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Abstract

Since its introduction a decade ago, relative en-

tropy policy search (REPS) has demonstrated

successful policy learning on a number of sim-

ulated and real-world robotic domains, not to

mention providing algorithmic components used

by many recently proposed reinforcement learn-

ing (RL) algorithms. While REPS is commonly

known in the community, there exist no guaran-

tees on its performance when using stochastic

and gradient-based solvers. In this paper we aim

to fill this gap by providing guarantees and con-

vergence rates for the sub-optimality of a policy

learned using first-order optimization methods

applied to the REPS objective. We first consider

the setting in which we are given access to exact

gradients and demonstrate how near-optimality

of the objective translates to near-optimality of

the policy. We then consider the practical set-

ting of stochastic gradients, and introduce a tech-

nique that uses generative access to the underly-

ing Markov decision process to compute param-

eter updates that maintain favorable convergence

to the optimal regularized policy.

1. Introduction

Introduced by Peters et al. (2010), relative entropy policy

search (REPS) is an algorithm for learning agent policies

in a reinforcement learning (RL) context. REPS has demon-

strated successful policy learning in a variety of challeng-

ing simulated and real-world robotic tasks, encompassing

table tennis (Peters et al., 2010), tether ball (Daniel et al.,

2012), beer pong (Abdolmaleki et al., 2015), and ball-

in-a-cup (Boularias et al., 2011), among others. Beyond

these direct applications of REPS, the mathematical tools

and algorithmic components underlying REPS have in-

spired and been utilized as a foundation for a number

of later algorithms, with their own collection of prac-

tical successes (Fox et al., 2017; Schulman et al., 2015;
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Nachum et al., 2017; Neu et al., 2017; Haarnoja et al.,

2018; Abdolmaleki et al., 2018; Kostrikov et al., 2019;

Nachum et al., 2019).

At its core, the REPS algorithm is derived via an appli-

cation of convex duality (Neu et al., 2017; Nachum & Dai,

2020), in which a Kullback Leibler (KL)-regularized ver-

sion of the max-return objective in terms of state-action

distributions is transformed into an logsumexp objective in

terms of state-action advantages (i.e., the difference of the

value of the state-action pair compared to the value of the

state alone, with respect to some learned state value func-

tion). If this dual objective is optimized, then the optimal

policy of the original primal problem may be derived as a

softmax of the state-action advantages. This basic deriva-

tion may be generalized, using any number of entropic reg-

ularizers on the original primal to yield a dual problem in

the form of a convex function of advantages, whose opti-

mal values may be transformed back to optimal regularized

policies (Belousov & Peters, 2017).

While the motivation for the REPS objective through the

lens of convex duality is attractive, it leaves two main ques-

tions unanswered regarding the theoretical soundness of us-

ing such an approach. First, in practice, the dual objective

in terms of advantages is likely not optimized fully. Rather,

standard gradient-based solvers only provide guarantees on

the near-optimality of a returned candidate solution. While

convex duality asserts a relationship between primal and

dual variables at the exact optimum, it is far from clear

whether a near-optimal dual solution will be guaranteed to

yield a near-optimal primal solution, and this is further com-

plicated by the fact that the primal candidate solution must

be transformed to yield an agent policy.

The second of the two main practical difficulties is due to

the form of the dual objective. Specifically, the form of

the dual objective as a convex function of advantages frus-

trates the use of gradient-based solvers in stochastic set-

tings. That is, the advantage of a state-action pair consists

of an expectation over next states – an expectation over the

transition function associated with the underlying Markov

decision process (MDP). In practical settings, one does not

have explicit knowledge of this transition function. Rather,

one only has access to stochastic samples from this transi-

tion function, and so calculation of unbiased gradients of
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the REPS objective is not directly feasible.

In this paper, we provide solutions to these two main dif-

ficulties. To the first issue, we present guarantees on the

near-optimality of a derived policy from dual variables op-

timized via a first-order gradient method, relying on a key

property of the REPS objective that ensures near-optimality

in terms of gradient norms. To the second issue, we propose

and analyze a stochastic gradient descent procedure that

makes use of a plug-in estimator of the REPS objective gra-

dients. Under some mild assumptions on the MDP, our esti-

mators need only sample transitions from a behavior policy

rather than full access to a generative model (where one can

uniformly sample transitions). We combine these results to

yield high-probability convergence rates of REPS to a near-

optimal policy. In this way, we show that REPS enjoy not

only favorable practical performance but also strong theo-

retical guarantees.

2. Related Work

As REPS is a popular and influential work, there exist

a number of previous papers that have studied its perfor-

mance guarantees. These previous works predominantly

study REPS as an iterative algorithm, where each step com-

prises of an exact optimization of the REPS objective and

then the derived policy is used as the reference distribution

for the KL regularization of the next step. This iterative

scheme may be interpreted as a form of mirror descent or

similar proximal algorithms (Beck & Teboulle, 2003), and

this interpretation can provide guarantees on convergence

to a near-optimal policy (Zimin & Neu, 2013; Neu et al.,

2017). However, because this approach assumes the abil-

ity to optimize the REPS objective exactly, it still suffers

from the practical limitations discussed above; specifically

(1) translation of near-optimality of advantages to near-

optimality of the policy and (2) ability to compute unbi-

ased gradients when one does not have explicit knowledge

of the MDP dynamics. Our analysis attacks these issues

head-on, providing guarantees on first-order optimization

methods applied to the REPS objective. To maintain focus

we do not consider iterative application of REPS, although

extending our guarantees to the iterative setting is a promis-

ing direction for future research.

In a somewhat related vein, a number of works use REPS-

inspired derivations to yield dynamic programming algo-

rithms (Fox et al., 2017; Geist et al., 2019; Vieillard et al.,

2020) and subsequently provide guarantees on the conver-

gence of approximate dynamic programming in these set-

tings. Our results focus on the use of REPS in a convex

programming context, and optimizing these programs via

standard gradient-based solvers.

The use of convex programming for RL in this way

has recently received considerable interest. Works in

this area typically propose to learn near-optimal policies

through saddle-point optimization (Chen & Wang, 2016;

Wang, 2017b; Chen et al., 2018; Bas-Serrano & Neu, 2019;

Cheng et al., 2020; Jin & Sidford, 2020). Rather than solv-

ing either the primal or dual max-return problem directly,

these works optimize the Lagrangian in the form of a min-

max bilinear problem. The Lagrangian form helps to miti-

gate the two main issues we identify with advantage learn-

ing, since (1) the candidate primal solution can be use to

derive a policy in a significantly more direct fashion than

using the candidate dual solution, and (2) the bilinear form

of the Lagrangian is immediately amenable to stochastic

gradient computation. In contrast to these works, our anal-

ysis focuses on learning exclusively in the dual (advantage)

space. The first part of our results is most comparable to

the work of (Bas-Serrano & Neu, 2019), which proposes

a saddle-point optimization with runtime O(1/ǫ), assum-

ing access to known dynamics. While our results yield a

O(1/ǫ2) rate, we show that it can be achieved via optimiz-

ing the dual objective alone.

More similar to our work is the analysis

of Bas-Serrano et al. (2020), which considers an ob-

jective similar to REPS, but which is in terms of Q-values

as opposed to state (V ) values. Beyond these structural

differences, our proof techniques also differ. For example,

our result on the suboptimality of the policy derived from

dual variables (Lemma 4), is arguably simpler from the

analogous result in Bas-Serrano et al. (2020), which uses a

two-step process to first connect suboptimality of the dual

variables to constraint violation of the primal variables,

and then connects this to suboptimality of the policy.

3. Contributions

The main contributions of this paper are the following:

1. We prove several structural results regarding entropy

regularized objectives for reinforcement learning and

leverage them to prove convergence guarantees for Ac-

celerated Gradient Descent on the dual (REPS) objec-

tive under mild assumptions on the MDP (see The-

orem 2). For discounted MDPs we show that an ǫ-
optimal policy can be found after O(1/(1 − γ)2ǫ2)
steps and an ǫ−optimal regularized policy can be

found in O(1/(1− γ)2ǫ) steps.

2. Similarly we show that a simple version of stochas-

tic gradient descent using biased plug-in gradient esti-

mators can be used to find an ǫ−optimal policy after

O(1/(1− γ)8ǫ8) iterations (see Theorem 3) and an ǫ-
optimal regularized policy in O(1/(1 − γ)8ǫ4) steps.

Although our rates are short of the ones achievable by

alternating optimization methods, we are the first to
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show meaningful convergence guarantees for a purely

dual approach based on on-policy access to samples

from the underlying MDP.

3. In Appendix G we extend our results beyond the

REPS objective and consider the use of Tsallis En-

tropy regularizers. Similar to our results for the

REPS objective we show that for discounted MDPs an

ǫ−optimal policy can be found after O(1/(1− γ)2ǫ2)
steps and an ǫ−optimal regularized policy can be

found in O(1/(1− γ)2ǫ) steps.

4. Background

In this section we review the basics of Markov decision

processes and their Linear Programming primal and dual

formulations (see section 4.1) and some facts about the ge-

ometry of convex functions.

4.1. RL as an LP

We consider a discounted Markov decision process (MDP)

described by a tupleM = (S,A, P, r,µ, γ), where S is a

finite state space, A is a finite action space, P is a transi-

tion probability matrix, r is a reward vector, µ is an initial

state distribution, and γ ∈ (0, 1) is a discount factor. We

make the following assumption regarding the reward values

{rs,a}.
Assumption 1 (Unit rewards). For all s, a ∈ S × A, the

rewards satisfy,

rs,a ∈ [0, 1].

The agent interacts withM via a policy π : S → ∆A. The

agent is initialized at a state s0 sampled from an initial state

distribution µ and at time k = 0, 1, . . . it uses its policy

to sample an action ak ∼ π(sk). The MDP provides an

immediate reward rsk,ak
and transitions randomly to a next

state sk+1 according to probabilities Pa(sk+1|sk). Given

a policy π we define its infinite-horizon discounted reward

as:

Vπ := E
π

[ ∞∑

k=0

γkrsk,ak

]
,

where we use Eπ to denote the expectation over trajectories

induced by the MDPM and policy π. In RL, the agent’s

objective is to find an optimal policy π⋆; that is, find a pol-

icy maximizing Vπ over all policy mappings π : S → ∆A.

We denote the optimal policy as:

π⋆ := argmax
π

Vπ.

We now review the definitions of state value functions:

Definition 1. We define the value vector vπ ∈ R
|S| of a

policy π as:

vπ
s := E

π

[ ∞∑

k=0

γkrsk,ak
|s0 = s

]
.

We now review the definition of visitation distributions:

Definition 2. Given a policy π we define its state-action

visitation distribution λπ ∈ R
|S|×|A| as,

λπ
s,a := (1 − γ)Eπ

[ ∞∑

k=0

γk1(sk = s, ak = a)

]
.

Notice that by definition
∑

s,a λs,a = 1.

We note that any vector of nonnegative entries λ may be

used to define a policy πλ as:

πλ(a|s) :=
λs,a∑

a′∈A λs,a′

. (1)

Note that πλπ = π, while the visitation distribution λπλ of

πλ is not necessarily λ for an arbitrary vector λ.

Definition 3. Given a policy π we define its state visitation

distribution as,

λ
π
s := (1 − γ)Eπ

[ ∞∑

k=0

γk1(sk = s)

]
.

Notice that λ
π
s =

∑
a λ

π
s,a and λ

π
s,a = λ

π
s · π(a|s).

The optimal visitation distribution λ∗ is defined as

λ∗ := argmax
λπ

∑

s,a

λπ
s,ars,a.

It can be shown (Puterman, 2014; Chen & Wang, 2016)

that solving for the optimal visitation distribution is equiv-

alent to the following linear program:

max
λs,a∈∆S×A

∑

s,a

λs,ars,a (Primal-λ)

s.t.
∑

a

λs,a = (1− γ)µs + γ
∑

s′,a

Pa(s|s′)λs′,a ∀s ∈ S.

Where we write P ∈ R
|S||A|×|S| to denote the transition

operator. Specifically, the |S| constraints of Primal-λ re-

strict any feasible λ to be the state-action visitations for

some policy π (given by πλ). The dual of this LP is given

by,

min
v

(1 − γ)
∑

s∈S
µsvs (Dual-v)

s.t. 0 ≥ Av
s,a ∀s ∈ S, a ∈ A,
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where Av
s,a = rs,a −vs + γ

∑
s′ Pa(s

′|s)vs′ is the advan-

tage evaluated at s, a ∈ S ×A. It can be shown (Puterman,

2014; Chen & Wang, 2016) that the unique primal solution

λ∗ is exactly λπ∗ and the unique dual solution v∗ is vπ∗ .

We finalize this section by defining the notion of subopti-

mality satisfied by the final policy produced by the algo-

rithms that we propose.

Definition 4. Let ǫ > 0. We say that policy π is ǫ-optimal

if

max
s∈S
|vπ

s − vπ⋆
s | ≤ ǫ.

Our objective is to design algorithms such that for any pa-

rameter ǫ > 0, can return an ǫ−optimal policy.

4.2. Regularized Policy Search

Following Belousov & Peters (2017), we consider regular-

izing Primal-λ with a convex function F : ∆|S|×|A| →
R ∪ {∞}. The resulting regularized LP is given by,

max
λs,a∈∆S×A

∑

s,a

λs,ars,a − F (λ) := JP (λ)

(PrimalReg-λ)

s.t.
∑

a

λs,a = (1− γ)µs + γ
∑

s′,a

Pa(s|s′)λs′,a ∀s ∈ S.

Henceforth we denote the primal objective function as

JP (λ) =
∑

s,a λs,ars,a − F (λ). Note that any feasible

λ that satisfies the |S| constraints in this regularized LP is

the (true) state-action visitation distribution for some pol-

icy π; therefore, the optimal λ
∗

of this problem can be

used to derive an optimal F -regularized max-return policy

πF,∗ := πλ∗ . To simplify the subsequent derivations, we

introduce the definition of the convex conjugate of a convex

function, oftentimes referred to as the Fenchel conjugate:

Definition 5 (Fenchel Conjugate). Let F : D → R be a

convex function over a convex domain D ⊆ R
d. We denote

its D−constrained Fenchel conjugate as F ∗ : R
n → R

defined as:

F ∗(u) = max
x∈D

〈x,u〉 − F (x).

