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Abstract

Since its introduction a decade ago, relative en-
tropy policy search (REPS) has demonstrated
successful policy learning on a number of sim-
ulated and real-world robotic domains, not to
mention providing algorithmic components used
by many recently proposed reinforcement learn-
ing (RL) algorithms. While REPS is commonly
known in the community, there exist no guaran-
tees on its performance when using stochastic
and gradient-based solvers. In this paper we aim
to fill this gap by providing guarantees and con-
vergence rates for the sub-optimality of a policy
learned using first-order optimization methods
applied to the REPS objective. We first consider
the setting in which we are given access to exact
gradients and demonstrate how near-optimality
of the objective translates to near-optimality of
the policy. We then consider the practical set-
ting of stochastic gradients, and introduce a tech-
nique that uses generative access to the underly-
ing Markov decision process to compute param-
eter updates that maintain favorable convergence
to the optimal regularized policy.

1. Introduction

Introduced by Peters et al. (2010), relative entropy policy
search (REPS) is an algorithm for learning agent policies
in a reinforcement learning (RL) context. REPS has demon-
strated successful policy learning in a variety of challeng-
ing simulated and real-world robotic tasks, encompassing
table tennis (Peters et al., 2010), tether ball (Daniel et al.,
2012), beer pong (Abdolmalekiet al., 2015), and ball-
in-a-cup (Boularias et al., 2011), among others. Beyond
these direct applications of REPS, the mathematical tools
and algorithmic components underlying REPS have in-
spired and been utilized as a foundation for a number
of later algorithms, with their own collection of prac-
tical successes (Foxetal., 2017; Schulman et al., 2015;
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Nachum et al., 2017; Neuetal., 2017; Haarnojaet al.,
2018; Abdolmaleki et al., 2018; Kostrikov et al., 2019;
Nachum et al., 2019).

At its core, the REPS algorithm is derived via an appli-
cation of convex duality (Neu et al., 2017; Nachum & Dai,
2020), in which a Kullback Leibler (KL)-regularized ver-
sion of the max-return objective in terms of state-action
distributions is transformed into an logsumexp objective in
terms of state-action advantages (i.e., the difference of the
value of the state-action pair compared to the value of the
state alone, with respect to some learned state value func-
tion). If this dual objective is optimized, then the optimal
policy of the original primal problem may be derived as a
softmax of the state-action advantages. This basic deriva-
tion may be generalized, using any number of entropic reg-
ularizers on the original primal to yield a dual problem in
the form of a convex function of advantages, whose opti-
mal values may be transformed back to optimal regularized
policies (Belousov & Peters, 2017).

While the motivation for the REPS objective through the
lens of convex duality is attractive, it leaves two main ques-
tions unanswered regarding the theoretical soundness of us-
ing such an approach. First, in practice, the dual objective
in terms of advantages is likely not optimized fully. Rather,
standard gradient-based solvers only provide guarantees on
the near-optimality of a returned candidate solution. While
convex duality asserts a relationship between primal and
dual variables at the exact optimum, it is far from clear
whether a near-optimal dual solution will be guaranteed to
yield a near-optimal primal solution, and this is further com-
plicated by the fact that the primal candidate solution must
be transformed to yield an agent policy.

The second of the two main practical difficulties is due to
the form of the dual objective. Specifically, the form of
the dual objective as a convex function of advantages frus-
trates the use of gradient-based solvers in stochastic set-
tings. That is, the advantage of a state-action pair consists
of an expectation over next states — an expectation over the
transition function associated with the underlying Markov
decision process (MDP). In practical settings, one does not
have explicit knowledge of this transition function. Rather,
one only has access to stochastic samples from this transi-
tion function, and so calculation of unbiased gradients of
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the REPS objective is not directly feasible.

In this paper, we provide solutions to these two main dif-
ficulties. To the first issue, we present guarantees on the
near-optimality of a derived policy from dual variables op-
timized via a first-order gradient method, relying on a key
property of the REPS objective that ensures near-optimality
in terms of gradient norms. To the second issue, we propose
and analyze a stochastic gradient descent procedure that
makes use of a plug-in estimator of the REPS objective gra-
dients. Under some mild assumptions on the MDP, our esti-
mators need only sample transitions from a behavior policy
rather than full access to a generative model (where one can
uniformly sample transitions). We combine these results to
yield high-probability convergence rates of REPS to a near-
optimal policy. In this way, we show that REPS enjoy not
only favorable practical performance but also strong theo-
retical guarantees.

2. Related Work

As REPS is a popular and influential work, there exist
a number of previous papers that have studied its perfor-
mance guarantees. These previous works predominantly
study REPS as an iterative algorithm, where each step com-
prises of an exact optimization of the REPS objective and
then the derived policy is used as the reference distribution
for the KL regularization of the next step. This iterative
scheme may be interpreted as a form of mirror descent or
similar proximal algorithms (Beck & Teboulle, 2003), and
this interpretation can provide guarantees on convergence
to a near-optimal policy (Zimin & Neu, 2013; Neu et al.,
2017). However, because this approach assumes the abil-
ity to optimize the REPS objective exactly, it still suffers
from the practical limitations discussed above; specifically
(1) translation of near-optimality of advantages to near-
optimality of the policy and (2) ability to compute unbi-
ased gradients when one does not have explicit knowledge
of the MDP dynamics. Our analysis attacks these issues
head-on, providing guarantees on first-order optimization
methods applied to the REPS objective. To maintain focus
we do not consider iterative application of REPS, although
extending our guarantees to the iterative setting is a promis-
ing direction for future research.

In a somewhat related vein, a number of works use REPS-
inspired derivations to yield dynamic programming algo-
rithms (Fox et al., 2017; Geist et al., 2019; Vieillard et al.,
2020) and subsequently provide guarantees on the conver-
gence of approximate dynamic programming in these set-
tings. Our results focus on the use of REPS in a convex
programming context, and optimizing these programs via
standard gradient-based solvers.

The use of convex programming for RL in this way

has recently received considerable interest. Works in
this area typically propose to learn near-optimal policies
through saddle-point optimization (Chen & Wang, 2016;
Wang, 2017b; Chen et al., 2018; Bas-Serrano & Neu, 2019;
Cheng et al., 2020; Jin & Sidford, 2020). Rather than solv-
ing either the primal or dual max-return problem directly,
these works optimize the Lagrangian in the form of a min-
max bilinear problem. The Lagrangian form helps to miti-
gate the two main issues we identify with advantage learn-
ing, since (1) the candidate primal solution can be use to
derive a policy in a significantly more direct fashion than
using the candidate dual solution, and (2) the bilinear form
of the Lagrangian is immediately amenable to stochastic
gradient computation. In contrast to these works, our anal-
ysis focuses on learning exclusively in the dual (advantage)
space. The first part of our results is most comparable to
the work of (Bas-Serrano & Neu, 2019), which proposes
a saddle-point optimization with runtime O(1/¢), assum-
ing access to known dynamics. While our results yield a
O(1/€?) rate, we show that it can be achieved via optimiz-
ing the dual objective alone.

More similar to our work is the analysis
of Bas-Serrano et al. (2020), which considers an ob-
jective similar to REPS, but which is in terms of ()-values
as opposed to state (V') values. Beyond these structural
differences, our proof techniques also differ. For example,
our result on the suboptimality of the policy derived from
dual variables (Lemma 4), is arguably simpler from the
analogous result in Bas-Serrano et al. (2020), which uses a
two-step process to first connect suboptimality of the dual
variables to constraint violation of the primal variables,
and then connects this to suboptimality of the policy.

3. Contributions

The main contributions of this paper are the following:

1. We prove several structural results regarding entropy
regularized objectives for reinforcement learning and
leverage them to prove convergence guarantees for Ac-
celerated Gradient Descent on the dual (REPS) objec-
tive under mild assumptions on the MDP (see The-
orem 2). For discounted MDPs we show that an ¢-
optimal policy can be found after O(1/(1 — 7)2€?)
steps and an e—optimal regularized policy can be
found in O(1/(1 — v)2€) steps.

2. Similarly we show that a simple version of stochas-
tic gradient descent using biased plug-in gradient esti-
mators can be used to find an e—optimal policy after
O(1/(1 — v)8¢®) iterations (see Theorem 3) and an e-
optimal regularized policy in O(1/(1 — v)3¢*) steps.
Although our rates are short of the ones achievable by
alternating optimization methods, we are the first to
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show meaningful convergence guarantees for a purely
dual approach based on on-policy access to samples
from the underlying MDP.

3. In Appendix G we extend our results beyond the
REPS objective and consider the use of Tsallis En-
tropy regularizers. Similar to our results for the
REPS objective we show that for discounted MDPs an
e—optimal policy can be found after O(1/(1 —v)2€?)
steps and an e—optimal regularized policy can be
found in O(1/(1 — v)2€) steps.

4. Background

In this section we review the basics of Markov decision
processes and their Linear Programming primal and dual
formulations (see section 4.1) and some facts about the ge-
ometry of convex functions.

4.1.RL asan LP

We consider a discounted Markov decision process (MDP)
described by a tuple M = (S, A, P,r, p,), where S is a
finite state space, A is a finite action space, P is a transi-
tion probability matrix, r is a reward vector, g is an initial
state distribution, and v € (0,1) is a discount factor. We
make the following assumption regarding the reward values

{rs.a}-

Assumption 1 (Unit rewards). For all s,a € S x A, the
rewards satisfy,

rsq € [0,1].

The agent interacts with M via a policy 7 : S — A 4. The
agent is initialized at a state sy sampled from an initial state
distribution g and at time & = 0,1,... it uses its policy
to sample an action ar ~ w(sx). The MDP provides an
immediate reward r, ,, and transitions randomly to a next
state sg4+1 according to probabilities P, (sk11/sk). Given
a policy 7 we define its infinite-horizon discounted reward
as:

V. =E" lZWkrs,mak] ,
k=0

where we use [E™ to denote the expectation over trajectories
induced by the MDP M and policy 7. In RL, the agent’s
objective is to find an optimal policy m,; that is, find a pol-
icy maximizing V. over all policy mappings 7 : S — A 4.
We denote the optimal policy as:

Ty = argmax V.
T

‘We now review the definitions of state value functions:

Definition 1. We define the value vector v© € RIS! of a
policy m as:

oo

T . W k _

vi =K E Vs, a0 = S| -
k=0

We now review the definition of visitation distributions:

Definition 2. Given a policy m we define its state-action
visitation distribution AT € RISIXIAl g

kal(s;C =s,a = a)] .
k=0

Notice that by definitiony, , As.a = 1.

)‘;T,a = (1 - W)Eﬂ—

We note that any vector of nonnegative entries A may be
used to define a policy 7 as:

AS a
ma(als) = 5 d 1)

weaNsar
Note that w5~ = 7, while the visitation distribution A\™ of
7 is not necessarily A for an arbitrary vector .

