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Abstract

Data-driven algorithms can adapt their internal structure or parameters to inputs from unknown
application-specific distributions, by learning from a training sample of inputs. Several recent
works have applied this approach to problems in numerical linear algebra, obtaining significant
empirical gains in performance. However, no theoretical explanation for their success was known.
In this work we prove generalization bounds for those algorithms, within the PAC-learning
framework for data-driven algorithm selection proposed by Gupta and Roughgarden (SICOMP
2017). Our main results are closely matching upper and lower bounds on the fat shattering dimen-
sion of the learning-based low rank approximation algorithm of Indyk et al. (NeurIPS 2019). Our
techniques are general, and provide generalization bounds for many other recently proposed data-
driven algorithms in numerical linear algebra, covering both sketching-based and multigrid-based
methods. This considerably broadens the class of data-driven algorithms for which a PAC-learning
analysis is available.
Keywords: data-driven algorithms, low rank approximation, numerical linear algebra, PAC-learning,
pseudo-dimension, fat shattering dimension, sketching, multigrid

1. Introduction

Traditionally, algorithms are formally designed to handle a single unknown input. In reality, how-
ever, computational problems are often solved on multiple different yet related inputs over time. It
is therefore natural to tailor the algorithm to the inputs it encounters, and leverage — or learn from
— past inputs, in order to improve performance on future ones.

This paradigm addresses common scenarios in which we need to make design choices about
the algorithm, such as setting parameters or selecting algorithmic components. It advocates making
those design choices in an automated way, based on past inputs viewed as a training set, premised
to share underlying similarities with future inputs. Rather than trying to model or gauge these
similarities explicitly, the idea is to let a learning mechanism detect and exploit them implicitly.
This is often referred to as self-improving, data-driven or learning-based algorithm design, and by
now has been applied successfully to a host of computational problems in various domains (Ailon
et al., 2011; Gupta and Roughgarden, 2017; Balcan, 2020; Mitzenmacher and Vassilvitskii, 2020).

In particular, this approach has recently become popular in efficient algorithms for computa-
tional problems in linear algebra. Matrix computations are very widely used and are often hard to
scale, leading to an enormous body of work on developing fast approximate algorithms for them.
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These algorithms often rely on internal auxiliary matrices, like the sketching matrix in sketch-based
methods (Woodruff, 2014) or the prolongation matrix in algebraic multigrid methods (Briggs et al.,
2000), and the choice of auxiliary matrix is crucial for good performance. Classically, these auxil-
iary matrices are chosen either at random (from carefully designed distributions which are oblivious
to the input) or handcrafted via elaborate heuristic methods. However, a recent surge of work on
learning-based linear algebra shows they can be successfully learned in an automated way from past
inputs (Indyk et al., 2019a; Ailon et al., 2020; Liu et al., 2020; Luz et al., 2020; Indyk et al., 2021).

The empirical success of learning-based algorithms has naturally led to seeking theoretical
frameworks for reasoning about them. Gupta and Roughgarden (2017) suggested modeling the
problem in terms of statistical learning, and initiated a PAC-learning theory for algorithm selection.
In their formulation, the inputs are drawn independently from an unknown distribution D, and the
goal is to choose an algorithm from a given class £, so as to approximately optimize the expected
performance on D. One then proves upper bounds on the pseudo-dimension or the fat shattering
dimension of L, which are analogs of the VC-dimension for real-valued function classes. By classi-
cal VC theory, such bounds imply generalization, i.e., that an approximately optimal algorithm for
D can be chosen from a bounded number of samples (proportional to either notion of dimension).
Building on this framework, subsequent works have developed sets of tools for proving pseudo-
dimension bounds for learning-based algorithms for various problems, focusing on combinatorial
optimization and mechanism design (Balcan et al., 2017, 2018a,b, 2020, 2021a,b).

However, existing techniques do not yield generalization bounds for the learning-based linear
algebraic algorithms mentioned above, and so far, no generalization bounds were known for them.

Our contribution. We develop a new approach for proving PAC-learning generalization bounds
for learning-based algorithms, which is applicable to linear algebraic problems. For concreteness,
we mostly focus on the learning-based low rank approximation algorithm of Indyk et al. (2019a),
called IVY. Operating on input matrices of order n x n, IVY learns an auxiliary sketching matrix
specified by n real parameters. Our main results is, loosely speaking, that the fat shattering dimen-
sion of IVY is @)(n), which yields a similar bound on its sample complexity.! The precise bound
we prove also depends on the fatness parameter e, the target low rank &, and the row-dimension m
and sparsity s of the learned sketching matrix; for now, it is instructive to think of all of them as
constants. See Section 2.3 for the full result.

We proceed to show that the tools we develop also lead to pseudo-dimension or fat shattering
dimension bounds for various other learning-based linear algebraic algorithms known in the liter-
ature, which in addition to IVY include the learned low rank approximation algorithms of Ailon
et al. (2020), Liu et al. (2020) and Indyk et al. (2021), and the learned regression algorithm of Luz
et al. (2020). These algorithms represent both the sketch-based and the multigrid-based approaches
in numerical linear algebra.

Our work significantly advances the line of research on the statistical foundations of learning-
based algorithms, by extending the PAC-learning framework to a prominent and well-studied area
of algorithms not previously covered by it, through developing a novel set of techniques.

1. Throughout, we use O(f) for O(f - polylog(f)).



2. Background and Main Results

2.1. Generalization Framework for Learning-Based Algorithms

The following is the PAC-learning framework for algorithm selection, due to Gupta and Rough-
garden (2017). Let X be a domain of inputs for a given computational problem, and let D be a
distribution over X. Let £ be a class of algorithms that operate on inputs from X. We identify
each algorithm L € £ with a function L : X — [0, 1] that maps the result of running L on x to a
loss L(z), where we shift and normalize the loss to be in [0, 1] for convenience. Let L* € £ be an
optimal algorithm in expectation on D, i.e., L* = argmin; ¢, E,p[L(z)].

We wish to find an algorithm in £ that approximately matches the performance of L*. To this
end, we draw ¢ samples X = {z1,...,x¢} from D, and apply a learning procedure that maps X to
an algorithm L € L. We say that L is (e, §)-learnable with ¢ samples if there is a learning procedure
that maps X to L € £ such that

Pr(EsplL(@)] < Epnp[L(2)] +¢ 218

A canonical learning procedure is Empirical Risk Minimization (ERM), which maps X to an
algorithm that minimizes the average loss over the samples, i.e., to argming . » % Zle L(x;). We
say that £ admits (e, 0)-uniform convergence with ¢ samples if
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It is straightforward that (e, §)-uniform convergence implies (2¢, 0)-learnability with ERM with the
same number of samples. To bound the number of samples, we have the following notions.

Definition 2.1 (pseudo-dimension and fat shattering dimension) Let X = {z1,...,2xy} C X.
We say that X is pseudo-shattered by L if there are thresholds r1, . ..,rn € R such that,

Vic{l,...,.N}3aLC L st L(zx;)>ri<iel.
For v > 0, we say that X is ~y-fat shattered by L if there are thresholds 1, . ..,rn € R such that,
VIc{l,...,N}3ILcC L st i€l=Lx;)>ri+~v and i¢ 1= L(x;) <r;—-r.

The pseudo-dimension of L, denoted pdim(L), is the maximum size of a pseudo-shattered set. The
~-fat shattering dimension of £, denoted fatdim. (L), is the maximum size of a y-fat shattered set.

Note that the pseudo-dimension is an upper bound on the ~-fat shattering dimension for every
v > 0. Classical results in PAC-learning theory show that these quantities govern the number of
samples needed for (e, §)-uniform convergence, and thus for (e, §)-learning with ERM.? Therefore,
a typical goal is to prove upper and lower bounds on them.

2. For example, a standard result is that O (e~ 2 (pdim(£) +log(d~'))) samples suffice for (e, §)-uniform convergence,
and thus also for (e, §)-learning with ERM. The pseudo-dimension yields somewhat tighter upper bounds for learning
than the fat shattering dimension, while the latter also yields lower bounds. See, for example, Theorems 19.1, 19.2,
19.5 in Anthony and Bartlett (2009).



Input: A € R™*, target rank k, auxiliary matrix S € R™*", Output: A’ € R™*? of rank k.

Compute the product S A.

If SA is a zero matrix, return the zero matrix of order n X d.
Compute the SVD U, X, V7T of SA.

Compute the product AV'.

Compute and return [AV], V7,

BAN I e

Algorithm 1: The SCW low rank approximation algorithm

2.2. Learning-Based Low Rank Approximation (LRA)

Let A € R™ < be an input matrix, with n > d. By normalization, we assume throughout the paper
that ||A||% = 1. Let [A], denote the optimal rank-k approximation of A in the Frobenius norm, i.e.,

[A] = argmin g cpnxa of rank 1|4 — 4[| -

It is well-known that [A]j can be computed using the singular value decomposition (SVD), in time
O(nd?). Since this running time does not scale well for large matrices, a very large body of work
has been dedicated to developing fast approximate LRA algorithms, which output an matrix A’ of
rank k that attains error close to [A], see surveys by Mahoney (2011); Woodruff (2014); Martinsson
and Tropp (2020).