The dual JD of the regularized problem is given by the

following optimization problem (Belousov & Peters, 2017;

Nachum & Dai, 2020):

min
v
JD(v) := (1 − γ)

∑

s

vsµs + F ∗ (Av) , (2)

where F ∗ is the ∆S×A-constrained Fenchel conjugate of

F . The vector quantity inside F ∗ is known as the advan-

tage. That is, it quantifies the advantage (the difference in

estimated value) of taking an action a at s, with respect to

some state value function v.

Using Fenchel-Rockafellar duality, the optimal solution v∗

of the dual function JD may be used to derive an optimal

primal solution λ∗ as:

λ
∗ ∈ ∇F ∗

(
Av⋆

)
. (3)

Algorithm 1 Relative Entropy Policy Search [Sketch].

Input: Initial iterate v0, accuracy level ǫ > 0, gradient

optimization algorithmO.

1. Optimize the objective in 2 using O to yield a candi-

date dual solution v̂∗ where F satisfies Equation 4.

2. Use the candidate dual solution to derive a candidate

primal solution λ̂
∗

using 3.

3. Extract a candidate policy π
λ̂

∗ from λ̂
∗

via Equa-

tion 1.

Return: π
λ̂

∗ .

Relative Entropy Policy Search (REPS) is derived by set-

ting F (λ) := DKL(λ‖q), the KL-divergence of λ from

some reference distributionq ∈ ∆|S||A|. The reader should

think of q as the visitation distribution of a behavior policy.

As we can see, the derivation we provide here further gen-

eralizes to arbitrary regularizers F . We focus on a specific

F given by

F (λ) :=
1

η

∑

s,a

λs,a

(
log

(
λs,a

qs,a

)
− 1

)
, (4)

for some scalar η > 0. In this case F ∗ : R|S|×|A| → R

equals:

F ∗(u) =
1

η
log

(∑

s,a

exp (ηus,a)qs,a

)
+

1

η
.

[∇F ∗(u)]s,a =
exp(ηus,a)qs,a∑

s′,a′ exp(ηus′,a′)qs′,a′

.

And therefore the dual function equals:

JD(v) := (1 − γ)
∑

s

vsµs (DualReg-v)

+
1

η
log

(∑

s,a

exp
(
ηAv

s,a

)
qs,a

)
+

1

η
, (5)

And the dual problem equals the unconstrained minimiza-

tion problem:

min
v
JD(v) (6)

The objective of REPS is to find the minimizer v⋆

of DualReg-v (with regularization level η).
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Algorithm 1 raises two practical issues discussed in Sec-

tion 1. Specifically, optimization algorithms applied to

REPS will typically only give guarantees on the near-

optimality of v̂∗. We will need to translate near-optimality

of v̂∗ to near-primal-optimality (w.r.t. JP (λ
⋆)) of λ̂

∗
, and

then translate that to near-optimality of the final returned

policy π
λ̂

∗ . Secondly, first-order optimization of the REPS

objective requires access to a gradient∇vJD(v), which in-

volved computing ∇F ∗(Av). Exact computation of this

quantity is often infeasible in practical scenarios where one

does not have access to P, but rather only stochastic gen-

erative access to samples from P. We show how to com-

pute approximate (biased) gradients of JD(v) using sam-

ples from a distribution qs,a (here thought of as a behavior

policy) and how to use them to derive convergence rates for

Relative Entropy Policy Search.

5. Relative Entropy Policy Search

We start by deriving some general results regarding the

geometry of regularized linear programs. Our first result

(Lemma 2) characterizes the smoothness properties of a

regularized LP. This will prove crucial in later sections

where we make use of this result to derive convergence

rates for the REPS objective. We start by recalling the

definitions of both strong convexity and smoothness of a

function.

Definition 6. A function f : Rn → R is β−strong convex

w.r.t norm ‖ · ‖ if:

f(x) ≥ f(y) + 〈∇f(y),x − y〉 + β

2
‖x− y‖2

Let’s also define smoothness:

Definition 7. A function h is α−smooth1 w.r.t. norm ‖ · ‖∗
if:

h(u) ≤ h(w) + 〈∇h(w),u −w〉+ α

2
‖u−w‖2∗ (7)

We will now characterize the smoothness properties of the

dual of a regularized linear program. Let’s start by consid-

ering the generic linear program:

max
λ∈D

〈r,λ〉, s.t. Eλ = b,

where r ∈ R
n, E ∈ R

m×n, and b ∈ R
m andD is a convex

domain. Let’s regularize this objective using a function F
that is β-strongly convex with respect to norm ‖ · ‖:

max
λ∈D

〈r,λ〉 − F (λ), s.t. Eλ = b. (RegLP)

The Lagrangian of problem RegLP is given by

gL(λ,v) = 〈r,λ〉 − F (λ) +
m∑

i=1

vi (bi − (Eλ)i) .

1Smoothness is independent of the convexity properties of h.

Therefore, the dual function gD : Rm → R with respect to

the original primal regularized LP is,

gD(v) = 〈v,b〉+max
λ∈D
〈λ, r− v⊤E〉 − F (λ)

= 〈v,b〉+ F ∗(r− v⊤E),

where the last equality follows from the definition of the

Fenchel conjugate of F . It is possible to relate the smooth-

ness properties of F ∗ with the strong convexity of F . A

crucial result that we will use in our results is the follow-

ing:

Lemma 1. If F is β-strongly convex w.r.t. norm ‖ · ‖ over

D then F ∗ is 1
β -smooth w.r.t the dual norm ‖ · ‖∗.

The proof of this lemma is in Appendix A. Definitions 6

and 7 are stated in terms of a generic norm ‖ · ‖ and its

dual ‖ · ‖⋆. When applied to the REPS objective in Equa-

tion 2, using these general norm definitions of smoothness

and strong convexity allow us to obtain guarantees with a

milder dependence on S and A than would be possible if

we were to use their ℓ2 norm characterization instead. We

can use the result of Lemma 1 to characterize the smooth-

ness properties of the dual function JD of a generic regu-

larized LP.

Lemma 2. Consider the regularized LP RegLP with r ∈
R

n, E ∈ R
m×n, b ∈ R

m, and where F is β−strongly

convex w.r.t. norm ‖ · ‖. The dual function gD : Rm → R

of this regularized LP is
‖E‖2

·,∗

β -smooth w.r.t. to the dual

norm ‖ · ‖∗, where we use ‖E‖·,∗ to denote the ‖ · ‖ norm

over the ‖ · ‖∗ norm of E′s rows.

As a simple consequence of Lemma 2 we can characterize

the smoothness parameter of JD in the REPS objective:

Lemma 3. The dual function JD(v) is (|S| + 1)η-smooth

in the ‖ · ‖∞ norm.

A detailed proof of this result can be found in Ap-

pendix A.2.

5.1. Structural results for the REPS objective

Armed with Lemma 2 we are ready to derive some useful

structural properties of the REPS objective. In this section

we present two main results. First we show that under some

mild assumptions it is possible to relate the gradient magni-

tude of any candidate solution to JD with its suboptimality

gap and second, we show an l∞ bound for the norm of the

optimal dual solution v⋆. For most of the analysis we make

the following assumptions:

Assumption 2. There is β > 0 such that:

qs,a ≥ β ∀s, a ∈ S ×A.
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We introduce the following assumption on the discounted

state visitation distribution of arbitrary policies π in the

MDP, paraphrased from Wang (2017a):

Assumption 3. There exists ρ > 0 such that for any policy

π, the discounted state visitation distribution λπ
defined as

λπ
s =

∑
a λ

π
s,a satisfies

λπ
s ≥ ρ (8)

for all states s ∈ S.

Suppose we have a candidate dual solution ṽ forJD(v)
in DualReg-v with its corresponding candidate primal so-

lution

λ̃ =
exp

(
ηAṽ

)
· q

Z̃

where the operators exp and · act pointwise and

Z̃ =
∑

a,s

exp(ηAṽ)qs,a.

We denote the corresponding candidate policy (computed

using Equation 1) associated with ṽ as π̃(a|s). This candi-

date policy induces a discounted visitation distribution λπ̃

that may be substantially different from λ̃. We now show

that it is possible to control the deviation of primal objec-

tive value of λπ̃ from JP (λ) in terms of ‖∇JD(ṽ)‖1:

Lemma 4. Let ṽ ∈ R
|S| be arbitrary and let λ̃ be its corre-

sponding candidate primal variable. If ‖∇vJD(ṽ)‖1 ≤ ǫ
and Assumptions 2 and 3 hold then whenever |S| ≥ 2:

JP (λ
π̃) ≥ JP (λ⋆

η)− ǫ
(
1 + c

1− γ + ‖ṽ‖∞
)
,

where c =
1+log( 1

ρ3β
)

η and λ⋆
η is the JP optimum.

The proof of Lemma 4 is in Appendix B.

We finish this section by proving a bound on the norm of

the dual variables. This bound will inform our optimization

algorithms as it will allow us to set up the right constraints.

Lemma 5. Under Assumptions 1, 2 and 3, the optimal dual

variables are bounded as

‖v∗‖∞ ≤
1

1− γ

(
1 +

log |S||A|
βρ

η

)
:= D. (9)

The proof of Lemma 5 can be found in Appendix C. From

now on we use the notation D to refer to the quantity on

the RHS of Equation 9.

5.2. Convergence rates

As a warm up in this section we derive convergence rates

for the case when we have access to exact knowledge of

the transition dynamics P and therefore exact gradients.

We analyze the effects of running Accelerated Gradient De-

scent on the REPS objective JD(v). First we require to

define a distance generating function:

Definition 8 (Distance generating function). We say that

w : D → R is a distance generating function (DGF) if w
is 1−strongly convex w.r.t to the ‖ · ‖⋆ norm. Accordingly,

the Bregman divergence is given as:

Dw(x,y) = w(y)−〈∇w(x),y−x〉−w(x), x ∈ D, ∀y ∈ D

The strong convexity of w implies that Dw satisfies

Dw(x,x) = 0 and Dw(x,y) ≥ 1
2‖x− y‖2⋆ ≥ 0.

Algorithm 2 Accelerated Gradient Descent

Input Initial point x0, domainD, distance generating func-

tion w.

y0 ← x0, z0 ← x0.

for t = 0, · · · , T do

ηt+1 = t+2
2α and τt =

2
t+2 .

xt+1 ← (1 − τt)yt + τtzt

yt+1 ← argmin
y∈D

1

α
〈∇h(xt),y − xt〉+

‖y − xt‖2⋆
2

.

zt+1 ← argmin
z∈D

ηt〈∇h(xt), z− zt〉+Dw(zt, z).

end

For some stepsize parameter sequence ηt.

Algorithm 2 satisfies the following convergence guarantee:

Theorem 1 (Accelerated Gradient Descent for general

norms. Theorem 4.1 in Allen-Zhu & Orecchia (2014)). Let

w be a distance generating function and let D⋆ be an up-

per bound to Dw(x0,x⋆). Given an α−smooth function h
w.r.t. the ‖ · ‖⋆ norm over domain D, then T iterations of

Algorithm 2 ensure:

h(yt)− h(x⋆) ≤ 4αD∗
T 2

.

We care about recovering almost optimal solutions (in func-

tion value). Let’s define an ǫ−optimal solution:

Definition 9. Let ǫ > 0. We say that x is an ǫ−optimal

solution of an α−smooth function h : Rd → R if:

h(x)− h(x⋆) ≤ ǫ

Where h(x⋆) = minx∈Rd h(x).

We can also show the following bound on the gradient norm

for any ǫ−optimal solutions of h.
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Lemma 6. If x is an ǫ−optimal solution for the α−smooth

function h : Rd → R w.r.t. norm ‖ · ‖⋆ then the gradient of

h at x satisfies:

‖∇h(x)‖ ≤
√
2αǫ.

The proof of this lemma can be found in Appendix D.

When h = JD the DualReg-v function in the reinforce-

ment learning setting, we set ‖·‖∗ = ‖·‖∞ and ‖·‖ = ‖·‖1.

We are ready to prove convergence guarantees for Algo-

rithm 2 when applied to the objective JD.

Lemma 7. Let Assumptions 1, 2 and 3 hold. Let D =
{v s.t. ‖v‖∞ ≤ D}, and define the distance generating

function to be w(x) = ‖x‖22. After T steps of Algorithm 2,

the objective function JD evaluated at the iterate vT = yT
satisfies:

JD(vT )− JD(v∗) ≤ 4η(|S|+ 1)2
(1 + c′)2

(1 − γ)2T 2
.

Where c′ =
log |S||A|

βρ

η .

Proof. This results follows simply by invoking the guar-

antees of Theorem 1, making use of the fact that JD is

(|S| + 1)η−smooth as proven by Lemma 3, observing that

as a consequence of Lemma 5, v⋆ ∈ D and using the in-

equality ‖x‖22 ≤ |S|‖x‖2∞ for x ∈ R
|S|.

Lemma 7 can be easily turned into the following guarantee

regarding the dual function value of the final iterate:

Corollary 1. Let ǫ > 0. If Algorithm 2 is ran for at least

T rounds

T ≥ 2η1/2(|S| + 1)
(1 + c′)

(1− γ)√ǫ

then vT is an ǫ−optimal solution for the dual objective JD.

If T satisfies the conditions of Corollary 1 a simple use of

Lemma 6 allows us to bound the ‖ · ‖1 norm of the dual

function’s gradient at vT :

‖∇JD(vT )‖1 ≤
√
2(|S|+ 1)ηǫ

If we denote as πT to be the policy induced by λvT , and

λ⋆
η is the candidate dual solution corresponding to v⋆. A

simple application of Lemma 4 yields:

JP (λ
πT ) ≥ JP (λ⋆

η)−
√
2(|S|+ 1)ηǫ

1− γ

(
2 +

1 + log |S||A|
β2ρ4

η

)

The following is the equivalent version of optimality for

regularized objectives:

Definition 10. Let ǫ > 0. We say π̃ is an ǫ−optimal regu-

larized policy if JP (λ
π̃) ≥ JP (λ⋆

η)− ǫ.

This leads us to the main result of this section:

Corollary 2. For any ξ > 0, and let c′′ =
1+log

|S||A|

β2ρ4

η . If

T ≥ 4η (|S|+ 1)3/2
(2+c′′)

2

(1−γ)2ξ then:

JP (λ
πT ) ≥ JP (λ⋆

η)− ξ.

Thus Algorithm 2 achieves an O(1/(1− γ)2ǫ) rate of con-

vergence to an ǫ−optimal regularized policy. We now pro-

ceed to show that an appropriate choice for η can be lever-

aged to obtain an ǫ−optimal policy.