Definition 3. Given a policy w we define its state visitation
distribution as,

Al =1 —-vE" [Z Y1 (s, = s)] .
k=0

Notice that X{ =, AL , and X , = Ag - 7(als).
The optimal visitation distribution X* is defined as

A" i=argmax » Al Tsq.
g Z; s
It can be shown (Puterman, 2014; Chen & Wang, 2016)
that solving for the optimal visitation distribution is equiv-
alent to the following linear program:

max E As,als,a (Primal-\)
As,a€Asx A e

s.t. Z)‘S)“ =(1-7)p, + 7ZPa(s|s'))\S/)a Vs € S.

s',a

Where we write P € RISIIAI%IS] to denote the transition
operator. Specifically, the |S| constraints of Primal-\ re-
strict any feasible A to be the state-action visitations for
some policy 7 (given by 7). The dual of this LP is given
by,

min (1-9) " p,vs (Dual-v)
v sES
st. 0>A7, VseS,a€ A,
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where AY , =15, — v +7) . Pu(s'|s)ve is the advan-
tage evaluated at s,a € § x A. It can be shown (Puterman,
2014; Chen & Wang, 2016) that the unique primal solution
A™ is exactly A™* and the unique dual solution v* is v7*.,

We finalize this section by defining the notion of subopti-
mality satisfied by the final policy produced by the algo-
rithms that we propose.

Definition 4. Let € > 0. We say that policy T is e-optimal
if

max |vl —vi*| <e.

na [V —vI*| <
Our objective is to design algorithms such that for any pa-
rameter € > (, can return an e—optimal policy.

4.2. Regularized Policy Search

Following Belousov & Peters (2017), we consider regular-
izing Primal-A with a convex function F' : A|gjx|4 —
R U {oc}. The resulting regularized LP is given by,

max
)\s,aeASX.A

Z )\s,ars,a - F()‘) = JP(A)

(PrimalReg-\)

s.t. Z)‘S-ﬂ =1-9y)p,+ "yZPa(SLS/)AS/_ﬂ Vs € S.

Henceforth we denote the primal objective function as
Jp(A) = >, . As,als,a — F(A). Note that any feasible
A that satisfies the |S| constraints in this regularized LP is
the (true) state-action visitation distribution for some pol-
icy m; therefore, the optimal A™ of this problem can be
used to derive an optimal F'-regularized max-return policy
TE 1= mx+. To simplify the subsequent derivations, we
introduce the definition of the convex conjugate of a convex
function, oftentimes referred to as the Fenchel conjugate:

Definition 5 (Fenchel Conjugate). Let ' : D — R be a
convex function over a convex domain D C RY. We denote
its D—constrained Fenchel conjugate as F* : R" — R
defined as:

F*(u) = max (x,u) — F(x).

The dual Jp of the regularized problem is given by the
following optimization problem (Belousov & Peters, 2017;
Nachum & Dai, 2020):

min Jp(v) := (1 =7) Y vep, + F*(AY), ()

where F™* is the Agx 4-constrained Fenchel conjugate of
F'. The vector quantity inside F'™* is known as the advan-
tage. That is, it quantifies the advantage (the difference in
estimated value) of taking an action a at s, with respect to
some state value function v.

Using Fenchel-Rockafellar duality, the optimal solution v*
of the dual function Jp may be used to derive an optimal
primal solution A* as:

A" € VE* (AV*) . 3)

Algorithm 1 Relative Entropy Policy Search [Sketch].

Input: Initial iterate v, accuracy level ¢ > 0, gradient
optimization algorithm O.

1. Optimize the objective in 2 using O to yield a candi-
date dual solution v* where F’ satisfies Equation 4.

2. Use the candidate* dual solution to derive a candidate
primal solution A using 3.

3. Extract a candidate policy 7y~ from A via Equa-
tion 1.

Return: 7y~.

Relative Entropy Policy Search (REPS) is derived by set-
ting F(A) := Dkr(A|lq), the KL-divergence of A from
some reference distribution q € A|g|| 4. The reader should
think of q as the visitation distribution of a behavior policy.
As we can see, the derivation we provide here further gen-
eralizes to arbitrary regularizers F'. We focus on a specific

F given by
1 A
FO = =S A, 1Og<s,a)_1), @)
0= 3 (o (52

for some scalar > 0. In this case F* : RISIXI4l R
equals:

F*(u) = 11og (Z exp (Nus,q) qS,a> + l

n n

s,a

exp(Us,a)ds,a
Zs’,a’ eXP(nus’,a’)qS' ,a’

And therefore the dual function equals:

Ip(v) = (1=9)> vip,

+ %log <Z exp (nA‘S’)a) qsya> +

s,a

[VE*(u)]

s,a

(DualReg-v)

; )

I

And the dual problem equals the unconstrained minimiza-
tion problem:
min Jp(v) (6)

The objective of REPS is to find the minimizer v*
of DualReg-v (with regularization level 7).
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Algorithm 1 raises two practical issues discussed in Sec-
tion 1. Specifically, optimization algorithms applied to
REPS will typically only give guarantees on the near-
optimality of v*. We will need to translate near-optimality
of V* to near-primal-optimality (w.r.t. Jp(A)) of A", and
then translate that to near-optimality of the final returned
policy 5-. Secondly, first-order optimization of the REPS
objective requires access to a gradient V., Jp(v), which in-
volved computing VF*(AV). Exact computation of this
quantity is often infeasible in practical scenarios where one
does not have access to P, but rather only stochastic gen-
erative access to samples from P. We show how to com-
pute approximate (biased) gradients of Jp(v) using sam-
ples from a distribution q; , (here thought of as a behavior
policy) and how to use them to derive convergence rates for
Relative Entropy Policy Search.

5. Relative Entropy Policy Search

We start by deriving some general results regarding the
geometry of regularized linear programs. Our first result
(Lemma 2) characterizes the smoothness properties of a
regularized LP. This will prove crucial in later sections
where we make use of this result to derive convergence
rates for the REPS objective. We start by recalling the
definitions of both strong convexity and smoothness of a
function.

Definition 6. A function f : R™ — R is f—strong convex
w.r.t norm || - || if:

B
Fx) = fy) + (V) x—y) + 5Ix =yl
Let’s also define smoothness:
Definition 7. A function h is a—smooth' w.r.t. norm || - ||
l'f:.
h(u) < h(w) + (Vh(w),u = w) + S[u—w[? @)
We will now characterize the smoothness properties of the

dual of a regularized linear program. Let’s start by consid-
ering the generic linear program:

max (r, A
max (v, \),
wherer € R", E € R™*"™, and b € R™ and D is a convex
domain. Let’s regularize this objective using a function F’
that is S-strongly convex with respect to norm || - ||:

s.t. EXA = b,

max (r,A) = F(X),

s.t. EA =Db. (RegLP)

The Lagrangian of problem RegL.P is given by

gLAv) = (r,X) = F(A) + > _v; (bi — (EA),).

=1

'Smoothness is independent of the convexity properties of h.

Therefore, the dual function gp : R™ — R with respect to
the original primal regularized LP is,

90(v) = (v.b) + max(\ x — v'E) - F(3)
= (v,b)+ F*(r —v'E),

where the last equality follows from the definition of the
Fenchel conjugate of F'. It is possible to relate the smooth-
ness properties of F'* with the strong convexity of F'. A
crucial result that we will use in our results is the follow-
ing:

Lemma 1. If F is [3-strongly convex w.r.t. norm || - || over
D then F* is %-smooth w.r.t the dual norm || - ||«

The proof of this lemma is in Appendix A. Definitions 6
and 7 are stated in terms of a generic norm || - || and its
dual || - ||». When applied to the REPS objective in Equa-
tion 2, using these general norm definitions of smoothness
and strong convexity allow us to obtain guarantees with a
milder dependence on S and A than would be possible if
we were to use their /5 norm characterization instead. We
can use the result of Lemma 1 to characterize the smooth-
ness properties of the dual function Jp of a generic regu-
larized LP.

Lemma 2. Consider the regularized LP RegLP with r €
R", E € R™*", b € R™, and where F is B—strongly

convex w.r.t. norm || - ||. The dual function gp : R™ — R
2

of this regularized LP is %-smoot}z w.r.t. to the dual

norm || - ||+, where we use ||E||. . to denote the | - || norm

over the || - ||« norm of E's rows.

As a simple consequence of Lemma 2 we can characterize
the smoothness parameter of Jp in the REPS objective:

Lemma 3. The dual function Jp(v) is (|S| + 1)n-smooth
inthe || - ||co nOrm.

A detailed proof of this result can be found in Ap-
pendix A.2.

5.1. Structural results for the REPS objective

Armed with Lemma 2 we are ready to derive some useful
structural properties of the REPS objective. In this section
we present two main results. First we show that under some
mild assumptions it is possible to relate the gradient magni-
tude of any candidate solution to .Jp with its suboptimality
gap and second, we show an [, bound for the norm of the
optimal dual solution v*. For most of the analysis we make
the following assumptions:

Assumption 2. There is 8 > 0 such that:

dse > B Vs,a €S x A
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We introduce the following assumption on the discounted
state visitation distribution of arbitrary policies 7 in the
MDP, paraphrased from Wang (2017a):

Assumption 3. There exists p > 0 such that for any policy
m, the discounted state visitation distribution A\™ defined as

AT = D4 AL, satisfies
AS=p ®)
for all states s € S.

Suppose we have a candidate dual solution v forJp(v)
in DualReg-v with its corresponding candidate primal so-
lution

X o o (nﬁ‘j) ‘q
Z

where the operators exp and - act pointwise and

Z = Z exp(nAY)Qqs.a-

a,s

We denote the corresponding candidate policy (computed
using Equation 1) associated with v as 7(a|s). This candi-
date policy induces a discounted visitation distribution b
that may be substantially different from . We now show
that it is possible to control the deviation of primal objec-
tive value of A™ from Jp () in terms of ||VJp (V)| 1:

Lemma 4. Let v € RIS be arbitrary and let X be its corre-
sponding candidate primal variable. If |VyJp(V)|1 < €
and Assumptions 2 and 3 hold then whenever |S| > 2:

Tp(AF) > Jp(XD) — ¢ ( + |v||oo) |

L=~

1+log(—35)

where ¢ = and )\,*7 is the Jp optimum.

The proof of Lemma 4 is in Appendix B.

We finish this section by proving a bound on the norm of
the dual variables. This bound will inform our optimization
algorithms as it will allow us to set up the right constraints.

Lemma S. Under Assumptions 1, 2 and 3, the optimal dual
variables are bounded as

e L[y les
Vi< 7 (14 =2 ) =D ©)

The proof of Lemma 5 can be found in Appendix C. From
now on we use the notation D to refer to the quantity on
the RHS of Equation 9.

