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Co-evolution of Opinion and Social Tie Dynamics Towards Structural Balance*

Haotian Wang' Feng Luot Jie Gao®

Abstract

In this paper, we propose co-evolution models for both dynamics of opinions (people’s view on a particular
topic) and dynamics of social appraisals (the approval or disapproval towards each other). Opinion dynamics
and dynamics of signed networks, respectively, have been extensively studied. We propose a co-evolution
model, where each vertex 4 in the network has a current opinion vector v; and each edge (4,j) has a weight
w;; that models the relationship between i, 5. The system evolves as opinions and edge weights are updated
over time by the following rules:

e Opinion dynamics: The opinion of agent i is updated as a linear combination of its current opinion and

the weighted sum of neighbors’ opinions with coefficients in matrix W = [w;;].

o Appraisal dynamics: The appraisal w;; is updated as a linear combination of its current value and the
agreement of the opinions of agents ¢ and j. The agreement of opinion v; and v; is taken as the dot
product v; - vj.

We are interested in characterizing the long-time behavior of the dynamic model — i.e., whether edge weights
evolve to have stable signs (positive or negative) and structural balance (the multiplication of weights on any
triangle is non-negative).

Our main theoretical result solves the above dynamic system with time-evolving opinions V(t) =
[vi(t), - ,vn(t)] and social tie weights W (t) = [wi;j(t)]nxn. For a generic initial opinion vector V(0) and
weight matrix W(0), one of the two phenomena must occur at the limit. The first one is that both sign
stability and structural balance (for any triangle with individual i, j, k, w;jw;rwk; > 0) occur. In the special
case that V'(0) is an eigenvector of W (0), we are able to obtain the explicit solution to the co-evolution equation
and give exact estimates on the blowup time and rate convergence. The second one is that all the opinions
converge to 0, i.e., lim; o [V ()] = 0.

We also performed extensive simulations to examine how different initial conditions affect the network
evolution. Of particular interest is that our dynamic model can be used to faithfully detect community
structures. On real-world graphs, with a small number of seeds initially assigned ground truth opinions, the
dynamic model successfully discovers the final community structure. The model sheds lights on why community
structure emerges and becomes a widely observed, sustainable property in complex networks.

1 Introduction

We live in a continuously changing world in which social interactions dynamically shape who we are, how we
view the world and what decisions to make. Various social processes, naturally intertwined, operate on both
the properties of individuals and social ties among them. Social influence, for example, describes how people’s
behaviors, habits or opinions are shifted by those of their neighbors. Social influence leads to homophily (
similarity of node attributes between friends) and leaves traces in the network structure such as high clustering
coefficient and triadic closure (there are likely social ties among one’s friends).

Social influence and homophily, however, do not fully interpret the global network structure. One of the widely
observed structural properties in social networks is the community structure. Nodes within the same community
are densely connected and nodes from different communities are sparsely connected. Community detection is an
important topic in social network analysis and has been investigated extensively [51, 66, 47, 50, 48, 25, 68, 61, 49,
26, 37]. But why does community structure emerge and become a persistent feature? Are there social processes
that encourage or maintain the community structure?

In the literature, there have been a lot of studies of opinion dynamics, where people’s behaviors, habits or
opinions are influenced by those of their neighbors. Network models that capture social influence, such as French-
DeGroot model [21, 8], Friedkin-Johnsen model [23], Kulakowski et al. model [40, 44] naturally converge to global
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consensus. Actually it seems to be non-trivial to create non-homogeneous outcomes in these models, while in
reality social groups often fail to reach consensus and exhibit clustering of opinions and other irregular behaviors.
Getting a model that may produce community cleavage [22] or diversity [41] often requires specifically engineered
or planted elements in a rather explicit manner. For example, bounded confidence models [46, 39, 28, 19] limit
social influence only within pairs with opinions sufficiently close. Other models introduce stubborn nodes whose
opinions remain unchanged throughout the process.

The extreme case of community structure is dictated by structural balance [29, 30, 15, 18], a common
phenomenon observed in many social relationships. The notion was first introduced in a seminal paper by
Heider in the 1940s in social psychology. It describes the stability of human relations among three individuals
when there are only two types of social ties: positive ties describe friendship (or sharing common opinions) and
negative ties describe hostility (or having opposite opinions). Heider’s axioms state that among three individuals,
only two kinds of triangles are stable: the triangles where all three ties are positive, indicating all three individuals
are mutual friends; and the triangle with two negative edges and one positive edge, describing the folklore that
“the enemy of your enemy is your friend.” The other two types of triangles (e.g., a triangle of one negative
tie and two positive ties, or three mutually hostile individuals) incur emotional stress or are not strategically
optimal. See Figure 1. Thus they are not socially stable — over time, they break and change to the stable ones.
In fact, the structural balance theory not only describes the local property in a signed complete network, but also
predicts the global network behavior — the only type of network in which all triangles are stable must have the
nodes partitioned into two camps, inside each of which the edges are all positive and between them the edges are
negative (one of the camps can be empty).

AWA WA YA

Figure 1: Structural balance theory: the first two triangles are stable while the last two are not.

The structural balance theory only describes the equilibrium state and does not provide any model on evolution
or dynamics — what happens when a network has unstable triangles? Follow up work on structural balance dynamic
models [8, 44, 40, 16, 60] update the sign/weight of an edge (4, j) towards a more balanced triangle by considering
the sign/weights of neighboring edges (i, k) and (k, j) in a triangle Aijk.

These two threads of research, opinion dynamics and structural balance dynamics, are currently orthogonal to
each other. In opinion dynamics, opinions on vertices are influenced by each other through edges but researchers
struggle to maneuver the model to create community cleavage. In structural balance dynamics, edge weights
are dynamically updated to meet structural balance, which is explicitly coded as the projected outcome and
optimization objective. In this paper, we propose co-evolution models for both dynamics of opinions (people’s
view on a variety of topics) and dynamics of social appraisals (the approval or disapproval towards each other).
We show that by using two simple rules, node opinions evolve into opposing communities and structural balance
naturally emerges.

1.1 Our Contribution In this paper, we consider the co-evolution of opinions via social influence and tie
strength/appraisal /sign updates by discrepancies of node opinions. We assume a set of n individuals where
individual ¢ has an opinion v; € R, and an appraisal matrix W = [w;;], where w;; is interpreted as the influence
from individual j on individual i. Here w;; does not need to be non-negative and takes values in R. We consider
two update rules:

e Opinion dynamics: The opinion of i is updated as a linear combination of its current opinion and the
weighted sum of neighbors’ opinions with coefficients in matrix W.

o Appraisal dynamics: The appraisal w;; is updated as a linear combination of its current value and the
agreement of the opinion of ¢ and j. The agreement of opinion v; and v; is taken as the dot product v; - v;.

The opinion dynamics model is similar to classical social influence models such as the DeGroot model [21] and
Friedkin-Johnsen model [23], except that the edge weight matrix W is dynamic as well. The model for appraisal
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dynamics is motivated by tie dynamics that can be traced back to Schelling’s model of residential segregation [57].
In modern society, tie changes on Facebook [58] and Twitter [65, 38] can be easily triggered by disparities on their
opinions [35, 58], especially among the users who are most politically engaged.

Our goal is to analyze the evolution and in particular, the conditions that lead to sign stability and structural
balance — for any triangle with individual 4, j, k, w;jw;jrwi; > 0. We call a network to reach strictly structural
balance if w;jwjrwr; > 0, Vi, j,k. A structurally balanced network has two possible states: harmony, when
all edges are positive; and polarization, when there are two communities with only positive ties within each
community and negative ties across the two communities.

We show that with our dynamics model, W(t) evolves by the following matrix Riccati Equation [3]
W' = WWT 4+ C, where C = V(0)V(0)T — W(0)W(0)T is a symmetric constant n x n matrix if W(0) is.
Further the opinion vector V(0) evolves by the differential equation V" (t) = 2|V|*-V — C- V. Our main result is
to analyze the asymptotic behavior of V(t) and W (¢) and prove structural balance at the limit. Our results can
be summarized in the following:

1. By analyzing the evolving equation for V'(¢), we show that either the network reaches strict structural
balance or |V (t)| — 0. To prove this limit behavior, one crucial observation is that the length of the opinion
vector |V (¢)|? is strictly convex, unless V (t) = 0.

2. We show how to solve the general matrix Riccati equation W’ = W2+C, W (0) = B, for any parameter B, C.
In particular, the eigenvector corresponding to the largest eigenvalue of W (t) encodes the two communities
formed in the network; those with a positive value in the eigenvector versus those with a negative value in
the eigenvector. As a byproduct of the analysis of W (t), we also show that when V(0) is an eigenvector of
the initial matrix W (0), V (¢) remains to be an eigenvector of W (t) for and structural balance must occur in
finite time. In this case we can write down exact evaluations on the blowup time and the rate convergence.

The evolving of W (t) by W/ = WW7T 4 C is strictly a generalization of the dynamic structural balance model
by Marvel et al. [45]. Their model captures the dynamics of edge appraisals by W’ = W? and does not consider
user opinions. The behavior of our model becomes much more complex, as the initial user opinions are factored
into the system dynamics through the matrix C.

We also performed extensive simulations with different initial conditions and graph topology. We examined the
network evolution on the final convergence state (harmony v.s., polarization) and convergence rate. We observed
that a higher network density or a higher initial opinion magnitude, empirically, speeds up the convergence rate.

We tested our dynamic model on two real world graphs (Karate club graph and a political blog graph [4]).
Both networks are known to have two communities with opposing opinions. A small number of seeds, randomly
selected, are assigned with ground truth opinions and all other nodes start neural. The network evolution can
successfully detect the final community structure and recover the ground truth with good accuracy. Apart from
being a transparent and explainable label propagation algorithm, the model sheds lights on why community
structure emerges and becomes a widely observed, sustainable property in complex networks.