Theorem 2. For any ǫ > 0, let η = 1

2ǫ log( |S||A|
β )

. If T ≥

(|S| + 1)3/2 (2+c′′)2

(1−γ)2ǫ2 , then πT is an ǫ−optimal policy.

The proof of this result can be found in Appendix D.1. The

main difficulty in deriving the guarantees of Theorem 2 lies

in the need to translate the function value optimality guar-

antees of Accelerated Gradient Descent into ǫ-optimality

guarantees for the candidate policy πT . This is where our

results from Lemma 4 have proven fundamental. It remains

to show that it is possible to obtain an ǫ−optimal policy ac-

cess to the true model is only via samples.

6. Stochastic Gradients

In this section we show how to obtain stochastic (albeit bi-

ased) gradient estimators ∇̂vJD(v) for ∇vJD(v) (see Al-

gorithm 3). We use ∇̂vJD(v) to perform biased stochas-

tic gradient descent steps on JD(v) (see Algorithm 4). In

Lemma 8 we prove guarantees for the bias and variance of

this estimator and show rates for convergence in function

value to the optimum of JD(v) in Lemma 10. We turn

these results into guarantees for ǫ−optimality of the final

candidate policy in Theorem 3. Let’s start by noting that:

(∇vJD(v))s = (1− γ)µs+

E(s′,a,s′′)∼q×Pa(·|s′)
[
Bv

s′,a (γ1(s
′′ = s)− 1(s′ = s))

]
,

Where Bv
s,a =

exp(ηAv

s,a)

Z
and Z =

∑
s,a exp

(
ηAv

s,a

)
qs,a.

We will make use of this characterization to devise a plug-

in estimator for this quantity:
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Algorithm 3 Biased Gradient Estimator

Input Number of samples t.
Collect samples {(sℓ, aℓ, s′ℓ)}tℓ=1 such that (sℓ, aℓ) ∼ q

while s′ℓ ∼ Paℓ
(·|sℓ)

for (s, a) ∈ S ×A do

Build empirical estimators Âv(t) ∈ R
|S|×|A| and

q̂(t) ∈ R
|S|×|A|.

Compute estimators B̂v
s,a(t) =

exp(ηÂv

s,a(t))

Ẑ(t)
.

Where Ẑ(t) =
∑

s,a exp(ηÂ
v
s,a(t))q̂s,a(t).

end

Produce a final sample (st+1, at+1) ∼ q and s′t+1 ∼
Pat+1(·|st+1).

Compute ∇̂vJD(v) such that:

(
∇̂vJD(v)

)

s
= (1− γ)µs+

B̂st+1,at+1(t)
(
γ1(s′t+1 = s)− 1(st+1 = s)

)
.

Output: ∇̂vJD(v).

We now proceed to bound the bias of this estimator:

Lemma 8. Let δ, ξ ∈ (0, 1) with ξ ≤ min(β, 14 ). With

probability at least 1− δ for all t ∈ N such that

t

ln ln(2t)
≥ 120(ln 41.6|S||A|

δ + 1)

βξ2
max

(
480η2γ2‖v‖2∞, 1

)

the plugin estimator ∇̂vJD(v) satisfies:

max
u∈{1,2,∞}

‖ĝ− Et+1[ĝ]‖u ≤
8

β
,

max
u∈{1,2,∞}

‖Et+1[ĝ]− g‖u ≤ 8ξ,

E

[
‖ĝ− Et+1[ĝ]‖22

∣∣∣B̂v(t)
]
≤ 8

β
,

where ĝ = ∇̂vJD(v), g = ∇vJD(v), and Et+1[·] =

Est+1,at+1,s′t+1
[·|B̂v(t)].

The proof of this lemma can be found in Appendix F.2.

We will now make use of Lemma 8 along with the follow-

ing guarantee for projected Stochastic Gradient Descent to

prove convergence guarantees for Algorithm 4.

Algorithm 4 Biased Stochastic Gradient Descent

Input Desired accuracy ǫ, learning rates {τt}∞t=1, and

number-of-samples function n : N→ N .

Initialize v0 = 0 for t = 1, · · · , T do

Get ∇̂vJD(v) with n(t) samples via Algorithm 3.

Perform update:

v′
t ← vt − τt∇̂vJD(v).

vt ← ΠD(v
′
t).

end

ΠD denotes the projection to D = {v s.t. ‖v‖∞ ≤ D}.
Output: vT .

The following holds:

Lemma 9. Let f : Rd → R be an L−smooth function. We

consider the following update:

x′
t+1 = xt − τ (∇f(xt) + ǫt + bt)

xt+1 = ΠD(x
′
t+1).

If τ ≤ 2
L then:

f(xt+1)− f(x⋆) ≤
‖xt − x⋆‖2 − ‖xt+1 − x⋆‖2

2τ
+

2τ‖∇f(xt)‖2 + 5τ‖bt‖2 + 5τ‖ǫt‖2+
‖bt‖1‖xt − x⋆‖∞ − 〈ǫt,xt − x⋆〉.

The proof of Lemma 9 is in Appendix E. Lemma 8 implies

the following guarantee for the following projected stochas-

tic gradient algorithm with biased gradients ∇̂vJD(v)R:

Lemma 10. We assume η ≥ 4
β . Set ξt = 8|S|ηD√

t
and

τt =
1

16|S|η
√
t
. If we take t gradient steps using n(t) sam-

ples from q×P (possibly reusing the samples for multiple

gradient computations) with n(t) satisfying:

n(t) ≥
525t

(
ln 100|S||A|t2

δ + 1
)3

β|S|2
Then for all t ≥ 1 we have that with probability at least

1 − 3δ and simultaneously for all t ∈ N such that t ≥
64|S|2η2D2

β :

JD

(
1

t

t∑

ℓ=1

vℓ

)
≤ JD(v⋆) + Õ

(
D2|S|η√

t

)
.

The proof of Lemma 10 is in Appendix F.2. Lemma 10 im-

plies that making use of N samples it is possible to find a

candidate v̄N such that JD(v̄N ) ≤ JD(v⋆) + Õ
(

D2η

β
√
N

)
.

This in turn implies by a simple use of Lemma 6 that
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‖∇JD(v̄N )‖1 ≤ Õ
(

|S|1/2Dη√
βN1/4

)
. If we denote as π̄N to the

policy induced by λv̄N , a simple application of Lemma 4

yields:

JP (λ
π̄N ) ≥ JP (λ⋆

η)− Õ
( |S|1/2Dη
(1 − γ)

√
βN1/4

)

Thus Algorithm 4 achieves anO(1/(1−γ)8ǫ4) rate of con-

vergence to an ǫ−optimal regularized policy. We proceed

to show that an appropriate setting for η can be leveraged

to obtain an ǫ−optimal policy:

Theorem 3 (Informal). For any ǫ > 0 let η = 1

2ǫ log( |S||A|
β )

.

IfN ≥ Õ
(

1
ǫ8(1−γ)8β2

)
, then with probability at least 1−δ

it is possible to find a candidate v̄N such that π̄N is an

ǫ−optimal policy.

7. Conclusion

This work presents an analysis of first-order optimization

methods for the REPS objective in reinforcement learning.

We prove convergence rates ofO(1/ǫ2) for accelerated gra-

dient descent on the dual of the KL-regularized max-return

LP in the case of a known transition function with con-

vergence rate. For the unknown case, we propose a bi-

ased stochastic gradient descent method relying on samples

from behavior policy and show that it converges to an opti-

mal policy with rate O(1/ǫ8). There are several interesting

questions that remain open. First, while directly optimiz-

ing the dual via gradient methods is convenient from an

algorithmic perspective, prior unregularized saddle-point

methods have been shown to achieve a faster O(1/ǫ) con-

vergence (Bas-Serrano & Neu, 2019). An important open

direction is thus to understand if faster rates are possible

in order to bridge this gap, or if optimizing the regularized

dual directly is fundamentally limited. Second, we only

considered MDPs with finite state and action spaces. It is

therefore of interest to see if these ideas readily extend to

infinite or very large spaces through function approxima-

tion.
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Peters, J., Mülling, K., and Altun, Y. Relative entropy pol-

icy search. In AAAI, volume 10, pp. 1607–1612. Atlanta,

2010.

Puterman, M. L. Markov decision processes: discrete

stochastic dynamic programming. John Wiley & Sons,

2014.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and

Moritz, P. Trust region policy optimization. In Interna-

tional conference on machine learning, pp. 1889–1897,

2015.

Vieillard, N., Kozuno, T., Scherrer, B., Pietquin, O., Munos,

R., and Geist, M. Leverage the average: an analysis of

regularization in rl. arXiv preprint arXiv:2003.14089,

2020.

Wang, M. Primal-dual π learning: Sample complexity and

sublinear run time for ergodic markov decision problems.

arXiv preprint arXiv:1710.06100, 2017a.

Wang, M. Randomized linear programming solves the

discounted markov decision problem in nearly-linear

(sometimes sublinear) running time. arXiv preprint

arXiv:1704.01869, 2017b.

Zimin, A. and Neu, G. Online learning in episodic marko-

vian decision processes by relative entropy policy search.

In Advances in neural information processing systems,

pp. 1583–1591, 2013.



Near Optimal Policy Optimization via REPS

Contents of main article and appendix

1 Introduction 1

2 Related Work 2

3 Contributions 2

4 Background 3

4.1 RL as an LP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

4.2 Regularized Policy Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

5 Relative Entropy Policy Search 5

5.1 Structural results for the REPS objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

5.2 Convergence rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

6 Stochastic Gradients 7

7 Conclusion 9

A Geometry of regularized Linear Programs 13

A.1 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

A.2 Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

B Proof of Lemma 4 15

C Proof of Lemma 5 17

D Convergence rates for REPS 18

D.1 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

E Stochastic Gradient Descent 19

F Stochastic Gradients Analysis 21

F.1 Estimating the Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

F.2 Biased Stochastic Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

F.3 Proof of Lemma 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

G Extended Results for Tsallis Entropy Regularizers 32

G.0.1 Strong Convexity of Tsallis Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

G.1 Tsallis entropy version of Lemma 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

G.2 Extension of Lemma 5 to Tsallis Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



Near Optimal Policy Optimization via REPS

G.3 Gradient descent results for the Tsallis Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



Near Optimal Policy Optimization via REPS

A. Geometry of regularized Linear Programs

We start by fleshing out the connection between strong convexity and smoothness charted in Lemma 1:

Lemma 1. If F is β-strongly convex w.r.t. norm ‖ · ‖ over D then F ∗ is 1
β -smooth w.r.t the dual norm ‖ · ‖∗.

Proof. Let u,w ∈ R
n and x,y ∈ D be such that∇F ∗(u) = x and∇F ∗(w) = y. By definition this also implies that:

〈∇F (x) − u, z1 − x〉 ≥ 0, ∀z ∈ D
〈∇F (y) −w, z2 − y〉 ≥ 0, ∀z ∈ D

Setting z1 = y and z2 = x along with the definition of x,y and summing the two inequalities:

〈∇F (x) −∇F (y),y − x〉 ≥ 〈∇F ∗(w)−∇F ∗(u),u−w〉. (10)

By strong convexity of F over domain D we see that:

F (x) ≥ F (y) + 〈∇F (y),x − y〉 + β

2
‖x− y‖2

F (y) ≥ F (x) + 〈∇F (x),y − x〉 + β

2
‖x− y‖2

Summing both inequalities yields:

β‖x− y‖2 ≤ 〈∇F (x) −∇F (y),x − y〉

Plugging in the definition of u and w along with inequality 10:

β‖∇F ∗(u)−∇F ∗(w)‖2 ≤ 〈u−w,∇F ∗(u)−∇F ∗(w)〉
(i)

≤ ‖u−w‖∗‖∇F ∗(u)−∇F ∗(w)‖.

Where inequality (i) holds by Cauchy-Schwartz and consequently:

‖∇F ∗(u)−∇F ∗(w)‖ ≤ 1

β
‖u−w‖∗

By the mean value theorem there exists z ∈ [u,w]:

F ∗(u) = F ∗(w) + 〈∇F ∗(z),w − u〉
= F ∗(w) + 〈∇F ∗(w),w − u〉+ 〈∇F ∗(z)−∇F ∗(w),w − u〉
≤ F ∗(w) + 〈∇F ∗(w),w − u〉+ ‖∇F ∗(z) −∇F ∗(w)‖‖w − u‖∗

≤ F ∗(w) + 〈∇F ∗(w),w − u〉+ 1

β
‖z−w‖∗‖w− u‖∗

≤ F ∗(w) + 〈∇F ∗(w),w − u〉+ 1

β
‖w− u‖2∗

Which concludes the proof.

The proof of Lemma 1 yields the following useful result that characterizes the smoothness properties of the dual function

in a regularized LP:
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A.1. Proof of Lemma 2

Lemma 2. Consider the regularized LP RegLP with r ∈ R
n, E ∈ R

m×n, b ∈ R
m, and where F is β−strongly convex

w.r.t. norm ‖ · ‖. The dual function gD : Rm → R of this regularized LP is
‖E‖2

·,∗

β -smooth w.r.t. to the dual norm ‖ · ‖∗,

where we use ‖E‖·,∗ to denote the ‖ · ‖ norm over the ‖ · ‖∗ norm of E′s rows.

Proof. Recall that:

gD(v) = 〈v, b〉+ F ∗(r − v⊤E).

Notice that:

∇vgD(v) = b+ E∇F ∗(r − v⊤E).

And therefore for any two v1, v2:

‖∇gD(v1)−∇gD(v2)‖ = ‖E
(
∇F ∗(r − v⊤1 E)−∇F ∗(r − v⊤2 E)

)
‖

(i)

≤ ‖E‖·,∗‖∇F ∗(r − v⊤1 E)−∇F ∗(r − v⊤2 E)‖
(ii)

≤ ‖E‖·,∗
1

β
‖v⊤1 E − v⊤2 E‖∗

(ii)

≤
‖E‖2·,∗
β
‖v1 − v2‖∗

The result follows.

We can apply Lemma 2 to problem PrimalReg-λ and thus characterize the smoothness properties of the dual function JD.

A.2. Proof of Lemma 3

Lemma 3. The dual function JD(v) is (|S|+ 1)η-smooth in the ‖ · ‖∞ norm.

Proof. Recall that PrimalReg-λ can be written as RegLP:

max
λ∈D
〈r,λ〉 − F (λ)

s.t. Eλ = b.