5.2. Convergence rates

As a warm up in this section we derive convergence rates
for the case when we have access to exact knowledge of

the transition dynamics P and therefore exact gradients.
We analyze the effects of running Accelerated Gradient De-
scent on the REPS objective Jp(v). First we require to
define a distance generating function:

Definition 8 (Distance generating function). We say that
w : D — R is a distance generating function (DGF) if w
is 1—strongly convex w.r.t to the || - ||, norm. Accordingly,
the Bregman divergence is given as:

Dy(x,y) = w(y)—(Vuw(x), y—x)—w(x),

The strong convexity of w implies that D, satisfies
Dau(x,%) = 0 and Du(x.y) > Llx - y|2 > 0.

Algorithm 2 Accelerated Gradient Descent
Input Initial point x(, domain D, distance generating func-
tion w.

Yo < X0, Zp < Xp.
fort=0,---,T do
_ t42 _ 2
77t+1 = 5o anth = t+_2

X1 — (1= 7)ye + 12
1 _x,|I2
Yi+1 < argmin —(VA(x;),y — X;) + lly = xlly
yeD & 2

zi41  argmin g (Vh(x:), 2 — z¢) + Dy (2, 2).
z€D

end
For some stepsize parameter sequence 7.

Algorithm 2 satisfies the following convergence guarantee:

Theorem 1 (Accelerated Gradient Descent for general
norms. Theorem 4.1 in Allen-Zhu & Orecchia (2014)). Let
w be a distance generating function and let Dy be an up-
per bound to D,,(Xo,X4). Given an a—smooth function h
w.rt. the || - ||« norm over domain D, then T iterations of
Algorithm 2 ensure:

4aD,
T2

h(yt) = h(x*) <

We care about recovering almost optimal solutions (in func-
tion value). Let’s define an e—optimal solution:

Definition 9. Let € > 0. We say that x is an e—optimal
solution of an a—smooth function h : R* — R if:

h(x) — h(x*) <e

Where h(x*) = minycga h(x).

We can also show the following bound on the gradient norm
for any e—optimal solutions of h.

xe€D,VyeD
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Lemma 6. Ifx is an e—optimal solution for the c—smooth
function h : R — R w.r.t. norm || - ||, then the gradient of
h at x satisfies:

IVA()|| < v2ae.

The proof of this lemma can be found in Appendix D.

When h = Jp the DualReg-v function in the reinforce-
ment learning setting, we set ||« ||« = ||*]|oc and ||| = ||-||1-
We are ready to prove convergence guarantees for Algo-
rithm 2 when applied to the objective Jp.

Lemma 7. Let Assumptions 1, 2 and 3 hold. Let D =
{vs.t. |[vlleo < D}, and define the distance generating
function to be w(x) = ||x||3. After T steps of Algorithm 2,
the objective function Jp evaluated at the iterate v = yr
satisfies:

, (140

Jp(vr) = Jp(v*) < 4n(|S] +1) 1 —~)2T2

S||A
log 151141

Where ¢’ =

Proof. This results follows simply by invoking the guar-
antees of Theorem 1, making use of the fact that Jp is
(IS] + 1)n—smooth as proven by Lemma 3, observing that
as a consequence of Lemma 5, v* € D and using the in-
equality ||x[|3 < |S]||x]||, for x € RISI, O

Lemma 7 can be easily turned into the following guarantee
regarding the dual function value of the final iterate:

Corollary 1. Let € > 0. If Algorithm 2 is ran for at least
T rounds

(1+¢)
(1=7)ve

then v is an e—optimal solution for the dual objective Jp.

T > 20"%(|S| + 1)

If T satisfies the conditions of Corollary 1 a simple use of
Lemma 6 allows us to bound the || - ||; norm of the dual
function’s gradient at v :

IVJp(vr)llr < V2(|S] + 1)ne

If we denote as 77 to be the policy induced by AY7, and
)\; is the candidate dual solution corresponding to v*. A
simple application of Lemma 4 yields:

Jp(A™T) > Jp(X))—

S||A
2(ST+ Die <2+ 1 +log 125"
L=y

The following is the equivalent version of optimality for
regularized objectives:

Definition 10. Let ¢ > 0. We say 7 is an e—optimal regu-
larized policy if Jp(A™) > Jp(A}) — e

This leads us to the main result of this section:

1+log 15114
Corollary 2. Forany £ > 0, and let ¢' = - gnﬁ%ﬂ I
3/2 (2+¢”)?
T > 4 (IS + DY LELL then:

Jp(A™T) = Jp(A}) — €.

Thus Algorithm 2 achieves an O(1/(1 — ~y)2¢) rate of con-
vergence to an e—optimal regularized policy. We now pro-
ceed to show that an appropriate choice for 7 can be lever-
aged to obtain an e—optimal policy.

Theorem 2. For any ¢ > 0, let ) = m IfT >
elog (=5~

e’ 2
(18] + 1)¥/2 &

then 1 is an e—optimal policy.

The proof of this result can be found in Appendix D.1. The
main difficulty in deriving the guarantees of Theorem 2 lies
in the need to translate the function value optimality guar-
antees of Accelerated Gradient Descent into e-optimality
guarantees for the candidate policy w7. This is where our
results from Lemma 4 have proven fundamental. It remains
to show that it is possible to obtain an e—optimal policy ac-
cess to the true model is only via samples.

6. Stochastic Gradients

In this section we show how to obtain stochastic (albeit bi-
ased) gradient estimators V. Jp(v) for Vi Jp(v) (see Al-
gorithm 3). We use V.J p(v) to perform biased stochas-
tic gradient descent steps on Jp(v) (see Algorithm 4). In
Lemma 8 we prove guarantees for the bias and variance of
this estimator and show rates for convergence in function
value to the optimum of Jp(v) in Lemma 10. We turn
these results into guarantees for e—optimality of the final
candidate policy in Theorem 3. Let’s start by noting that:

(VvJp(v)), = (1 =7)ps+

) E(s’,a,s”)wqua(vIS’) BZ/,a (71(5” = S) - 1(8/ = S)):|a

exp(nA{.)
Where BY , = 7 and Z = Zs,a exp (nA‘s/,a) Us,a-
We will make use of this characterization to devise a plug-
in estimator for this quantity:
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Algorithm 3 Biased Gradient Estimator

Algorithm 4 Biased Stochastic Gradient Descent

Input Number of samples t.
Collect samples {(s¢, as,s;)}5_, such that (sg,ar) ~ q
while s ~ Pq,(-|s¢)
for (s,a) € S x Ado
Build empirical estimators AY(t) € RISIXMI and
q(t) € RISIXIAL

- = exp(nAY , ()
Compute estimators BY ,(t) = ———==+

Z(t)
Where Z(t) = >, , exp(nAy ,(t))ds,a(t).

end

Produce a final sample (s;41,a441) ~ q and s;,; ~
Pat+1('|5ti—1)-

Compute V,,Jp(v) such that:

(Vvn(v) =0 =7p+

s

Bst+1»flt+1 (t) (71(5;+1 =5) = 1(st41 = 5)) :

Output: V,.Jp(v).

We now proceed to bound the bias of this estimator:

Lemma 8. Let 6,¢ € (0,1) with & < min(B, 3). With
probability at least 1 — 6 for all t € N such that

t 120(1n 2LEISUAL 4 1)
Inln(2t) — BE?

max (480772’72||VH§O, 1)
the plugin estimator ¥V~ Jp (V) satisfies:

max

8
s — S u < o
we 1500} & t+1[8]flu < 3

max  [|E¢ (8] — gllu < 86,

u€e{1,2,00}
A A Av 8
E [llg - B @I[BY ()] < 5,
where g§ = %vJD(V), g = ViJp(v), and By =
E5t+1=at+1=52+1 [|BV(t)]

The proof of this lemma can be found in Appendix F.2.

We will now make use of Lemma 8 along with the follow-
ing guarantee for projected Stochastic Gradient Descent to
prove convergence guarantees for Algorithm 4.

Input Desired accuracy e, learning rates {7:}$°,, and
number-of-samples functionn : N — N .

Initialize vo =0 fort =1,--- ;T do

Get VyJp(v) with n(t) samples via Algorithm 3.
Perform update:

A TtﬁvJD(V).
vy + IIp(vy}).

end
IIp denotes the projection to D = {v s.t. ||v]|e < D}.
Output: vy.

The following holds:

Lemma9. Let f : R — R be an L—smooth function. We
consider the following update:

XéJrl =Xt —T (Vf(xt) + €t + bt)
X1 = p(Xjyq).-

Ifr < % then:

< e =%l = xeg = x|

J(Xeq1) = f(xe) < or
27|V f(xo)||” + 57[[be||* + 57 e >+

[Ibefl1flxe = Xulloo —

+

(€1, Xt — X4).

The proof of Lemma 9 is in Appendix E. Lemma 8 implies
the following guarantee for the following projected stochas-
tic gradient algorithm with biased gradients V Jp (v)R:

4 — 8IS[nD
Lemma 10. We assume n > 5 Set & = 7

T = W. If we take t gradient steps using n(t) sam-

and

ples from q X P (possibly reusing the samples for multiple
gradient computations) with n(t) satisfying:

525t (In 200181 1)3
n(t) >
0= EEE

Then for all t > 1 we have that with probability at least

1 — 360 and simultaneously for all t € N such that t >
64/5>n>D? ,

I, w6 (DISIn
JD<t; e)SJD( *)+(’)< i >

The proof of Lemma 10 is in Appendix F.2. Lemma 10 im-
plies that making use of N samples it is possible to find a

. _ _ ~ 2
candidate v such that Jp(vy) < Jp(ve) + O (/BDT%)

This in turn implies by a simple use of Lemma 6 that
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IVJIp(¥n)h <O (%) If we denote as T to the

policy induced by A¥™, a simple application of Lemma 4

yields: ,
. 5 (__ISIY2Dn
Jp(A™) > Jp(Ar) — O
07 2 32105) -0 (2 e

Thus Algorithm 4 achieves an O(1/(1 —)8¢*) rate of con-
vergence to an e—optimal regularized policy. We proceed
to show that an appropriate setting for 77 can be leveraged
to obtain an e—optimal policy:

Theorem 3 (Informal). Forany e > 0 letn = W.
€ 10, T

IfN > O (m), then with probability at least 1 —§
it is possible to find a candidate Vv such that 7 is an

e—optimal policy.