SCW. The SCW algorithm for LRA is due to Clarkson and Woodruff (2013), building on Sarlos
(2006); Clarkson and Woodruff (2009). It uses an auxiliary sketching matrix S € R™*™, where its
row-dimension m is called the sketching dimension, and is chosen to be slightly larger than k& and
much smaller than n. The algorithm is specified in Algorithm 1.

In Clarkson and Woodruff (2013), S' is chosen at random from an data-oblivious distribution as
follows. Let s € {1,...,m} be a sparsity parameter. One chooses s uniformly random entries in
each column of S, and chooses the value of each of them uniformly at random from {1, —1}. The
rest of the entries in .S are zero. Clarkson and Woodruff (2013) show that given € > 0, by setting
the sketching dimension to m = O(k?/€?), even with sparsity s = 1, SCW returns A’ of rank k
that satisfies |4 — A’||% < (1 + ¢€)||A — [A]x||% with high probability (over the random choice of
S), while running in time nearly linear in the size of A.

IVY. The IVY algorithm due to Indyk et al. (2019a) is a learning-based variant of SCW. The
sparsity pattern of S is chosen similarly to SCW (s non-zero entries per column, chosen uniformly
at random) and remains fixed. However, the values of the non-zero entries in S are now trainable
parameters, learned from a training set of input matrices. In particular, S is chosen by minimizing
the empirical loss » 4 4. [|A —SCWg(S, A) |%., where SCW (S, A) denotes the output matrix
of Algorithm 1, using stochastic gradient descent (SGD) on a training set Ayqin C R7xd,

To cast IVY in the statistical learning framework from Section 2.1, let A denote the set of
possible input matrices (i.e., all A € R™*4 with || A||2 = 1), and let S denote the set of possible
sketching matrices (i.e., all S € R™*"™ with the fixed sparsity pattern specified above). Every S € S
gives rise to an LRA algorithm, whose output rank-k approximation of A is A’ = SCW(S, A),
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and whose associated loss function LWV (S, -) : A — [0, 1] is given by?
LROV(S, A) = | A = SCW(S, A)|[f-

Given samples from an unknown distribution D over .A, the learning problem is to choose S € S
which has approximately optimal loss in expectation over D. Our objective is to prove generaliza-
tion bounds for learning a sketching matrix S € S, or equivalently, for learning the class of loss
functions Lyyvy = {LECW(S, )}ses.

2.3. Our Main Results

We prove closely matching upper and lower bounds on the fat shattering dimension of IVY.

Theorem 2.2 For every € > 0 smaller than a sufficiently small constant, the e-fat shattering di-
mension of IVY, fatdim.(Lrvy), satisfies

fatdime(Lrvy) < O(ns - (m + klog(d/k) + log(1/€))).
Furthermore, if € < 1/(2V'k), then fatdim (Lrvy) > Q(ns).
These results translate to sample complexity bounds on its uniform convergence and learnability:

Theorem 2.3 Let ¢,0 > 0 be smaller than sufficiently small constants. The number of samples
needed for (e, d)-uniform convergence for IVY, and thus for (e, d)-learning the sketching matrix of
IVY with ERM, is

O(e72 - (ns - (m + klog(d/k) +log(1/¢)) + log(1/6))).

Furthermore, if € < 1/(256V'k), then (e, €)-uniform convergence for IVY requires Q(e~2 - ns/k)
samples, and if € < 1/(2V'k), then (e,0)-learning IVY with any learning procedure requires
Qe 4 ns) samples.

For the sake of intuition, let us comment on typical settings for the various sizes in these results.
The input matrix is of order n x d, where we think of n, d as being arbitrarily large.* The target rank
k can be thought of as a small integer constant, and the sketching dimension m as only slightly larger
(the larger m is, the slower but more accurate the LRA algorithm would be). Both are generally
independent of n, d. Concretely, the empirical evaluations in Indyk et al. (2019a,b, 2021); Ailon
et al. (2020); Liu et al. (2020) use & up to 40, and m up to 4k, for matrices with thousands of rows
and columns. The sparsity s is often chosen to be the smallest possible, s = 1, while some have
found it beneficial to make it slightly larger, up to 8 (Tropp et al., 2019; Martinsson and Tropp,
2020). The upshot is that the upper and lower bounds in Theorem 2.2 are essentially matching up to
a factor of log(d/e). Furthermore, both are essentially proportional to ns, which is the number of
non-zero entries in the sketching matrix, i.e., the number of trainable parameters that IVY learns.

3. It can be shown that the loss never exceeds ||A||fp for any A and S, and recalling that we assume that all input
matrices are normalized so that || A||% = 1, the loss is contained in [0, 1].
4. Recall we assume that d < n by convention. For all conceptual purposes it suffices to consider the square case n = d.



Other learning-based algorithms. While we focus on IVY for concreteness, our techniques also
yield bounds for many other learning-based linear algebraic algorithms. See Section 6.

Remark 2.4 (on computational efficiency) Like most prior work on PAC-learning, our results fo-
cus on the sample complexity of the learning problem, rather than the computational efficiency of
learning (see, e.g., Remark 3.5 in Gupta and Roughgarden (2017)). It is currently unknown whether
there exist efficient ERM learners for the data-driven algorithms considered in this work. In par-
ticular, while in practice IVY uses SGD to minimize the empirial loss, it is not known to provably
converge to a global minimum. The computational efficiency of ERM for backpropagation-based
algorithms (like IVY) remains a challenging open problem.

Remark 2.5 (on the precision of real number representation) We prove Theorem 2.2 without any
restriction on the numerical precision of real numbers in the computational model, that is, even
when they may have unbounded precision. If one considers only bounded precision models, say
where real numbers are represented by b-bit machine words, then the total number of possible
sketching matrices is 2™, leading trivially to a bound of O(nsb) on the pseudo-dimension of IVY.
On the other hand, the lower bound in Theorem 2.2 holds even with 1-bit machine words. In sum-
mary, both our upper and lower bounds are proven in the most general computational model.

2.4. Technical Overview

Our starting point is a general framework of Goldberg and Jerrum (1995) for bounding the VC-
dimension or the pseudo-dimension. They showed that if the functions in a class (which in our case
are the losses of candidate algorithms) can be computed by a certain type of algorithm, which we
call a GJ algorithm, then the pseudo-dimension of the function class can be bounded in terms of
the running time of that algorithm. We employ a simple yet crucial refinement of this framework,
relying on more refined complexity measures of GJ algorithms than the running time.

Under this framework, ideally we would have liked to compute the SCW loss with a GJ al-
gorithm which is efficient in these refined complexity measures, thus obtaining a bound on the
pseudo-dimension of IVY. Unfortunately, it is not clear how to compute the SCW loss at all with
a GJ algorithm, since the GJ framework only allows a narrow set of operations. Nonetheless, we
show it can be approximated by a GJ algorithm, by relying on recent advances in numerical linear
algebra, and specifically on “gap-independent” analyses of power method iterations for LRA, that
do not depend on numerical properties of the input matrix (like eigenvalue gaps) (Rokhlin et al.,
2010; Halko et al., 2011; Boutsidis et al., 2014; Woodruff, 2014; Witten and Candes, 2015; Musco
and Musco, 2015). We thus obtain a pseudo-dimension bound for the approximate loss, which
translates to a fat shattering dimension bound for the true SCW loss, yielding generalization results
for IVY, as well as for other learning-based numerical linear algebra algorithms.

Proof roadmap. Section 3 presents the Goldberg and Jerrum (1995) framework. In Section 4,
as a warm-up, we prove tight bounds for IVY in the simple case m = k£ = 1. Section 5 contains
the main proof of this paper, establishing the upper bound from Theorem 2.2. The lower bound is
proven in Appendix C, together completing the proof of Theorem 2.2. Theorem 2.3 follows from
Theorem 2.2 using mostly standard arguments, given in Appendix D.



2.5. Related Work

Indyk et al. (2019a) gave a “safeguarding” technique for IVY, showing it can be easily modified to
guarantee that the learned algorithm never performs worse than the oblivious SCW algorithm on
future matrices. The modification is simply to concatenate an oblivious sketching matrix vertically
to the learned sketching matrix. While this result guarantees that learning does not hurt, it does not
show that learning can help, and provides no generalization guarantees.

Indyk et al. (2021) prove “consistency’ results for their learning-based algorithms, showing that
the learned sketching matrix performs well on the training input matrices from which it was learned.
These results have no bearing on future matrices, and again provide no generalization guarantees.

Balcan et al. (2021a) recently gave a general technique for proving generalization bounds for
learning-based algorithm in the statistical learning framework of Section 2.1, based on piecewise
decompositions of dual function classes. While there are some formal connections between their
techniques and ours, their approach does not yield useful bounds for the linear algebraic algorithms
that we study, since these algorithms do not exhibit a sufficiently simple piecewise dual structure as
the technique of Balcan et al. (2021a) requires. We discuss this in more detail in Appendix E.

3. The Goldberg-Jerrum Framework

Our upper bounds are based on a general framework due to Goldberg and Jerrum (1995) for bound-
ing the VC-dimension. We instantiate a refined version of it, which still follows immediately from
their proofs. For completeness and self-containedness, Appendix A reproduces the proof of the
variant we state below.

