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Abstract

The recent success of neural network models has shone light on a rather surprising statistical

phenomenon: statistical models that perfectly fit noisy data can generalize well to unseen test

data. Understanding this phenomenon of benign overfitting has attracted intense theoretical and

empirical study. In this paper, we consider interpolating two-layer linear neural networks trained

with gradient flow on the squared loss and derive bounds on the excess risk when the covariates

satisfy sub-Gaussianity and anti-concentration properties, and the noise is independent and sub-

Gaussian. By leveraging recent results that characterize the implicit bias of this estimator, our

bounds emphasize the role of both the quality of the initialization as well as the properties of the

data covariance matrix in achieving low excess risk.
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1 Introduction

Understanding benign overfitting—the phenomenon where statistical models predict well on test data

despite perfectly fitting noisy training data [see, e.g., Zha+17; Bel+19; BMR21; Bel21]—has re-

cently attracted intense attention. One line of work has focused on understanding this phenomenon

in relatively simple models such as linear regression [KLS20; Has+19; Bar+20; Mut+20b; NDR20;

CL20; WX20; TB20; BSW20; CLG20; Koe+21] including with random features [Has+19; Yan+20;

LZG21], linear classification [Mon+19; CL21; LS20; Mut+20a; HMX21; DKT19; WT21], kernel re-

gression [LR20; MM19; LRZ20] and simplicial nearest neighbor methods [BHM18].

A complementary line of work [Sou+18; JT19; Gun+17; NSS19; Gun+18b; Gun+18a; YKM21;

Azu+21] has formalized the argument [NTS15] that, even when no explicit regularization is used

in training these models, there is nevertheless implicit regularization encoded in the choice of the

optimization method, loss function and initialization. They argue that this implicit bias is critical in

determining the generalization properties of the learnt model.

Recently, Azulay et al. [Azu+21] characterized the implicit bias of gradient flow applied to two-

layer linear neural networks with the squared loss. More concretely, the setting is as follows. Given n

data points (x1, y1), . . . , (xn, yn) ∈ R
p×R, let y := (y1, . . . , yn)

⊤ ∈ R
n and X := (x1, . . . , xn)

⊤ ∈
R
n×p. They studied two-layer linear networks, with m hidden units, and weights a ∈ R

m and W ∈
R
m×p, that map an input x ∈ R

p to the scalar

a⊤Wx.

Let θ = a⊤W ∈ R
p denote the standard parameterization of the resulting linear map. A two-layer

linear network with parameters {a,W} is said to be balanced if

aa⊤ −WW⊤ = 0.

Azulay et al. [Azu+21] showed in Proposition 1 that, starting from a balanced initial point (a(0),W (0)),

if the gradient flow converges to a solution that perfectly fits the data, then the solution can be charac-

terized as follows:

θ̂ ∈ argmin
θ∈Rp

‖θ‖3/2 − θ(0)⊤θ√
‖θ(0)‖

, s.t., y = Xθ. (1)
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In this paper, we study the generalization properties of this solution in the overparameterized regime,

where such interpolation is possible. We prove upper bounds on the excess risk and show that it

depends both on the properties of the eigenstructure of population covariance matrix—as in the case

of the minimum ℓ2-norm interpolant (ordinary least squares) [Bar+20; TB20]—and also on the quality

of the initialization θ(0). In particular, we show that to drive the excess risk to zero, it suffices if the

number of samples is large relative to the trace of the population covariance matrix and also that the

number of “small” eigenvalues is large relative to n. Our bounds also show that the excess risk can be

smaller as a rescaling of θ(0) gets closer to the optimal linear predictor.

An overview of the techniques that drive our analysis is as follows. We begin by showing that the

predictor θ̂ can be viewed as a perturbation of the ordinary least squares solution in the subspace

orthogonal to the row span of X. To characterize this perturbation we find that it is important to derive

upper and lower bounds on Tr((XX⊤)−1). To do this, as done in past work, we instead bound the

trace of the “tail” of the matrix—the submatrix formed by the many low variance directions—and

show that it not only concentrates but also provides a good approximation for the trace of the inverse

of the entire matrix Tr((XX⊤)−1).

Along the way we derive a new multiplicative high-probability lower bound on the least singular

value of a non-isotropic rectangular random matrix (Lemma 4.5). We could not find such a result

in the literature. The most closely related work that we know of [see RV10, and references therein],

characterizing the “hard edge” of a random matrix, has focused on the most difficult case of isotropic

square matrices.

The remainder of the paper is organized as follows. In Section 2 we introduce notation and defi-

nitions. In Section 3 we present our results. We provide a proof of our main result, Theorem 3.1, in

Section 4 and prove our lower bound in Section 5. We conclude with a discussion in Section 6.