7. Conclusion

This work presents an analysis of first-order optimization
methods for the REPS objective in reinforcement learning.
We prove convergence rates of O(1/¢2) for accelerated gra-
dient descent on the dual of the KL-regularized max-return
LP in the case of a known transition function with con-
vergence rate. For the unknown case, we propose a bi-
ased stochastic gradient descent method relying on samples
from behavior policy and show that it converges to an opti-
mal policy with rate O(1/¢%). There are several interesting
questions that remain open. First, while directly optimiz-
ing the dual via gradient methods is convenient from an
algorithmic perspective, prior unregularized saddle-point
methods have been shown to achieve a faster O(1/¢) con-
vergence (Bas-Serrano & Neu, 2019). An important open
direction is thus to understand if faster rates are possible
in order to bridge this gap, or if optimizing the regularized
dual directly is fundamentally limited. Second, we only
considered MDPs with finite state and action spaces. It is
therefore of interest to see if these ideas readily extend to
infinite or very large spaces through function approxima-
tion.
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A. Geometry of regularized Linear Programs

We start by fleshing out the connection between strong convexity and smoothness charted in Lemma 1:

Lemma 1. If F is 3-strongly convex w.r.t. norm || - || over D then F* is %-smooth w.r.t the dual norm || - || .

Proof. Letu,w € R™ and x,y € D be such that VF*(u) = x and VF*(w) = y. By definition this also implies that:

(VF(x) —u,z1 —x) >0, VzeD
(VF(y) —w,zo —y) >0, VzeD

Setting z; = y and zs = x along with the definition of x, y and summing the two inequalities:
(VF(x) = VF(y),y —x) > (VF*(w) — VF*(u),u — w).

By strong convexity of ' over domain D we see that:

F(x) > Fly) + (VF(y).x —y) + 5 ]x -y
Fly) = F(x) + (VF(x),y - %) + D]l - y|?

2
Summing both inequalities yields:
Bllx —y|* < (VF(x) - VF(y),x —y)

Plugging in the definition of u and w along with inequality 10:

()
BIVF*(u) = VF*(w)[|* < (0 — w, VF"(u) = VF*(W)) < |lu—wl[.[|[VF"(u) - VF*(w)].

Where inequality (¢) holds by Cauchy-Schwartz and consequently:

1
[VE*(u) = VF*(w)]| < EHU—WH*

By the mean value theorem there exists z € [u, w:

F*(u) = F*(w) + (VF*(z), w — u)
=F*(w)+ (VF*(w),w —u) + (VF*(z) - VF*(w),w — u)
< F*(w) +(VF*(w),w —u) + [|[VF*(z) — VF*(w)||[|w — u]|.
< FH(w) + (VF (W), w —u) + %HZ—WH*HW—UH*
< F*(w) + (VF*(w),w —u) + %HW ul|?

Which concludes the proof.

(10)

O

The proof of Lemma 1 yields the following useful result that characterizes the smoothness properties of the dual function

in a regularized LP:
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A.1. Proof of Lemma 2

Lemma 2. Consider the regularized LP RegLP with r € R™, E € R™*"™ b € R™, and where F is —strongly convex
2

w.r.t. norm || - ||. The dual function gp : R™ — R of this regularized LP is %-smooth w.rt. to the dual norm || - ||,

where we use |E||. . to denote the || - || norm over the || - ||« norm of E's rows.

Proof. Recall that:
gp(v) = (v,b) + F*(r —v"E).

Notice that:

Vogp(v) =b+ EVF*(r —v' E).
And therefore for any two vy, va:
IVgp(v1) = Vgp(va)| = | E (VF*(r — v E) = VF*(r — vy E)) |
LB IVE ( — o] B) - VF*(r — v] E)|
BN S - T B,
2

@ || E| Y |
= V1 — V2%
g

The result follows.

(]
We can apply Lemma 2 to problem PrimalReg-\ and thus characterize the smoothness properties of the dual function Jp.
A.2. Proof of Lemma 3
Lemma 3. The dual function Jp(v) is (|S| + 1)n-smooth in the || - || norm.
Proof. Recall that PrimalReg- can be written as RegLP:
max(r, A) — FI(X)

AeD
s.t. EXA = b.

Where the regularizer (F'(\) := % YsaNsa (1og (%) - 1)) is %— |I-|]1 strongly convex. In this problem r corresponds

to the reward vector, the vector b = (1 — v)pu € RIS| and matrix E € RISIXISIXIAI takes the form:

! . !
Bioa - { PGl s
1 —~Pu(s]s) o.w.

Therefore
[El[1,00 <5 +1

The result follows as a corollary of Lemma 1.
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B. Proof of Lemma 4

The objective of this section is to show that a candidate dual variable v having small gradient gives rise to a policy whose
true visitation distribution has large primal value Jp.

Lemma 4. Let v € RIS be arbitrary and let X be its corresponding candidate primal variable. If IVvJp(¥)||1 < e and
Assumptions 2 and 3 hold then whenever |S| > 2:

1+c
L=~

Tp(AF) > Jp(XD) — ¢ ( + |v||oo) |

1+log(p?+ﬁ)

where ¢ = and )\; is the Jp optimum.

Proof. For any A and v let the lagrangian J, (A, v) be defined as,

Tev) = (1= ) () + <>\,A" _ % <10g (%) - 1)>

Note that Jp(v) = Jp, (X, v) and that in fact Jy, is linear in v; i.e.,
JL (V) = JL(AV) + (Ve JL (A, ¥), ¥ — ¥).
Using Holder’s inequality we have:
TEAY) 2 JL V) = IV LA D) - 9 = Voo = Tp(¥) = IV T A 9) |1 - 9 = Voo

Let A, be the candidate primal solution to the optimal dual solution v, = argmin, Jp(v). By weak duality we have that
Jp(V) > Jp(A*) = Jp(v4), and since by assumption ||VyJL (A, V) |1 < e

Te(A,9) = Jp(A") = €|V = V|ce- (1)

In order to use this inequality to lower bound the value of J, p()\%), we will need to choose an appropriate v such that the
LHS reduces to Jp(A™) while keeping the /., norm on the RHS small. Thus we consider setting v as:

1 AL, i
Zs+Tsq—— |log| —— | —1] +Vsy
n Us,a

Where z € RIS is some function to be determined later. It is clear that an appropriate z exists as long as

Z,7T, % (log (&> — 1) are uniformly bounded. Furthermore:
A?,a
os(i)

ds,a
1—7

Vs = Ea,s’N%XT

maxs q

1 Azr,a 1
ot ra =3 (108 (32) < 1)| e+ e+
<

1V]loo < <

12)

Notice that by Assumptions 2 and 3, we have that p, 5 < % This is because for all 7, Assumption 3 implies that:

0<2p<[S[p< > AT =1

The proof for 3 < § is symmetric. Due to Assumption 2 the || - || norm of log(%) — 1.4/ satisfies:

AT AT
10g <—> — l\SIIA\ 10g <—>
q q

<1+ < 1+ max(|log(p/B)],1og(1/5)) <1 +log(1/p) + log(1/B).

o0 o0
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Ea,s’w%xp Ts,a + ’7‘73’ — Vs — l 1Og )\SY(L -1
i g Ds.a
[ Al
Ea,s/N%XP l log - -1) -
_U Qs,a

q
1 N
Ea,s/NﬁXP - log ()‘s,a) - lOg - ZS:|)
L7

S s (% log ()\f) — %log (Xs) — zs) (13)

Where A, = Yo Xsqand AT = > X;a. Note that by definition:

(1 =), v) = <X~T,z +r— % (log <);:> - 1>> = Jp()\%) + <X~T,z>. (14)

Let’s expand the definition of J L(X, v) using Equations 13 and 14:

Notice the following relationships hold:

o-4)- )

As

(]

i W

>

s

|
e 5 N
(TQ
/N
l
\\___,/
—
S~
|
N
w
| I
S~

s

Il
MY

Since we want this expression to equal J, p()\ﬁ), we need to choose z such that:

A
i

AS)

By Assumption 3 we have that for all s:

Now we bound ||zs]| .. Note that the function h(¢) = llofj)’ is non decreasing and negative, and therefore the maximum of

its absolute value is achieved at the lower end of its domain. This implies:

[1(p)| _ Nlog(p)| _ 2log(1/p)

zs| < = < )
2 n n(l —p) n

Vs € S.

And therefore Equation 12 implies:

2log(1/p) | 1 Ltlog(1/p)+log(1/8) 1 1F1o8(55)
[V][oo £ — . = -

1—7 1—7

Putting these together we obtain the following version of equation 11:

1+log( /)3;5)

- * + n ~
JL(A V) = Jp(AT) —€ —1=, Vo

As desired. O
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C. Proof of Lemma 5

In this section we derive an upper bound for the [, norm of the optimal solution v*.

Lemma 5. Under Assumptions 1, 2 and 3, the optimal dual variables are bounded as

(e
HV ”oo < 1 1+ =D. )]
- n

Proof. Recall the Lagrangian form,

min, max  Jo(Av) = (1) {v.p) + <>\,AV - % (log (’\—> _ 1)> .

As,a€Asx A Us,a

The KKT conditions of A*,v* imply that for any s,a, either (1) A, = 0 and 52—J (A",v*) < 0 or (2)
%JL (A", v*) = 0. The partial derivative of J, is given by,

9 Lo (X
e JL A, v¥) =15, — Elog (qua) +7;Pa(s’|s)v:, — V. (15)
Thus, for any s, a, either
1 A
Al,=0andv:>rs,— —log <ﬂ) +9) Pu(s's)vi, (16)
, 0 \as) T2
or,
A, >0and v} L) <>‘:-“)+ P AR (17)
5 and v, =rs, — —log : vy w (8'|8) V.
' Ui As,a pw

Recall that A" is the discounted state-action visitations of some policy 7,; i.e., Ag , = AL* - 7. (als) for some .. Note
that by Assumption 3, any policy 7 has AT* > 0 for all s. Accordingly, the KKT conditions imply,

1 A
me(als) =0and vi >r, , — —log ( . > + v P.(s'|s)v%, (18)
Ui ds.a >
or,
(als) >0and v* =r 110g<)\:’a>—|— > Pu(s|s)v: (19)
7y (als Ve =Tgq— — vy ACHEI N
n s,a o
Equivalently,
vi=E Tsq — 1 log (A:’a> +’yZP (s'|s)vE (20)
s an~T, (8) s,a n Uoa . a s
1 w(a|s)>} 1 AL ,
= —FEqyun, (s) | —log (— +Eoon(s) |Tsa — —log | = | +7 P,(s'|s)vi | . 21
n ) |: Qals (&) n as ; ( | )
We may express these conditions as a Bellman recurrence for v :
1 1 Al
V= —Epom(s) [— log <”(“|S))] + B (s) |Toa — —1og< : ) N ACIDI M (22)
n Qals n s o

The solution to these Bellman equations is bounded when E,. r, (s {—1og (%’T‘S))}, rsq, and log (:_:) are

bounded (Puterman, 2014). And indeed, by Assumptions 3 and 1, each of these is bounded by within [log 3, log |Al],
[0, 1], and [log p, — log f], respectively. We may thus bound the solution as,

1S|A|
1 log
v oo € —— 14+ —22 ). (23)
I—v n

O
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D. Convergence rates for REPS

We start with the proof of Lemma 6 which we restate for convenience:

Lemma 11. Ifx is an e—optimal solution for the a—smooth function h : R? — R w.r.t. norm || - ||« then the gradient of h
at x satisfies:

[VA(x)| < V2ae.