Where the regularizer (F (λ) := 1
η

∑
s,a λs,a

(
log
(

λs,a

qs,a

)
− 1
)

) is 1
η−‖·‖1 strongly convex. In this problem r corresponds

to the reward vector, the vector b = (1− γ)µ ∈ R
|S| and matrix E ∈ R

|S|×|S|×|A| takes the form:

E[s, s′, a] =

{
γPa(s|s′) if s 6= s′

1− γPa(s|s) o.w.

Therefore

‖E‖1,∞ ≤ S + 1

The result follows as a corollary of Lemma 1.
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B. Proof of Lemma 4

The objective of this section is to show that a candidate dual variable ṽ having small gradient gives rise to a policy whose

true visitation distribution has large primal value JP .

Lemma 4. Let ṽ ∈ R
|S| be arbitrary and let λ̃ be its corresponding candidate primal variable. If ‖∇vJD(ṽ)‖1 ≤ ǫ and

Assumptions 2 and 3 hold then whenever |S| ≥ 2:

JP (λ
π̃) ≥ JP (λ⋆

η)− ǫ
(
1 + c

1− γ + ‖ṽ‖∞
)
,

where c =
1+log( 1

ρ3β
)

η and λ⋆
η is the JP optimum.

Proof. For any λ and v let the lagrangian JL(λ,v) be defined as,

JL(λ,v) = (1− γ)〈µ,v〉+
〈
λ,Av − 1

η

(
log

(
λ

q

)
− 1

)〉

Note that JD(ṽ) = JL(λ̃, ṽ) and that in fact JL is linear in v̄; i.e.,

JL(λ̃, v̄) = JL(λ̃, ṽ) + 〈∇vJL(λ̃, ṽ), v̄ − ṽ〉.

Using Holder’s inequality we have:

JL(λ̃, v̄) ≥ JL(λ̃, ṽ)− ‖∇vJL(λ̃, ṽ)‖1 · ‖v̄− ṽ‖∞ = JD(ṽ)− ‖∇vJL(λ̃, ṽ)‖1 · ‖v̄ − ṽ‖∞.

Let λ⋆ be the candidate primal solution to the optimal dual solution v⋆ = argminv JD(v). By weak duality we have that

JD(ṽ) ≥ JP (λ⋆) = JD(v⋆), and since by assumption ‖∇vJL(λ̃, ṽ)‖1 ≤ ǫ:

JL(λ̃, v̄) ≥ JP (λ⋆)− ǫ‖v̄− ṽ‖∞. (11)

In order to use this inequality to lower bound the value of JP (λ
π̃), we will need to choose an appropriate v̄ such that the

LHS reduces to JP (λ
π̃) while keeping the ℓ∞ norm on the RHS small. Thus we consider setting v̄ as:

v̄s = Ea,s′∼π̃×T

[
zs + rs,a −

1

η

(
log

(
λπ̃
s,a

qs,a

)
− 1

)
+ γv̄s′

]

Where z ∈ R
|S| is some function to be determined later. It is clear that an appropriate z exists as long as

z, r, 1η

(
log

(
λ

π̃
s,a

qs,a

)
− 1

)
are uniformly bounded. Furthermore:

‖v̄‖∞ ≤
maxs,a

∣∣∣∣zs + rs,a − 1
η

(
log

(
λ

π̃
s,a

qs,a

)
− 1

)∣∣∣∣
1− γ ≤

‖z‖∞ + ‖r‖∞ + 1
η

∥∥∥∥log
(

λ
π̃
s,a

qs,a

)
− 1

∥∥∥∥
∞

1− γ (12)

Notice that by Assumptions 2 and 3, we have that ρ, β ≤ 1
2 . This is because for all π, Assumption 3 implies that:

0 ≤ 2ρ ≤ |S|ρ ≤
∑

s

λπ
s = 1

The proof for β ≤ 1
2 is symmetric. Due to Assumption 2 the ‖ · ‖∞ norm of log(λ

π̃

q
)− 1|S||A| satisfies:

∥∥∥∥∥log
(
λπ̃

q

)
− 1|S||A|

∥∥∥∥∥
∞
≤ 1 +

∥∥∥∥∥log
(
λπ̃

q

)∥∥∥∥∥
∞
≤ 1 + max(| log(ρ/β)|, log(1/β)) ≤ 1 + log(1/ρ) + log(1/β).
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Notice the following relationships hold:
〈
λ̃,A

v̄ −
1

η

(
log

(
λ̃

q

)
− 1

)〉
=
∑

s

λ̃s

(
Ea,s′∼π̃×P

[
rs,a + γv̄s′ − v̄s −

1

η

(
log

(
λ̃s,a

qs,a

)
− 1

)])

=
∑

s

λ̃s

(
Ea,s′∼π̃×P

[
1

η

(
log

(
λπ̃

s,a

qs,a

)
− 1

)
−

1

η

(
log

(
λ̃s,a

qs,a

)
− 1

)
− zs

])

=
∑

s

λ̃s

(
Ea,s′∼π̃×P

[
1

η
log
(
λ

π̃
s,a

)
−

1

η
log
(
λ̃s,a

)
− zs

])

=
∑

s

λ̃s

(
1

η
log
(
λ

π̃
s

)
−

1

η
log
(
λ̃s

)
− zs

)
(13)

Where λ̃s =
∑

a λ̃s,a and λπ̃
s =

∑
a λ

π̃
s,a. Note that by definition:

(1− γ)〈µ, v̄〉 =
〈
λπ̃, z+ r− 1

η

(
log

(
λπ̃

q

)
− 1

)〉
= JP (λ

π̃) + 〈λπ̃, z〉. (14)

Let’s expand the definition of JL(λ̃, v̄) using Equations 13 and 14:

JL(λ̃, v̄) = (1 − γ)〈µ, v̄〉+
〈
λ̃,Av̄ − 1

η

(
log

(
λ̃

q

)
− 1

)〉

= JP (λ
π̃) + 〈λπ̃, z〉+

∑

s

λ̃s

(
1

η
log
(
λπ̃
s

)
− 1

η
log
(
λ̃s

)
− zs

)

= JP (λ
π̃) +

∑

s

(
zs(λ

π̃
s − λ̃s) +

1

η
λ̃s log

(
λπ̃
s

λ̃s

))

Since we want this expression to equal JP (λ
π̃), we need to choose z such that:

zs =

1
η log

(
λ

π̃
s

λ̃s

)

1− λπ̃
s

λ̃s

.

By Assumption 3 we have that for all s:

λπ̃
s

λ̃s

≥ ρ

Now we bound ‖zs‖∞. Note that the function h(φ) = logφ
1−φ is non decreasing and negative, and therefore the maximum of

its absolute value is achieved at the lower end of its domain. This implies:

|zs| ≤
|h(ρ)|
η

=
|log(ρ)|
η(1 − ρ) ≤

2 log(1/ρ)

η
, ∀s ∈ S.

And therefore Equation 12 implies:

‖v̄‖∞ ≤
2 log(1/ρ)

η + 1 + 1+log(1/ρ)+log(1/β)
η

1− γ =
1 +

1+log( 1
ρ3β

)

η

1− γ
Putting these together we obtain the following version of equation 11:

JL(λ̃, v̄) ≥ JP (λ⋆)− ǫ


1 +

1+log( 1
ρ3β

)

η

1− γ + ‖ṽ‖∞




As desired.
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C. Proof of Lemma 5

In this section we derive an upper bound for the l∞ norm of the optimal solution v⋆.

Lemma 5. Under Assumptions 1, 2 and 3, the optimal dual variables are bounded as

‖v∗‖∞ ≤
1

1− γ

(
1 +

log |S||A|
βρ

η

)
:= D. (9)

Proof. Recall the Lagrangian form,

min
v
, max
λs,a∈∆S×A

JL(λ,v) := (1− γ)〈v,µ〉+
〈
λ,Av − 1

η

(
log

(
λs,a

qs,a

)
− 1

)〉
.

The KKT conditions of λ
∗,v∗ imply that for any s, a, either (1) λ

∗
s,a = 0 and ∂

∂λs,a
JL(λ

∗, v∗) ≤ 0 or (2)
∂

∂λs,a
JL(λ

∗,v∗) = 0. The partial derivative of JL is given by,

∂

∂λs,a
JL(λ

∗,v∗) = rs,a −
1

η
log

(
λ∗
s,a

qs,a

)
+ γ

∑

s′

Pa(s
′|s)v∗

s′ − v∗
s . (15)

Thus, for any s, a, either

λ∗
s,a = 0 and v∗

s ≥ rs,a −
1

η
log

(
λ∗
s,a

qs,a

)
+ γ

∑

s′

Pa(s
′|s)v∗

s′ , (16)

or,

λ∗
s,a > 0 and v∗

s = rs,a −
1

η
log

(
λ∗
s,a

qs,a

)
+ γ

∑

s′

Pa(s
′|s)v∗

s′ . (17)

Recall that λ∗ is the discounted state-action visitations of some policy π⋆; i.e., λ∗
s,a = λπ⋆

s · π⋆(a|s) for some π⋆. Note

that by Assumption 3, any policy π has λπ⋆
s > 0 for all s. Accordingly, the KKT conditions imply,

π⋆(a|s) = 0 and v∗
s ≥ rs,a −

1

η
log

(
λ∗
s,a

qs,a

)
+ γ

∑

s′

Pa(s
′|s)v∗

s′ , (18)

or,

π⋆(a|s) > 0 and v∗
s = rs,a −

1

η
log

(
λ∗
s,a

qs,a

)
+ γ

∑

s′

Pa(s
′|s)v∗

s′ . (19)

Equivalently,

v∗
s = Ea∼π⋆(s)

[
rs,a −

1

η
log

(
λ∗
s,a

qs,a

)
+ γ

∑

s′

Pa(s
′|s)v∗

s′

]
(20)

=
1

η
Ea∼π⋆(s)

[
− log

(
π(a|s)
qa|s

)]
+ Ea∼π(s)

[
rs,a −

1

η
log

(
λπ⋆
s

qs

)
+ γ

∑

s′

Pa(s
′|s)v∗

s′

]
. (21)

We may express these conditions as a Bellman recurrence for v∗
s :

v∗
s =

1

η
Ea∼π⋆(s)

[
− log

(
π(a|s)
qa|s

)]
+ Ea∼π⋆(s)

[
rs,a −

1

η
log

(
λπ⋆
s

qs

)
+ γ

∑

s′

Pa(s
′|s)v∗

s′

]
. (22)

The solution to these Bellman equations is bounded when Ea∼π⋆(s)

[
− log

(
π⋆(a|s)
qa|s

)]
, rs,a, and log

(
λ

π
s

qs

)
are

bounded (Puterman, 2014). And indeed, by Assumptions 3 and 1, each of these is bounded by within [log β, log |A|],
[0, 1], and [log ρ,− log β], respectively. We may thus bound the solution as,

‖v∗‖∞ ≤
1

1− γ

(
1 +

log |S||A|
βρ

η

)
. (23)
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D. Convergence rates for REPS

We start with the proof of Lemma 6 which we restate for convenience:

Lemma 11. If x is an ǫ−optimal solution for the α−smooth function h : Rd → R w.r.t. norm ‖ · ‖⋆ then the gradient of h
at x satisfies:

‖∇h(x)‖ ≤
√
2αǫ.

Proof. Let x ∈ R
d be an arbitrary point and let x′ equal the point resulting of the update

x′ = argmin
y∈D

1

α
〈∇h(x),y − x〉+ ‖y − x‖2⋆

2
(24)

Notice that by smoothness of h:

h(x′) ≤ h(x) + 〈∇h(x),x′ − x〉+ α

2
‖x′ − x‖2⋆ = h(x) − 1

2α
‖∇h(x)‖2 (25)

Since h(x⋆) ≤ h(x′) and x is ǫ−optimal:

1

2α
‖∇h(x)‖2 + h(x⋆)

(i)

≤ 1

2α
‖∇h(x)‖2 + h(x′)

(ii)

≤ h(x)
(iii)

≤ h(x⋆) + ǫ

Inequality (i) holds because h(x⋆) ≤ h(x′), inequality (ii) by Equation 25 and (iii) by ǫ−optimality of x. Therefore:

1

2α
‖∇h(x)‖2 ≤ ǫ.

The result follows.

We also show that the gradient norm of a smooth function over a bounded domain containing the optimum can be bounded:

Lemma 12. If h is an aα−smooth function w.r.t. norm ‖ · ‖⋆, and x⋆ is such that∇h(x⋆) = 0 then:

‖∇h(x)‖ ≤ α‖x− x⋆‖⋆.

And therefore whenever ‖x− x⋆‖⋆ ≤ D we have that:

‖∇h(x)‖ ≤ αD.

Proof. Since h is α−smooth:

h(x) ≤ h(x⋆) + 〈∇h(x⋆),x− x⋆〉+ α

2
‖x− x⋆‖2⋆ = h(x⋆) +

α

2
‖x− x⋆‖2⋆

Therefore:

h(x)− h(x⋆) ≤ α

2
‖x− x⋆‖2⋆.

Therefore, as a consequence of Lemma 6:

‖∇h(x)‖ ≤ αD.

The result follows.
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D.1. Proof of Theorem 2

We can now prove the estimation guarantees whenever exact gradients are available.

Theorem 4. For any ǫ > 0, let η = 1

2ǫ log(
|S||A|

β )
. If T ≥ (|S|+ 1)3/2 (2+c′′)2

(1−γ)2ǫ2 , then πT is an ǫ−optimal policy.

Proof. As a consequence of Corollary 2, we can conclude that:

JP (λ
πT ) ≥ JP (λ⋆,η)− ǫ

2
.

Where λ⋆
η is the regularized optimum. Recall that:

JP (λ) =
∑

s,a

λs,ars,a −
1

η

∑

s,a

λs,a

(
log

(
λs,a

qs,a

)
− 1

)
.

Since λ
⋆,η

is the maximizer of the regularized objective, it satisfies JP (λ
⋆,η) ≥ JP (λ

∗) where λ
⋆

is the visitation

frequency of the optimal policy corresponding to the unregularized objective. We can conclude that:

∑

s,a

λπT
s,ars,a ≥

∑

s,a

λ⋆
s,ars,a +

1

η

(∑

s,a

λπT
s,a

(
log

(
λπT
s,a

qs,a

)
− 1

)
−
∑

s,a

λ⋆
s,a

(
log

(
λ⋆
s,a

qs,a

)
− 1

))
− ǫ

2

=
∑

s,a

λ⋆
s,ars,a +

1

η

(∑

s,a

λπT
s,a

(
log

(
λπT
s,a

qs,a

))
−
∑

s,a

λ⋆
s,a

(
log

(
λ⋆
s,a

qs,a

)))
− ǫ

2

≥
∑

s,a

λ⋆
s,ars,a −

2

η
log(
|S||A|
β

)− ǫ

2

And therefore if η = 1

4ǫ log( |S||A|
β )

, we can conclude that:

∑

s,a

λπT
s,ars,a ≥

∑

s,a

λ⋆
s,ars,a − ǫ.