2 Preliminaries

This section includes notational conventions and a description of the setting.

2.1 Notation

Given a vector v, let ‖v‖ denote its Euclidean norm. Given a matrix M , let ‖M‖ denote its Frobenius

norm and ‖M‖op denote its operator norm. For any j ∈ N, we denote the set {1, . . . , j} by [j].

Given a symmetric matrix M ∈ R
p×p we let µ1(M) ≥ . . . ≥ µp(M) denote its eigenvalues. We

let Ip denote the identity matrix in p dimensions. Given any vector v ∈ R
p, we let v1:j ∈ R

p denote

the vector obtained by zeroing out the last p − j coordinates of v and let vj+1:p ∈ R
p denote the

vector obtained by zeroing out the first j coordinates. Given a symmetric positive semidefinite matrix

M ∈ R
p×p, let M1:j ∈ R

p×p be the matrix formed by zeroing out the last p − j rows and columns

of M , and let Mj+1:p ∈ R
p×p be the matrix formed by zeroing out the first j rows and columns. We

let ‖v‖M :=
√
v⊤Mv denote the matrix norm of v with respect to the matrix M . We use the standard

“big Oh notation” [see, e.g., Cor+09]. We will use c, c′, c1, . . . to denote positive absolute constants,

which may take different values in different contexts.

2.2 The setting

Throughout the paper we assume that p > n. Although we assume throughout that the input dimension

p is finite, it is straightforward to extend our results to infinite p.
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For random (x, y) ∈ R
p × R, let

θ⋆ ∈ argmin
θ∈Rp

E

[
(y − x⊤θ)2

]

be an arbitrary optimal linear regressor. We assume that x is mean zero and let Σ := E[xx⊤] denote

the covariance matrix of the features. Without loss of generality, we will assume that the covariance

matrix is diagonal and its eigenvalues are arranged in descending order λ1 ≥ λ2 ≥ . . . ≥ λp > 0.

(Note that such a covariance matrix can always be obtained by a rotation and permutation, and the

estimator (1) is correspondingly transformed.) Recall that y = (y1, . . . , yn)
⊤ is the vector of responses

and X = (x1, . . . , xn)
⊤ is the data matrix. Define ε = (y1−x⊤1 θ⋆, . . . , yn−x⊤n θ⋆)⊤ = (ε1, . . . , εn)

⊤

to be the vector of noise.

We make the following assumptions:

(A.1) the samples (x1, y1), . . . , (xn, yn) and (x, y) are drawn i.i.d.;

(A.2) the features x and responses y are mean-zero;

(A.3) the features x = Σ1/2u, where u has components that are independent σ2x-sub-Gaussian random

variables with σx a positive constant, that is, for all φ ∈ R
p

E

[
exp

(
φ⊤u

)]
≤ exp

(
σ2x‖φ‖2/2

)
;

(A.4) there is an absolute constant c such that, for any unit vector φ ∈ S
n−1 and any a ≤ b ∈ R

P

[
(Σ−1/2X⊤φ)i ∈ [a, b]

]
≤ c|b− a|

for all i ∈ [p];

(A.5) the difference y−x⊤θ⋆ is σ2y-sub-Gaussian, conditionally on x, with σy a positive constant, that

is, for all φ ∈ R

Ey

[
exp

(
φ(y − x⊤θ⋆)

) ∣∣ x
]
≤ exp

(
σ2yφ

2/2
)

(note that this implies that E [y | x] = x⊤θ⋆);

(A.6) for all x, the conditional variance of y − x⊤θ⋆ is

Ey

[
(y − x⊤θ⋆)2

∣∣ x
]
= σ2

where σ is a positive constant.

We emphasize that σx, σy and σ are absolute constants, independent of all other problem parameters

(n, p and Σ). All the constants going forward may depend on the value of these constants.

The assumptions stated above are satisfied in the case where u is generated from a mean-zero

isotropic log-concave distribution with sub-Gaussian, independent entries and the noise y − x⊤θ⋆

is independent and sub-Gaussian. We note that Assumptions A.(A.1)-A.(A.3), A.(A.5)-A.(A.6) are

standard in the literature of benign overfitting in linear models [see, e.g., Bar+20]. We make an ad-

ditional small-ball probability assumption (Assumption A.(A.4)) which allows us to derive a sharper

multiplicative lower tail bound for the minimum eigenvalue of the submatrices of X (Lemma 4.5).
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Given the training samples define the excess risk of an estimate θ ∈ R
p to be

Risk(θ) := Ex,y

[
(y − x⊤θ)2 − (y − x⊤θ⋆)2

]
,

where x, y are independent test samples.