Proof. Letx € R? be an arbitrary point and let x equal the point resulting of the update

1 _ 2
x' = argmin —(Vh(x),y — x) + lly = xI (24)
yeD @] 2
Notice that by smoothness of h:
1
h(x') < h(x) + (VA(x),x" —x) + %HX' =x|[2 = h(x) = o~ [VAX)|? (25)

Since h(x*) < h(x’) and x is e—optimal:
1 , L)1 , RO I
£||Vh(x)|\ + h(x*) < %HVh(x)H +h(x') < h(x) < h(x*)+e
Inequality (7) holds because h(x*) < h(x'), inequality (é¢) by Equation 25 and (iii) by e—optimality of x. Therefore:
VRGP <
5% x)||* <e.

The result follows. O

We also show that the gradient norm of a smooth function over a bounded domain containing the optimum can be bounded:

Lemma 12. If h is an ac—smooth function w.r.t. norm || - ||«, and x* is such that Vh(x*) = O then:
IVAE)]| < allx =7,
And therefore whenever ||x — x* ||, < D we have that:

[Vh(x)|| < aD.
Proof. Since h is a—smooth:
* * * « * |2 * « * 12
h(x) < h(x") + {(VA(x"),x = x7) + S llx = x*[lL = h(x*) + S llx = x*|§
Therefore:
* a * |12
h(x) = h(x") < Sllx =7l
Therefore, as a consequence of Lemma 6:

[VAx)| < aD.

The result follows.
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D.1. Proof of Theorem 2

We can now prove the estimation guarantees whenever exact gradients are available.

Theorem 4. For any e > 0, letn = m. IfT > (|S| +1)3/? ((fjf;;;):g, then 7 is an e—optimal policy.
[STAT

Proof. As a consequence of Corollary 2, we can conclude that:

Tp(A™) > Jp(A"7) —

N

Where )\; is the regularized optimum. Recall that:

= ;)\S_’arsﬂa — Z)‘S" (log (%a) — 1> .

Since A*" is the maximizer of the regularized objective, it satisfies Jp(A*"7) > Jp(AX™) where A* is the visitation
frequency of the optimal policy corresponding to the unregularized objective. We can conclude that:

> Alre. > Z)\S aTeat (ZA’;}; (log (fi) —~ 1) _;A;’“ <1Og (A* ) _ 1)) %

s,a 5@ o
) AT \ Ay ¢
—sta“‘ﬁ " <SZ;)\S’Z <log<qsa>) _SZ,;)\S’“ <log<qsa>)> i
S
>Z>‘sa Ts,a = — (| !}Al) %

And therefore if n = W, we can conclude that:
ISTIAT

4e log(
T *
E Asalsa = E Asalsa
s,a

s,a

E. Stochastic Gradient Descent

In this section we will have all the proofs and results corresponding to Section 6 in the main. We start by showing the proof
of Lemma 9.

Lemma9. Let f : RY — R be an L—smooth function. We consider the following update:

XéJrl =Xt —T (Vf(xt) + €t + bt)

Xpp1 = p(X;41)-

Ifr <+ then
2 2
Xt — Xy — [|Xt4+1 — X
Flxen) = S < el Do 20y
27|V f(xe)|I” + 57| be|* + 57 ecl|*+
[bel[1llxe = Xulloo — (€1, %1 — %),
Proof. Through the proof we use the notation || - || to denote the Lo norm. By smoothness the following holds:

FOxer1) £ F00) + (V00X = x0) + 5 s =l € Fx0)+ (VF 6%t = 30+ S et = el
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Since x;41 = IIp(x}, ) and by properties of a convex projection:

/
(X1 — X1, X0 — Xq1) < 0.

And therefore:

(x¢ =T (Vf(x¢) + b+ €) — X1, X — Xp41) <0

Which in turn implies that :

||Xt — Xt+1||2 S T<Vf(Xt) + bt + €t, Xt — Xt+1>.
‘We can conclude that:

¢ — %11

L
~ + (bt + €, %t — X¢41) + §||Xt+1 —x?

f(xe1) < fxe) —

By convexity:

fOa) = Fx) + (VF(x4), %0 = x1).

And therefore f(x;) < f(x4) + (Vf(Xt), Xt — Xx)-

Combining this last result with Equation 26:

L

o) < Fxe) + (T7c)xe =)+ (5 = 3 ) e =l + (br + € = x10).

Now observe that as a consequence of the contraction property of projections

[xe41 = %2 <3 = 7 (Vf (%) + by + &) — x4
= |lx¢ — %[> + T2V f(xe) + by + &> = 27(V f(x4) + by + €, % — X,).

And therefore:

) o e = e =

(Vf(xe), %t — x4 o

-
+ EHVf(Xt) + b+ €* — (by + €, % — X,).
Substituting this last inequality into Equation 27:

[1xe = %ell” = l[%e1 — %2
) <
- 2T

L 1
= = = ) lIxe+1 — Xt”2 + (b + €1, % — X441)
2 T

f(xes1) — f(xs

-
+ §|\Vf(xt) + by +e® — (by + €, % — X))+

Notice that as a consequence of the contraction property of projections:

i1 — xe)” < llxe — 7 (Vf(xe) + by + €) — x4
=7V f(x¢) +be + €&

(26)

27)

(28)

(29)
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And therefore

(b + €1, % — Xp41) < [[be + €ll[xe — xeq1[| < 7[[br + ||| Vf(x¢) + by + €]
Substituting this back into 29 and assuming % < %:

o I =l — % — x4

J(xeq1) = f(x0) < or
7|[by + €|V f(x:) + bs + &

o e = — s = 2

-
+ §||Vf(xt) + by +€® — (by + €, % — X )+

.
+ 7V f(x¢) + bs + &* + §Hbt + &l — (b + €, x¢ — %)

- 27
() ||xp — x4 ||? = [|%pp1 — X4]|?
< e =P e 2o s 2 57?4 5l — (b + €0 — )
2 2
Xt — X — ||X — X
< e e Pt 22l o )1+ 5ol + el + ol — o — e )

Inequality (4) is a result of a repeated use of Young’s inequality. The last inequality is a result of Cauchy-Schwartz.

F. Stochastic Gradients Analysis

We will make use of the following concentration inequality:

Lemma 13 (Uniform empirical Bernstein bound). In the terminology of Howard et al. (2018), let S; = Zle Y; be a
sub-1p process with parameter ¢ > 0 and variance process Wy. Then with probability at least 1 — 6 forall t € N

St < 1.44\/(Wt vV m) <1.4lnln (2 (E v 1>> +In %)
m
+0.41c <1.4lnln <2 (E v 1>) tln ﬂ)
m 5

Proof. Setting s = 1.4 and n = 2 in the polynomial stitched boundary in Equation (10) of Howard et al. (2018) shows that
Ue,5(v) is a sub-t) boundary for constant ¢ and level § where

where m > 0 is arbitrary but fixed.

Ue,5(V) = 1.44\/(v V1) (1.4111111 (2(vVv1))+In %)

+1.21c (1.41n1n (2(vVv1))+In 572) .

By the boundary conversions in Table 1 in Howard et al. (2018) w3 s is also a sub-¢)p boundary for constant c and level
0. The desired bound then follows from Theorem 1 by Howard et al. (2018). O

The following estimation bound holds:
Lemma 14. Let {(s¢, az, s5)}52 | be samples generated as above. Let Ny(s,a) = 3y_, 1(s¢,ar = s,a). Let § € (0,1).
With probability at least 1 — (2|S||A|8) for all t such that In(2t) + In 22 < % and for all s,a € S x A simultaneously:

tsa 7t S,a
Nt(s,a)e{q’ q’}

4 7 4
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Additionall)l)+cfe]2n2e As,q = Nt(ts"a). For any ¢ € (0, 1) with probability at least 1 — (2|S||.A|0) and for all t such that
t n =,
In In(2t) Z ﬂ€25 :

|as,a - qs,a| S 3-696qs,a-

Proof. We start by producing a lower bound for N;(s,a). Consider the martingale sequence Z; ,(¢) = 1(s¢ = s,a; =
a) — gs,q With the variance process V; = Zzzl E[Z2,(0)|Fo—1] satisfying E[Z2 ,(£)|Fe—1] < Qs,a. The martingale
process Zs ,(¢) satisfies the sub-1)p condition of (Howard et al., 2018) with constant ¢ = 1 (see Bennet case in Table 3
of (Howard et al., 2018)). By Lemma 13, and setting m = q, , we conclude that with probability at least 1 — § for all
teN:

2 2
Ni(s,a) > tQs,q — 1.44\/q57at <1n In(2t) + In %) —0.41 (1.4111 In(2¢) +In %) (30)
@ tQea 3 5.2
> _ Asae 2 22
> tQs,q 5 5 (1n1n(2t) +1In 5 )
1Qs.q 2
- q2, - g <1n1n(2t) +ln57>

Inequality (7) holds because \/ Qs,ot (InIn(2t) +In 32) < qT"t + % As a consequence of Assumption 2 we

can infer that with probability at least 1 — ¢ for all ¢ such that In In(2¢) 4 In 5752 < % < tq%:

The same sequence of inequalities but inverted implies the upper bound result. The last result is a simple consequence of

. . . . 1+ln 52 14In 52
the union bound. To obtain the stronger bound we start by noting that since 1 1nt(2 ) > +5’:2 £o> 0 forall (s,a) we
qs,a€

can transform Equation 30 as:

2 2
Ni(s,a) > tqs,a — 1.44\/q57at <1n In(2t) + In %) —0.41 (1.4111 In(2t) + In %)

5.2 5.2
> tqs,q — 2.88\/q57at1n In(2¢)(1 +1n T) —0.81InIn(2¢)(1 +1n T)

5.2

> 15,0 — 3.69\/q57atln In(2¢)(1 + 1n T)

Z tqs,a - 3'69(15,116

The same sequence of inequalities but inverted implie the upper bound. This finishes the proof.