2 Related Work

2.1 Opinion Dynamics and Social Influence Opinions in a sociological viewpoint capture the cognitive
orientation towards issues, events or other subjects, and mathematically represent signed attitudes or certainties
of belief. Opinion dynamics is an extensively studied topic about how opinions change in a network setting with
social influence from neighbors. One of the first models of opinion dynamics, French-DeGroot model [21, 8],
considers a discrete time process of opinion {vy, v, -+ ,v,} for a group of n individuals. An edge (i, ) carries a
non-negative weight w;; > 0. The opinion of node ¢ at time ¢ + 1 is updated by

'Ui(t + 1) = Zwijvj(t).

The weight matrix W = [w;;] is taken as a stochastic matrix. The dynamics can be written as V (t+1) = WV (t).
The continuous-time counterpart is called the Abelson’s model [1] where the dynamics is defined by

(2.1) %it) =-LV(t),
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where V (t) = (v1(t),v2(t), - v,(t))T and L is the Laplacian matrix L = I — W. Opinions following the French-
DeGroot model or the Abelson’s model typically converge unless the network is disconnected or there are stubborn
nodes (with w;; = 1).

The most popular opinion dynamics model is probably the Friedkin-Johnsen model [23]. It takes a stochastic
matrix W as the influence model, and a diagonal matrix A = diag(A1,- -+, A,) where A; € [0, 1] is the susceptibility
of individual ¢ to social influence. The opinions of the individuals are updated by the following process

V(t+1) = AWV () + (I — A,

where u is a constant vector of the individuals’ prejudices and is often taken as the initial opinion V(0). When
A = I the model turns to French-DeGroot model.

Most of the literature on these two models assume a fixed weight matrix W and prove asymptotic convergence
under favorable assumptions [24]. There have been extensions when W is a time-varying matrix, but W (t) is still
independent of V(¢) (e.g., [14]).

A significant deviation from the above family considers a time-varying matrix W, by incorporating the
principle of homophily, that similar individuals interact more than dissimilar ones. This is called the bounded
confidence model [46]. A few such models (Hegselmann- Krause (HK) model [39, 28], Deffuant and Weisbuch [19])
introduced a fixed range of confidence d > 0: individual ¢ is insensitive to opinions that fall outside its confidence
set I; = [v; — d,v; + d], and the opinion v; is only updated by the average opinion of those opinions within 7;. In
other words, the matrix W is derived from the set of opinions at time ¢ and thus co-evolves with the opinions. This
model generates situations when the individuals converge to a set of different opinions, and has been extended to
the multi-dimensional setting [28].

All models above have only considered the case of positive influence, that the interactions of individuals
change their opinions towards each other. It has been argued in both social settings and many physical systems
that there is negative or repulsive influence (repulsive interactions in biological systems [17] or collision avoidance
in robot swarm formation [55]). Abelson [2] argued that any attempt to persuade a person may sometimes shift
his or her opinion away from the persuader’s opinion, called the boomerang effect [5, 34]. Bhawalkar et al. [13]
presented game-theoretic models of opinion formation in social networks by maximizing agreement with friends
weighted by the strength of the relationships. Thus interactions between individuals with similar opinions move
their opinions closer; interactions between individuals with opinions that are very different shift their opinions
away from each other. Here the edge weights are fixed. Many models have included negative ties but they are
still awaiting rigorous analysis [56, 11, 42, 43, 27]. The most notable work in this direction is by Altafini [7, 6].
The model starts to be similar to Abelson’s model in Equation (2.1) with a fized weight matrix W except that
the weights in W do not need to be non-negative. The system is shown to be Lyapunov stable [53] and studies
have focused on the initial conditions of W for the system to converge to harmony or polarization. The matrix W
is assumed to be either static or, in very recent studies [52, 53, 31], time-varying (but independent of the opinion
changes). The negative influence is closely related to signed networks and structural balance theory, which will
be discussed next.

2.2 Structural Balance and Signed Networks Notice that the structural balance theory only describes
the equilibrium state and does not provide any model on evolution or dynamics — what happens when a network
has unstable triangles? Follow up work proposed a few models, that can be categorized by discrete models or
continuous models — depending on whether the appraisal on a social tie takes binary values {+1,—1} or a real
number. Antal et al. [8] considered the discrete model where the sign of an edge is flipped if this produces more
balanced triangles than unbalanced ones. The balanced graph is clearly a stable state but the dynamics also has
many local optima called jammed states [8, 45]. A similar model is used in Andreida et al. [60]. Samin et al. [10]
considered removing the minimum number of edges to make the graph balanced, which is an NP-hard problem.

In the continuous setting, the influence-based model [44, 40] describes an influence process on a complete
graph, in which an individual ¢ updates her appraisal of individual j based on what others positively or negatively
think of j. In other words, let us use w;; to describe the type of the social tie between two individuals 7, j. w;; > 0
if 4, j are friends and < 0 if they feel negative about each other. The absolute value of w;; describes the magnitude
of the appraisal. The update rule says that the update to w;; will take value

dw;;
(2.2) dt” = wik - wij.
k
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Specifically, when w;, and wy; have the same sign, the value of w;; is guided to the positive direction; when w;y
and wy; have opposite signs, the value of w;; is guided to the negative direction. Both cases try to enforce a
balanced triangle on {4, j, k}. Empirically, it has been observed that for essentially any initial value of W, as the
matrix where the (¢, j) element is w;;, the system reached a balanced pattern in finite time. In [44], Marvel et al.
proved that for a random initial matrix W the system reaches a balanced matrix in finite time with probability
converging to 1 as n — oco. They also characterized the converged value and its relationship to the initial value.

In a recent paper [16], Cisneros-Velarde et al. considered a pure-influence model, where the self-appraisal
(such as wy;) is taken out of Equation (2.2) to be a more faithful interpretation of Heider’s structural balance.
They proved that when W is symmetric their continuous-time dynamic model is exactly the gradient flow of an
energy function called dissonance [45], defined as

- E Wij - Wik W

lig]:[ik) [kil€e E

Dissonance characterizes the degree of violation to Heider’s structural balance axioms in the current network. The
global minimum of this energy function corresponds to signed networks that satisfy structural balance in the case
of real-values appraisals. When the initial matrix W is symmetric the authors also provided characterizations of
the critical points of the dissonance function (aka the equilibrium states of the dynamic model).

The discussions of opinion dynamics and dynamics with structural balance, so far, have focused on node
opinion changes or link appraisal changes, separately. Holme and Newman [33] presented a simple model combing
the two but did not present theoretical analysis. There is little work on combining both dynamics into a co-evolving
model, which is the focus of this paper.

3 Co-Evolution Model

Suppose there are n individuals, each one with its own opinion v; € R. Define the opinion vector V =
(v1,v2,...,v,)T € R™. The influence model among the n individuals is characterized as an n xn matrix W = [w;;]
with entries taking real values. A positive value of w;; indicates a positive social influence between i, j, where
the opinions under the influence become similar. A negative value of w;; means a negative influence and their
opinions under influence become dissimilar. In our theoretical study, we consider the case of a complete graph.
The evolution model that we introduce works for any network. In our simulations we also evaluate networks and
opinion co-evolution on a general graph.

Both the opinions of individuals and the influence matrix are dynamically evolving. Assume that the initial
opinion vector is V' (0) and the initial influence matrix is W (0). In this paper we assume the initial weight matrix
W(0) is symmetric, i.e., w;;(0) = w;;(0), Vi,j. Define the opinion vector and influence matrix at time ¢, in a
discrete-time model, as V' (t) and W(t) respectively. We propose the dynamic system governing the evolution of
the relationship over integer time:

(3.3) { V(t+1)=V(t)+WHV(t)

Wit+1) =Wt + V) V()T.

In the first equation, the opinion of an individual 7 is shifted by the weighted sum of its neighbors’ opinions, with
coefficients in the influence matrix W. In the second equation, the appraisal value w;; between two individuals
i,j is updated by the differences of opinions v;,v;. If v;,v; generally agree (with a positive dot product), w;;
moves in the positive direction; otherwise moves in the negative direction.

In a continuous-time model, the dynamics are driven by the following ODE:

{ V=WV
where V/ and W’ is the coordinate-wise time derivative of ¥V and W.

From this point on, we focus on solving the continuous time model. First we present a couple of basic
properties of Equation (3.4). This means we can focus on solving the system defined by Equation (3.4) without
losing generality. The detailed proof is provided in Appendix A.

LEMMA 3.1.
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1. If [V(t), W(t)] solves Equation (8.4) and U is an orthogonal matriz, then [UTV,UTWU] solves the same
Equation (8.4) with initial condition UTV (0) and UTW (0)U. In particular, W (0) is symmetric if and only
if UTW(0)U is.

2. If W(0) is symmetric, then W (t) remains symmetric for all t.
8. If a,b > 0 are positive constants, then the equation

Vi = a1V}
A
can be reduced to Equation (3.4) by taking V = VabVy and W = aW;.

The main objective of this paper is to analyze how this system evolves. In particular, we care about system
evolution to reach sign stability for wyj, Vi, j, and v;, Vi, as well as structural balance —

lim w;;w;pwg; > 0
s ijWikWki = Y,

for all indices i, j, k where [0,7T) is the maximum interval on which the solution W (t) exists. Notice that in the
classical structural balance theory, the two types of stable triangles — with edge signs as either all positive (+1)
or have two negative (—1) and one positive — satisfy this property.

The evolution of W(t) and V (¢) is described in the following two lemmas.