Definition 3.1 A GJ algorithm 1" operates on real-valued inputs, and can perform two types of
operations:

e Arithmetic operations of the form v" = v ® v/, where ® € {+, —, x, +}.
o Conditional statements of the form “if v > 0 ... else ...”.

In both cases, v,v' are either inputs or values previously computed by the algorithm.

Every intermediate value computed by I is a multivariate rational function (i.e., the ratio of two
polynomials) of its inputs. The degree of a rational function is the maximum of the degrees of the
two polynomials in its numerator and denominator, when written as a reduced fraction. We now
define two complexity measures of GJ algorithms.

Definition 3.2 The degree of a GJ algorithm is the maximum degree of any rational function it
computes of the inputs. The predicate complexity of a GJ algorithm is the number of distinct
rational functions that appear in its conditional statements.

Theorem 3.3 Using the notation of Section 2.1, suppose that each algorithm L € L is specified
by n real parameters. Suppose that for every x € X and r € R there is a GJ algorithm I';, ;. that
given L € L, returns “true” if L(x) > r and “false” otherwise. Suppose Iy, has degree A and
predicate complexity p. Then, the pseudo-dimension of L is at most O(nlog(Ap)).



Let us comment on the relation between this statement and the original theorem from Goldberg
and Jerrum (1995). Their statement is that if I'; ;. has running time ¢ then the pseudo-dimension
of £ is O(nt). They prove it by implcitly proving Theorem 3.3, as it is not hard to see that if the
running time is ¢ then both the degree and the predicate complexity are at most 2¢.

To illustrate why the refinement stated in Theorem 3.3 could be useful, let us first consider the
degree. Consider computing ¢ power method iterations for a matrix M € R"*", i.e., computing
M 47 with some initial vector m € R™. The running time is t = O(n?q), so the pseudo-dimension
upper bound we get based on the running time alone is O(nt) = O(n3q). However, the degree of
every entry in M %7 (when considered as a rational function of the entries of M and 7) is just ¢ + 1,
and hence Theorem 3.3 yields the better upper bound O(n log q).

As for the predicate complexity, consider for example a GJ algorithm for choosing the mini-
mum of r numbers (this operation will be useful for us in derandomizing the power method). The
running time is t = O(r), and this is tight since GJ algorithms adhere to the comparison model,
so the pseudo-dimension upper bound we get based on the running time alone is O(nt) = O(nr).
However, the predicate complexity is (72"), and the degree is just 1, since choosing the minimum
among v1, ..., v, € R involves only the polynomials v; — v; for every 7« < j. Hence, Theorem 3.3
yields the better upper bound O(nlogr). The same reasoning applies to sorting r numbers (see
Appendix E.1 for an example that uses this operation), and to other useful subroutines.

Remark 3.4 (oracle access to optimal solution) /It is also worth observing that I, ;. has free ac-
cess to all information about x — and in particular, to the optimal solution of the computational
problem addressed by L with x as the input— without any computational cost. For example, in LRA,
Iz has free access to the exact SVD factorization of the input matrix A. (Note that the difficulty
for Iy ;. lies in computing the losses of other than optimal solutions, namely the SCW loss induced
by the given sketching matrix S). Similarly, in a regression problem miny||Ay — b||, the input x
is the pair A,b, and T, has free access to the optimal solution y* = argmin, || Ay — b[|. These
observations are useful in proving bounds for some of the algorithms we consider in Section 6.

4. Warm-up: The Case m =k =1

As a warm-up, we consider the simple case where both the target rank £ and the sketching dimension
is m are 1. We show an upper bound of O(n) on the pseudo-dimension and a lower bound of Q(n)
on the e-fat shattering dimension for every € € (0,0.5) (this immediately implies that both are
©(n)). This case is particularly simple because the SCW loss admits a closed-form expression,
given next (the proof appears in Appendix B.1). Note that the sketching matrix in this case is just a
vector, denoted w € R™ for the rest of this section, and it is specified by n real parameters.

Fact 4.1 The loss of SCW with input matrix A € R"*, sketching vector w € R™ and target rank
kE=1is|A—- WAATwaAH%.

Theorem 4.2 The pseudo-dimension of IVY in the m = k = 1 case is ©(n), and the e-fat shattering
dimension is ©(n) for every € € (0,0.5)

Proof Since the pseudo-dimension is an upper bound on the fat shattering dimension, it suffices to
prove the upper bound for the former and the lower bound for the latter. For a fixed matrix A and



threshold » € R, a GJ algorithm I' 4 ,- can evaluate the loss formula from Fact 4.1 on a given w with
degree O(1), and compare the loss to r with predicate complexity 1. Therefore, by Theorem 3.3,
the pseudo-dimension is O(n).

For the lower bound, we first argue that if A is a rank-1 matrix, then SCW with sketching vector
w attains zero loss if and only if w? A # 0. Indeed, by Fact 4.1, if w? A = 0 then the loss is || A[|%,
which is non-zero for a rank-1 matrix. If w’ A # 0, we write A in SVD form A = cuv” with
o €R,u R, vec R and||ul| = |[v| = 1, and by plugging this into Fact 4.1, the loss is 0.

Now, consider the set of matrices A1,..., A, € R"™*4 where A, is all zeros except for a single
1-entry in row i, column 1. For every I C {1,...,n}, let w; € R" be its indicator vector. By
the above, SCW with sketching vector wy attains zero loss on the matrices {A; : i € I}, and loss
|Al|% = 1 on the rest. Therefore this set of n matrices is e-fat shattered for every € € (0,0.5). W

5. Proof of the Upper Bound

In this section we prove the upper bound in Theorem 2.2 on the fat shattering dimension of IVY.
We start by stating a formula for the output rank-% matrix of SCW (Algorithm 1). For a matrix M,
we use M to denote its Moore-Penrose pseudo-inverse, and recall that we use [M];, to denote its
best rank-k approximation. All of the proofs omitted from this section are collected in Appendix B.

Lemma 5.1 The output matrix of the SCW algorithm equals [A(SA)T(SA)].

5.1. Computing Projection Matrices

Next, we give a GJ algorithm for computing orthogonal projection matrices. Recall that the orthog-
onal projection matrix on the row-space of a matrix Z is given by Z1Z.

Lemma 5.2 There is a GJ algorithm that given an input matrix Z with k rows, computes Z'Z.
The algorithm has degree O (k) and predicate complexity at most 2. Furthermore, if Z is promised
to have full rank k, then the predicate complexity is zero.

Proof We start by proving the “furthermore” part, supposing Z has full rank k. Since Z has full
rank k, by a known identity for the pseudo-inverse we can write Z'Z = Z7(ZZ7)~'Z. We use
the matrix inversion algorithm from Csanky (1976) (similar/identical algorithms have appeared in
other places as well), to invert an invertible k£ x &k matrix M. Define the following matrices,

tr(M B;—
By =1, Bi:MBi_1—r(k_Zl 1) 1.
The inverse is then given by,
k
-1
= ———— By
tr(MBy,) "

Note that each entry of B; is a polynomial of degree ¢ — 1 in the entries of M, and therefore each
entry of M ~! is a rational function of degree k — 1 in the entries of M. In our case M = ZZ7,
and the desired output is Z7(ZZ7)~1Z, and therefore it has degree O(k). This finishes the proof
of the “furthermore” part.



We proceed to showing the lemma without the full rank assumption. Suppose M has rank
r < k which could be strictly smaller than k£ (and r need not be known to the algorithm). If we
find a matrix Y € R"*¢ whose rows form a basis for the row-space of M, then we could write the
desired projection matrix as ZZ = YTY = YT(YYT)~Y, and compute it with a GJ-algorithm
of degree O(r) < O(k) in the entries of Y, as above.

So, it remains to compute such a matrix Y. To this end we use another result from Csanky
(1976): if M is a kx k matrix with characteristic polynomial fy;(\) = det(A[—M) = Z?:o e\,
then ¢; = —%tr(M B;), with B; defined as above. In particular, the free coefficient ¢ can be com-
puted by a GJ algorithm of degree O(k). This yields a GJ algorithm for determining whether a k x k
matrix has full rank, since this holds if and only if ¢; # 0.

Now, to compute Y from Z, we can simply go over the rows of Z one by one, tentatively add
each row to our (partial) Y, and keep or remove it depending on whether Y still has full row rank.
To check this, we compute Y'Y (which is a square matrix of order at most » < k) and check
whether it has full rank as above. Overall, Y and therefore the output Y7 (YY7)~1Y are computed
using a GJ algorithm with degree O(k). Choosing Y involves conditional statements with up to 2%
rational functions, which are the free coefficients of the characteristic polynomials of every subset
of the k rows of Z, so the predicate complexity is at most 2. |

We remark that this lemma already yields an upper bound on the pseudo-dimension of IVY in
the case m = k. The full regime m > k is more involved and will occupy the rest of this section.

Corollary 5.3 The pseudo-dimension of IVY with m = k is O(nsk).