The gradients of Jp(v) can be written as:

exp UAZ’a qs’,a
(Vodp(v), = (L =N+ %Pfl(SIS’)—

exp (nAZ,a) Us,a
P
Where Z = ) exp (nA‘s/,a) ds,a- We will work under the assumption that g, o exp(nA;’_’/a) for some value vector
v’. Given a value vector v we denote its induced policy 7V as:
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€xp (ﬁA‘s'.,a) Qs,a

™ (a]s) = =21

Where Z, = > exp (nAY,) qs,q. If we define g5 = ), qs,q. and we define qq); = 2= then we can write:

T oas

exp (nA;’,u,) Qda |s

¥ (als) = Z,

Where Z, = ) exp (nA;’_’a) Qq|s- We work under the assumption that q,, is a policy, and therefore known to the learner.
We start by showing how to maintain a good estimator AY , using stochastic gradient descent over a quadratic objective.
Let WY, = > Pu(s'|s)vs sothat AY | = r, o — Vs +yWY , where both WY and WV are seen as vectors in RISIxIAL

If we had access to an estimator WY of W such that for some € € (0,1):

WY - WY < e 31)
We can use WY to produce an estimator of AY , via K‘s’,a =Tsq— Vst WW;a such that:

IAY — AVl < 7e.

We now consider the problem of estimating WV from samples. We assume the following stochastic setting:

1. The learner receives samples {(s¢,ae,sy)}72, such that (sg,ap) ~ q while s;, ~ P, (-|s¢). Let N¢(s,a) =
S (s a0 = 5,a).

2. Define W;’)a(t) = m Zle 1(s¢,a¢ = s,a)vy,. Notice that for all s,a € S x A, the estimator’s noise
&s,alt) = Wg’_’a(t) — WY, satisfies E[£s o (¢)|Fi—1] = 0 and |£5,4(t)] < 2||v|loo. Where F;_; is the sigma al-

s,a

gebra corresponding to all the algorithmic choices up to round ¢ — 1.

Lemma 15. Let {(s¢, a¢, sy)}72 | samples generated as above. Let \/7\\/"’(15) be the empirical estimator of WV defined as:

t

WZ,a(t) = Nt(s,a) ;I(S[,ag = Saa)vsz-

Where N¢(s,a) = Zzzl 1(s¢,a¢e = s,a). Let 6 € (0,1). With probability at least 1 — (2|S||A|)d for all t € N such that
InIn(2t) +In 22 < % and for all (s,a) € S simultaneously:

InIn(2t) 4 In 14 L Inln(2t) +In 104
B t3

|W:,a - W:,a(t” < SHVHOO \/

Proof. Consider the martingale difference sequence X ,(¢) = 1(s¢,a¢ = s,a) (W;’a - vsé). Notice that for all s,a €

SxA|Xs4(t)] < 2||V'[|oo The process S; = Y,_, X.q(¢) with variance process W; = 3,_, E [X2,(0)|Fo—1] satisfies
the sub-¢p condition of (Howard et al., 2018) with constant ¢ = 2||v’|| (see Bennet case in Table 3 of (Howard et al.,
2018)). By Lemma 13 the bound:

Sy < 1.44\/(Wt Vv m) <1.4lnln 2(Wi/mV1))+1In 572) + 0.81]|v]| o (1.4111111 <2 (ﬁ v 1>) +1In 572)
m
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holds for all ¢ € N with probability at least 1 — §. Notice that E[X? , (¢)|Fo—1] < 4||v|2, Varg(1s.a) = 4[V|[Z.as,a(1 —
Qs.a) < Qs V||% and therefore W < tqs q||v]|2,. We set m = qs.,q||V||%,. And obtain that with probability 1 — & and
forallt € N:

t

Z 1(se=s,ar=1)vy —W | <

1 1 10.4
1.44||V||oot [ ds.at | InIn(2¢) + In ——
> ol < ey (1441 \/q, (tnCzn) +10 252 )+

Ni(s,a)

WY (1)
10.2
0.81]|v ] oc <1.4lnln(2t) + 1nT> ) (32)
As a consequence of Lemma 14 we know that with probability at least 1 — ¢ for all ¢ such that InIn(2¢) + In %2 <

5
ds,a.
5 -

oIS

<

t S,a
Ni(s,a) > q4’

Plugging this into Equation 32 and applying a union bound over all s,a € S x A yields that for all ¢ such that InIn(2¢) +
In32 < % < tq% and with probability 1 — 2|S||A|0 for all s,a € S simultaneously:

- 4
|W:a - Wza(t” <
s ) tq

s,a

10.4 10.4
(1.44|v||00\/tq5_,a1n1n(2t) + tanT + 081/ [| <1.4lnln(2t) + moT) )

InIn(2¢) + n 192 Inln(2t) + In 124
< 8||v|loo \/ q o 4 i 5

Inn(2t) + 1% Inin(2¢) 4+ In 1G4
< 8[[vllw 13 + 3

The result follows. O

We can now derive a concentration result for AY ,(t) = rs . — v + YWY (%), the advantage estimator resulting from
W;’ya(t):

Corollary 3. Let § € (0,1). With probability at least 1 — (2|S||A|)d for all t € N such that InIn(2t) + In 32 < 2 gnq
forall (s,a) € S simultaneously:

Inln(2t) + In 194 N Inln(2t) + In 154
B t3

|A‘s/,a - A:a(t” < 8’7HV||OO \/

And therefore:

Inln(2t) 4 In 194
B

AL e — AL (D] < 167|V||oo\/

F.1. Estimating the Gradients
Lemma 16. If ¢ € R suchthat |§| < e < 1, andy € R, then:

exp (y) (1 —€) <exp (y +§) < exp(y) (1 + 2¢)

Proof. Notice that for e € (0,1):
exp(e) <1+2¢ and 1 —e <exp(—e).
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The result follows by noting that:

exp(y) exp(—[¢]) < exp(y + &) < exp(y) exp(|¢]).

A simple consequence of Lemma 16 is the following:

Lemma 17. Let ¢ € (0,1/2). If C, C e RISMI gnd b, b € RE‘XW are two vectors satisfying:
||E\:J - CHoo S 6, |Bs,a - bs,a| S 6bs,a-

For all s,a € S x A define Bs, = % and f’)s,a = w where Z = Y exp(Cs o)bs o and 7 =

~

Zs,a eXp(Cs,a)bs,a-'

‘ﬁs,a — B,.| < 38B,., < 38¢.

Proof. Let’s define an intermediate B, , = where Z = Zs,a exp(Cs,a)Bm. By Lemma 16 we can

conclude that for any s,a € S x A:

B exP(CsJa)Es,a
Z

B.. < B, < B,
1+ 2¢ ’ 1-— ’
And therefore: _
~ ~ ~ 1 ~
BS as BS a E BS.G. ¢ b) + ¢ s,a
’ 1427 1—¢€
Which in turn implies that:
‘Es a Es a S 1 + 26 - i Es.a S 156]§s.a-
’ ’ 1—¢ 1+ 2¢ ’ ’

We now bound |]§S_’a — Bs.o|- By assumption for all s,a € S x A, it follows that Bs_ya(l —€) <bg, < Bs_ya(l +¢) and
therefore:

F < B., < ;3 —
And therefore: B B
Baa,Boa € [1 +ae 1——ae]
Hence:
1 1 8
Boo—Bua|< (1 — - 1+e) B.. < =B,
And therefore:

IBsu — Baa| < |Bsa — Baa| + Bsa — Bea| < 15B, o + geBs,a < (156(1 + ge) + §e> B,., < 38¢By...

The result follows.

If we set C =nAvY, C= 77@" we obtain the following corollary of Lemma 17:
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Corollary 4. Let e € (0,1/2). If A" and q satisfies:
||;&V - AV”oo S €, and |as,a - qs,a| S Eqs,a

Then: R
‘Bz,a - B:,a

< 111neBy , < 111ne.

We can combine the sample complexity results of Corollary 3 and the approximation results of Corollary 4 and Lemma 14
to obtain:

Corollary 5. If 4, ¢ € (0, 1), with probability at least 1 — (4|S||.A|9) for all t such that:

t 120(In 152 + 1)

> 480m%y || v|1Z,, 1
ey > per - mex (48077 IvI, 1)

then for all (s,a) € S x A simultaneously:

BY,(t) ~BY,| <¢BY, < %, and B, <BY,(1+%)<

1 3
g B

(1+E)'

F.2. Biased Stochastic Gradients

Notice that:

exp (nAY ,) ds'.a exp (nAY,) ds,a
(Vedo ), = (1~ ity 73 22 . ) pa<s|sf>_z%

= (1 - ’Y)H‘s + FYIE(S/,a)Nq,s”NPa(-\S/) [B:',al(sﬁ = S)} - E(s’,a)Nq [B:,al(s/ = S)}
=1 =), + E(s/,a)wq,s”NPa(-\s/) [B‘s//,a (VI(SH =s)— 1(‘9/ = S))} )

We now proceed to bound the bias of this estimator and prove a more fine grained version of Lemma 8.
Lemma 18. Let 6, € (0,1). With probability at least 1 — 0 for all t € N such that

t _ 120(n )
Inln(2t) — B2

max (480772"y2||v|\go, 1)

the plugin estimator ¥V, Jp (V) satisfies:

e H@vJD(v) ~Eopp1 000180, [@vJD(v)’ﬁV(t)} < %(1 N %) )
wefl,00} [ [Fern)] = vvinm <2004 me0+ %% (34)
e [[94150) = e, [Tt B, B0 < 1+t + 105045 e

Proof. As a consequence of Corollary 5, we can conclude that for all ¢ satisfying the assumptions of the Lemma and with
probability at leat 1 — ¢ simultaneously for all (s,a) € S x A:

‘ﬁz,a(t) —B{.| <¢BI.(+ é), and BY, <BY,(1+ §) <

1, ¢
= el T g 5 =5

2. 36
(1+ﬁ) (36)

Let’s start by bounding the first term. Notice that VoJp (v) — (1 — ) has at most 2 nonzero entries and therefore:
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e [9udn(v) = (1= ul < S0+ 5).

Therefore for all v € {1,2,00}:

~

E5t+17at+175;+1 {VVJD(V) - (1 - V)N’Bv(t)} Hu < E5t+17at+175;+1 [HVVJD(V) - (1 - V)IJ’HU

BY (t)} <

H%vJD(v) _E [VVJD(V)‘ﬁV(t)]

u ‘

Furthermore, notice that the following estimator of V Jp(v) is unbiased:

(ﬁvJD (v))

= (=) + B, s (8) (7551 = ) = Lser = 9)).