LEMMA 3.2. With the co-evolution model as in Equation (3.4), the dynamics of matrix W follows the following
Matriz Riccati Type Equation
W' =wwT' +C,

where C = V(0)V(0)T — W(0)W(0)T is a symmetric constant n x n matriz. If W(0) is symmetric, then W (t)
satisfies the Riccati equation

(3.5) W =W?+C.
Proof. We look at W':
w’'=w =wvhy=vvt+viv) ' =wvvt + viwv) =wvv? + vviw?
=WW +Ww? =ww?y + ww? = wwTy.
In the second last step, we use the equation W’ = (W7T)’. This is because W'(t) = V(¢)V (¢)T is always symmetric.
Thus, W' = WWT + C, where C is a constant matrix C = W'(0) — W(0)W(0)T = V(0)V(0)T — W(0)W(0)T.
Notice that C' is always symmetric.

If W(0) is symmetric, then W (t) is always symmetric (by Lemma 3.1 (2)) and WW7 = W2, 0

Remark that matrix C in our setting is a special symmetric matrix. Specifically, C+W (0)W (0)T = V(0)V (0)T
has rank one. This property turns out to be useful for characterization of the system behavior.

LEMMA 3.3. The evolution of V(t) satisfies
(3.6) V') =2[V]*.V-C-V
Proof. Here, we use W2 = W' — C (Equation (3.5)), W/ =VVT and V' = WV.

V// — (V/)/ — (WV)/ — W/V + WV/ _ VVTV + WWV = |V|2V + W2V — |V|2V + (W/ _ C)V
— VPV + (VT —C)V =2[VPV — COV.

3367 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited



Downloaded 07/29/22 to 96.242.161.254 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

4 Analysis of the Opinion and Social Tie Evolution

Our analysis has two parts. First we focus on the opinion evolution model (Equation (3.6)). Here we provide
analysis of the asymptotic behavior for V' (¢). Then we study the social tie evolution (Equation (3.5)) for W (¢). By
solving Riccati equation explicitly for W (t) we are able to provide more detailed characterization of the evolving
behavior.

4.1 Analysis of Opinion Evolution By analyzing the opinion evolution (Equation (3.6)), our main result is
the following.

THEOREM 4.1. Let [0,T) be the mazimum interval of existence for the solution (V(t), W (t)) of the differential
equation in Equation (3.4). For generic initial values V(0) and W(0), either

1. structural balance condition lim;_,7 w;;wjrwr; > 0,4, 7, k holds, or
2. T =400, lim_,o0 |V (t)] =0 and limy_,o, V'(t) = 0.

Furthermore, in the first case, the normalized opinion vector \¥8| converges, i.e., lim;_,p % exists.

The theorem says that structural balance is always achieved, unless the opinions converge to a zero vector, in
which case the entire network becomes neutral. We can consider the second case as a boundary case of structural
balance.

The rest of the subsection will focus on proving this theorem. An important observation is that the norm of
V, |V (t)|?, is a convex function. The detailed proof is in Appendix B.

LEMMA 4.1. The length function ¢(t) := VIV = |V (t)|? is strictly convex and ¢"(t) > 0 unless V (t) = 0.

Now, let us understand Equation (3.6) using coordinates. Since the matrix C' is symmetric, by the orthogonal
diagonalization theorem, there exists an orthogonal matrix

U=[B1, -, Bn] = [Uijlnxn

such that CB8; = a;8;,1 = 1,2,---,n, where ay, - ,a, are eigenvalues of C. By our assumption that
C =V(0)V(0)T - W (0)W(0)T, the eigenvalues ay,-- ,a, are non-positive except for one. So we may assume
a; > 0 and ag, -+ ,a, < 0. Because 31, -, 3, form an orthonormal basis of R, we can write

V()= N(t)8i = UX, where A= [Ar,--, A"
i=1
This implies that V'(t) = Y7 Nj(£)B;, V' (t) = Y0 A ()Bi, [V(O)]F = X, A3(t) and C -V = 31| ai\if3;.
Therefore, Equation (3.6) becomes

YN Bi=3 2O A — a8y
i=1 i=1 k=1
Since By, - - , B, are independent, we obtain the system of ODE with A = [Ay,---, \,]7 in the form
(4.7) N() =2 A —a)hi(t),i=1,2,-+ ,n.
k=1

Denote W = [w;;(t)]. Then W' =V - VT implies
W =U-X-\T.UT
Therefore, wj;(t) = 227121 wiguji AN and wg;(t) = Zzl:l(fot Ak (8) - Mi(s)ds)uirujp + w;ii(0).

Our next goal is to show the following proposition,
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PROPOSITION 4.1. If T < 400 or if T = 400 and lims—,7 |V (t)] = L > 0, then there exists one term pp among
Y (t) = fot M (8)\i(8)ds which has the mazimum growth rate as t — T and limy_, 7 pp () = 400.

Assuming the proposition 4.1, Theorem 4.1 follows. Indeed, the leading term in w;;(t) is upujntbnn ast — T.
Therefore the sign of w;; is the same as the sign of u;pujn¥n,. The leading term of wi;w rwy; as t — T is

2 2 2 2
Ui Wi Wih Yhp, = 0.

This shows that structural balance occurs eventually for generic initial values. Here the generic condition is used
to ensure that all entries u;; of the orthogonal matrix [u,;] are not zero and 1y is the unique term with the
maximum growth rate. Finally, if T = oo and lim;_,, |V (t)| = 0, then by Corollary B.1, lim;_, o, V'(t) = 0.

The proof for proposition 4.1 is fairly technical and can be found in Appendix B.

4.2 Analysis of Social Tie Evolution The analysis on the evolution of V' in the previous section shows
convergence. To further understand the community formed at the limit of convergence, we need to study the
evolution of W. The following theorem explains the reason behind the appearance of structure balance when at
least one eigenvalue of W (t) tends to infinity. This was proved in [45]. We include the statement here and the
proof in Appendix C.1 for completeness.

THEOREM 4.2. ([45]) Suppose W (t), t € [0,T), is a continuous family of symmetric matrices such that
1. W (t) has a unique largest eigenvalue, denoted by [1(t), which tends to infinity as t — T,
2. all eigenvectors of W (t) are time independent, and

3. all components of the B1(t) eigenvector are not zero.

Then
Wij Wik Wi > Oa VZ,]7]€,Z 7é .7’.] 7é k72 7é ka
for all time t close to T, i.e., the structural balance of the whole graph is satisfied.
If (2) does not hold, we have

Wij Wik Wi > 07Vivj7 k‘,l 7é ja] 7é kal 7é k.

Furthermore, the two antagonistic communities are given by UT = {i € V]u; > 0} and U~ = {i € V|u; < 0}
where u = [u1,...,u,]T is a Bi(t) eigenvector. All edges connecting vertices within the same community are
positive while edges connecting two vertices in different communities are negative. When one of U™, U~ is empty,
the network has only one community.

The model in [45] is the Riccati equation W’ = W?2, whose solution is W (t) = W(0)(1 — W(0)t)~1. As a
consequence, Marvel et. al. [45] showed that structure balance occurs in the Riccati equation W’ = W? for generic
initial parameter W (0) with a positive eigenvalue at finite time. Our model strictly generalizes the previous model
and consider how the initial opinions may influence the system evolution. In the following we show how to solve
the general Riccati equation and also when an eigenvalue goes to infinity.

With most of the details in the Appendix, we carry out rigorous analysis of the general form of the matrix
Riccati equation as stated below.

W' =W?4+C
s (o

(0) =B.

For general matrices B,C we can solve for W (t) as shown in the following theorem. The proof details can be
found in Appendix C.2.

THEOREM 4.3. The solution W (t) is given by the explicit formula that W (t) = —Z(t) - Y (t)~1, where

[e%e) (_1)nt2nCn o0 (_1)n+1t2n+1CnB
4. Y(t —
(4.9) O = X Tt Ty
e’} (_1)n+1t2nCnB e <] (_1)n+1t2n+lcn+1
4.1 Z((t) = N 2
Y " nz::o (2n)! ; (2n+1)!
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In our co-evolution model, B = W(0) is assumed to be symmetric. Thus C' is also symmetric. This allows
us to simplify the solution further, as shown in Appendix C.3. Then we analyze a special case when BC = CB.
In this case we can characterize the conditions when structural balance is guaranteed to occur, with details in
Appendix C.1, C.4, and C.5. Specifically, using a basic fact that two commuting symmetric matrices can be
simultaneously orthogonally diagonalized [32], we can get the following theorem where the conditions of the
eigenvalues of B, C for structural balance are characterized:

THEOREM 4.4. Suppose W (t) solves the Riccati equation W' = W2 + C, W(0) = B where B,C are symmetric
with BC = CB. Then eigenvalues of W (t) converge to elements in (—oo,00] as t — T; meanwhile there is sign
stability, i.e., limy_,7 w;;(t) € [—o0, 00| exists for all i,j. If U is an orthogonal matriz such that

UTCU = diag(a?,--- ,a},—d3, -+ ,—d7,0,- - ,0)
UTBU:dlag()‘h a)‘kalu/la"' 7/*”7617"' 75h)~

where a;,d; > 0, then W (t) is given by the following explicit function,

W (t) =U - diag( ay sin (aqt) Jlrcc.)s (a1t) A1 . ag sin (ayt)) 1+c.os (akt))\k’
cos (a1t) — - sin (a1t) A cos (at) — o sin (apt) Ax
(4.11) dy sinh (dit) — cosh (d1t) dy sinh (d;t) — cosh (djt)
' cosh (dit) — d—ll sinh (dit)u;”* cosh (djt) — d% sinh (d;t)p;’
) )y-UT
L—té" " 1—tdy '

Further y structural balance
h Wik Wki Z

occurs in the finite time for W(t) if W(t) has an unique largest eigenvalue and one of the following conditions
holds:

1. There exists some §; > 0,
2. There exists some a; > 0,
3. there exists some u; > d;.

In our co-evolution model, BC = CB happens when V(0) is a eigenvector of W (0), an interesting initial
condition. To see that, recall B = W(0), C = V(0)V(0)T — W(0)W(0)T, and W(0) = W(0)*. To check if
BC = CB, we just need to check if W (0)V(0)V(0)T = V(0)V(0)TW(0) and apply the following Lemma (Proof
in Section C.5).