E. Stochastic Gradient Descent

In this section we will have all the proofs and results corresponding to Section 6 in the main. We start by showing the proof

of Lemma 9.

Lemma 9. Let f : Rd → R be an L−smooth function. We consider the following update:

x′
t+1 = xt − τ (∇f(xt) + ǫt + bt)

xt+1 = ΠD(x
′
t+1).

If τ ≤ 2
L then:

f(xt+1)− f(x⋆) ≤
‖xt − x⋆‖2 − ‖xt+1 − x⋆‖2

2τ
+

2τ‖∇f(xt)‖2 + 5τ‖bt‖2 + 5τ‖ǫt‖2+
‖bt‖1‖xt − x⋆‖∞ − 〈ǫt,xt − x⋆〉.

Proof. Through the proof we use the notation ‖ · ‖ to denote the L2 norm. By smoothness the following holds:

f(xt+1) ≤ f(xt) + 〈∇f(xt),xt+1 − xt〉+
L

2
‖xt+1 − xt‖2∞ ≤ f(xt) + 〈∇f(xt),xt+1 − xt〉+

L

2
‖xt+1 − xt‖2



Near Optimal Policy Optimization via REPS

Since xt+1 = ΠD(x′
t+1) and by properties of a convex projection:

〈x′
t+1 − xt+1,xt − xt+1〉 ≤ 0.

And therefore:

〈xt − τ (∇f(xt) + bt + ǫt)− xt+1,xt − xt+1〉 ≤ 0.

Which in turn implies that :

‖xt − xt+1‖2 ≤ τ〈∇f(xt) + bt + ǫt,xt − xt+1〉.

We can conclude that:

f(xt+1) ≤ f(xt)−
‖xt − xt+1‖2

τ
+ 〈bt + ǫt,xt − xt+1〉+

L

2
‖xt+1 − xt‖2. (26)

By convexity:

f(x⋆) ≥ f(xt) + 〈∇f(xt),x⋆ − xt〉.

And therefore f(xt) ≤ f(x⋆) + 〈∇f(xt),xt − x⋆〉.
Combining this last result with Equation 26:

f(xt+1) ≤ f(x⋆) + 〈∇f(xt),xt − x⋆〉+
(
L

2
− 1

τ

)
‖xt+1 − xt‖2 + 〈bt + ǫt,xt − xt+1〉. (27)

Now observe that as a consequence of the contraction property of projections

‖xt+1 − x⋆‖2 ≤ ‖xt − τ (∇f(xt) + bt + ǫt)− x⋆‖2

= ‖xt − x⋆‖2 + τ2‖∇f(xt) + bt + ǫt‖2 − 2τ〈∇f(xt) + bt + ǫt,xt − x⋆〉.

And therefore:

〈∇f(xt),xt − x⋆〉 ≤
‖xt − x⋆‖2 − ‖xt+1 − x⋆‖2

2τ
+
τ

2
‖∇f(xt) + bt + ǫt‖2 − 〈bt + ǫt,xt − x⋆〉.

Substituting this last inequality into Equation 27:

f(xt+1)− f(x⋆) ≤
‖xt − x⋆‖2 − ‖xt+1 − x⋆‖2

2τ
+
τ

2
‖∇f(xt) + bt + ǫt‖2 − 〈bt + ǫt,xt − x⋆〉+ (28)

(
L

2
− 1

τ

)
‖xt+1 − xt‖2 + 〈bt + ǫt,xt − xt+1〉 (29)

Notice that as a consequence of the contraction property of projections:

‖xt+1 − xt‖2 ≤ ‖xt − τ (∇f(xt) + bt + ǫt)− xt‖
= τ‖∇f(xt) + bt + ǫt‖
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And therefore

〈bt + ǫt,xt − xt+1〉 ≤ ‖bt + ǫt‖‖xt − xt+1‖ ≤ τ‖bt + ǫt‖‖∇f(xt) + bt + ǫt‖
:

Substituting this back into 29 and assuming L
2 ≤ 1

τ :

f(xt+1)− f(x⋆) ≤
‖xt − x⋆‖2 − ‖xt+1 − x⋆‖2

2τ
+
τ

2
‖∇f(xt) + bt + ǫt‖2 − 〈bt + ǫt,xt − x⋆〉+

τ‖bt + ǫt‖‖∇f(xt) + bt + ǫt‖

≤ ‖xt − x⋆‖2 − ‖xt+1 − x⋆‖2
2τ

+ τ‖∇f(xt) + bt + ǫt‖2 +
τ

2
‖bt + ǫt‖2 − 〈bt + ǫt,xt − x⋆〉

(i)

≤ ‖xt − x⋆‖2 − ‖xt+1 − x⋆‖2
2τ

+ 2τ‖∇f(xt)‖2 + 5τ‖bt‖2 + 5τ‖ǫt‖2 − 〈bt + ǫt,xt − x⋆〉

≤ ‖xt − x⋆‖2 − ‖xt+1 − x⋆‖2
2τ

+ 2τ‖∇f(xt)‖2 + 5τ‖bt‖2 + 5τ‖ǫt‖2 + ‖bt‖1‖xt − x⋆‖∞ − 〈ǫt,xt − x⋆〉

Inequality (i) is a result of a repeated use of Young’s inequality. The last inequality is a result of Cauchy-Schwartz.

F. Stochastic Gradients Analysis

We will make use of the following concentration inequality:

Lemma 13 (Uniform empirical Bernstein bound). In the terminology of Howard et al. (2018), let St =
∑t

i=1 Yi be a

sub-ψP process with parameter c > 0 and variance process Wt. Then with probability at least 1− δ for all t ∈ N

St ≤ 1.44

√
(Wt ∨m)

(
1.4 ln ln

(
2

(
Wt

m
∨ 1

))
+ ln

5.2

δ

)

+ 0.41c

(
1.4 ln ln

(
2

(
Wt

m
∨ 1

))
+ ln

5.2

δ

)

where m > 0 is arbitrary but fixed.

Proof. Setting s = 1.4 and η = 2 in the polynomial stitched boundary in Equation (10) of Howard et al. (2018) shows that

uc,δ(v) is a sub-ψG boundary for constant c and level δ where

uc,δ(v) = 1.44

√
(v ∨ 1)

(
1.4 ln ln (2(v ∨ 1)) + ln

5.2

δ

)

+ 1.21c

(
1.4 ln ln (2(v ∨ 1)) + ln

5.2

δ

)
.

By the boundary conversions in Table 1 in Howard et al. (2018) uc/3,δ is also a sub-ψP boundary for constant c and level

δ. The desired bound then follows from Theorem 1 by Howard et al. (2018).

The following estimation bound holds:

Lemma 14. Let {(sℓ, aℓ, s′ℓ)}∞ℓ=1 be samples generated as above. Let Nt(s, a) =
∑t

ℓ=1 1(sℓ, aℓ = s, a). Let δ ∈ (0, 1).

With probability at least 1− (2|S||A|δ) for all t such that ln(2t) + ln 5.2
δ ≤

tβ
6 and for all s, a ∈ S ×A simultaneously:

Nt(s, a) ∈
[
tqs,a

4
,
7tqs,a

4

]
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Additionally define q̂s,a = Nt(s,a)
t . For any ǫ ∈ (0, 1) with probability at least 1 − (2|S||A|δ) and for all t such that

t
ln ln(2t) ≥

1+ln 5.2
δ

βǫ2 :

|q̂s,a − qs,a| ≤ 3.69ǫqs,a.

Proof. We start by producing a lower bound for Nt(s, a). Consider the martingale sequence Zs,a(ℓ) = 1(sℓ = s, aℓ =

a) − qs,a with the variance process Vt =
∑t

ℓ=1 E
[
Z2
s,a(ℓ)|Fℓ−1

]
satisfying E[Z2

s,a(ℓ)|Fℓ−1] ≤ qs,a. The martingale

process Zs,a(ℓ) satisfies the sub-ψP condition of (Howard et al., 2018) with constant c = 1 (see Bennet case in Table 3

of (Howard et al., 2018)). By Lemma 13, and setting m = qs,a we conclude that with probability at least 1 − δ for all

t ∈ N :

Nt(s, a) ≥ tqs,a − 1.44

√
qs,at

(
ln ln(2t) + ln

5.2

δ

)
− 0.41

(
1.4 ln ln(2t) + ln

5.2

δ

)
(30)

(i)

≥ tqs,a −
tqs,a

2
− 3

2

(
ln ln(2t) + ln

5.2

δ

)

=
tqs,a

2
− 3

2

(
ln ln(2t) + ln

5.2

δ

)

Inequality (i) holds because

√
qs,at

(
ln ln(2t) + ln 5.2

δ

)
≤ qs,at

2 +
ln ln(2t)+ln 5.2

δ

2 . As a consequence of Assumption 2 we

can infer that with probability at least 1− δ for all t such that ln ln(2t) + ln 5.2
δ ≤

tβ
6 ≤

tqs,a

6 :

Nt(s, a) ≥
tqs,a

4

The same sequence of inequalities but inverted implies the upper bound result. The last result is a simple consequence of

the union bound. To obtain the stronger bound we start by noting that since t
ln ln(2t) ≥

1+ln 5.2
δ

βǫ2 ≥ 1+ln 5.2
δ

qs,aǫ2
for all (s, a) we

can transform Equation 30 as:

Nt(s, a) ≥ tqs,a − 1.44

√
qs,at

(
ln ln(2t) + ln

5.2

δ

)
− 0.41

(
1.4 ln ln(2t) + ln

5.2

δ

)

≥ tqs,a − 2.88

√
qs,at ln ln(2t)(1 + ln

5.2

δ
)− 0.81 ln ln(2t)(1 + ln

5.2

δ
)

≥ tqs,a − 3.69

√
qs,at ln ln(2t)(1 + ln

5.2

δ
)

≥ tqs,a − 3.69qs,aǫ

The same sequence of inequalities but inverted implie the upper bound. This finishes the proof.

The gradients of JD(v) can be written as:

(∇vJD(v))
s
= (1− γ)µs + γ

∑

s′,a

exp
(
ηAv

s′,a

)
qs′,a

Z
Pa(s|s

′)−

∑

a

exp
(
ηAv

s,a

)
qs,a

Z
,

Where Z =
∑

s,a exp
(
ηAv

s,a

)
qs,a. We will work under the assumption that qs,a ∝ exp(ηAv′

s,a) for some value vector

v′. Given a value vector v we denote its induced policy πv as:
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πv(a|s) =
exp

(
ηAv

s,a

)
qs,a

Zs

Where Zs =
∑

a exp
(
ηAv

s,a

)
qs,a. If we define qs =

∑
a qs,a, and we define qa|s =

qs,a

qs
then we can write:

πv(a|s) =
exp

(
ηAv

s,a

)
qa|s

Za|s

Where Zs =
∑

a exp
(
ηAv

s,a

)
qa|s. We work under the assumption that qa|s is a policy, and therefore known to the learner.

We start by showing how to maintain a good estimator Âv
s,a using stochastic gradient descent over a quadratic objective.

Let Wv
s,a =

∑
s′ Pa(s

′|s)vs′ so that Av
s,a = rs,a− vs + γWv

s,a where both Wv and Ŵv are seen as vectors in R
|S|×|A|.

If we had access to an estimator Ŵv of Wv such that for some ǫ ∈ (0, 1):

‖Wv − Ŵv‖∞ ≤ ǫ. (31)

We can use Ŵv to produce an estimator of Av
s,a via Âv

s,a = rs,a − vs + γŴv
s,a such that:

‖Âv −Av‖∞ ≤ γǫ.

We now consider the problem of estimating Wv from samples. We assume the following stochastic setting:

1. The learner receives samples {(sℓ, aℓ, s′ℓ)}∞ℓ=1 such that (sℓ, aℓ) ∼ q while s′ℓ ∼ Paℓ
(·|sℓ). Let Nt(s, a) =∑t

ℓ=1 1(sℓ, aℓ = s, a).

2. Define Ŵv
s,a(t) = 1

Nt(s,a)

∑T
ℓ=1 1(sℓ, aℓ = s, a)vs′ℓ

. Notice that for all s, a ∈ S × A, the estimator’s noise

ξs,a(t) = Ŵv
s,a(t) −Wv

s,a satisfies E[ξs,a(t)|Ft−1] = 0 and |ξs,a(t)| ≤ 2‖v′‖∞. Where Ft−1 is the sigma al-

gebra corresponding to all the algorithmic choices up to round t− 1.

Lemma 15. Let {(sℓ, aℓ, s′ℓ)}∞ℓ=1 samples generated as above. Let Ŵv(t) be the empirical estimator of Wv defined as:

Ŵv
s,a(t) =

1

Nt(s, a)

t∑

ℓ=1

1(sℓ, aℓ = s, a)vs′
ℓ
.

Where Nt(s, a) =
∑t

ℓ=1 1(sℓ, aℓ = s, a). Let δ ∈ (0, 1). With probability at least 1 − (2|S||A|)δ for all t ∈ N such that

ln ln(2t) + ln 5.2
δ ≤

tβ
6 and for all (s, a) ∈ S simultaneously:

|Wv
s,a − Ŵv

s,a(t)| ≤ 8‖v‖∞



√

ln ln(2t) + ln 10.4
δ

tβ
+

ln ln(2t) + ln 10.4
δ

tβ


 .