S

We conclude that for all s € S:

(VeIp) = (Vodn () = (116t =5) = Lserr =) (BY, 01 (0 = BY,, s, (1)

Consequently A (v) — VoJb (v) has at most 2 nonzero entries. Now observe that any nonzero entry s satisfies:

E[(FvIp™) | = (VuIno)),| = [Esvcrariina [(Tolo ™)) = (Vuo) ]
< Boevaama |[110511 = ) = Lsti1 = 9)] [BY, s, () = BY 0y, (0]
2 B mal (1511 = 8) 4 Lot = ) €BY,, 1, (14 5)
<+ B mmalBucer o]
— (e +5)

Inequality (z) holds by the triangle inequality and Equation 36 and because B}, > 0. This finishes the proof of the first
result. Since VyJp(v) — VyJp(v) has at most 2 nonzero entries for all u € {1,2, 0o}

<21+l + 3)

HIE {(@vJD(V))J —(VvJIp(v)), G

The second inequality follows.

Recall that for any s:

(Vodp)) = (0=, +BY, oy (1 = ) = Lser = 9))
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Observe that:

MO \ﬁvm} <E U

Z( o) 2 o Palsls)+
> (Bl

(t) ) Qs,a (1 — 27) Py(s]s)

om0

2 Sv Qs ,a
<47 B o eawBr o) [Bs’aa(t)as, }
5

(142,

2 (1++%)(1+4€) 5

8

Inequality (i) follows because B, alsa < 3 ds.a ¢ < (1 + 4¢) and because by Corollary 5 we have that Bv %(1 + 3 )
The result follows. O

Combining the guarantees of Lemma 9 and 8 for Algorithm 4 applied to the objective function Jp:

Lemma 19. Let & = min(y/ <, B) for all t where ¢’ = 2(|S| + 1)?n>*D? + ?’[52—29 +240 and D = ﬁ (1 + %). If
n(t) is such that:
nt) 120 (ln S32SIAIE | 1)
nn(@n(®) - 7e

And 1 = % where ¢ = 2\[/)? then for all t > 1 we have that with probability at least 1 — 20 and simulataneously for all
TeN:

max (28077 ||v¢[|%, 1) (37)

T 18+ 16\/111 In(27) + In 22
1 36D )
D (T E Vt> SJD(V*)—i—ﬁmax (|S|+1)nD, 5 , 16

t=1

Proof. We will make use of Lemmas 8 and 9. We identify ¢, = Vy.Jp(v;) — E {@vJD(Vt)‘ﬁ‘“ (n(t))} and b; =

Vvdp(ve) —E {§w Jp (Vt)‘ﬁ‘“ (n(t))} . As a consequence of Cauchy-Schwartz and Lemma 8 we see that if n(t) is such
that:

n)y 120 (n S22SIAL 1)
Inln(2n(t)) — B2

max (280772'72||Vt”go’ 1)

Then for all ¢ with probability at least 1 — % the bounds in Equations 33, 34, and 35 in Lemma 8 hold and therefore:

1s1Al

- ISHAI
1 log =5 4 & .0 1 log 8
- < |Ive = Villoo < —[1+—2 ) -(1+2) < 1 —.
[(er, vi = Vi)l < [[vi — Villooll€c[l1 < 1—7< — )ﬁ( +ﬁ)_ T\ 77 3

=U;

Where inequality (¢) holds by the assumption & < . Notice that X; = (e, v — v, ) is a martingale difference sequence.
A simple application of Lemma 13 yields that with probability at least 1 — § for all¢ € N:

E 212
Z (€1, % — %) < 2U4 (ln T) (38)
t=1
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Similarly observe that for all ¢ with probability at least 1 — since the bounds in Equations 33, 34, and 35 in Lemma 8

hold,

2t2 >

&

Hthl = HVVJD(Vt) —E {ﬁthD(Vt) ﬂ

ﬁv‘(n(t))]H <21+ 79)&(1+ ) (39)

Notice that similarly and for all ¢ with probability at least 1 — since the bounds in Equations 33, 34, and 35 in Lemma 8

hold:

2t2 >

&

uqu_ﬂ20+ﬂ), and  [bell? <4(1+9)%€2(1 + &

ﬂ)

o LS11A]
Finally we show a bound on the I3 norm of the gradient of Jp. Since v, € D = {v st [v]leo < = = (1 + M) }

Recall that by Lemma 3, we have that Jp is (|JS| 4+ 1)n-smooth in the || - || norm. Therefore by Lemma 12:

. og [SUIA
|wam1<wwﬁ>_vé+ fp)

Since ||VJp(ve)ll2 < ||VJIp(ve)]|1 this in turn implies that:

) log 18114
VIo(v)2 < (1] + 1)2—1 1+ Be
IVIp(vi)lz < (IS]+1) e ;

We now invoke the guarantees of Lemma 9 to show that with probability 1 — 24 and simultaneously for all 7" € N:

o L ve = vull2 = [Visr — Va2
Z JD V* Z t * t+1 * +

27

2 log 51141 L& -
Tt 2(|S|—i—1)2(1_7)2 <1—|— ; ( E) 0(1+7) gt(l—i—ﬂ) +

1 ISHAI
2(1+7)£t(1+§) ﬁ(uog >+2U1,/ mQ_l52

(i) L 2
Vi — Vi \4 Vi
< Z Ive =v.| 2” 222 < (ISI+1)%n 2D2+—+240> +8D¢+

Tt ﬁg
2
2U+4|T (ln 2%)

1Al log LSLLAL

Recall that U; = <1 + bg%) 8 = 8D and where D = - <1 + 7‘3> Inequality (¢) holds because

B B
& < Bandbecausey < 1. Let 7y = % for some constant to be spec1ﬁed later and let’s analyze the terms in the sum above
that depend on these 7, values:
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L3 v (Vi Vi)

Z [vi = vl [* = HVt+1 —vil? _ lvre — v
Tt 277
D2
< =—VT
2c

The second term can be bounded as
T

Zth _CCIZ% <ch\/_

Where ¢’ = 2(|S| + 1)*7* D? + 2 + 240. Therefore under this assumption we obtain

T
Z (v¢) — Jp v*)g—\/_—i-ch\/_—i—SD <Z§t>+2U1 <
t=1 t=1

2t
In— |.
n6>

The minimizing choice for c equals ¢ = T And in this case:
2t
In —)

T T
; Vi JD(V*)§2D\/ﬁ+8D<;§t>+2U1 ( 5

If we set § = min(y/ <, 3) we get:
2¢2

In 2—

n %)

D, %,16) VT +2U T (m%)

T

> JIp(vi) = Ip(vi) < 18DVET +2U, T(

18 + 16\/1n1n(2T) +1In 22
16 | VT

(i)
< 36D max <(|S| +1)

<36Dmax | (|S| +1)nD, 5
Inequality (i) holds because v/¢/ < 2 max ((|S| + 1)nD, 168’ 16)
We conclude that:
T yq T
o(rgn) e
36 18+ 16,/InIn(27) + In 32
§JD(V*)—|—ﬁmaX (IS]|+ 1) nD, 3 , 16

Inequality () holds by convexity of Jp. The result follows.
We are ready to present the proof of Lemma 10 which corresponds to a simplified version of Lemma 19
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F.3. Proof of Lemma 10

Lemma 10. We assume n > %. Set & = % and Ty = W. If we take t gradient steps using n(t) samples from
q X P (possibly reusing the samples for multiple gradient computations) with n(t) satisfying:

3
525t (1n 2L 4 1)

n(t) >
0= EEE
Then for all t > 1 we have that with probability at least 1 — 39 and simultaneously for all t € N such that t > W:
t
1 5 (D*IS |77>
J - ve | < Jp(v,)+0O .
(1) 5o (%7
Proof. First note that the ¢’ of Lemma 19 satisfies ¢’ = max (2 (IS| + 1)* 2 D2, %, 240) and therefore:
320
¢ < 8max (8|«S«'|2172D27 —)
B
Thus V¢ = max(8|S|nD, %) = 8|S|nD (the last equality holds because n > %) and therefore:
. 8|S|nD 8|S|nD
= min ,B) =
The last equality holds because t > Mls‘:#.
Then the condition in Equation 37 of Lemma 19 is satisfies whenever:
n(t) 120t x 28072 D* (1n 2OSJAL 4 1) 525¢ (1 LUSAL 4 1)
> = 40
Inln(2n(t)) — B£64|S|?n2D? BIS|? (40)

3
525t (ln wH) 525t In In(2t) (m wH) )
And therefore if we set n(t) = ESE > ESE In(2%) we see that with probability

at least 1 — 39 and simultaneously for all ¢ € N:

¢ 18 4+ 164/InIn(2t) + In %2
36D
Jp (—sz> SJD(V*)-FWIHELX (IS +1)nD, 5 ° ,16

72D2|S|n 5.2
= JD(V*) + T 5+4 1n1n(2t) + 1DT

The last inequality holds since n > %. This implies that using a budget of n(t) samples where n(t) satisfies Inequality 40
we can take ¢ gradient steps.

O
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G. Extended Results for Tsallis Entropy Regularizers

For o > 1 recall the Tsallis entropy between distributions q, A equals:

1 Xsa )"
DZZ()\ H q) - a—1 (E(S.’a)Nq |:<qs a) - 1:|>
1 As " a—1
= IE ~ 2 _— 1
a- 1 < (S7a) * l<qs7a) ‘|>

Let F(A) = %DZ(A |l @). The Fenchel Dual of a Tsallis Entropy satisfies:

F*(u) = <)\(u),u — W)\(u)‘kl + ﬁl>

Where A(u) = (nu + na, 1)1/ (@b (O‘T_l)l/(afl) q and where z.. € Rsuch that 37  As o(u) = 1and Ay 4 (u) > 0 for
all s,a € S x A. This implies that:

JD=“(V)_(1_7)szus+<>\(AV),Av_MA(AV)Q_1+%1>

a nla—1

G.0.1. STRONG CONVEXITY OF TSALLIS ENTROPY

In this section we show that whenever o € (1, 2], the Tsallis entropy is a strongly convex function of A in the || - |2 norm,
Lemma 20. If o € (1, 2], the function F(X) = %D;C()\ | ) is 5 -strongly convex in the || - |2 norm.

Proof. Ttis easy to see that V3 D7 (X || q) is a diagonal matrix satisfying:

a)\gif

[VADI (X || )] T
N4s,a

s,a

Whenever o < 2, and noting that q € [0, 1] we conclude that any of these terms must be lower bounded by % The result
follows.

O

G.1. Tsallis entropy version of Lemma 4

Lemma 21. Ler v € RIS! be arbitrary and let X be its corresponding candidate primal variable (i.e. A= AAY). If
IVvJp(V)||1 < € and Assumptions 3 and 2 hold then whenever |S| > 2:

@ T ,Q * 1+C ~
TE ) 2 T ) — (125 4 191

Where ¢ = m % (max(a -1, p%l) + 2) and )\,*7 is the Jp optimum.