LEMMA 4.2. Suppose A is a symmetric matriz and v is a non-zero column vector. Then Avvl = vvT A is
equivalent to Av = aw, i.e., v is an eigenvector of A.

Further, the equation in our co-evolution model, i.e., Equation (3.5), satisfies C + B2 = V(0)V(0)T. Notice
that the right-hand side V(0)V(0)7 is an n x n matrix with rank one. This property actually ensures that the
conditions characterized in Theorem 4.4 are met and thus structural balance is guaranteed. At the same time,
the convergence rate is O(‘T—iﬂ), which is proved by Lemma C.2 in Appendix C.4.

COROLLARY 4.1. For Equation (3.4), if V(0) # 0 is an eigenvector of W(0), then V() remains to be an
eigenvector of W (t) for all t and structural balance must occur in finite time for W(t).

If V(0) = 0, the system stays at the fixed point with V' remaining zero and the weight matrix unchanged.

The case when V(0) is an eigenvector of W (0) includes a few interesting cases in practice. When W(0) =0
or W(0) = I, this models a group of individuals that start as complete strangers with uniform self-appraisals.
Their non-homogeneous initial opinions V' (0) may drive the network to be segmented over time. Finally the fact
that V' (¢) remains an eigenvector of W (t) for all ¢ follows from Equation (C.7) in Appendix C.
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We conjecture that even in the general case (when V(0) is not necessarily an eigenvector of W (0)) the
limit vector lim;,7 V(¢)/|V(t)] is an eigenvector of the limit tie relation matrix lim;,» W (¢)/|V(¢)|. This is
supported by our numerical evidences and Corollary B.3 which says that lim; 7 V(t)/|V(t)] is an eigenvector of
lim 7 (W (t)/[V (£)])*.

5 Simulations

In this section, we provide simulation results to accompany our theoretical analysis of the co-evolution model. We
also present simulation results on general graphs and real world data sets to understand the behavior of network
evolution.

Here is a brief summary of observations from simulations. The details can be found in the Appendix.

e Except a few carefully crafted cases' that make the opinion vector to be zero, strict structural balance is
always reached, regardless of whether the graph is complete or general, whether B, C' commute or not, or
whether W (0) is symmetric or as a general matrix. An example is shown in Figure 2.

e In general, we observed through simulations that the number of iterations to convergence is inversely
proportional to the magnitude of initial opinions and the edge density in the graph.

e In two real world data sets (the Karate club and a political blog data set), a few initially planted polarized
opinions can successfully predict the ground truth community structure with high accuracy. See Figure 3.

6 Conclusion and Future Work

In this paper, we have provided a co-evolution model for both opinion dynamics and appraisal dynamics.
We provided solutions to the system and rigorously characterized how the stable states depend on the initial
parameters.

There are a few follow-up problems that remain open, for example, when the social ties are direc-
tional/asymmetric, when the network is not a complete graph, and when each agent has an m-dimensional
opinion vector. We include some discussion and conjectures on these cases in Appendix C.6 and consider this as
interesting future work.

o
—
o~
m
<
n
©o
~
[}
[}

Node Index
9876543210
9 87 6 54 3 210

01 2 3 456 7 89 2 3 456 7 8 9 0 1 2 3 456 7 89

Iteration=0 Iteration=15 Iteration=30
Figure 2: The weight matrix in evolution. The = and y axis show vertex indices. The cell at (7, j) represents the
edge weight between node i and node j with color showing edge weight. The first plot is the initial edge weights,
which are assigned random values. The second plot shows the weight matrix after 15 iterations. Patterns start to
show up with two diagonal blocks showing positive values and the off-diagonal blocks with negative values. The
last plots is the weight matrix at convergence where the first 6 nodes are in one community and the other nodes
are in a different community. Edges within communities have positive weights and edges between communities
have negative weights.

1Tor example, if W(0) = B = diag(fi, f%, EEEN f%) and we use the dynamic update rule v;(1) = v;(0) 4+ a - w;;(0)v;(0) = 0, for
all 1 <7 < n. After one iteration, all node opinions become 0. After that, the opinions and weights do not change anymore.
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St

(b) Separated communities results

(c) Initial political blogs network (d) Separated communities results

Figure 3: Community detection in two real-world data sets. The color of vertices represents their ground truth
opinions. Initially, only a small number of seeds are assigned their true opinions and other nodes start with initial
opinions of 0. All edges start with a small positive weight. As the network converges, the edges with negative
weights are removed. The communities discovered as shown in the right column faithfully reflect the ground
truth. In the first experiment (a, b), the node #0 and the node #33 are assigned opposite initial opinions. It
nearly predicts the same division as in the ground truth except for two nodes #8 and #19 which are somewhat
ambiguous. In the second experiment (c, d), 20% random nodes are assigned initial opinions according to the
ground truth. The prediction achieves an average accuracy of 97.21% compared with the ground truth.
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A  Model

LEMMA 3.1.

1. If [V(t), W(t)] solves Equation (8.4) and U is an orthogonal matriz, then [UTV,UTWU] solves the same
Equation (8.4) with initial condition UTV (0) and UTW (0)U. In particular, W (0) is symmetric if and only
if UTW(0)U is.

2. If W(0) is symmetric, then W (t) remains symmetric for all t.

8. If a,b > 0 are positive constants, then the equation

V1/ = aW1V1
W, = bW V[T

can be reduced to Equation (3.4) by taking V = VabVy and W = aW;.

Proof. Part (1) follows from standard computation and that UUT = UTU = I for an orthogonal matrix U. Also,
a matrix A is symmetric if and only if U7 AU is symmetric.

For part (2), note that the equation W’ = VVT implies that W’(t) is always symmetric, i.e., W’ (t) = W' (¢)7.
Now if W (0) is symmetric, then W (t) and W (¢) are solutions of the same differential equation W’ (t) = W' (¢)T
with the same initial value. By the uniqueness theorem of the solution of ordinary differential equation,
W(t) = WT(t).

Part (3) follows by rewriting Equation (3) as

{ (VabVr)' = (aW1)(vVabVh)
(aW1) = (VabVi)(VabVh)".

Take V = VabV; and W = aW;. This becomes Equation (3.4). u|

B Evolution of Opinion Dynamics
LEMMA 4.1. The length function (t) :== VIV = |V (t)|? is strictly conver and ¢" (t) > 0 unless V() = 0.

Proof. Recall that o(t) = [V (¢)]2.

o)=YV VIV =WV +VvIwy = 2vTwV.

Therefore,

20VHYIWV +VIW'V + VIWV) = 2(WWV)TWV + VIVVTV + VIwwy)
=2(WVP+|VE+VIWITWV) =22WV]2 + VI =202V )2+ [V(#)[*) >0

(B.1) ()

Now if ¢"(tg) = 0, then V'(tg) = V(to) = 0 by Equation (B.1). This shows that V(¢) is the solution of the ODE
(Equation (3.6)) with the initial condition V' (tg) = V’({y) = 0. But 0 is also the solution. Therefore, by the
uniqueness of solution of ODE with initial value, V(¢) = 0. This ends the proof. O

COROLLARY B.1. If V(t) solves Equation (3.6), then
(B.2) VIR = Vot - VTev.
In particular, if limy_,7 V(t) = 0, then limy_,7 V'(t) = 0.
Indeed, by (|[V(#)]?)) = 2VTV’ and Equation (3.6) that V" = 2|V|>V — CV, we have (|[V(t)]?)" =

2VHTV 4 2VTV" =2|V'() |2 + 2V (2IV2V — CV) = 2|V'(t)|?> + 4|V |* — 2VTCV. Comparing it with Equation
(B.1), we see the corollary holds. The last statement of the corollary follows from Equation (B.2).
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We now prove Proposition 4.1 using several lemmas. For simplicity, if f(¢) is a function defined on an open
internal (a,b) (here b may be +00), we say f has property P (e.g., positive, non-negative, monotonic, convex
etc) near b if there exists € > 0 such that the restriction of f on the interval (b — €,b) (if b < 400) or (1, 00) (if
b = +o0) has property P. For example, t* + 3t — 9t? + ¢ — 5 is positive and convex near +oo. The notation
C*(a,b) stands for all functions f(t) for which f, f,---, f(*) are continuous on the interval (a, b).

LEMMA B.1. Suppose f € C%(a,b) and p(t) > 0 on (a,b) such that
(B.3) f(t) = p(&)f(t) on (a,b)
and f(t) is not identically zero on any sub-interval. Then

1. f has at most one root in (a,b).

2. f has the same sign near b (i.e., always positive or negative).

3. f is monotonic near b.

4. the limit lim,_,,— f(¢t) exists (the limit may be £00) ).

Furthermore, if g"(t) > q(t)g(t) and ¢ > 0 on (a,b), then either g(t) > 0 near b or g(t) < 0 near b.

Proof. To see part (1), if f has two roots in (a,b), then since f is not identically zero on any interval, there exist
two adjacent roots f(c) = f(d) where ¢ < d and f has no roots in the open interval (¢, d). By replacing f by —f if
necessary, we may assume that the restriction function f|(. 4) > 0. Then by Equation (B.3), f”(t) = p(t) f(t) > 0
on (c,d). Therefore f|. q is a convex function which has two minimum values at ¢, d. This implies that f|;. 4 =0
which contradicts the assumption.

Part (2) follows from the part (1) easily.