Proof S has m = k rows, hence SA has rank at most &, hence [A(SA)T(SA)], = A(SA)T(SA).
By Lemma 5.1, the SCW loss is || A — A(SA)T(SA)||%. By Lemma 5.2, it can be computed with
a GJ algorithm of degree O(k) and predicate complexity 2. Recalling that the learned sketching
matrix in IVY is specified by ns real parameters, the corollary follows from Theorem 3.3. |

5.2. Derandomized Power Method Iterations

For the rest of this section we denote B = A(SA)T(SA) for brevity. Note that B is of order n x d.
By Lemma 5.1 the SCW loss equals || A — [B]x||%, while Lemma 5.2 shows how to compute B with
a GJ algorithm. Our next goal is to approximately compute [B];, with a GJ algorithm.

To this end we use a result on iterative methods for LRA, due to Musco and Musco (2015),
building on ideas from Rokhlin et al. (2010); Halko et al. (2011); Witten and Candes (2015); Bout-
sidis et al. (2014); Woodruff (2014). It states that given B, an initial crude approximation for [B]
can be refined into a good approximation with a small number of powering iterations. The next
theorem is somewhat implicit in Musco and Musco (2015); see Appendix B.3 for details.

Theorem 5.4 (Musco and Musco (2015)) Suppose we have a matrix P € RI*k that satisfies
|B — (BP)(BP)'B|% < O(kd) - | B — [B || %- (1
Then, Z = (BBT)1BP with g = O(e ‘log(d/e)) satisfies |B—ZZTB||% < (1+€)-||B—[Blk/|%.
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Normally, P is chosen at random as a matrix of independent gaussians, which satisfies Equa-
tion (1) with high probability. Since GJ algorithms are deterministic, we derandomize this approach
using subsets of the standard basis.

Lemma 5.5 Suppose k < d. For every B € R"*%, there is a subset of size k of the standard basis
in RY, such that if we organize its elements into a matrix P € R¥* it satisfies Equation (1).

5.3. The Proxy Loss

Let L%CW(S , A) denote the loss of SCW with input matrix A, sketching matrix S and target rank
k. By Lemma 5.1, LYW (S, A) = ||A — A(SA)T(SA)||%. We now approximate this quantity with
a GJ algorithm. Formally, given ¢ > 0, we define a proxy loss ﬁm(S, A) as the output of the
following GJ algorithm, which operates on an input .S with a fixed A. Recall that d is the column
dimension of A.

1. Compute B = A(SA)T(SA) using the GJ algorithm from Lemma 5.2.

2. Let{P,:i=1... (Z)} be the set of matrices in R?** whose columns form all of the possible
k-subsets of the standard basis in R?.

3. For every P;, compute Z; = (BBT)1BP;, where ¢ = O(¢ ™! log(d/e)).

4. Choose Z as the Z; that minimizes || B — Z; Z] B||%., using Lemma 5.2 to compute Z; Z, .

5. Compute and return the proxy loss, Ly (S, A) = |A — ZZ B|2.

Givenr € R, we can return “true” if IA/;M(S ,A) > rand “false” otherwise, obtaining a GJ algorithm
that fits the assumptions of Theorem 3.3.

Lemma 5.6 This GJ algorithm has degree A = O(mke 'log(d/€)) and predicate complexity
p<2m. 90(k) . (d/k)gk.

Proof Since SA has m rows, computing (SA)T(SA) with Lemma 5.2 in step 1 has degree O(m)
and predicate complexity 2"*. For each P;, the ¢ powering iterations in step 3 blow up the de-
gree by ¢. Since Z; has k columns, computing ZiZiT with (the transposed version of) Lemma 5.2

blows up the degree by O(k) and the predicate complexity by 2¥. Choosing Z in step 4 en-

d
tails pairwise comparisons between () values, blowing up the predicate complexity by (<’5)) <

e2(ed/k)?*. Step 5 blows up the degree by only O(1) and does not change the predicate complex-
ity (note that ZZ t has already been computed). The final check whether I:kve(S ,A) > ris one
of (Z) < (ed/k)* polynomials (one per possible value of Z). Overall, the algorithm has degree
O(mkq) = O(mke " log(d/€)), and predicate complexity at most 2™ - 20) . (d/k)3¥. [

Next we show that the proxy loss approximates the true SCW loss.

Lemma 5.7 For every S, A, it holds that 0 < Ly, (S, A) — LIV (S, A) < e

11



Proof Given S, A, let B = A(SA)(SA), and let U € R™* a matrix whose columns are the
top k left-singular vectors of B. This means [B]; = UU” B. Therefore, by Lemma 5.1, we have
LYW (S, A) = ||[A — UUTB||%. Let Z be the matrix computed in step 4 of the GJ algorithm for
IAJ;M(S, A), and recall we have ﬁk7€(5, A) = ||A— ZZTB||%. On one hand, since Z has k columns,
7 71 B has rank at most k. Therefore, the optimality of [B]; = UU” B as a rank-k approximation
of B implies,

|B-UUTB|} < |B - 22!B}- @)
On the other hand, by Lemma 5.5, some P; considered in step 2 of the GJ algorithm satisfies
Equation (1). By Theorem 5.4, this implies that its corresponding Z; (computed in step 3) satisfies
|B — ZiZ;rBH%7 < (1+¢)-||B—UUTB|%, and consequently, Z satisfies

|B—ZZ'B||% < (1+¢)-||B-UUTBJ|%. A3)
Since (SA)T(SA) is a projection matrix, we have by the Pythagorean identity,
Lye(S,A) = |A - ZZ' B[
= ||A—ZZTA(SA)T(SA)| %
= [ A(SA)(SA) = Z2ZT A(SA)(SA)|F + | AT = (SA)T(SA))|[7
=B - ZZ'B|% +||A - B|%,

and similarly, L}°V(S, A) = |A — UUTB||% = |B — UUTB|% + ||A — BJ/%. Putting these
together, ﬁk,e(S, A) — LFW(S,A) = |B — ZZ'B||% — ||B — UUT B||%. From Equations (2)
and (3) we now get, 0 < L(S, A) — LIW(S,A) < e-||B — UUT BJ%. The lemma follows since
both (I — UUT) and (SA)T(SA) are projection matrices, implying that

I( = UUT)B% < IBlE = [IA(SA) (SA)E < Al
and we recall that we assume throughout that || A]|% = 1. [

We can now complete the proof of the upper bound in Theorem 2.2. Let us recall notation: Let
A be set possible input matrices to the LRA problem (i.e., all matrices A € R™*¢ with || A||% = 1),
and let S be the set of all possible sketching matrices that IVY can learn (which are all matrices of
order m x n with the fixed sparsity pattern used by SCW and IVY). The class of IVY losses (whose
fat shattering dimension we aim to bound) is Lryy = {L3WV(S,-) : A — [0,1]} ses, and the class
of proxy losses is £, = {Ly(S,-) : A — [0, 1]}ses.

By Lemma 5.6, given A € A and S € S, the proxy loss ﬁm(S, A) can be computed by a GJ
algorithm with degree A = O(mke'log(d/¢)) and predicate complexity p < 2™ -20%) . (d/k)3*,
Since each S € S is defined by ns real parameters, Theorem 3.3 yields that

pdim(£,) = O(nslog(Ap)) = O(ns - (m + klog(d/k) + log(1/€))). 4)
Let Ay,..., Ay € Abe a subset of matrices of size N which is e-fat shattered by Lyyv. Recall
that by Definition 2.1, this means that there are thresholds 71, ...,ry € R, such that for every I C
{1,..., N} there exists S € S such that LYW (S, A;) > r; +€ifi € I and LYWV (S, 4;) <1 — ¢
if i ¢ I. By Lemma 5.7, this implies that i}k,e(S, A;) > r;ifand only if i € I. Thus, A;,..., Ay
is pseudo-shattered by Le, implying that N < pdim(ﬁe). Since this holds for any subset of size
N which is e-fat shattered by Lryy, we have fatdim,(Lrvy) < pdim(Z.). The upper bound in
Theorem 2.2 now follows from Equation (4).
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6. Other Learning-Based Algorithms in Numerical Linear Algebra

Generally, our approach is applicable whenever the loss incurred by a given algorithm (or equiv-
alently, by a given setting of parameters) on a fixed input can be computed by an efficient GJ
algorithm (in the efficiency measures of Definition 3.2), when given “oracle access” to the opti-
mal solution for that fixed input.5 In this section, we show that in addition to IVY, our method
also yields generalization bounds for various other data-driven and learning-based algorithms for
problems in numerical linear algebra (specifically, LRA and regression) that have appeared in the
literature. The first two algorithms discussed below (Butterfly LRA and Multi-sketch LRA) are
variants of IVY, and the bounds for them essentially follow from Theorem 2.2. For the other two
algorithms (Few-shot LRA and Learned Multigrid) we describe the requisite GJ algorithms below.

Butterfly learned LRA. Ailon et al. (2020) suggested a learned LRA algorithm similar to IVY,
except that the learned sparse sketching matrix is replaced by a dense but implicitly-sparse butterfly
gadget matrix (a known and useful gadget that arises in fast Fourier transforms). This gadget induces
a sketching matrix S € R™*" specified by O(m logn) learned parameters, where each entry is a
product of logn of those parameters. Since they use the IVY loss to learn the matrix, our results
give the same upper bound as Theorem 2.2 on the fat shattering dimension of their algorithm, times
log n to account for the initial degree (in the GJ sense of Definition 3.1) of the entries in .S.

Multi-sketch learned LRA. Liu et al. (2020) propose a more involved learned LRA algorithm,
which uses two learned sketching matrices. Still, they train each of them using the IVY loss, and
therefore the upper bound from Theorem 2.2 holds for their algorithm as well, up to constants.

