac(vk)c

=
∑

j∼i

(wij)ab(vj)b , (vi)
′
a.

Based on our evolution equation and previous properties in the 1-dimension opinion case, we make the
following conjecture:

For a complete graph with self-loop edges, all the opinion vectors and the weight matrix will converge to
extreme values. Any two adjacent nodes Vi(t) and Vj(t) have the same opinion or the complete opposite opinion,
i.e., Vi(t) = Vj(t) or Vi(t) = −Vj(t) as time approaches T0.

Based on the above conjecture, each entry of limt→T0
Wij(t) should have the same sign as that of

limt→T0
Vi(t)Vj(t)

T .
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