Proof. Consider the martingale difference sequence Xs,a(ℓ) = 1(sℓ, aℓ = s, a)
(
Wv

s,a − vs′
ℓ

)
. Notice that for all s, a ∈

S×A |Xs,a(t)| ≤ 2‖v′‖∞ The process St =
∑t

ℓ=1Xs,a(ℓ) with variance processWt =
∑t

ℓ=1 E
[
X2

s,a(ℓ)|Fℓ−1

]
satisfies

the sub-ψP condition of (Howard et al., 2018) with constant c = 2‖v′‖∞ (see Bennet case in Table 3 of (Howard et al.,

2018)). By Lemma 13 the bound:

St ≤ 1.44

√
(Wt ∨m)

(
1.4 ln ln (2(Wt/m ∨ 1)) + ln

5.2

δ

)
+ 0.81‖v‖∞

(
1.4 ln ln

(
2

(
Wt

m
∨ 1

))
+ ln

5.2

δ

)
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holds for all t ∈ N with probability at least 1 − δ. Notice that E[X2
s,a(ℓ)|Fℓ−1] ≤ 4‖v‖2∞Varq(1s,a) = 4‖v‖2∞qs,a(1 −

qs,a) ≤ qs,a‖v‖2∞ and therefore Wt ≤ tqs,a‖v‖2∞. We set m = qs,a‖v‖2∞. And obtain that with probability 1 − δ and

for all t ∈ N:
∣∣∣∣∣∣∣∣∣∣∣

1

Nt(s, a)

t∑

ℓ=1

1(sℓ = s, aℓ = 1)vs′
ℓ

︸ ︷︷ ︸
Ŵv

s,a(t)

−Wv
s,a

∣∣∣∣∣∣∣∣∣∣∣

≤ 1

Nt(s, a)

(
1.44‖v‖∞

√
qs,at

(
ln ln(2t) + ln

10.4

δ

)
+

0.81‖v‖∞
(
1.4 ln ln(2t) + ln

10.2

δ

))
(32)

As a consequence of Lemma 14 we know that with probability at least 1 − δ for all t such that ln ln(2t) + ln 5.2
δ ≤

tβ
6 ≤

tqs,a

6 :

Nt(s, a) ≥
tqs,a

4

Plugging this into Equation 32 and applying a union bound over all s, a ∈ S × A yields that for all t such that ln ln(2t) +
ln 5.2

δ ≤
tβ
6 ≤

tqs,a

6 and with probability 1− 2|S||A|δ for all s, a ∈ S simultaneously:

|Wv
s,a − Ŵv

s,a(t)| ≤
4

tqs,a

(
1.44‖v‖∞

√
tqs,a ln ln(2t) + t ln

10.4

δ
+ 0.81‖v′‖∞

(
1.4 ln ln(2t) + ln

10.4

δ

))

≤ 8‖v‖∞



√

ln ln(2t) + ln 10.4
δ

tqs,a
+

ln ln(2t) + ln 10.4
δ

tqs,a




≤ 8‖v‖∞



√

ln ln(2t) + ln 10.4
δ

tβ
+

ln ln(2t) + ln 10.4
δ

tβ


 .

The result follows.

We can now derive a concentration result for Âv
s,a(t) = rs,a − vs + γŴv

s,a(t), the advantage estimator resulting from

Ŵv
s,a(t):

Corollary 3. Let δ ∈ (0, 1). With probability at least 1 − (2|S||A|)δ for all t ∈ N such that ln ln(2t) + ln 5.2
δ ≤

tβ
6 and

for all (s, a) ∈ S simultaneously:

|Av
s,a − Âv

s,a(t)| ≤ 8γ‖v‖∞



√

ln ln(2t) + ln 10.4
δ

tβ
+

ln ln(2t) + ln 10.4
δ

tβ


 .

And therefore:

|Av
s,a − Âv

s,a(t)| ≤ 16γ‖v‖∞

√
ln ln(2t) + ln 10.4

δ

tβ

F.1. Estimating the Gradients

Lemma 16. If ξ ∈ R such that |ξ| ≤ ǫ < 1, and y ∈ R, then:

exp (y) (1− ǫ) ≤ exp (y + ξ) ≤ exp (y) (1 + 2ǫ)

Proof. Notice that for ǫ ∈ (0, 1):
exp(ǫ) ≤ 1 + 2ǫ, and 1− ǫ ≤ exp(−ǫ).
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The result follows by noting that:

exp(y) exp(−|ξ|) ≤ exp(y + ξ) ≤ exp(y) exp(|ξ|).

A simple consequence of Lemma 16 is the following:

Lemma 17. Let ǫ ∈ (0, 1/2). If C, Ĉ ∈ R
|S|×|A| and b̂,b ∈ R

|S|×|A|
+ are two vectors satisfying:

‖Ĉ−C‖∞ ≤ ǫ, |b̂s,a − bs,a| ≤ ǫbs,a.

For all s, a ∈ S × A define Bs,a =
exp(Cs,a)

Z
and B̂s,a =

exp(Ĉs,a)

Ẑ
where Z =

∑
s,a exp(Cs,a)bs,a and Ẑ =

∑
s,a exp(Ĉs,a)b̂s,a: ∣∣∣B̂s,a −Bs,a

∣∣∣ ≤ 38ǫBs,a ≤ 38ǫ.

Proof. Let’s define an intermediate B̃s,a =
exp(Cs,a)b̂s,a

Z̃
where Z̃ =

∑
s,a exp (Cs,a) b̂s,a. By Lemma 16 we can

conclude that for any s, a ∈ S ×A:

B̃s,a
1− ǫ
1 + 2ǫ

≤ B̂s,a ≤
1 + 2ǫ

1− ǫ B̃s,a

And therefore:

B̂s,a, B̃s,a ∈
[
B̃s,a

1− ǫ
1 + 2ǫ

,
1 + 2ǫ

1− ǫ B̃s,a

]

Which in turn implies that: ∣∣∣B̂s,a − B̃s,a

∣∣∣ ≤
(
1 + 2ǫ

1− ǫ −
1− ǫ
1 + 2ǫ

)
B̃s,a ≤ 15ǫB̃s,a.

We now bound |B̃s,a −Bs,a|. By assumption for all s, a ∈ S × A, it follows that b̂s,a(1 − ǫ) ≤ bs,a ≤ b̂s,a(1 + ǫ) and

therefore:

Bs,a

1 + ǫ
≤ B̃s,a ≤

Bs,a

1− ǫ

And therefore:

B̃s,a,Bs,a ∈
[
Bs,a

1 + ǫ
,
Bs,a

1− ǫ

]
.

Hence:

∣∣∣B̃s,a −Bs,a

∣∣∣ ≤
(

1

1− ǫ −
1

1 + ǫ

)
Bs,a ≤

8

3
ǫBs,a.

And therefore:

|B̂s,a −Bs,a| ≤ |B̂s,a − B̃s,a|+ |B̃s,a −Bs,a| ≤ 15ǫB̃s,a +
8

3
ǫBs,a ≤

(
15ǫ(1 +

8

3
ǫ) +

8

3
ǫ

)
Bs,a ≤ 38ǫBs,a.

The result follows.

If we set C = ηAv, Ĉ = ηÂv we obtain the following corollary of Lemma 17:
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Corollary 4. Let ǫ ∈ (0, 1/2). If Âv and q̂ satisfies:

‖Âv −Av‖∞ ≤ ǫ, and |q̂s,a − qs,a| ≤ ǫqs,a

Then: ∣∣∣B̂v
s,a −Bv

s,a

∣∣∣ ≤ 111ηǫBv
s,a ≤ 111ηǫ.

We can combine the sample complexity results of Corollary 3 and the approximation results of Corollary 4 and Lemma 14

to obtain:

Corollary 5. If δ, ξ ∈ (0, 1), with probability at least 1− (4|S||A|δ) for all t such that:

t

ln ln(2t)
≥ 120(ln 10.4

δ + 1)

βξ2
max

(
480η2γ2‖v‖2∞, 1

)

then for all (s, a) ∈ S × A simultaneously:

∣∣∣B̂v
s,a(t)−Bv

s,a

∣∣∣ ≤ ξBv
s,a ≤

ξ

β
, and B̂v

s,a ≤ Bv
s,a(1 +

ξ

β
) ≤ 1

β
(1 +

ξ

β
).

F.2. Biased Stochastic Gradients

Notice that:

(∇vJD(v))s = (1 − γ)µs + γ
∑

s′,a

exp
(
ηAv

s′,a

)
qs′,a

Z
Pa(s|s′)−

∑

a

exp
(
ηAv

s,a

)
qs,a

Z

= (1 − γ)µs + γE(s′,a)∼q,s′′∼Pa(·|s′)
[
Bv

s′,a1(s
′′ = s)

]
− E(s′,a)∼q

[
Bv

s,a1(s
′ = s)

]

= (1 − γ)µs + E(s′,a)∼q,s′′∼Pa(·|s′)
[
Bv

s′,a (γ1(s
′′ = s)− 1(s′ = s))

]
,

We now proceed to bound the bias of this estimator and prove a more fine grained version of Lemma 8.

Lemma 18. Let δ, ξ ∈ (0, 1). With probability at least 1− δ for all t ∈ N such that

t

ln ln(2t)
≥ 120(ln 41.6|S||A|

δ + 1)

βξ2
max

(
480η2γ2‖v‖2∞, 1

)

the plugin estimator ∇̂vJD(v) satisfies:

max
u∈{1,2,∞}

∥∥∥∇̂vJD(v)− Est+1,at+1,s′t+1

[
∇̂vJD(v)

∣∣∣B̂v(t)
]∥∥∥

u
≤ 4

β
(1 +

ξ

β
) (33)

max
u∈{1,2,∞}

∥∥∥E
[
∇̂vJD(v)

]
−∇vJD(v)

∥∥∥
u
≤ 2(1 + γ)ξ(1 +

ξ

β
), (34)

E

[∥∥∥∇̂vJD(v) − Est+1,at+1,s′t+1
[∇̂vJD(v)

∣∣∣B̂v(t)]
∥∥∥
2

2

∣∣∣B̂v(t)

]
≤ (1 + γ2)(1 + 4ξ)

1

β
(1 +

ξ

β
) (35)

Proof. As a consequence of Corollary 5, we can conclude that for all t satisfying the assumptions of the Lemma and with

probability at leat 1− δ simultaneously for all (s, a) ∈ S ×A:

∣∣∣B̂v
s,a(t)−Bv

s,a

∣∣∣ ≤ ξBv
s,a(1 +

ξ

β
), and B̂v

s,a ≤ Bv
s,a(1 +

ξ

β
) ≤ 1

β
(1 +

ξ

β
). (36)

Let’s start by bounding the first term. Notice that ∇̂vJD(v) − (1− γ)µ has at most 2 nonzero entries and therefore:
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max
u∈{1,2,∞}

‖∇̂vJD(v)− (1 − γ)µ‖u ≤
2

β
(1 +

ξ

β
).

Therefore for all u ∈ {1, 2,∞}:

∥∥∥Est+1,at+1,s′t+1

[
∇̂vJD(v) − (1− γ)µ

∣∣∣B̂v(t)
]∥∥∥

u
≤ Est+1,at+1,s′t+1

[
‖∇̂vJD(v) − (1− γ)µ‖u

∣∣∣B̂v(t)
]
≤ 2

β
(1 +

ξ

β
).

∥∥∥∇̂vJD(v) − E

[
∇̂vJD(v)

∣∣∣B̂v(t)
]∥∥∥

u
≤
∥∥∥∇̂vJD(v)− (1 − γ)µ

∥∥∥
u
+
∥∥∥E
[
∇̂vJD(v)

∣∣∣B̂v(t)
]
− (1− γ)µ

∥∥∥
u

≤ 4

β
(1 +

ξ

β
)

Furthermore, notice that the following estimator of∇vJD(v) is unbiased:

(
∇̃vJD(v)

)
s
= (1− γ)µs +Bv

st+1,at+1
(t)
(
γ1(s′t+1 = s)− 1(st+1 = s)

)
.

We conclude that for all s ∈ S:

(
∇̂vJD(v)

)
s
−
(
∇̃vJD(v)

)
s
=
(
γ1(s′t+1 = s)− 1(st+1 = s)

) (
B̂v

st+1,at+1
(t)−Bv

st+1,at+1
(t)
)

Consequently ∇̂vJD(v)− ∇̃vJD(v) has at most 2 nonzero entries. Now observe that any nonzero entry s satisfies:

∣∣∣E
[(
∇̂vJD(v)

)
s

]
− (∇vJD(v))s

∣∣∣ =
∣∣∣Est+1,at+1∼q

[(
∇̂vJD(v)

)
s
−
(
∇̃vJD(v)

)
s

]∣∣∣

≤ Est+1,at+1∼q

[∣∣γ1(s′t+1 = s)− 1(st+1 = s)
∣∣
∣∣∣B̂v

st+1,at+1
(t)−Bv

st+1,at+1
(t)
∣∣∣
]

(i)

≤ Est+1,at+1∼q[
(
γ1(s′t+1 = s) + 1(st+1 = s)

)
ξBv

st+1,at+1
(1 +

ξ

β
)]

≤ (1 + γ)ξ(1 +
ξ

β
)Est+1,at+1∼q[Bst+1,at+1 ]

= (1 + γ)ξ(1 +
ξ

β
)

Inequality (i) holds by the triangle inequality and Equation 36 and because Bv
s,a ≥ 0. This finishes the proof of the first

result. Since ∇̂vJD(v) − ∇̃vJD(v) has at most 2 nonzero entries for all u ∈ {1, 2,∞}:

∥∥∥E
[(
∇̂vJD(v)

)
s

]
− (∇vJD(v))s

∥∥∥
u
≤ 2(1 + γ)ξ(1 +

ξ

β
)

The second inequality follows.

Recall that for any s:

(
∇̂vJD(v)

)
s
= (1− γ)µs + B̂v

st+1,at+1(t)

(
γ1(s′t+1 = s)− 1(st+1 = s)

)
.
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Observe that:

E

[∥∥∥∇̂vJD(v) − E[∇̂vJD(v)
∣∣∣B̂v(t)]

∥∥∥
2

2

∣∣∣B̂v(t)

]
≤ E

[∥∥∥∇̂vJD(v)
∥∥∥
2

2

∣∣∣B̂v(t)

]

=
∑

s′,a

(
B̂v

s′,a(t)
)2
γ2qs′,aPa(s|s′)+

∑

a

(
B̂v

s,a(t)
)2

qs,a (1− 2γ)Pa(s|s)

≤ (1 + γ2)E(s′,a)∼q̂(t)B̂v(t)

[
B̂v

s′,a(t)
qs′,a

q̂s′,a

]

(i)

≤ (1 + γ2)(1 + 4ξ)
1

β
(1 +

ξ

β
).

Inequality (i) follows because B̂s,aqs,a ≤ qs,a

q̂s,a
≤ (1 + 4ξ) and because by Corollary 5 we have that B̂v

s,a ≤ 1
β (1 +

ξ
β ).

The result follows.