Few-shot learned LRA. Indyk et al. (2021) use a different loss than IVY for learned LRA:
loss(S, 4) = |UL'STSU — Ip||%, where U is the left-factor in the SVD of A, Uy, is its restriction
to the top-k columns, and Iy is the identity of order k£ concatenated on the right with zero columns
to match the number of columns in U. Recall that in the GJ framework, the GJ algorithm has free
“oracle access” to U (see Remark 3.4). Therefore, this loss can be computed by GJ algorithm of
degree 4 and predicate complexity 1, yielding an upper bounded of O(ns) on its pseudo-dimension
by Theorem 3.3.

Learned multigrid regression. Luz et al. (2020) presented a learning-based algorithm for linear
regression, which is based on the well-studied multigrid paradigm for solving numerical problems.
The specific algorithm they build on is known as 2-level algebraic multigrid (AMG). It approximates
the solution to a regression problem min,|| Az — b||3, where A is a square matrix of order n x n, by
iterative improvements that use a sparse auxiliary matrix P € R™*" called a prolongation matrix.
While there is a large body of literature on heuristic methods for choosing P, Luz et al. (2020)
suggest to instead learn it using a graph neural network. Similarly to IVY, they keep the sparsity
pattern of P fixed, and learn the values of its non-zero entries as trainable parameters.

5. See Remark 3.4 regarding oracle access to the optimal solution. This oracle access was not needed for proving our
bounds for IVY, but t will be needed for two of the algorithms discussed in this section: Few-shot LRA and Learned
Multigrid.
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Let () denote the approximate solution produced by 2-level AMG in iteration 4, starting from
some fixed initial guess 2. For details of how 2 is computed in practice, we refer to Luz et al.
(2020). For our purposes, it suffices to note that there is a closed-form formula for obtaining (%)
from the true optimal solution x*, described next. Let s1, so > 1 be two fixed (non-learned) integer
parameters of the algorithm. Let L be the lower-triangular part of the input matrix A (including the
diagonal). Luz et al. (2020) restrict their algorithm for input matrices A and prolongation matrices
P such that both L and P” AP are invertible. We then have the identity,

2O =" + (I —L7PA)%2 . (I - P(PTAP)'PTA). (I — L7'A) - (207D —2%).  (5)

Let || P||o denote the number of non-zeros in the fixed sparsity pattern of P, and recall that m is
the row-dimension of P. We show that the pseudo-dimension of 2-level AMG with q iterations is
O(||Pllo - qlogm), by describing a GJ algorithm T" for computing its loss ||Az(9) — b||2. To this
end, note that I" has “oracle access” to any information about A (see Remark 3.4). In particular,
(I — L7YA)%, (I — L=YA)*2 and z* are all available to it. Furthermore, as shown in the proof
of Lemma 5.2, T can compute (PTAP)~! using degree O(m) and predicate complexity zero.
Using Equation (5), it can compute () from #(*~1) while increasing the degree by only 2 (from
multiplying (PT AP)~! by P on the left and by P” on the right). Iterating this, I' can compute acy
and ||Az(® — b||2 from the initial guess z(*) using degree O(m?) and predicate complexity zero.
Comparing the loss || Az(9) —b||3 to a given threshold r increases the predicate complexity to 1. The
upper bound O(|| P||o - ¢ log m) now follows from Theorem 3.3.
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Appendix A. Proof of the Goldberg-Jerrum Framework (Theorem 3.3)

In this section we prove Theorem 3.3, the main theorem of the GJ framework presented in Section 3.
The proof is taken from Goldberg and Jerrum (1995) with slight modifications, and we include it
here for completeness.

We start with an intermediate result about polynomial formulas.

Definition A.1 A polynomial formula f : R™ — {True False} is a DNF formula over boolean
predicates of the form P(x1,...,x,) > 0, where P is a polynomial in the real-valued inputs to f.

Theorem A.2 Using the notation of Section 2.1, suppose that each algorithm L € L is specified by
n real parameters. Suppose that for every x € X and r € R there is a polynomial formula f, , over
n variables, that given L € L checks whether L(x) > r. Suppose further that f,, has p distinct
polynomials in its predicates, and each them has degree at most /. Then, the pseudo-dimension of

L is O(nlog(Ap)).

Proof Letxq, ...,z be a shattered set of instances, and 71, . . ., ry the corresponding loss thresh-
olds. We need to show N = O(nlog(Ap)).

Foreveryi =1,..., N, letus denote f; = f, », for brevity. Then, for a given L € L, f; checks
whether L(z;) > r;. Thus, z1, ..., xy being a shattered set means that the family of /NV-dimensional
boolean strings { f1(L), ..., fx(L) : L € L} has size 2V,

The truth value of each f; is determined by the signs of p different polynomials in n variables,
each of degree at most A. Therefore, a boolean string f1(L), ..., fx (L) is determined by the signs
of at most p/N different polynomials in n variables, each of degree at most A. We now use the
following classical theorem,

Theorem A.3 (Warren (1968)) Suppose N > n. Then N polynomials in n variables, each of
degree at most A, take at most O(NA/n)" different sign patterns.

In our case, if N < n then the conclusion N = O(nlog(Ap)) is trivial, thus we may assume
N > n and hence pN > n. Now by Warren’s theorem, 2V = {f(L),...,fy(L) : L € L} =
O(pNA/n)™, and by solving for N we get N = O(nlog(Ap)) as desired. [ |

Now we can prove Theorem 3.3. We can describe I';. ;- by a computation tree, where arithmetic
operations correspond to nodes with one child, conditional statements correspond to nodes with two
children, and leaves correspond to output values. We can transform the tree into a polynomial DNF
formula (as defined in the previous section) that checks whether L(z) > 7, by ORing the ANDs of
the conditional statements along each root-to-leaf computation path that ends with a “true” leaf.

Each branching node in the tree (i.e., a node with two children) corresponds to a conditional
statement in I';, ., which has the form of a rational predicate, meaning it determines whether R > 0
for some rational function R of the inputs of I'; ;.. It can be easily checked that we can replace
each such rational predicate with O(1) polynomials predicates (that determine whether P > 0 for
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some polynomial in the inputs of I';, ,-) of degree no larger than that of . Since I'; ;- has predicate
complexity p, the obtained formula has at most O(p) distinct polynomials in its predicates. Since
Iz has degree A, each of these polynomials has degree at most A. Theorem 3.3 now follows from
Theorem A.2.

Appendix B. Omitted Proofs from Sections 4 and 5

B.1. Proof of Fact 4.1

If wT A = 0 then SCW returns a zero matrix, whose loss is || A||%, and the statement holds. Now
assume w’ A # 0. We go over the steps of SCW (Algorithm 1):

e Compute the row vector w’ A.

e Compute the SVD of w’ A. Note that for any row vector 27, its SVD ULV is given by U
being a 1 x 1 matrix whose only entry is 1, ¥ being a 1 x 1 matrix whose only entry is ||z||,
and V7T being the row vector HTIHZT' So for 27" = w” A we have VT = MwTA.

e Compute [AV];, the best rank-1 approximation of AV. Butin our case AV equals WAATW’
which is already rank 1, so its best rank-1 approximation is itself, [AV]; L AATw.

ATl

e Return [AV]; VT, which in our case equals WAATIUU}TA.

So, the output rank-1 matrix of SCW is WAATwaA, and its loss is as stated.

B.2. Proof of Lemma 5.1

Write the SVD of A(SA)T(SA) as ULV, Note that (SA)T(SA) is the orthogonal projection on
the row-space of S A, in which every vector is a linear combination of the rows of A. Therefore,
projecting the rows of A onto the row-space of SA spans all of the row-space of S A, or in other
words, the row-spans of A(SA)T(SA) and of S A are the same. Consequently, the rows of V7 form
an orthonormal basis for the row-space of SA. This means in particular that V'V is the orthogonal
projection on the row-space of SA, thus (SA)T(SA) = VVT, so we can write the matrix from the
lemma statement as [A(SA)T(SA)], = [AVVT];.

We recall that SCW returns the best rank-% approximation of A in the row-space of SA (see
Woodruff (2014)), meaning it returns ZV T where Z is a rank-k matrix that minimizes || A—ZV 7|2,
So, we need to show that

V Z ofrank k, ||A—[AVVT||% < ||A—2ZVT|3%. (6)
We use the following observation.
Claim B.1 [AVVT),VVT = [AVVT],.

Proof Recall that A(SA)T(SA) = AVVT, thus the SVD of AVVT is UXVT, thus [AVVT];, =
UkEkaT. Since VkTVVT = VkT (projecting a subset of & rows of V' onto the row-space of V7
does not change anything), we have [AVVT|,VVT = UkEkaTVVT = UkaVkT =[AVVT],. |
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Proceeding with the proof of Lemma 5.1, we now have for every Z of rank k,

1A = [AVVI ]|l = [AVVT = [AVVILVVT|[F + AU = VVT) = [AVVT (I = VVT)|IF
= [|AVVT — [AVVI ]| + A = AV
<[JAVVTE = ZVTE + A - AVVTE
=|lA-2ZVT|E,

where the first and last equalities are the Pythagorean identity (orthogonally projecting onto and
against V'VT), the second equality is by Claim B.1, and the inequality is by the optimality of
[AVVT] & as a rank-k approximation of AVVT (since Z has rank k). This proves Equation (6),
proving the lemma.