To see part (3), we first show that f’(¢) has at most two roots in the open interval (a,b). Suppose otherwise
that f’(t) has three roots in (a,b). Then by the Mean Value Theorem, f”(¢) has two roots in (a,b), one in each
interval bounded by roots of f/(t). But f”(t) = p(t)f(t) with p(¢) > 0 says f and f” have the same roots. This
implies that f has two roots in (a,b) which contradicts the part (1). Since f’ has only two roots, it follows that
f/(t) > 0 near b or f'(t) < 0 near b. Therefore f is monotonic near b.

Part (4) follows from the well-known theorem that if h(t) is monotonic in an open interval (a,b), then the
limit lim;_,,— h(¢) always exists (limit value of the limit may be +00).

Finally, to prove the last statement, we consider two cases. In the first case, there are no sequence {r,,} of
roots of g such that lim,,_,o 7 = b. Then clearly g(t) > 0 or g(t) < 0 near b. In the remaining case, we have an
increasing sequence of roots, 11 <19 < -+ < 71y < --- of f such that lim,, oo 7, = b. We claim that g|[,q1,b) <0.
Suppose otherwise that g(to) > 0 for some ¢y € (r1,b). Let ¢ (respectively d) be the largest (respectively smallest)
root of g such that ¢ < g (respectively d > to). By the assumption, both ¢ and d exist. Furthermore ¢ < tg < d
and g has no root in the interval (c,d). Therefore, due to g(to) > 0, gl(c,qy > 0. By the condition ¢" = qg, with
q > 0, we see that ¢"[( 4y > 0. Therefore g(t) is convex on [¢,d] and has two minimum values 0(= g(c) = g(d)).
But that implies g|j. 4y = 0 and contradicts g(to) > 0. 0

COROLLARY B.2. Suppose A(t) = [A1(t), -, A\ (t)]T solves the ODE Equation (4.7) and a; >0, az,--- ,a, <0
on the mazimum interval [0,T). Then

1. limy o [V ()] = limyyp Y p_y A2(t) exists.

2. For all i, lim,_,7 \2(t) exists.

3. Assuming that lim; 7 [V (t)|* = oo, for i # j, either \;(t) > X5(t) near T or \;(t) < X3(t) near T.
4. Forlimy_,r |V (t)|? < oo, then all limits lim;—,7 Ai(t) are finite and can be ordered.

Proof. For (1), by Lemma 4.1, ¢(¢) = |V (¢)|? is convex in [0, T'). Hence ¢(t) is monotonic near T and lim,_,7 ¢(¢)
exists.
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For (2), let us assume V(t) is not identically zero. Otherwise the result holds trivially. If ¢ > 2, then
by Equation (4.7), a; < 0 and Lemma 4.1, we have 2|V (t)[* —a; > 0 on [0,T) and \/(t) = p;(t)\:(t),
where p;(t) = 2|V(¢)|> — a; > 0. Therefore by Lemma B.1, lim; .7 A?(¢) exists. If i = 1, we have
N(t) = |V(#)]P=>p_y A2 (t). Now if lim;—, 7 [V (£)|* < +o00, then limy_,7 A} (t) < +o0, for k = 2,- -+, n. Therefore,
limy 7 A3 () = lim,p(|V (£)> = 325, A7) exists and is finite. If lim; 7 [V/(£)|* = 400, then 2|V (t)|> — a1 > 0 for
t near T. The equation \/(t) = (2|V(t)|?> — a1)\1(¢) is of the form A/ (t) = p1(t)A1(t) where pi(t) > 0 near T.
Therefore by Lemma B.1(4), lim;_,7 A?(t) exists.

For (3), since A7 > A? is the same as [\;| > |);| and if \; solve Equation (4.7) so is —A;(t). The assumption
that lim;_,7 |V (¢)|? = oo implies |V (¢)|> — ax > 0 for ¢ near T. We may assume, using Lemma B.1(2), that
Ai(t) > 0 and A;(¢) > 0 near T. Our goal is to show, under the assumption that A;, \; > 0 near T, either \; > ),
or A\; < Aj near T. Without loss of generality, we may assume that a; > a; and a; < 0 (Note a; > 0 and
as, -+ ,a, <0). Then using Equation (4.7), we have

i = A)" =X =X = 2IV(H)]? = ai)xi — 2]V ()] — aj)A,
= Q2IVE)I? = a) i = X)) + (a5 —a)r; = V() — ai) (A — Ay).

Since aj —a; > 0 and A; > 0. Now due to a; < 0, 2|V (¢)|* — a; > 0. Therefore (A\; — \;)” > q(t)(\; — A;) when
g > 0 near T'. By the last proof of Lemma B.1, we see either A; > A; or A; < \; near T'. This ends the proof.

Part (4) follows from part (2) and the assumption which implies lim;_,7 A? are finite real numbers. Therefore,
we can order them. |

Now, let us prove Proposition 4.1.

PROPOSITION 4.1. If T < 400 or if T = 400 and limy_,7 |V (t)| = L > 0, then there exists one term 1y among
Y (t) = fot M (s)\i(s)ds which has the mazimum growth rate as t — T and limy_,7 pp(t) = 400.

Proof. There are two cases depending on the maximum interval of existence [0,7) being finite, i.e., T < +o0 or
infinite [0, +00), i.e., T = +o0.

Case 1. T < 400. Recall the basic global existence of solution to ODE [62].

THEOREM B.1. (Ezistence) Suppose F(t,x) € C*(R x R™) and [ty,T) is the mazimum interval of existence of
the solution x(t) to «'(t) = F(t,z(t)) with x(tg) = xo. Then the path {(t,z(t))|t € [to,T)} does not lie in any
bounded set in R x R™.

Now, for T' < 400, Theorem B.1 implies lim;_,7 |V (¢)| = +o0o. Indeed, if lim;_,7 |V (¢)| < +o0, then V(¢) is
bounded on [0,7"). This implies W’(t) = V(¢) - V(t)T is bounded. but W (t) = W(0) + fot W'(s)ds. Therefore
W(t) is bounded. This implies the solution (V(t), W(t)) for ¢ € [0,T) lies in a bounded set in R™ x R™*™ which
contradicts Theorem B.1.

Now lim; 7 [V(#)]* = lim;7 327 A3(t) = +oo implies, by Corollary B.2(2), there exists i for which
lim; 7 A7 (t) = +o0. Furthermore, by Corollary B.2(3), there exists an index h for which A} (t) > A3(t) near
T for all j. Thus A\}(¢) has the largest growth rate tending +oc as t — T'.

For generic initial value V' (0) and W (0), A?(¢) is the unique term of maximum growth rate. Therefore, we
see that part (1) of Therem 4.1 holds.

Case 2. If T = 400, let us assume that the limit lim; .7 |V ()] = L > 0 and show that structural balance
occurs eventually.

By Corollary B.2, we may assume that A;(t) > A3(t) for ¢ near oo for all j (if limy,7 [V (t)]* = oo) or
limy_,7 A7 () = max{lim;_,7 A?(t)|i = 1,...,n} < oo. Let L' = limy_,7 A7 (t). Then L’ > 0 since L > 0. In the case
of lim;—,7 |V (¢)|* = 0o < oo, for generic initial value, we may assume that lim;_,7 A2 (¢) is the unique maximum
value among all lim;_,7 A2(t), i = 1,...,n. Then we see that

| 2

t
/ IA2(s)|ds > (£ — to) 1" + co
0

for some constants L"” > 0 and cg. It tends to +00 as t — oo.
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Furthermore, by the Cauchy inequality,

( AN (3)ds)? < / N (s)ds - / N2 (s)ds

and

¢ ¢
/)\f(s)dsg/ A\ (s)ds + 1

0 0

for t large, we see the growth rate of fot Ni(s)A\j(s)ds is at most that of fg A7 (s)ds as t — oco. This shows, by the

same argument, that the growth rate of w;;(t) is dominated by w;nu;p fot A7 (s)ds. Therefore, structural balance
occurs again for generic initial values.

Finally, we prove that in Case 1 or in Case 2 that T = oo such that lim;_,. |V (t)] = L > 0, the limit
limg o0 V(t)/|V(t)] exists.

By corollary B.1 (2), lim; 7 \; exists in [—oo,00]. Therefore, if lim;, |V (¢)] = L is a finite positive
number, then lim; o V'(¢) exists in R™ — {0}. Hence lim;_, V(¢)/|V (t)| exists. In the remaining cases, we have
lim_,7 |V (t)] = oo. In this case, by the argument above, we see that \;(¢) has the same sign near 7. We claim
that the function A;/X; is monotonic near 7. Indeed, by the quotient rule for derivative, the sign of derivative of
Ai/A;j is the same as that of h(t) = MA; — NjAi. Now W/ (t) = A/A; = N/ = (2[V[> —ag)\Aj — (V> —aj) A A =
(a; — a;)A\i\j. Therefore, either 2/(t) has the same sign for ¢ near T' (when a; # a;) or h'(t) = 0 (when a; = a;).
If #/(t) = 0, then X\;/)\; is a constant near T" and the claim follows. If A/(¢) has the same sign near T, then h(t)
is strictly monotonic near T'. Therefore, h(t) has the same sign for ¢ near T'. As a consequence we see that A;/\;
is a monotonic near 7. In particular, the limit lim, 7 \;(£)/\;(t) exists. Since limy,7 >}, Ae(t)? = oo, this

Ai(t :

YV _;;f iju)z = limer T NOHENOE
the same as that lim;_,7 V(¢)/|V ()| exists.

This ends the proof of Theorem 4.1. ]

implies the limit lim;_,p exists for any index i. The last statement is

COROLLARY B.3. Suppose lim;_,7 [V (t)| = co. Then A := limy_r W (t)?/|V(t)|? exists and lim;_,7 V/|V| is an
eigenvector of A associated to the eigenvalue one.