Combining the guarantees of Lemma 9 and 8 for Algorithm 4 applied to the objective function JD:

Lemma 19. Let ξt = min(
√

c′

t , β) for all t where c′ = 2(|S|+ 1)2η2D2 + 320
β2 + 240 and D = 1

1−γ

(
1 +

log |S||A|
βρ

η

)
. If

n(t) is such that:

n(t)

ln ln(2n(t))
≥

120
(
ln 83.2|S||A|t2

δ + 1
)

βξ2t
max

(
280η2γ2‖vt‖2∞, 1

)
(37)

And τt =
c√
t

where c = D
2
√
c′

then for all t ≥ 1 we have that with probability at least 1 − 2δ and simulataneously for all

T ∈ N :

JD

(
1

T

T∑

t=1

vt

)
≤ JD(v⋆) +

36D√
T

max


(|S|+ 1) ηD,

18 + 16
√
ln ln(2T ) + ln 5.2

δ

β
, 16




Proof. We will make use of Lemmas 8 and 9. We identify ǫt = ∇̂vJD(vt) − E

[
∇̂vJD(vt)

∣∣∣B̂vt(n(t))
]

and bt =

∇vJD(vt)−E

[
∇̂vtJD(vt)

∣∣∣B̂vt(n(t))
]
. As a consequence of Cauchy-Schwartz and Lemma 8 we see that if n(t) is such

that:

n(t)

ln ln(2n(t))
≥

120
(
ln 83.2|S||A|t2

δ + 1
)

βξ2t
max

(
280η2γ2‖vt‖2∞, 1

)

Then for all t with probability at least 1− δ
2t2 the bounds in Equations 33, 34, and 35 in Lemma 8 hold and therefore:

|〈ǫt,vt − v⋆〉| ≤ ‖vt − v⋆‖∞‖ǫt‖1 ≤
1

1− γ

(
1 +

log |S||A|
βρ

η

)
4

β
(1 +

ξt
β
)
(i)

≤ 1

1− γ

(
1 +

log |S||A|
βρ

η

)
8

β
︸ ︷︷ ︸

:=U1

.

Where inequality (i) holds by the assumption ξt ≤ β. Notice that Xt = 〈ǫt,vt − v⋆〉 is a martingale difference sequence.

A simple application of Lemma 13 yields that with probability at least 1− δ for all t ∈ N:

−
T∑

t=1

〈ǫt,xt − x⋆〉 ≤ 2U1

√
t

(
ln

2t2

δ

)
(38)
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Similarly observe that for all t with probability at least 1− δ
2t2 , since the bounds in Equations 33, 34, and 35 in Lemma 8

hold,

‖bt‖1 =
∥∥∥∇vJD(vt)− E

[
∇̂vtJD(vt)

∣∣∣B̂vt(n(t))
]∥∥∥

1
≤ 2(1 + γ)ξt(1 +

ξt
β
) (39)

Notice that similarly and for all t with probability at least 1− δ
2t2 , since the bounds in Equations 33, 34, and 35 in Lemma 8

hold:

‖ǫt‖22 ≤
16

β2

(
1 +

ξt
β

)2

, and ‖bt‖22 ≤ 4(1 + γ)2ξ2t (1 +
ξt
β
)2

Finally we show a bound on the l2 norm of the gradient of JD. Since v⋆ ∈ D =

{
v s.t. ‖v‖∞ ≤ 1

1−γ

(
1 +

log |S||A|
βρ

η

)}
.

Recall that by Lemma 3, we have that JD is (|S|+ 1)η-smooth in the ‖ · ‖∞ norm. Therefore by Lemma 12:

‖∇JD(vt)‖1 ≤ (|S|+ 1)
η

1− γ

(
1 +

log |S||A|
βρ

η

)

Since ‖∇JD(vt)‖2 ≤ ‖∇JD(vt)‖1 this in turn implies that:

‖∇JD(vt)‖22 ≤ (|S| + 1)2
η2

(1− γ)2

(
1 +

log |S||A|
βρ

η

)2

.

We now invoke the guarantees of Lemma 9 to show that with probability 1− 2δ and simultaneously for all T ∈ N:

T∑

t=1

JD(vt)− JD(v⋆) ≤
T∑

t=1

‖vt − v⋆‖2 − ‖vt+1 − v⋆‖2
2τt

+

τt


2(|S|+ 1)2

η2

(1 − γ)2

(
1 +

log |S||A|
βρ

η

)2

+
80

β2

(
1 +

ξt
β

)2

+ 20(1 + γ)2ξ2t (1 +
ξt
β
)2


+

2(1 + γ)ξt(1 +
ξt
β
)× 1

1− γ

(
1 +

log |S||A|
βρ

η

)
+ 2U1

√
T

(
ln

2t2

δ

)

(i)

≤
T∑

t=1

‖vt − v⋆‖2 − ‖vt+1 − v⋆‖2
2τt

+ τt

(
2(|S|+ 1)2η2D2 +

320

β2
+ 240

)
+ 8Dξt+

2U1

√
T

(
ln

2t2

δ

)

Recall that U1 = 1
1−γ

(
1 +

log |S||A|
βρ

η

)
8
β = 8D

β and where D = 1
1−γ

(
1 +

log |S||A|
βρ

η

)
. Inequality (i) holds because

ξt ≤ β and because γ ≤ 1. Let τt =
c√
t

for some constant to be specified later and let’s analyze the terms in the sum above

that depend on these τt values:
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T∑

t=1

‖vt − v⋆‖2 − ‖vt+1 − v⋆‖2
2τt

= −‖vT+1 − v⋆‖2
2τT

+
1

2c

T∑

t=1

‖vt − v⋆‖2
(√

t−
√
t− 1

)

≤ D2

2c

√
T

The second term can be bounded as:

T∑

t=1

τtc
′ = cc′

T∑

t=1

1√
t
≤ cc′2

√
T

Where c′ = 2(|S|+ 1)2η2D2 + 320
β2 + 240. Therefore under this assumption we obtain:

T∑

t=1

JD(vt)− JD(v⋆) ≤
D2

2c

√
T + cc′2

√
T + 8D

(
T∑

t=1

ξt

)
+ 2U1

√
T

(
ln

2t2

δ

)
.

The minimizing choice for c equals c = D
2
√
c′

. And in this case:

T∑

t=1

JD(vt)− JD(v⋆) ≤ 2D
√
c′T + 8D

(
T∑

t=1

ξt

)
+ 2U1

√
T

(
ln

2t2

δ

)

If we set ξt = min(
√

c′

t , β) we get:

T∑

t=1

JD(vt)− JD(v⋆) ≤ 18D
√
c′T + 2U1

√
T

(
ln

2t2

δ

)

(i)

≤ 36Dmax

(
(|S| + 1) ηD,

18

β
, 16

)√
T + 2U1

√
T

(
ln

2t2

δ

)

≤ 36Dmax


(|S|+ 1) ηD,

18 + 16
√
ln ln(2T ) + ln 5.2

δ

β
, 16


√T

Inequality (i) holds because
√
c′ ≤ 2max

(
(|S|+ 1) ηD, 18β , 16

)
.

We conclude that:

JD

(
1

T

T∑

t=1

vt

)
(i)

≤ 1

T

T∑

t=1

JD(vt)

≤ JD(v⋆) +
36D√
T

max


(|S|+ 1) ηD,

18 + 16
√
ln ln(2T ) + ln 5.2

δ

β
, 16




Inequality (i) holds by convexity of JD. The result follows.

We are ready to present the proof of Lemma 10 which corresponds to a simplified version of Lemma 19.
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F.3. Proof of Lemma 10

Lemma 10. We assume η ≥ 4
β . Set ξt =

8|S|ηD√
t

and τt =
1

16|S|η
√
t
. If we take t gradient steps using n(t) samples from

q×P (possibly reusing the samples for multiple gradient computations) with n(t) satisfying:

n(t) ≥
525t

(
ln 100|S||A|t2

δ + 1
)3

β|S|2

Then for all t ≥ 1 we have that with probability at least 1− 3δ and simultaneously for all t ∈ N such that t ≥ 64|S|2η2D2

β :

JD

(
1

t

t∑

ℓ=1

vℓ

)
≤ JD(v⋆) + Õ

(
D2|S|η√

t

)
.

Proof. First note that the c′ of Lemma 19 satisfies c′ = max
(
2 (|S|+ 1)

2
η2D2, 320β2 , 240

)
and therefore:

c′ ≤ 8max

(
8|S|2η2D2,

320

β

)

Thus
√
c′ = max(8|S|ηD, 31β ) = 8|S|ηD (the last equality holds because η ≥ 4

β ) and therefore:

ξt = min(
8|S|ηD√

t
, β) =

8|S|ηD√
t

The last equality holds because t ≥ 64|S|2η2D2

β .

Then the condition in Equation 37 of Lemma 19 is satisfies whenever:

n(t)

ln ln(2n(t))
≥

120t× 280η2D2
(
ln 100|S||A|t2

δ + 1
)

β64|S|2η2D2
=

525t
(
ln 100|S||A|t2

δ + 1
)

β|S|2 (40)

And therefore if we set n(t) =
525t

(
ln

100|S||A|t2

δ +1

)3

β|S|2 ≥
525t ln ln(2t)

(
ln

100|S||A|t2

δ +1

)

β|S|2 ln(2t
2

δ ) we see that with probability

at least 1− 3δ and simultaneously for all t ∈ N:

JD

(
1

t

t∑

ℓ=1

vℓ

)
≤ JD(v⋆) +

36D√
t
max


(|S|+ 1) ηD,

18 + 16
√
ln ln(2t) + ln 5.2

δ

β
, 16




= JD(v⋆) +
72D2|S|η√

t

(
5 + 4

√
ln ln(2t) + ln

5.2

δ

)

The last inequality holds since η ≥ 4
β . This implies that using a budget of n(t) samples where n(t) satisfies Inequality 40

we can take t gradient steps.
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G. Extended Results for Tsallis Entropy Regularizers

For α > 1 recall the Tsallis entropy between distributions q,λ equals:

DT
α (λ ‖ q) =

1

α− 1

(
E(s,a)∼q

[(
λs,a

qs,a

)α

− 1

])

=
1

α− 1

(
E(s,a)∼λ

[(
λs,a

qs,a

)α−1

− 1

])

Let F (λ) = 1
ηD

T
α (λ ‖ q). The Fenchel Dual of a Tsallis Entropy satisfies:

F ∗(u) =

〈
λ(u),u− (u+ x∗1)

α
λ(u)α−1 +

1

η(α − 1)
1

〉

Where λ(u) = (ηu + ηx∗1)1/(α−1)
(
α−1
α

)1/(α−1)
q and where x∗ ∈ R such that

∑
s,a λs,a(u) = 1 and λs,a(u) ≥ 0 for

all s, a ∈ S ×A. This implies that:

JT ,α
D (v) = (1− γ)

∑

s

vsµs +

〈
λ(Av),Av − (Av + x∗1)

α
λ(Av)α−1 +

1

η(α − 1)
1

〉

G.0.1. STRONG CONVEXITY OF TSALLIS ENTROPY

In this section we show that whenever α ∈ (1, 2], the Tsallis entropy is a strongly convex function of λ in the ‖ · ‖2 norm,

Lemma 20. If α ∈ (1, 2], the function F (λ) = 1
ηD

T
α (λ ‖ q) is α

η -strongly convex in the ‖ · ‖2 norm.

Proof. It is easy to see that∇2
λ
DT

α (λ ‖ q) is a diagonal matrix satisfying:

[
∇2

λ
DT

α (λ ‖ q)
]
s,a

=
αλα−2

s,a

ηqα−1
s,a

.

Whenever α ≤ 2, and noting that q ∈ [0, 1] we conclude that any of these terms must be lower bounded by α
η . The result

follows.

G.1. Tsallis entropy version of Lemma 4

Lemma 21. Let ṽ ∈ R
|S| be arbitrary and let λ̃ be its corresponding candidate primal variable (i.e. λ̃ = λ(Av)). If

‖∇vJD(ṽ)‖1 ≤ ǫ and Assumptions 3 and 2 hold then whenever |S| ≥ 2:

JT ,α
P (λπ̃) ≥ JT ,α

P (λ∗
η)− ǫ

(
1 + c

1− γ + ‖ṽ‖∞
)

Where c = 1
η(α−1)

1
βα−1

(
max(α− 1, 2

ρα−1 ) + 2
)

and λ⋆
η is the JP optimum.

Proof. For any λ and v let the lagrangian JL(λ,v) be defined as,

JL(λ,v) = (1− γ)〈µ,v〉 +
〈
λ,Av − 1

η(α− 1)

((
λ

q

)α−1

− 1

)〉

Note that JD(ṽ) = JL(λ̃, ṽ) and that in fact JL is linear in v̄; i.e.,

JL(λ̃, v̄) = JL(λ̃, ṽ) + 〈∇vJL(λ̃, ṽ), v̄ − ṽ〉.
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Using Holder’s inequality we have:

JL(λ̃, v̄) ≥ JL(λ̃, ṽ)− ‖∇vJL(λ̃, ṽ)‖1 · ‖v̄− ṽ‖∞ = JD(ṽ)− ‖∇vJL(λ̃, ṽ)‖1 · ‖v̄ − ṽ‖∞.