B.3. Proof of Theorem 5.4

In this section we explain how to read the statement of Theorem 5.4 from Musco and Musco (2015).
All section, theorem and page numbers refer to the arXiv version of their paper.®

The relevant result in Musco and Musco (2015) is the Frobenius-norm analysis of their Algo-
rithm 1 (which they call “Simultaneous Iteration”), stated in their Theorem 11. As they state in
their Section 5.1, for the purpose of low-rank approximation in the Frobenius norm, it suffices to
return Q instead of Z (in the notation of their Algorithm 1). Thus, steps 4—6 of Algorithm 1 can
be skipped. Since (again in the notation of their Algorithm 1) Q is the result of orthonormalizing
the columns of K, we clearly have KK = QQT (this is because MM is the projection matrix
on the column space of any matrix M, and K and Q have the same column spaces). Since for our
purpose we only need the projection matrix QQ (rather than the orthonormal basis Q), we can
also skip step 3, and simply use the matrix K as the output of their Algorithm 1, while maintaining
the guarantee of their Theorem 11 (with ZZ” replaced by KK

Next, while their Algorithm 1 chooses the initial matrix II as a random gaussian matrix, they
state in their Section 5.1 that their analysis (and in particular, their Theorem 11) holds for every
initial matrix II that satisfies the guarantee of their Lemma 4, which is equivalent to satisfying our
Equation (1).

Finally, note that they set the number of iterations in step 1 of their Algorithm 1 to ¢ =
O(e~'log(d)), while we set it in Theorem 5.4 to ¢ = O(e 'log(d/e)). This is because in their
setting they may assume w.l.o.g. that ! = poly(d) (see bottom of their page 10), while in our
setting this is not the case.

Altogether, the statement of Theorem 5.4 follows.

B.4. Proof of Lemma 5.5
For completeness, we discuss two ways to prove the lemma.
Proof 1. We start by noting that a significantly stronger version of Lemma 5.5 follows from The-

orem 1.3 of Deshpande et al. (2006). Slightly rephrasing (and transposing) their theorem, it states
that for every matrix B € R™*9, there is a distribution (that depends on B) over matrices P € R4**

6. https://arxiv.org/abs/1504.05477v4.
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whose columns are standard basis vectors, such that if we let By, be the projection of the columns
of B onto the columns-space of BP, namely B, = (BP)(BP)' B, then we have

Ep||B — Byl < (k+1) - |B — [Byl -

In particular, there exists a supported P that satisfies this equation without the expectation,
yielding Lemma 5.5.

Remark. Note that this is in fact a quantitatively stronger version of Lemma 5.5, since the O (kd)
term in Equation (1) is replaced here by (k + 1), which Deshpande et al. (2006) furthermore show
is the best possible. However, this improvement does not strengthen the final bounds we obtain in
our theorems. This is because the analysis of the power method (Theorem 5.4) requires the log d
term in the number of iterations ¢ even if the initial approximation (Equation (1)) is up to a factor of
(k+ 1) instead of O(kd). Technically, this stems from the analysis in Musco and Musco (2015): In
the equation immediately after their eq. (4) on page 11, the log d term is needed not just to eliminate
d from the numerator, but also to gain a d°V) term in the denominator.

Proof 2. Since the aforementioned result of Deshpande et al. (2006) is difficult and stronger than
we require, we now also give a more basic proof of Lemma 5.5, for completeness.

Let B € R™*? be written in SVD form as B = ULV, Let VkT be the matrix with the top k
rows of VT, and V_Tk the matrix with the remaining rows. We use the following fact from Woodruff
(2014), which originates in Boutsidis et al. (2014) and is also used in Musco and Musco (2015) (see
their Lemma 14).

Lemma B.2 Let P € RY%F pe any matrix such that the k x k matrix VkTP has rank k. Then,
|B ~ (BP)(BP)'BI: < 1B~ [Blil% - (1+ IVEPI3- 1V PYI) -

We will construct a matrix P € R%** whose columns are distinct standard basis vectors of
R?. Since it would thus have orthonomal columns, as does V_j, we would have ||V, P|j3 <
IVZ3 - | P|3 = 1. Therefore, using Lemma B.2, for P to satisfy Equation (1) and thus prove
Lemma 5.5, it suffices to construct it such that V, P has rank k and satisfies || (V,I P)||3 < d. This
is equivalent to showing that the smallest of the & singular values of Vk,TP is at least 1/ V/d, which
is what we do in the rest of the current proof.

We construct P by the following process. Initialize Z; € R¥*? as Z; « VkT, and a zero matrix
P eR™F Fori=1,...,k:

1. Let zi, ..., 2" denote the columns of Z;.

2. Let j; +— argmaxc[q) MH%

3. Set column i of P to be e;,.

4. Let II; be the orthogonal projection matrix against span(vj, , . .., v;,).
5. Ziy1 < ILVE.

Let vy, ..., vq denote the columns of VkT. Observe that the columns of VkTP are vy, ..., Vj,-
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: : 12 ~ k—itl
Claim B.3 Foreveryi=1,...,k we have |2} ||5 > il

Proof Leti € [k]. Since VkT has orthonormal rows, each of its k singular values equals 1, and
any best rank-(i — 1) approximation of it, [V;I];_1, satisfies ||V;I — [ViI]i-1]|% = k — (i — 1).
Since II;_; is a projection against i — 1 directions, (I — IT;_1)V;! can be viewed as a rank-(i — 1)
approximation of VkT, and therefore

1Z:l1% = I ViR = Vi = (= o) Vi 5 2 1V = Vi DB =k — i+ 1

Hence the average squared-f2 mass of columns in Z; is at least kffl“, and hence the column with

maximal ¢5-norm — which we recall is defined to be z;Z — has squared ¢5-norm at least k%flﬂ. |

Claim B4 Foreveryi=1,...,k, z;Z is spanned by v, , ..., vj,.

[

Proof Observe that Z;Z = II;_1vj, (with the convention that Il is the identity). Therefore, Z;Z =

vj, — (I —II;—1)vj,, and the claim follows by noting that  — IT;_; is the orthogonal projection onto

the subspace spanned by v;,,...,vj,_,. |
. 1 k . .

ClaimB.5 z; ...,z are pairwise orthogonal.

Proof Leti < ¢'. By Claim B.4 z}z is spanned by vj, , ..., vj,. At the same time, z;'./_, is a column of

the matrix Z;, whose columns have been orthogonally projected against vy, ,...,v;, . a set that

contains vj, , ..., vj,. Thus z}/ is orthogonal to z;l |

Claim B.6 Let i € [k]|. Then vj, can be written uniquely as a linear combination of z}l, e ,z;i,

such that the coefficient of z;Z is 1.

Proof We have shown in Claim B.5 that z]ll, e sz are orthogonal and in Claim B.3 that each is
non-zero, so they form a basis of R¥. Thus vj, 18 written uniquely as a linear combination of them.
As noted in the proof of Claim B.4, we have z;Z = II,_1vj, = vj, — (I — II;_1)vj,, or equivalently
Vj;, = Z;l + (I - Hi—l)'Uji-

We recall that (1 —II;_ ) is the orthogonal projection onto the subspace W = span(v;,,...,vj,_,),
whose dimension is at most ¢ — 1. By Claim B.4, W contains zj,, ..., zj_,. Since zj,, . .., z;, form
a basis of R¥, we now get that W is spanned by Zjys -+, %j;_1» and cannot contain any z;, with
i’ > . In particular, (I — II;_q)vj, is written uniquely as a linear combination of z;,, ..., zj ;.
Recalling that v;;, = z]‘7 + (I — I;—1)vj,, the claim follows. [ |

We can finally complete the proof of Lemma 5.5. For every i € [k], let ¢; denote the unit-

length vector in the direction of zii, ie., ¢ = H; Hz}_. Let Q € R*** be the matrix whose
Ji ¢

columns are qq, . . ., ;. Claim B.6 means that we can write VkTP (since its columns, we recall, are
Vjyy-v-,Vj,) as VkTP = @R, where R is an upper triangular matrix, whose diagonal entries are
Hz}z | fori = 1,...,k. Since @ has orthonormal columns (from Claim B.5 and the fact that we
normalized its columns), this is a QR-decomposition of VkTP. Hence, VkTP and R have the same
singular values. The diagonal entries of R are its eigenvalues, which are also its singular values as
all are non-negative. By Claim B.3, each diagonal entry of R is at least 1/ V/d. This implies the
same lower bound on the smallest singular value of R and thus of VkTP, which as explained earlier,
implies Lemma 5.5.
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Appendix C. Proof of the Lower Bound

In this section we prove the lower bound in Theorem 2.2, restated next.

ﬁ) the e-fat shattering dimension of IVY with

target low rank k, sketching dimension m and sparsity s is Q(ns).

Theorem C.1 Forevery s < k < mand e € (0,

Proof We may assume w.l.o.g. that m = k, since we can always augment a sketching matrix with
k rows with m — k additional zero rows, without changing the result of SCW.