Proof. For any X and v let the lagrangian J,(\, v) be defined as,

(T
JL(A,V)=(1—7)<HaV>+<)"A n(a—1)<(q> 1>>

Note that .Jp (V) = J5(X, V) and that in fact J;, is linear in v; i.e.,

JL(A ) = JL (A, V) + (Vo JL(A, V), v — ¥).
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Using Holder’s inequality we have:

TeA V) 2 TLAY) = IV TL A ) 1 - [ = Vo

= Ip(¥) = [IVe LA D)1 9 = Voo

Let A, be the candidate primal solution to the optimal dual solution v, = argmin, Jp(v). By weak duality we have that

JD( ) > Jp()\ )

JL(Xv

In order to use this inequality to lower bound the value of J, p()\%),

V) = Tp(AY) = €l|¢ = Vo

Jp(v,), and since by assumption | Vy.J. (X, V)| < e

(41)

we will need to choose an appropriate v such that the

LHS reduces to J p()\%) while keeping the /-, norm on the RHS small. Thus we consider setting v as:

1

Vs = Ea,s/NﬁXT Zs + Tsa — m

Where z € RISl is some function to be determined later.
Afa

(&

1
4T a1

s,a

Aﬁ

s,a

Qqs,a

1
n(a—1)

maXs,q |Zs + rs,a —

~ a—1

Ala _

a ) -1 +9vy
s,a

(

It is clear that an appropriate z exists as long as

a—1
) — 1) are uniformly bounded. Furthermore:

[zl oo + [IT]loo + m

= a—1
<Asya) - 1
ds,a

>

()

[¥[loo <

We proceed to bound the norm of

oo

and therefore:

— (42)

. Observe that by Assumptions 2 and 3, for all states s,a € S X A,

AN 1 <142
s, - Bt
Notice the following relationships hold:
1 N\ [ 1 o)
<*’A 1) ((a> >> 2 < Rl AT <(q4a> ‘QD
r ~ a—1 ~ a—1
= Z 1 At —1 = _ ﬁ 1] =z
Faonix (e —1) \\ dsa nla—1) \\ asa ’
r ~ a—1 ~ a—1
- Z 1 Al ! Asa 2
Ba, e _77(04 —1) \ Qs.a nla—1) \ ds,a °
7\ a—1 g a—1 ~
_ AT (A 7 (als)|
*Z < (a—1) <<qs> <qs> )[za: Q) } ZS) )
Where A, = > XW and AT = 3 )‘;ﬁ,a' Note that by definition:
~\ a—1
A v) = (Zzrr—— (X 1)) = Jp(0) + (A7 2) (44)
— , V) = \Z — —_— — = yZ).
! nle—1) \ \ a i
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Let’s expand the definition of Jz, (X, v) using Equations 13 and 14:

_ %_N Xs A_;TF ocfl_ & a—1
p(A)+ZS: z;(\] AS)+7W(Q_1) <qs> <>

Since we want this expression to equal J, p()\%), we need to choose z such that

i () ()7 [ 5]

Zs = _
Aﬂ'
1 — 2s

s

ﬁﬂ(a\s)}

S (0D (0 [ e

and therefore, since for all s and when o > 1 by Assumption 2

GRSy
Observe that z; = e I
1—2s
Xs
we have that 3, T8 < Fo=T>
~\ a—1 ~a—1
1 1 ’(XST) —
2] < (a—1)pa-t ‘1—*—33'
A
A?r
Let 5= % where 6 € [0, %] Then,
1 =1 — 071
|| < s
T (a1t 11—
It is easy to see that when o > 0 the function f(0) = 7197&;1 = 90 is decreasing in the interval (0, 1] and increasing
6
a1
2) = f1—* < & since p < 4. This implies,

bl>—‘

afterwards. Furthermore, by L'Hopital’s rule, f(1) = 1 — cvand f(3)

ool € ol max(a— 1,2
Zs| < ————Fmax(a — 1, ——).
n(a—1) ot po!
And therefore Equation 42 implies:
1 1 1 2
- . e max(e - 1 gt) + 1+ e (= +1) _ e (max(a =1, 520) +2) +1

= 1-—- 1—7v

Putting these together we obtain the following version of equation 41
m% (Inax(oz—l,ﬁ)+2)+l _
+ Vil

JL(A¥) > Jp(A") — ¢ =



Near Optimal Policy Optimization via REPS

G.2. Extension of Lemma 5 to Tsallis Entropy

Lemma 22. Under Assumptions 1, 2 and 3, the optimal dual variables are bounded as

1 2
Noo < —— 1+ ————) = Dpa. 45
vl < 75 (14 o) = P )
Proof. Recall the Lagrangian form,

. v 1 Asa )\
min, | max JL(Av) = (1 =) (v, ) + <>\,A T ala—1) <(qs,a> - 1>> :

The KKT conditions of A*,v* imply that for any s,a, either (1) Ai, = 0 and 52—J (A",v*) < 0 or (2)
%JL (A", v*) = 0. The partial derivative of J, is given by,

0 « i ot 1
JLA V) =154+ P, s/sv:/—v2—7< d > e m— (46)
gAY 2Pl a1 \au. Ha—1)
Thus, for any s, a, either
AL, =0andvi > 1y, — — ()\:@)O‘ 1+#+WZP(S/|S)V* (47)
¢ 2T T 1) \ e Ha—p T2
or,
Al ,>0andv:i=r —° (_)\:7(1)0‘1 TR ZP (s'ls)vs (48)
s,a Vs = Tsa — Y alS |S)Vgr.
’ n(a—1) \qsa (e —1) "

Recall that A" is the discounted state-action visitations of some policy 7,; i.e., A , = AJ* - 7. (als) for some 7,. Note
that by Assumption 3, any policy 7 has AT* > 0 for all s. Accordingly, the KKT conditions imply,

* a—1
« A 1
me(a|s) =0and v, >r;q — —— 54 4+ —+7 P,(s's)vE, (49)
+(als) () fwesn 2 Falsle)
or,
o A* a—1 1
. (als >Oandv:_r5_a—7< S’a> + —=+ P,(s'|s)vE. (50)
(als) (e —1) \dsa n(a—1) Z (#le)
Equivalently,
o )\* a—1 1
Vi=FEqur.(s) |50 — —— | == 4+ —+7 P,(s'|s)v% (1))
<>[ e les) e A
(52)

We may express these conditions as a Bellman recurrence for v and the solution to these Bellman equations is

* a—1
bounded when ry , — ﬁ ( %) + m is bounded (Puterman, 2014). And indeed, by Assumptions 2 and 1,

A a—1 )
Tsq — ﬁ (ﬁ) + m <1+ n(alfl) + n(afll)ﬁafl We may thus bound the solution as,
1 2
Voo < 1+ > . (53)
¥l < 7 (14 oy
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G.3. Gradient descent results for the Tsallis Entropy

Remark 1. Throughout this section we make the assumption that o« € (1, 2).

We start by characterizing the smoothness properties of Jg’a(v), the dual function of the Tsallis regularized LP.

Lemma 23. If o € (1, 2] the dual function Jp,"* (v) is W-smoot}z in the || - |2 norm.

Proof. Recall that PrimalReg- can be written as RegLP:

max({r, A) — F'(A)

s.t. EA=b.

ere the regularizer == q))1s - — <2 StI‘OHg Yy convex. n this proolem r corresponds to the rewar:
Where th larizer (F(X) = DT (A || q))is 2 1 In this probl ds to th d

vector, the vector b = (1 — v)u € RISl and matrix E € RISIXISIXIAl takes the form:

Bis.oq - {Pasl) M
1 —~Py(s]s) o.w.
Therefore (since ||E||2,2 is simply the Frobenius norm of matrix E),

B[22 < 2[S||A|
The result follows as a corollary of Lemma 1. o

Throughout this section we use the notation D to refer to [[v*[lo < 125 (1 + W) We are ready to prove

convergence guarantees for Algorithm 2 when applied to the objective JZ;’O‘.

Lemma 24. Let Assumptions 1, 2 and 3 hold. Let Dy o = {v s.t. |V|]lco < D70}, and define the distance generating

function to be w(x) = ||x||3. After T steps of Algorithm 2, the objective function JZ;’O‘ evaluated at the iterate v = yr
satisfies: 2 "2
T Toagos IS]*JA] (1 +¢)
/ 2
Where ¢’ = W.

Proof. This results follows simply by invoking the guarantees of Theorem 1, making use of the fact that JZ;’O‘ is

W—smooth as proven by Lemma 3, observing that as a consequence of Lemma 22, v* € Dy, and using the in-

equality ||x[|3 < |S]||x]|2, for x € RISI, O
Lemma 24 can be easily turned into the following guarantee regarding the dual function value of the final iterate:
Corollary 6. Let € > 0. If Algorithm 2 is ran for at least T rounds

(1+¢)

T> 2771/2(|5||A|1/2)m

then v is an e—optimal solution for the dual objective Jg’o‘.

If T satisfies the conditions of Corollary 6 a simple use of Lemma 6 allows us to bound the || -||2 norm of the dual function’s

gradient at vp:
2|S|| Alne
IV n (v <y 2E0AE
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If we denote as 77 to be the policy induced by AV7, and )\,*7 is the candidate dual solution corresponding to v*. A simple

application of Lemma 21 yields:
* 1 2|S1|A
Jp ()‘FT)>JP()‘ ) 1—(2+ c+c ) M

Where ¢ = m% (max(a -1, p%l) + 2), d = W and )\,*7 is the Jp optimum.

This leads us to the main result of this section:

Corollary 7. Let o € (1,d]. Forany & > 0. If T > 477|S|3/2|A|1/2% then:

Jp(A™T) = Jp(A]) — €.

Thus Algorithm 2 achieves an O(1/(1 — «)?e) rate of convergence to an e—optimal regularized policy. We now proceed

to show that an appropriate choice for 7 can be leveraged to obtain an e—optimal policy.
2+c+c’ 2 . . .
Theorem 5. Foranye >0, letn = 5= 1)55a. IfT > 8|8|3/2|A|1/2(0471()a(1%, then 7 is an e—optimal policy.

Proof. As a consequence of Corollary 7, we can conclude that:

Jp()\ﬂT) > Jp()\*’n) —

N

Where )\,*7 is the regularized optimum. Recall that:

1 Asa )"
N = St~ gy (Feoma | (322) 1))

Since A" is the maximizer of the regularized objective, it satisfies Jp(A*"7) > Jp(AX™) where A* is the visitation
frequency of the optimal policy corresponding to the unregularized objective. We can conclude that:

St > S s ot (Sa () 1) - S (32) ) -
_Z)\Sdrsa—i- <qua<)\j) qua(&)a)_%
> gx\:,ars,a - ﬁ (%)a -

And therefore if = W,

NN

[N e

we can conclude that:

z : z : *
)‘s arS a > )‘s,ar&a
s,a