To see this, let v be limy7 V/|V|. From W? = VVT — C and lim;r |V(t)] = oo, we see that
W2/|V|2 = (V/IV)(V/IV)T — C/|V|? implies lim;_,7 W?/|V|? = vvT. Since vvlv = v due to |[v|? = 1, the
result follows.

We end the appendix by making several remarks and a conjecture.

The 1-dimensional case of equation V" (t) = (2|V(¢)|? — C) - V(t), V(t) € R™ is y”(t) = 2y3(t) — cy(t). The
function f(t) = m solves f" = 2f% + a®f and g(t) = m solves g"" = 2¢® — a?g. We may assume
a > 0. Therefore, if b < 0, then both f and g exist only on a finite maximum interval (it is [0, —2) for f(¢)), i.e.,
T < +o0. If b > 0, then the function f(t) exists on [0, +00) but the function g(t) exists only on a finite interval
[0,T). It indicates that if C' has a positive eigenvalue a; > 0, then the solution A;(t) may exist only on a finite
interval.

This prompts us to conjecture that

CONJECTURE B.1. If the initial value matriz C = V(0)V(0)T — W(0)W(0)T has a positive eigenvalue (i.e.,
ay > 0), then the mazimum interval [0,T) of existence for the solution (V (), W(t)) of the co-evolution equation
V' =WV and W =VVT is finite, i.e., T < +o0.

If the conjecture holds, by Theorem 4.1, we see structural balance must occur eventually for generic initial
value C' which has a positive eigenvalue. Therefore, it also justifies our experimental observation that structural
balance occurs almost all the time.

C Analysis of Social Tie Evolution
C.1 Structural Balance with W (t)

THEOREM C.1. ([45]) Suppose W (t), t € [0,T), is a continuous family of symmetric matrices such that
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1. W(t) has a unique largest eigenvalue, denoted by B1(t), which tends to infinity ast — T,
2. all eigenvectors of W (t) are time independent, and

3. all components of the B1(t) eigenvector are not zero.

Then
Wi Wik Wk > Oa VZ,]7]€,Z #Ja.] 7& k72 7é k7

for all time t close to T, i.e., the structural balance of the whole graph is satisfied.
If (2) does not hold, we have

Wi Wk Wi > 07Vivj7 kvl 7é j7.7 7& kal 7é k.
Proof. Let all eigenvalues of W(t) be 1, ..., 8, and 81 be the unique largest eigenvalue. Then
W(t) = H - diag(B1(1), -, Ba(1)) - HT,

for some time independent orthogonal matrix H whose first column is the (§; eigenvector. This implies that
wij = Y Hik - Pr(t) - Hji. Since all 5;(t) < Bi(t) for i # 1, the growth rate of w;;(t) as ¢ — T is the same as
H;15:(t)Hj.
Therefore, the sign of w;; is the same as the sign of H;; - Hj1. Thus,
sgn(wijwjrwe;) = sgn(Hi Hjy Hjy Hy He Hi ) = sgn(H; H; HEy) > 0.

The same argument shows that above sign is non-negative if some component of the eigenvector is zero. ]

C.2 Solution to the General Riccati Equation We first focus on solving a general form of the matrix
Riccati equation as stated below.

(C.4) { W =W?2+4+C

W(0) =B.
The equation in our co-evolution model, i.e., Equation (3.5), satisfies C + B? = V(0)V(0)”. Notice that the
right-hand side V(0)V(0)T is an n x n matrix with rank one, which is a special condition. The analysis in this

subsection applies for general matrices B, C'.
By using a result in Reid [54], we can turn the matrix Riccati equation to a linear ODE system.

LeMMA C.1. ([54]) The ODE system in Equation (C.4) is equivalent to the following system

©5) { Y =2 Y(0)=1

Z'=-CY Z(0)=-B,
where Y = —WY and Z = -WY, and Y, Z,W € R"*"™,

Proof. First, we show that we can get Equations (C.5) from Equations (C.4), i.e., (C.4) = (C.5).
We know that Y exists and Z = —WY. Thus, Y’ = Z. Then
Z'=-W'Yy -wy’
= -(W2+C)Y —W(-WY)
=-W?Y - CY + W?Y
=—-CY.
At the same time, Z(0) = —W(0)Y(0) = —W(0) = —B. Thus, this direction is satisfied.
Second, let us prove that Equation (C.4) can be obtained from Equation (C.5).
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y continuity, Y (¢)~! exists for t € [0, ¢, for € > 0. Since Z = —WY, we have W = —ZY ~L.
Y Yl sineeY - Yl =1=Y" Y~ +Y (Y1) =0. Therefore:

)

I
Note (Y1) = -Y~

o

W =-2 .Y *'-Z. (Yl
=CY - Y '-Z(-yt.y.v
=C+Z-Y ' (-WYy) .y !
=C-Z-Yy ' w
=C+ W2

Clearly W(0) = —Z(0) = B. This completes the proof. O

From Lemma C.1, we can focus on solving the linear Ordinary Differential Equation (ODE) in Equation (C.5),
which can be written in a matrix form. The analysis below is new.

-]

where we define A = [ _OC é ] € R?"%2" in block form and X = [ }Z/ } € R2nxn,
Now, let us solve the evolution equation X’ = AX, where X(0) = [ _IB } . It is well known that the solution

is,

(©6) X(1) = (Y Tx ).

A2 0 I 0 I|_ -C 0
-C 0 -C 0 0o —-C |
It implies:

42 [ (-1)men 0 ]

AZnL g2 [ (=prem - 0 ] . { 0 I } _ [ 0 (-1ren

0 (=nHrcn -C 0 (—1)nttontt 0
Recall that W = —ZY ~!. Now we are ready to solve for W.

THEOREM C.2. The solution W (t) is given by the explicit formula that W (t) = —Z(t) - Y (t)~1, where

[e%e) (_1)nt2nCn o0 (_1)n+1t2n+1CnB
4. Y(t —
(4.9) O = X et Ty
e’} (_1)n+1t2nCnB e <] (_1)n+1t2n+lcn+1
4.1 Z((t) = N 2
Y " nz::o (2n)! ; (2n+1)!
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Proof. According to Equation (C.6),

t2nA2n t2n+1A2n+1
X(t) = - X(0
03T e 3 T v
B i (_l)nth |: on 0 :| |: 1 :|+§: (_1)nt2n+1 l: 0 cn :| |: 1 :|
=) ~—— " B o T | ot _
—  (2n)! 0o C B | & (2n+1)! C 0 B
S £ (2
= _m T o | 1Vl n+1
n=0 ( B n=0 (2n+1>' C
oo 2o 0o (—1ntlmtlionp
— [ n=0 1)n+21n nem g +Zn:0 ( 15%?.1+t12)n!+1cn+1
T, D T
alY
| Z

d

C.3 When B, (C are both symmetric In our model, we assume that the initial tie matrix W (0) is symmetric.
Thus the social tie evolution follows W’ = W?2 + C, where W (0) = B, both B and C are symmetric. We are able
to derive more detailed closed form solutions for the matrix Riccati equation in this setting.

Since C is symmetric, there exists an orthogonal matrix U such that UTCU is a diagonal matrix: UTCU =
diag{a?,--- ,ai, —d3,- - ,fdl2,0, .-+, 0}, where a; > 0,d; > 0. Furthermore, if BC = CB, by the simultaneous
diagonalization theorem, we may choose U such that both UTCU and UT BU are diagonal. By Lemma 3.1(1),
without loss of generality, we are going to solve the equation with the initial opinion vector U7V (0) and initial
weight matrix UTW (0)U. This leads to a system as below

UTWU) = UTWU)?+UTCU
UTW(O)U =UTBU.

The solution of this system can be easily transformed back to the solution to the original system by conjugation.
For simplicity, the (i, j)-th entry of a matrix M will be denoted by M;;. Define f;; the ith diagonal element of
UTBU, i.e., By = (UTBU);.

Let us now work out explicitly the matrices Y and Z in Theorem 4.3.

1. For the positive eigenvalue a? of C,

& ( l)nth 2n

D

= (2n)
n+1t2n+1 2n

(=D 1
Z CEE] = ——sin (a;t).

i
n=0

= cos (a;t)

Thus, (UTYU);; = cos (a;t) — ai sin (a;t) - B;;. Similarly, we have

n+1t2n 2n
—cos (a;t)

n+1 t2n+1 2n+2

(2n+1)!

= —aq; sin (a;t).

>
>

So, (UTZU);; = — cos (a;t)Bi; — a;sin (a;t).

2. For the zero eigenvalues of C, i.e., ¢; = 0, we have (UTYU);; =1 —t- B and (UTZU);; = —Bii-
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3. For the negative eigenvalue ¢; = —d?, we have

T & t2nd12n 0 t2n+1d?n 1 .
U'Yuv),; = Z Tan) +(-1) Z mﬂn = cosh (d;t) — T sinh (d;t) Bi;
n=0 ’ n=0 ’ g
. e thdZn e t2n+1d2n+2
U ZU)y = —1)——u —_ = — h (d;t)B;; + d; sinh (d;t).
So we can summarize the above formulas as: UTYU = Dy — DoUTBU and UT ZU = D3 — D,UT BU, where
D, = diag{cos(ait), - ,cos(axt),cosh (dit),--- ,cosh (djt),1, - 1},
Dy, = diag{sin(ait)/a1,--- ,sin(axt)/a,sinh(dit)/dy,- - ,sinh(d;t)/d;, 1,--- , 1},
D; = diag{—aysin(ait),- -, —agsin(agt), dy sinh(dst),-- -, d; sinh(d;t),0,--- ,0},

C.4 When both B,C are symmetric and BC = C'B Now, we consider the special case that BC = C'B.
Using a basic fact that two commuting symmetric matrices can be simultaneously orthogonally diagonalized [32].
Let U be an orthogonal matrix such that

UTCU = diag(ai,--- ,a},—d3, -+ ,—d7,0,- -+ ,0)
UTBU:dlag()‘lv a)‘kuu/l?"' 7,U/l7(sla"' 76h)~

where a;,d; > 0.
In this case we can further simplify the solution.