We start with the special case s = k, where the sketching matrix S is allowed to be fully dense,
and the desired lower bound is 2(nk). Let Ay be the n x k matrix whose i-th column is e; (the
standard basis vector) for alli = 1...k. Foreveryi € {1...k}andt € {k+1...n}, Let A(;
be given by replacing the i-th column of A with e;. Observe that each A(; ;) has rank k, and each
of its singular values equals 1. We will show that the set of matrices Z = {A; 4,y :i=1...k, t =
k+1...n} is shattered, which would imply the lower bound since its size is k(n — k) = Q(nk).

Let Z' C Z. It suffices to exhibit a sketching matrix S € R¥*™ (with unbounded sparsity, since
s = k) such that for every A, ;), the SCW loss of using S for a rank-k approximation of A is 0
if Ay € Z', and at least 1 otherwise. We set the first k columns of S to be the order-k identity
matrix. Then, forevery t =k +41,...,n,let Jy={i € 1...k: A, € Z'}. In the ¢-th column of
S, we put 1’s in rows J; and 0’s in the remaining rows.

Fix A(; ;). Recall that SCW returns the best rank-k approximation of A in the row-space of
S A, which is a k X k matrix.

e Suppose A(; 4 ¢ Z'. In this case, we argue that the i-th row of S A 1s zero. This implies
that the row-space of SA(; ;) has dimension at most k — 1, so SCW incurs loss at least 1.

Indeed, row i of SA(; ;) equals the sum of rows j of A; ;) for which S(i,7) = 1. The only
non-zero rows in A; ), by construction, are rows {1...k} \ {i} and row ¢. Since the first k
columns of S are the identity, S(i,j) = 0 for every j € {1...k} \ {i}. Since i ¢ J;, then by
construction of S we have S(i,t) = 0. Overall, the i-th row of SA; ;) is zero.

e Suppose A(; ;) € Z'. In this case, we argue that the row-space of SA(;) has dimension
k. Since the ambient row-dimension is also k, this means SCW returns a perfect rank-k
approximation, i.e., zero loss.

Indeed, again, the only non-zero rows of A; ;) are rows {1...k} \ {i} and row ¢. But in this
case i € Ji, thus S(i,t) = 1 and thus row i of SA; ;) equals e;. For every j € {1...k} \ {3},
row j of SA(; 4 equals either e; + e; (if j € J;) or just e; (if j ¢ Jy). It is thus clear that the
rows of SA(; ;) span all of R,

In conclusion, the SCW loss is 0 on matrices in Z’ at least 1 on matrices in Z \ Z'.

Next we extend it to an 2(ns) lower bound for any s = 1, ..., k. We assume for simplicity that
s is an integer divisor of &k and that k is an integer divisor of ns.

We partition an input matrix A € R™** into k/s diagonal blocks of order (ns/k) x s each
(everything outside the diagonal blocks is zero). To construct the shattered set, we first set each
diagonal block in A to Ay € R(ns/k)xs (as defined above), then choose one “critical” block b €
{1,...,k} and replace its Ag with A(; ;) as defined above, with i € {1,...,s} andt € {s +
1,...,ns/k}. Denote the resulting matrix by A, ; ;). The total size of the shattered set { A ;) }
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is % -5+ (% —5) = (n—k)s = Q(ns). The corresponding sketching matrix, arising from the
dense construction above, has block-diagonal structure with blocks of order s x (ns/k) each, and
in particular has at most s nonzeros per column, as needed.

The correctness of the construction follow immediately from the dense case. In more detail, let
Z" be a subset of the shattered set { A, ; 1) }. Fix A, ;1) (not necessarily in Z”). The k x k matrix
S A(p,i,1) has block-diagonal structure with blocks of order s x s. Each non-critical block equals the
order-s identity, while the critical block, by the proof of the dense case above, equals the order-s
identity if A, ; ;) € Z" and has rank at most s — 1 otherwise. Therefore, if A ; ;) € Z” then SCW
with sketching matrix S finds a zero-loss rank-k approximation of every A, ;) € Z ", and incurs
loss at least 1 for every A, ;) ¢ Z”.

Finally, recall that we need to normalize our matrices to have squared Frobenius norm 1. In the
above construction it is instead k, so we need to divide each entry by 1/ v'k. This means that the
loss is zero for matrices in the shattered set, and is at least 1/ \/E for matrices outside the shattered
set. Thus, the set is e-fat shattered for every € € (0, ﬁ) [ |

Appendix D. Proof of Theorem 2.3

D.1. Uniform Convergence and ERM Upper Bound

By classical results in learning theory, the fat shattering dimension can be used to obtain an upper
bound on the number of samples needed for uniform convergence and for ERM learning (see for
example Theorem 19.1 in Anthony and Bartlett (2009)), and we could simply plug Theorem 2.2 into
these results. However, we can get a sharper bound by exploiting the proxy loss from Section 5.3,
since for the latter we have an upper bound on the pseudo-dimension, which yields sharper bounds
for ERM learning than the fat shattering dimension.

Let /vy = l1yvy(€,0) be the number of samples required for (e, §)-uniform convergence for
the family IVY losses, Lrvy = {LFWV(S,:) : A — [0,1]}ses- Let / = {(e, 8) be the number of
samples required for (¢, §)-uniform convergence for the family of proxy losses, L= {ﬁhE(S ,)
A —[0,1]} ses. Fix ¢ matrices Ay, ..., A; € A. Lemma 5.7 implies

vVSes,

o~y =

1 1

A 1 W

L € S, AZ — = LSC S, AZ <e
?:1: e ) F; E PR )| <

=1

and
VSES, |Eavnllne(S,A)) — EanlLEV(S, A))| <

Let D be a distribution over .A. By definition of ¢, with probability at least 1 — § over sampling
Ay, ..., A; independently from D, we have

VSeS,

|

i
S L1e(S, Ai) — EavplLy (S, A)]| < e,
i=1
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which combined with the above, implies

i
1
vVSeS, ?ZLECW(& Ay) = E4up[LEV(S, A)]| < 3e.
=1

Consequently, /vy (3¢,8) < {(e,8). By classical results in learning theory (see, e.g., Theorem
3.2 in Gupta and Roughgarden (2017)), the sample complexity can be upper bounded using the

A

pseudo-dimension, and in particular, /(e,§) = O(e~2 - (pdim(L,) + log(1/6))). By Equation (4)

in Section 5.3, pdim(L,) = O(ns - (m + klog(d/k) + log(1/¢))). Putting everything together,
vy (3¢6,6) = O(e™2 - (ns - (m + klog(d/k) +log(1/¢€)) + log(1/4))).

As a consequence, that many samples suffice for (Ge, §)-learning IVY with ERM. The upper bound

in Theorem 2.3 follows by scaling e down by a constant.

D.2. Uniform Convergence Lower Bound

We proceed to the lower bound on the number of samples needed for IVY to admit (e, €)-uniform
convergence. It relies on some known results about the connection between uniform convergence
and the fat shattering dimension, which we now detail.

We introduce some notation. Let £ be a class of functions L : X — [0, 1], and let D be a
distribution over X. For every L € L, denote its expected loss over D by

z(L) := Epup[L(2)].
Given / i.i.d. samples (21, ..., x;) ~ D¢, denote the empirical loss over the samples by
1
4(l) = Z L(z;).
i=1
Suppose £ admits (e, €)-uniform convergence with ¢ samples. This can now be written as
Pr [sup |2e(L) —2(L)| < el >1—e (7

D! |Lec

Our goal for this section is to prove a lower bound on ¢. We begin the proof. Equation (7) implies

Epe [sup |Ze(L) — z(L)]| < 2e. (8)
Lel |

This expectation can be bounded using Rademacher averages. Define the centered class L. of £ as

Lo:={L—=z(L):LecL}

For the given sample (z1, ..., xy), define the Rademacher average of L, as
1 1
Rad/(L.) :=Eo,,... 0, | sup 7 Z o' (z;)|| =Eo,.. o, |SUp 7 Z oi (L(x;) — z(L))]] ,
L'eL. im1 LeLl i=1




where each of o1,. .., 0y is independently uniform in {1, —1}. The desymmetrization inequality
for Rademacher processes (see Koltchinskii (20006)) states that

Epe [sup 5(L) — z<L>|] > T [Rady (L)) ©)
Lel

A version of Sudakov’s minorization inequality for Rademacher processes (Equation (26) in Stein-
wart (2015), based on Corollary 4.14 in Ledoux and Talagrand (2013)) states that

—1/2
Radz(ﬁc)Zoq'<1H<2+ - )) -supyy/InNy (7, £, ), (10)
\/z ‘IJZ(EC) >0

where a1, g > 0 are absolute constants, N (e, £, ¢) is the covering number, and

4
S (L @))2.
=1

We forgo the definition of the covering number, since we only need the standard fact that it can be
lower-bounded in terms of the fat shattering dimension. It is encompassed in the following claim.

ClaimD.1 Let ~ € [4¢,1) and § € (0, 155)- Suppose L admits (e, §)-uniform convergence with {
samples, and fatdimig (L) > 1. Then In Na(v, £, ) > % - fatdimyg (£).