Let λ⋆ be the candidate primal solution to the optimal dual solution v⋆ = argminv JD(v). By weak duality we have that

JD(ṽ) ≥ JP (λ⋆) = JD(v⋆), and since by assumption ‖∇vJL(λ̃, ṽ)‖1 ≤ ǫ:

JL(λ̃, v̄) ≥ JP (λ⋆)− ǫ‖v̄− ṽ‖∞. (41)

In order to use this inequality to lower bound the value of JP (λ
π̃), we will need to choose an appropriate v̄ such that the

LHS reduces to JP (λ
π̃) while keeping the ℓ∞ norm on the RHS small. Thus we consider setting v̄ as:

v̄s = Ea,s′∼π̃×T


zs + rs,a −

1

η(α− 1)



(
λπ̃
s,a

qs,a

)α−1

− 1


+ γv̄s′




Where z ∈ R
|S| is some function to be determined later. It is clear that an appropriate z exists as long as

z, r, 1
η(α−1)

((
λ

π̃
s,a

qs,a

)
− 1

)α−1

are uniformly bounded. Furthermore:

‖v̄‖∞ ≤
maxs,a

∣∣∣∣∣zs + rs,a − 1
η(α−1)

((
λ

π̃
s,a

qs,a

)α−1

− 1

)∣∣∣∣∣
1− γ ≤

‖z‖∞ + ‖r‖∞ + 1
η(α−1)

∥∥∥∥∥

(
λ

π̃
s,a

qs,a

)α−1

− 1

∥∥∥∥∥
∞

1− γ (42)

We proceed to bound the norm of

∥∥∥∥∥

(
λ

π̃
s,a

qs,a

)α−1

− 1

∥∥∥∥∥
∞

. Observe that by Assumptions 2 and 3, for all states s, a ∈ S ×A,

the ratio |λ
π̃
s,a

qs,a
| ≤ 1

β and therefore:
∥∥∥∥∥∥

(
λπ̃
s,a

qs,a

)α−1

− 1

∥∥∥∥∥∥
∞

≤ 1 +
1

βα−1

Notice the following relationships hold:

〈
λ̃,A

v̄ −
1

η(α− 1)

((
λ̃

q

)α−1

− 1

)〉
=
∑

s

λ̃s

(
Ea,s′∼π̃×P

[
rs,a + γv̄s′ − v̄s −

1

η(α− 1)

((
λ̃s,a

qs,a

)α−1

− 1

)])

=
∑

s

λ̃s

(
Ea,s′∼π̃×P

[
1

η(α− 1)

((
λπ̃

s,a

qs,a

)α−1

− 1

)
−

1

η(α− 1)

((
λ̃s,a

qs,a

)α−1

− 1

)
− zs

])

=
∑

s

λ̃s

(
Ea,s′∼π̃×P

[
1

η(α− 1)

(
λπ̃

s,a

qs,a

)α−1

−
1

η(α− 1)

(
λ̃s,a

qs,a

)α−1

− zs

])

=
∑

s

λ̃s

(
1

η(α− 1)

((
λπ̃

s

qs

)α−1

−

(
λ̃s

qs

)α−1)[∑

a

π̃α(a|s)

qα−1

a|s

]
− zs

)
(43)

Where λ̃s =
∑

a λ̃s,a and λπ̃
s =

∑
a λ

π̃
s,a. Note that by definition:

(1− γ)〈µ, v̄〉 =
〈
λπ̃, z+ r− 1

η(α− 1)



(
λπ̃

q

)α−1

− 1



〉

= JP (λ
π̃) + 〈λπ̃, z〉. (44)
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Let’s expand the definition of JL(λ̃, v̄) using Equations 13 and 14:

JL(λ̃, v̄) = (1− γ)〈µ, v̄〉+
〈
λ̃,Av̄ − 1

η(α− 1)



(
λ̃

q

)α−1

− 1



〉

= JP (λ
π̃) + 〈λπ̃, z〉+

∑

s

λ̃s


 1

η(α− 1)



(
λπ̃
s

qs

)α−1

−
(
λ̃s

qs

)α−1


[∑

a

π̃α(a|s)
qα−1
a|s

]
− zs




= JP (λ
π̃) +

∑

s


zs(λ

π̃
s − λ̃s) +

λ̃s

η(α− 1)



(
λπ̃
s

qs

)α−1

−
(
λ̃s

qs

)α−1


[∑

a

π̃α(a|s)
qα−1
a|s

]


Since we want this expression to equal JP (λ
π̃), we need to choose z such that:

zs =

1
η(α−1)

((
λ

π̃
s

qs

)α−1

−
(

λ̃s

qs

)α−1
)[∑

a
π̃α(a|s)
q
α−1
a|s

]

1− λπ̃
s

λ̃s

Observe that zs =

1
η(α−1)

(
(λπ̃

s )
α−1−(λ̃s)

α−1
)[∑

a
π̃α(a|s)

q
α−1
s,a

]

1−λπ̃
s

λ̃s

and therefore, since for all s and when α ≥ 1 by Assumption 2

we have that
∑

a
π̃α(a|s)
q
α−1
s,a

≤ 1
βα−1 ,

|zs| ≤
1

η(α− 1)

1

βα−1

∣∣∣∣
(
λπ̃
s

)α−1

− λ̃
α−1

s

∣∣∣∣
∣∣∣1− λπ̃

s

λ̃s

∣∣∣

Let
λ

π̃
s

λ̃s
= 1

θ where θ ∈ [0, 1ρ ]. Then,

|zs| ≤
1

η(α − 1)βα−1
λπ̃
s

|1− θα−1|∣∣1− 1
θ

∣∣

It is easy to see that when α ≥ 0 the function f(θ) = 1−θα−1

1− 1
θ

= θ−θα

θ−1 is decreasing in the interval (0, 1] and increasing

afterwards. Furthermore, by L’Hopital’s rule, f(1) = 1− α and f( 1ρ) =
1

ρα − 1
ρ

1
ρ−1

≤ 2
ρα−1 since ρ ≤ 1

2 . This implies,

|zs| ≤
1

η(α− 1)

1

βα−1
max(α− 1,

2

ρα−1
).

And therefore Equation 42 implies:

‖v̄‖∞ ≤
1

η(α−1)
1

βα−1 max(α− 1, 2
ρα−1 ) + 1 + 1

η(α−1)

(
1

βα−1 + 1
)

1− γ =

1
η(α−1)

1
βα−1

(
max(α− 1, 2

ρα−1 ) + 2
)
+ 1

1− γ
Putting these together we obtain the following version of equation 41:

JL(λ̃, v̄) ≥ JP (λ⋆)− ǫ




1
η(α−1)

1
βα−1

(
max(α− 1, 2

ρα−1 ) + 2
)
+ 1

1− γ + ‖ṽ‖∞



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G.2. Extension of Lemma 5 to Tsallis Entropy

Lemma 22. Under Assumptions 1, 2 and 3, the optimal dual variables are bounded as

‖v∗‖∞ ≤
1

1− γ

(
1 +

2

η(α− 1)βα−1

)
= DD,α. (45)

Proof. Recall the Lagrangian form,

min
v
, max
λs,a∈∆S×A

JL(λ,v) := (1− γ)〈v,µ〉+
〈
λ,Av − 1

η(α − 1)

((
λs,a

qs,a

)α−1

− 1

)〉
.

The KKT conditions of λ∗,v∗ imply that for any s, a, either (1) λ∗
s,a = 0 and ∂

∂λs,a
JL(λ

∗, v∗) ≤ 0 or (2)
∂

∂λs,a
JL(λ

∗,v∗) = 0. The partial derivative of JL is given by,

∂

∂λs,a
JL(λ

∗,v∗) = rs,a + γ
∑

s′

Pa(s
′|s)v∗

s′ − v∗
s −

α

η(α− 1)

(
λ∗
s,a

qs,a

)α−1

+
1

η(α− 1)
. (46)

Thus, for any s, a, either

λ∗
s,a = 0 and v∗

s ≥ rs,a −
α

η(α− 1)

(
λ∗
s,a

qs,a

)α−1

+
1

η(α− 1)
+ γ

∑

s′

Pa(s
′|s)v∗

s′ , (47)

or,

λ∗
s,a > 0 and v∗

s = rs,a −
α

η(α− 1)

(
λ∗
s,a

qs,a

)α−1

+
1

η(α− 1)
+ γ

∑

s′

Pa(s
′|s)v∗

s′ . (48)

Recall that λ∗ is the discounted state-action visitations of some policy π⋆; i.e., λ∗
s,a = λπ⋆

s · π⋆(a|s) for some π⋆. Note

that by Assumption 3, any policy π has λπ⋆
s > 0 for all s. Accordingly, the KKT conditions imply,

π⋆(a|s) = 0 and v∗
s ≥ rs,a −

α

η(α − 1)

(
λ∗
s,a

qs,a

)α−1

+
1

η(α − 1)
+ γ

∑

s′

Pa(s
′|s)v∗

s′ , (49)

or,

π⋆(a|s) > 0 and v∗
s = rs,a −

α

η(α − 1)

(
λ∗
s,a

qs,a

)α−1

+
1

η(α − 1)
+ γ

∑

s′

Pa(s
′|s)v∗

s′ . (50)

Equivalently,

v∗
s = Ea∼π⋆(s)

[
rs,a −

α

η(α − 1)

(
λ∗
s,a

qs,a

)α−1

+
1

η(α− 1)
+ γ

∑

s′

Pa(s
′|s)v∗

s′

]
(51)

(52)

We may express these conditions as a Bellman recurrence for v∗
s and the solution to these Bellman equations is

bounded when rs,a − α
η(α−1)

(
λ

∗
s,a

qs,a

)α−1

+ 1
η(α−1) is bounded (Puterman, 2014). And indeed, by Assumptions 2 and 1,∣∣∣∣rs,a − α

η(α−1)

(
λ

∗
s,a

qs,a

)α−1

+ 1
η(α−1)

∣∣∣∣ ≤ 1 + 1
η(α−1) +

1
η(α−1)βα−1 We may thus bound the solution as,

‖v∗‖∞ ≤
1

1− γ

(
1 +

2

η(α− 1)βα−1

)
. (53)
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G.3. Gradient descent results for the Tsallis Entropy

Remark 1. Throughout this section we make the assumption that α ∈ (1, 2].

We start by characterizing the smoothness properties of JT ,α
D (v), the dual function of the Tsallis regularized LP.

Lemma 23. If α ∈ (1, 2] the dual function JT ,α
D (v) is

η|S||A|
α -smooth in the ‖ · ‖2 norm.

Proof. Recall that PrimalReg-λ can be written as RegLP:

max
λ∈D
〈r,λ〉 − F (λ)

s.t. Eλ = b.

Where the regularizer (F (λ) := 1
ηD

T
α (λ ‖ q)) is α

η − ‖ · ‖2 strongly convex. In this problem r corresponds to the reward

vector, the vector b = (1 − γ)µ ∈ R
|S| and matrix E ∈ R

|S|×|S|×|A| takes the form:

E[s, s′, a] =

{
γPa(s|s′) if s 6= s′

1− γPa(s|s) o.w.

Therefore (since ‖E‖2,2 is simply the Frobenius norm of matrix E),

‖E‖2,2 ≤ 2|S||A|

The result follows as a corollary of Lemma 1.

Throughout this section we use the notation DT ,α to refer to ‖v∗‖∞ ≤ 1
1−γ

(
1 + 2

η(α−1)βα−1

)
. We are ready to prove

convergence guarantees for Algorithm 2 when applied to the objective JT ,α
D .

Lemma 24. Let Assumptions 1, 2 and 3 hold. Let DT ,α = {v s.t. ‖v‖∞ ≤ DT ,α}, and define the distance generating

function to be w(x) = ‖x‖22. After T steps of Algorithm 2, the objective function JT ,α
D evaluated at the iterate vT = yT

satisfies:

JT ,α
D (vT )− JT ,α

D (v∗) ≤ 4η
|S|2|A|
α

(1 + c′)2

(1− γ)2T 2
.

Where c′ = 2
η(α−1)βα−1 .

Proof. This results follows simply by invoking the guarantees of Theorem 1, making use of the fact that JT ,α
D is

η|S||A|
α −smooth as proven by Lemma 3, observing that as a consequence of Lemma 22, v⋆ ∈ DT ,α and using the in-

equality ‖x‖22 ≤ |S|‖x‖2∞ for x ∈ R
|S|.

Lemma 24 can be easily turned into the following guarantee regarding the dual function value of the final iterate:

Corollary 6. Let ǫ > 0. If Algorithm 2 is ran for at least T rounds

T ≥ 2η1/2(|S||A|1/2) (1 + c′)

α1/2(1 − γ)√ǫ

then vT is an ǫ−optimal solution for the dual objective JT ,α
D .

If T satisfies the conditions of Corollary 6 a simple use of Lemma 6 allows us to bound the ‖·‖2 norm of the dual function’s

gradient at vT :

‖∇JD(vT )‖2 ≤
√

2|S||A|ηǫ
α
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If we denote as πT to be the policy induced by λvT , and λ⋆
η is the candidate dual solution corresponding to v⋆. A simple

application of Lemma 21 yields:

JP (λ
πT ) ≥ JP (λ⋆

η)−
1

1− γ (2 + c+ c′)

√
2|S||A|ηǫ

α

Where c = 1
η(α−1)

1
βα−1

(
max(α− 1, 2

ρα−1 ) + 2
)

, c′ = 2
η(α−1)βα−1 and λ⋆

η is the JP optimum.

This leads us to the main result of this section:

Corollary 7. Let α ∈ (1, d]. For any ξ > 0. If T ≥ 4η|S|3/2|A|1/2 (2+c+c′)2

α(1−γ)2ξ then:

JP (λ
πT ) ≥ JP (λ⋆

η)− ξ.

Thus Algorithm 2 achieves an O(1/(1 − γ)2ǫ) rate of convergence to an ǫ−optimal regularized policy. We now proceed

to show that an appropriate choice for η can be leveraged to obtain an ǫ−optimal policy.

Theorem 5. For any ǫ > 0, let η = 2
(α−1)ǫβα . If T ≥ 8|S|3/2|A|1/2 (2+c+c′)

2

(α−1)α(1−γ)2βαǫ2 , then πT is an ǫ−optimal policy.

Proof. As a consequence of Corollary 7, we can conclude that:

JP (λ
πT ) ≥ JP (λ⋆,η)− ǫ

2
.

Where λ⋆
η is the regularized optimum. Recall that:

JP (λ) =
∑

s,a

λs,ars,a −
1

(α− 1)η

(
E(s,a)∼q

[(
λs,a

qs,a

)α

− 1

])
.

Since λ⋆,η is the maximizer of the regularized objective, it satisfies JP (λ
⋆,η) ≥ JP (λ

∗) where λ⋆ is the visitation

frequency of the optimal policy corresponding to the unregularized objective. We can conclude that:

∑

s,a

λπT
s,ars,a ≥

∑

s,a

λ⋆
s,ars,a +

1

(α − 1)η

(∑

s,a

qs,a

((
λπT
s,a

qs,a

)α

− 1

)
−
∑

s,a

qs,a

((
λ⋆
s,a

qs,a

)α

− 1

))
− ǫ

2

=
∑

s,a

λ
⋆
s,ars,a +

1

(α − 1)η

(∑

s,a

qs,a

(
λπT
s,a

qs,a

)α

−
∑

s,a

qs,a

(
λ⋆
s,a

qs,a

)α
)
− ǫ

2

≥
∑

s,a

λ⋆
s,ars,a −

1

(α − 1)η

(
1

β

)α

− ǫ

2

And therefore if η = 2
(α−1)ǫβα , we can conclude that:

∑

s,a

λπT
s,ars,a ≥

∑

s,a

λ⋆
s,ars,a − ǫ.