W=-2z.y!
., aysin(a1t) + cos (ar1t) A ag sin (agt)) + cos (axt) A
=U diag( T R T )
cos (a1t) — z-sin (a1t) A cos (axt) — o sin (art) Ak
(C.7) _ dysinh (dit) — cosh (dit)p _ dysinh (dit) — cosh (dit)
cosh (dqt) — d% sinh (dit)u;” ° cosh (djt) — d% sinh (djt)p;’
51 5h T
e UT.
1—té 7 145,,,)

Note that above equation for W (¢) implies that V' (¢) is an eigenvector of W (t) for all time ¢.
Now we are ready to analyze the behavior of W over time in the case of a symmetric initial condition matrix
W(0). We start with a technical lemma.

LEmMmA C.2. 1. If a >0, then there exists T € (0,%), such that for all A

asin (at) + A cos(at)

= 4-00.
=T —2 sin (at) + cos(at)
2. If d > 0, then there exists T € (0, 00], such that
h(dt)u — dsinh(dt
cosh(dt)u — dsinh(dt) - to0,

i cosh(dt) — & sinh(dt)
if and only if u > d. In the case p < d, the limit for T = oo exists and is finite.

8. If § > 0, then there exists T = %, such that
ST T

For all cases mentioned above, the convergence rate is O(|T17t\ ).
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Proof. For (1), we reorganize

)
2 sin (at) + cos(at) cot (at) —

a

asin (at) + A cos(at) )\C,ot (at) +

b

Q>

Since cot (at) is strictly decreasing from oo to —oc in the range (0,7), there exists a 7' € (0,7), such that
cot (at) = 2. As t approaches T from the left, cot (at) — % > 0.

o
When ¢t — T the numerator becomes

A a A2 + a?
4 =
a

> 0.

This confirms (i).
Then we consider the convergence rate as t — T

cot (at) +
cot (at) —

cot (—a(T —t) +aT) +
cot (—a(T —t) 4+ aT) —

(2 + %) cot (a(T — 1))
14 2;

A =A

2> [>|e
2>l

The Taylor series of cot (z) is £ — £ + o(z). Given that (T'—t) — 0, the convergence rate is O(

).

1
T—t

For (2), reorganize
cosh(dt)u — dsinh(dt)  coth(dt)u —d
cosh(dt) — & sinh(dt) — coth(dt) — & °
Since the function coth(dt) is strictly decreasing from oo to 1, if p > d, there exists T € (0,00) such
that coth(dT) = p/d. Furthermore, as t approaches T from the left, the denominator is positive. But
lim;_,7 coth(dt)u — d = # > 0. It follows that

cosh(dt)p — dsinh(dt)

i cosh(dt) — & sinh(dt)

If < d, the function is smooth on [0, 00) and the limit is finite as t — co.
For convergence rate, we rewrite the function:

coth (dt) — ¢ coth (—d(T —t) 4+ dT) — ¢ (& — 4y coth (d(T —t))
f =M L=y L :
coth (dt) — & coth (—d(T —t) +dT) - & 41

The Taylor series of coth (z) is 2 4+ £ — o(z). Given that (T —t) — 0, the convergence rate is O(ﬁ)

The limit in case (3) is obvious when § > 0. Now we look at its convergence rate. Here T' = %. Rewrite the
function as

s 1 1 1
1—t6 +-t T—t (T—t)
Thus, its convergence is O(ﬁ)
From the above analysis, we can know the convergence rate is O((Til_t)), which is an inverse proportional
function, under any case. ]

By Equation (4.11) and Lemma C.2, we know that some diagonal entry of W converges to the infinity at a
finite time T under some appropriate conditions.

C.5 Structural Balance when BC = CB In the following, we prove Theorem 4.4 which characterizes the
conditions for structural balance, when BC = CB.

THEOREM C.3. Suppose W (t) solves the Riccati equation W' = W2+ C, W(0) = B where B,C are symmetric
with BC = CB. Then eigenvalues of W (t) converge to elements in (—oo,00] as t — T'; meanwhile there is sign
stability, i.e., lim;_,p w;;(t) € [—o0, 00| exists for all i,j. If U is an orthogonal matriz such that

UTCU = diag(a?,--- ,a},—d3, -+ ,—d7,0,- - ,0)
UTBU:dlag()‘lv a)‘kuu’l)"' 7,U/l7(sla"' 76h)~
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where a;,d; > 0, then W (t) is given by the following explicit function,

W () =U - diag( aq sin (a1t) TC?S (a1t)\1 . a, sin (agt)) —|— cos (akt))\k’
cos (a1t) — - sin (a1t) A cos (at) — o sin (apt) Ag
(4.11) _ disinh (dit) — cosh (dit) _ dysinh (dit) — cosh (dit)
' cosh (dit) — f-sinh (dit)p” ~ cosh (dit) — 2 sinh (dit)
(51 5h T
1—té’ ’1—t6h) v

Further, structural balance
lim Wi Wi W 2 0
t—T

occurs in the finite time for W (t) if W(t) has an unique largest eigenvalue and one of the following conditions
holds:

1. There exists some §; > 0,
2. There exists some a; > 0,

3. there exists some p; > d;.

Proof. Since the eigenvalues of W (t) remains the same as UTWU for any orthogonal matrix U, we see the
convergence of eigenvalues of W (t) from Equation (4.11). Due to the convergence of the eigenvalues in (—oo, oo],
we see that limy_,7w;;(t) € [—00,00] exists for all 4, j. This means that we have sign stability, that all weights
wij, V1, j, have fixed signs, as t — T.

To see structure balance, by Theorem 4.2, it suffices to check if the largest eigenvalue tends to infinity. We
examine the solution W as described in Equation (4.11) and use Lemma C.2.

1. If there exists §; > 0, structural balance occurs because lim, oL ﬁ = +4o00.

2. If there exists a; > 0, structural balance occurs because of Lemma C.2(1).
3. If p; > d;, structural balance occurs because of Lemma C.2 (2).

|

Now we are ready to discuss our co-evolution model (Equation (3.4)). First, the condition BC' = C'B when
B =W(0)and C = V(0)V(0)T — W (0)W(0)” means that V(0) is an eigenvector of . We finish the proof here.

LEMMA 4.2. Suppose A is a symmetric matriz and v is a non-zero column vector. Then AvvT = vvT A is
equivalent to Av = aw, i.e., v is an eigenvector of A.

Proof. Clearly if Av = awv, then A and vv” commute. Conversely, if A and vv? commute, we can find an
orthogonal matrix U such that UT AU and UTvvTU are diagonal. We may assume that the (1,1) entry A of
UTvvTU is not zero. This shows the first column ¢ of U is an eigenvector for vv” associated to A. But v is also
an eigenvector of vv” associate to A. Therefore c is a non-zero scalar multiplication of v. But we also know that
¢ is an eigenvector of A. Therefore, v is an eigenvector of A. a0

For Equation (3.4), we have an additional condition B? + C' = V(0)V(0)7 which has rank one. In the
discussion below, we need the following fact about the eigenvalues and eigenvectors of rank-1 symmetric matrices
H = uu® where u € R® — {0}. The matrix H has eigenvalues ||u||> and 0 such that the associated eigenvectors
are u and z’s which are perpendicular to u, i.e., u”z = 0. Therefore, the unique largest positive eigenvalue is
[|lu||? with the associated eigenvector u.

COROLLARY 4.1. For Equation (3.4), if V(0) # 0 is an eigenvector of W(0), then V(t) remains to be an
eigenvector of W (t) for all t and structural balance must occur in finite time for W(t).
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Proof. When V(0) is not a zero vector, V(0)V(0)T is a symmetric matrix with one positive eigenvalue and
(n — 1) zero eigenvalue. Furthermore, V(0) is an eigenvector associated to the largest positive eigenvalue. Now,
since W(0) and C' commute, we may simultaneously orthogonally diagonalize both. Since B2 + C = V(0)V (0)T
is diagonal with only one positive diagonal entry, using the same notation as above, we see that all numbers
a? + 22, ....,a% + A%/ﬁ —d?, ...7u12 — d%é%, ...,02 are zero except one of them which is positive. If a? + A\? > 0,
then a; > 0 exists and the condition (2) holds. If u? — d? > 0, then p; > d; exists and the condition (3) holds. If
82 +0 > 0, then §; > 0 and the condition (1) holds. Thus, by Theorem 4.4, the structural balance must occur in
the finite time for W (t). d

C.6 Extensions and Conjectures General Graphs The discussion so far has assumed a complete graph.
For a connected graph G, with our evolution model, our conjecture is that all the weights and opinions will go to
extreme values. This appears to be the case for all simulations we have run. The reason is that it is hard for the
weights to converge to finite values. One exception is that all the opinions are 0. But this is not a stable state.
Any small perturbation on the opinion will break this stable state.

At convergence, however, there might be more than 2 communities. The reason is that the edges with negative
weights may not be in any triangle of the graph. Thus, multiple communities can be separated by the negative
edges and it does not break the structure balance requirement.

High Dimensional Opinions When each node has multiple opinions on different issues, its opinion can be
represented as a m-dimensional vector, where m is the number of opinions in one node. Each entry of the weight
matrix is a m X m matrix instead of a real number.