Proof Let ¢’ be the number of samples required for (%fy, 0)-learning £ (see Section 2.1 for the
definition of (e, §)-learning). Theorem 19.5 in Anthony and Bartlett (2009) gives the lower bound
0> ﬁ(fatdimv/(ga)(ﬁ) —1)forany 0 < o < 1/4. Setting o = 1/32 and using fatdim;¢, (L) >
1 yields ¢/ > 2 - fatdimig, (L) — 2 > fatdimie,(L). Since (e, d)-uniform convergence implies
(2¢, §)-learning and thus (37, §)-learning (as v > 4e), we have £ > ¢ > fatdimjg,(L). Now
we can apply Lemma 10.5 and Theorem 12.10 from Anthony and Bartlett (2009), which yield
In N2 (v, £,€) > InNi (v, £,€) > £ - fatdimigy (L). [ |

Putting together everything so far (i.e., combining Equations (8) to (10) and claim D.1), we get

~1/2
(651 a9 .
—— - |In(2 : \/fatd
Vi <n< + \I’z(ﬁc)>> sup v4/fatdimye (L)

v€[4e,1)

1
2¢ Z §EDZ

)

provided that fatdimig,(£) > 1 (as needed for Claim D.1).

The derivations so far have been for any £ that admits (e, €)-uniform convergence with ¢ sam-
ples. Now we begin specializing the arguments for IVY, that is, for £ = Lryy. We choose
v = 1/(64VE). Note that the assumption in Theorem 2.3 is that ¢ < 1/(256v/k), ensuring that
7 > 4e. By the lower bound in Theorem 2.2, fatdim;¢, (L) = Q(ns). Plugging these above, we get

e> Q1) Epe \/%(m <2+\I/;zc)>>_l . 11)

It remains to bound ¥,(L.) from below. We show it is lower-bounded by a constant even for very
simple input distributions for IVY, supported on only two matrices (and indeed, for any distribution
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such that there is a loss function L € £ with loss 0 on half the distribution mass and loss 1 on the
other half). Recall that

Let e, ...,e, € R™ be the standard basis in R™. Let Ay, Af), A1, A} € R™ % be defined as fol-
lows: the first £ columns of A() are e, . .., ek, and the rest are zero; the first k£ columns of A are
€k+1, - - - » €2k, and the rest are zero; Ay = ﬁA{); and A; = ﬁA/l Note that || Ag||% = ||41]|% =
1. Let D be the uniform distribution over { Ap, A;}. Let Ly € £ be the IVY loss function induced
by the sketching matrix Sy € R¥*™ whose rows are el ... ,6%. (In the notation of the previous
sections, Ly = L%CW(SO, -) € Lrvy.) Itis not hard to see that Ly(Ap) = 0 and Lo(A;) = 1. In
particular, z(Lg) = % Therefore, for any sample z1, ..., z, from D,

\IIZ(ACC) >

¢ ¢ 2
> (Lo(ai) — 2(Lo))* = > <;) = %
=1 i=1

The proof is now easily completed. Plugging the above bound on W,(L,) into Equation (11) yields

|
|-

e > Q1) - Epe [ ns/(ék:)} Since n, s, £, k are constants w.r.t. the sample from D, we can

dispense with the expecation and write € > Q(y/ns/(¢k)). Rearranging yields ¢ > Q(¢2ns/k).

D.3. General Learning Lower Bound

The lower bound Q(e~! + n.s) on the number of samples needed for (e, §)-learning IVY with any
learning procedure follows by plugging the lower bound on the fat shattering dimension from The-
orem 2.2 into Theorem 19.5 in Anthony and Bartlett (2009).

Appendix E. Connection to Prior Work

In this section we discuss the connection of our techniques to prior techniques for proving statistical
generalization bounds for data-driven algorithms, and specifically to Gupta and Roughgarden (2017)
and Balcan et al. (2021a). The goal is to place our work in the context of related work, and also to
explain why previous techniques do not give useful generalization bounds for the linear algebraic
algorithms considered in this paper.

E.1. Illustrative Example 1: Learning Greedy Heuristics for Knapsack

Gupta and Roughgarden (2017) discuss learned heuristics for the Knapsack problem as an illustra-
tive example for their statistical learning framework. Recall that in the Knapsack problem, the input
is n items with values vy, ..., v, > 0, respective costs ¢y, ..., ¢, > 0, and a cost limit C' > 0. The
goal is to return I C {1,...,n} that maximizes the total value ) ,_; v; under the cost constraint
> ic1 € < C. This problem is well-known to be NP-hard.

Gupta and Roughgarden (2017) consider the following family of greedy heurstics for Knapcask.
Given a parameter p € R, define the rank of item ¢ as v; /c{, and let L, be the greedy heuristic that
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adds the highest ranked items to I as long as the cost limit is not exceeded. They then let p be a
learnable parameter, and prove that the pseudo-dimension of the class of heuristics £ = {L,} )er
is O(logn).

The crux of the proof is the observation that for a given instance, the “loss” (or in this case the
utility, since this is a combinatorial maximization problem) of a solution [ is fully determined by
the result of the (%) comparison v;/c >" v;/ cf, or equivalently p >" log(vj/v;)/ log(c;/c;). This
means that the parameter space R is partitioned into (g) intervals such that the “loss” (utility) of
the given instance is constant on each interval. The pseudo-dimension can be then bounded by the
log of the number of intervals. The duality-based framework developed by Balcan et al. (2021a) is
a vast generalization of this argument, and recovers the same bound for Knapsack.

The GJ framework presented in Section 3 recovers it as well, for the same underlying rea-
son. Since the “loss” (utility) of a given instance is determined by the (72‘) comparisons p >’
log(wv;/v;)/ log(c;/ci), which are polynomial predicates of degree 1 in the variable p, it can be com-
puted by a GJ algorithm with degree 1 and predicate complexity (7). The upper bound O(logn) on
the pseudo-dimension thus follows from Theorem 3.3.”

E.2. Illustrative Example 2: IVY in the Case m = k =1

In order to compare our techniques with the duality-based framework of Balcan et al. (2021a), it is
instructive to consider the simple case m = k = 1 of IVY. In Section 4, we proved a tight bound of
O(n) on the pseudo-dimension of IVY in this case.

Our proof showed that for a given input matrix A € R"*<, the loss equals || A||% if the sketching
vector w € R” satisfies w’ A = 0, and equals 0 otherwise. By the main definition of Balcan et al.
(2021a), this means that the dual class of losses is (F, G, d)-piecewise decomposable, where F is
the class of constant-valued functions, G is the class of n-dimensional linear threshold functions,
and d is the column-dimension of A (note that d is the number of functions from G involved in the
condition w’ A = 0). Denoting the dual classes of F and G by F* and G* respectively (see Balcan
et al. (2021a) for the definition of dual classes), we have pdim(F*) = 0 and VCdim(G*) = n + 1.
Therefore, the main theorem of Balcan et al. (2021a) gives a bound of O(nlogn) on the pseudo-
dimension of IVY with m = k = 1, which is looser than the tight bound by log n.

We remark that since the condition w? A = 0 is equivalent to ||w” A||? = 0, the dual class is
also (F,Ga, 1)-piecewise decomposable where G is a class of quadratic threshold functions in n
variables. It can be checked that VCdim(G3) = 3(n + 1)(n + 2), leading to an even looser bound
of O(n?logn) on the pseudo-dimension.

E.3. The General Case

Finally, let us point out a formal connection between the GJ framework and the duality framework
of Balcan et al. (2021a). The proof of Theorem 3.3 in fact shows that if a class of algorithms ad-
mits a GJ algorithm with degree A and predicate complexity p for computing the loss, then the
dual class as defined by Balcan et al. (2021a) is (F, G, p)-piecewise decomposable, where F is
the class of constant-valued functions, and G is the class of polynomial threshold functions of de-
gree A’ = O(A) in n variables (where n is the number of parameters that specify an algorithm,

7. Note that each heuristic L, is specified by the single real parameter p, so n in the notation of Theorem 3.3 is 1.
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as in Theorem 3.3). The VC-dimension of the dual class G* can be upper-bounded by the num-
ber of monomials in n variables of degree at most A’, which is ("J;A ).8 Therefore, the main

n+A

theorem of Balcan et al. (2021a) implies an upper bound of O <("J{1A) log (( " ) p)> on the

pseudo-dimension. Unfortunately, this is typically much looser than the bound O(nlog(Ap)) in
Theorem 3.3. On the other hand, the result of Balcan et al. (2021a) is much more general, and can
handle decomposability beyond constant functions F and polynomial thresholds G.

Specifically for IVY, the main component in our proof of Theorem 2.2 was a GJ algorithm of
degree A = O(mk(d/e)?(1/9)) and predicate complexity p < 2 - 2¥ - (ed/k)?* for computing the
proxy loss (Lemma 5.6). While the main result of Balcan et al. (2021a) can technically be applied
here as described above, the pseudo-dimension upper bound it gives is super-polynomial in n (as
opposed to the linear dependence on n in Theorem 2.2), so it does not seem to be useful in our
setting.

8. The VC-dimension of the dual class could in principle be even smaller, if the primal class has a simpler structure than
the dual class. However, in typical scenarios the primal class is less nicely structured than the dual class, which is the
motivation for the work of Balcan et al. (2021a). Furthermore, if the primal class is indeed simpler, then there is no
reason to go through duality at all.
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