For the high dimensional setting, our equation for a general graph is:

() { V= 2 WiV
Wllj = ‘/Z‘/J v~ ]
where i ~ j means that there exists an edge between nodes 7 and j. Then, we have the following theorem:

THEOREM C.4. If the graph has no self-loop and consider tie matrices W to be symmetric, i.e., W = W7, then
Equation (C.8) is the gradient flow of the dissonance function:

1 T
FV,W) = 52‘6 -Wij - Vj.
i~
Proof. Since each opinion vector is m-dimensional, we can write it as V; = [(v;)o] € R™. Similarly, the edge
weight W;; can be written as an m x m matrix [(w;;)ap] € R™*™. Note that W = W7 means (wij)ap = (Wi )ba-
Equation (C.8) is the same as:

{ (Wi)a = 22 jmi 2obe (Wi )ab (V)b
(wig) oy = (V1)a(vi)p, i ~ j.
Due to ¢ ~ j implies i # j, the derivative of F' are:
oF 1 1
B~ 3 a(v)o+ 5(05)e(vi)a £ (wij) b
ij)a
OF
8(Ui)a

5 S wgha + 5 3w

Grvi kni

D (wi)av(vy)s = (Vi)

gri
d

Based on our evolution equation and previous properties in the 1-dimension opinion case, we make the
following conjecture:

For a complete graph with self-loop edges, all the opinion vectors and the weight matrix will converge to
extreme values. Any two adjacent nodes V;(t) and V;(t) have the same opinion or the complete opposite opinion,
ie., Vi(t) = V;(t) or Vi(t) = —V;(t) as time approaches Tj.

Based on the above conjecture, each entry of lim; .7, W;;(t) should have the same sign as that of
lim oz, Vi(6)V; ()7
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Figure 4: The evolution process for a complete graph with BC' = C'B. In the first three plots, the network at
the limit achieves structural balance and the network is also polarized. In the last example, the network reaches
harmony.

D Simulation

We use the discrete time model as described in Equation (3.3). The convergence of the dynamic process defined
by Equation (3.3) is very fast. For visualization purposes, in the simulation, we set our evolution model using
Equation (3) with @ = b = 0.01. When a graph is said to satisfy structural balance, the multiplication of weights
along all triangles is non-negative. In addition, either all nodes have the same opinion (i.e., harmony) or the
graph is partitioned into two antagonistic groups (i.e., polarization).

D.1 Harmony vs Polarization In this section, we work with a complete graph and examine when structural
balance and/or polarization appears.

B and C commute. As mentioned in Theorem 4.4, when the matrices B = W (0) and C = V(0)V(0)” — W (0)?
are symmetric with BC = CB, structural balance occurs in finite time for W (t) if W (¢) has an unique largest
eigenvalue. We take three special cases mentioned in the previous section, namely when W(0) = I, W(0) = 0, or
W(0) = V(0)V(0)T. The evolution process of these three cases are shown in Figure 4. The initial opinions are
selected uniformly at random in [—1,1]. The dash curves represent the evolution of opinions and the solid ones
shows the edge weights. The color of the curves represent the final sign of opinions and weights at convergence.
In all three cases the network reaches polarization where the opinions of some vertices go to positive infinity
and the opinion of the others go to negative infinity. In these cases, the node opinions do not change signs,
because v;w;;v; > 0 holds all the time. The gradient direction of opinions and weights are same with their signs.
Figure 4(d) shows a case when both opinions and edge weights converge to positive values. All the opinions are
assigned initially as a positive value. The initial weight matrix is a diagonal matrix with the same diagonal entry.
All final opinions and weights are positive.

B and C do not commute. Next, we consider the case when the matrices B and C' do not commute. We
take different random initial cases and show the evolution process in Figure 5. In the first two plots 5(a) and
5(b), we select a symmetric random matrix as the initial weight matrix W (0). The opinions are assigned random
initial values. In simulation we observed both cases of harmony and polarization as the final state. Some edges
and vertices change signs in the process. We also show an example of the evolution process in Figure 2 which
shows how two communities emerge.

W(0) is not symmetric. In Figure 5(c), the initial weight matrix is not symmetric. Both vertex opinions
and edge weights go to infinity after several iterations. Figure 5(d) shows when all the entries in the matrix and
opinions are initially negative. Some opinions and weights change signs in the evolution process. For all cases we
have tested when B and C do not commute, structural balance is always satisfied in the limit.

D.2 Convergence Rate In section, we check the convergence rate in different settings. This helps us
understand intuitively the factors that influence the convergence rate.

Magnitude of Initial Opinions. Figure 6(a) and 6(b) show two cases W(0) = I and W (0) = 0 respectively. In
both cases BC' = C'B. The initial opinions are randomly selected from (—1,1). We check the number of iterations
until all entries in the opinion vector and weight matrix have absolute value larger than 10%°. From the analysis
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Figure 5: The evolution process for a complete graph with BC' # C'B. In both (a) and (b) we take a symmetric
random matrix as W(0) and a random initial vector V' (0). In (a) the network reaches a polarized state and in
(b) the network reaches harmony. Figure 5(c) shows the evolution when the initial weight matrix is a random
non-symmetric matrix. Some edge weights and opinions change signs during the process. In Figure 5(d), all
the entries in the initial matrix and the opinion vector are negative. The network reaches a polarized state and
reaches structural balance.

in the previous section, the largest eigenvalue of W (t) determines the convergence rate. Given that the initial
weights are determined, we check the positive eigenvalue of V(0)V (0)T. We can see that the number of iteration
until convergence is inversely proportional to the magnitude of the positive eigenvalue of V(0)V(0)T. The more
extreme the initial opinions are, the faster the network reaches convergence. We also tested networks of different
sizes, which seems to be generally oblivious to the convergence rate.

W(0) as a Random Matrix. In Figure 6(c), we compare the case of W(0) = V(0)V(0)T with W (0) being
a random symmetric matrix (W (0) and C are generally not commutative). The orange dots show the number
of iterations till convergence when entries in W (0) are selected uniformly in (—1,1). The green dots show the
number of iterations until convergence when entries in W (0) are selected uniformly in (—5,5). There are a few
observations. 1) When W (0) take random values, it requires more iterations to convergence compared to the case
when W (0) = V(0)V(0)T. Specifically, during the evolution when W (0) = V(0)V(0)T both opinions and weights
do not change signs. 2) When the initial weights take greater absolute values in general, the system converges
faster. Again the more extreme the opinions/weights are, the faster the system reaches structural balance.

On a General Graph. We also test on graphs generated by social network models. In Figure 6(d), we show the
convergence results on graphs generated by the Erdds-Renyi Model G(n,p), where n is the number of nodes and
p is the probability of each pair of nodes connected by an edge. As p increases from 0 to 1, the graph becomes
denser and it requires fewer iterations to converge.

In Figure 6(e) and 6(f), we tested on Watts Strogatz model [63] G(n, k,p), where n is the number of nodes,
k is the number of neighbors of each nodes and p is the rewiring probability. The network starts as a regular ring
lattice, where each node connects to k nearest neighbors on the ring. Each neighbor has a probability p to be
‘rewired’ to another non-neighbor node. Thus, with a larger value of k, there are more edges in the graph. With
a larger rewiring probability p, there is more randomness in the graph. In these simulations, the initial weight
matrices are set as a zero matrix, i.e., W(0) = 0. Similarly, with the same number of edges in the graph, the
relationship between the positive eigenvalue and the number of iterations follows the similar trend. When there
are more edges in the graph, the convergence speed increases. In all cases, the network reaches structural balance.

D.3 Emergence of Community Structure In this section, we ran experiments on real-world network data
sets. We are particularly interested in the following question. Can a few planted seeds with opposite opinions
influence the other nodes and drive the network into structural balance and polarization? Does the final state
coincide with the community structure in the network?

Our first experiment is based on a study by Zachary [67] who witnessed the breakup of a karate club into
two small clubs. As shown in Figure 3(a), the networks captures 34 members, documenting links between pairs
of members who interacted outside the club. During the study, a conflict arose between the administrator (label
0) and the instructor (label 33), which led to the split. The red and green nodes represent the choice of each
individual in the end. In this experiment, we assign the administrator and the instructor opposite opinions as
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Figure 6: The number of iterations till network convergence. When the initial opinions are small in magnitude,
the number of iterations to converge is large. When the graph becomes denser, the convergence rate increases.

1 and —1. The other members start with opinion 0. Given that the links represent interaction and positive
friendship between members, each edge is assigned a small positive value in the initial matrix W (0). We then run
our co-evolution dynamics till convergence. The edges with negative weight are removed. The graph is separated
into two communities, shown in Figure 3(b). It nearly predicted the same division as in the ground truth except
for two members (#8 and #19) which are somewhat ambiguous.

The second experiment is based on the political blogs network. It is a directed network of hyperlinks between
weblogs on US politics, recorded in 2005 by Adamic and Glance [4]. There are 1,490 nodes and 19,025 directed
edges in the graph. Each node has its political preference (—1 as liberal, 1 as conservative) shown in Figure 3(c).
We randomly select 20% nodes and assign initial opinions according to their ground truth values. All edges are
assigned initial weights as a small positive value. When the graph reaches convergence, two big communities
appear, as indicated by their final opinions and the sign of edges. Figure 3(d) shows the detected communities
after negative edges are removed. Compared with the ground truth, the predicted opinions by our dynamical
model has an accuracy of 97.21%, averaged by 200 simulation runs. If only 3% nodes are assigned ground truth
opinions in the initial state, the prediction accuracy for the final opinions of all nodes, on average, is as high as
82.12%.

Our dynamic model, as shown by these experiments, explains why community structures appear. It can also
be understood as an algorithm for label propagation or node classification. Compared with other methods for the
same task [64, 36, 59, 12] that generally use data-driven machine learning approaches, our dynamic model has
better transparency and interpretability.
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