Define the shorthand

w :=
θ(0)√
‖θ(0)‖

,

so that the estimator described in equation (1) can be written as the solution to a constrained convex

program given by

θ̂ ∈ argmin
θ∈Rp

‖θ‖3/2 − w⊤θ, s.t., y = Xθ. (2)

We let UDV ⊤ = X be the singular value decomposition of X where U ∈ R
n×n and V ∈ R

p×p are

unitary matrices and D ∈ R
n×p is a rectangular diagonal matrix with its eigenvalues in descending

order. By Lemma A.1, we know that the rank of D is n. We let D† ∈ R
p×n denote the pseudo-inverse

of D. Since D has rank n, the bottom p− n rows of D† are identically zero.

Also define

ỹ := D†U⊤
y, w̃ := V ⊤w and θ̃ := V ⊤θ̂. (3)

We will use the following definitions of the “effective rank” from [Bar+20].

Definition 2.1. Given a subset S ⊆ [p], define s(S) :=
∑

i∈S λi, and define the following ranks of

the covariance matrix Σ with eigenvalues λ1, . . . , λp:

r(S) :=
s(S)

maxi∈S λi
and R(S) :=

s(S)2∑
i∈S λ

2
i

.

Further given any j ∈ [p], with some abuse of notation, define sj :=
∑

i>j λi and

rj :=
sj
λj+1

and Rj :=
s2j∑
i>j λ

2
i

.

The following lemma [Bar+20, Lemma 5] relates these different effective ranks.

Lemma 2.2. For any subset S ⊆ [p] the ranks defined above satisfy the following:

r(S) ≤ R(S) ≤ r(S)2.

We define the index k below. The value of k shall help determine what we consider the “tail” of the

covariance matrix.

Definition 2.3. For a large enough constant b (that will be fixed henceforth), define

k := min{j ≥ 0 : rj ≥ bn},

where the minimum of the empty set is defined as ∞.

Finally we define ψ, which is a rescaling of w.

Definition 2.4. Define

ψ :=
2
√
σn1/4

3s
1/4
k

w =
2
√
σn1/4

3s
1/4
k

θ(0)√
‖θ(0)‖

.
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3 Main results

In this section we present our main result, Theorem 3.1, which is an excess risk bound for the estimator

θ̂. It is proved in Section 4.

Theorem 3.1. Under Assumptions (A.1)-(A.6), there exist constants c0, . . . , c7 such that for any δ ∈
(e−c0

√
n, 1−c1e−c2n), if p ≥ c3(n+k), n ≥ c4 max {k, sk} and ‖θ⋆‖, ‖w‖ ≤ c5 then with probability

at least 1− c6δ

Risk(θ̂) ≤ Bias+ Variance+ Ξ,

where

Bias ≤ c7

(
‖(θ⋆ − ψ)1:k‖2Σ−1

1:k

(sk
n

)2
+ ‖(θ⋆ − ψ)k+1:p‖2Σk+1:p

)
≤ 2c7‖θ⋆ − ψ‖2sk

n
;

Variance ≤ c7 log(1/δ)

(
k

n
+

n

Rk

)
;

Ξ ≤ c7λ1‖ψ‖2
[
n

Rk
+
n2

r2k
+
sk
n

+
log(1/δ)

n
+
k2

n2

]
max

{√
r0
n
,
r0
n
,

√
log(1/δ)

n

}
.

Note that Bias goes to zero as ψ → θ⋆. In the upper bounds on the excess risk for linear models

with a standard (one-layer) parameterization [see TB20, Theorem 1], the corresponding term scales

with the square of the norm of θ⋆ rather than (θ⋆ − ψ). If one has a “guess” ψ̂ for θ⋆, then—given

knowledge of σ, sk and n—it is possible to set the initialization as follows:

θ(0) =
9ψ̂‖ψ̂‖

4

√
sk
σ2n

;

which ensures that ψ = ψ̂. Very accurate prior guesses ψ̂ of θ∗ are rewarded with a very small value

of the Bias term.

Next, we note that the upper bound on Variance here is identical to the upper bound on the variance

for the minimum ℓ2-norm interpolant (the OLS estimator) [see Bar+20, Theorem 4]. The initialization

θ(0) (through ψ) only affects the conditional bias of the estimator here, but leaves the conditional

variance the same as the OLS solution. This is because, as we will show below in Lemma 4.1, θ̂ can

be expressed as a perturbation to the OLS estimator in the subspace orthogonal to the row span of X.

It turns out that the variance only depends on behavior of θ̂ in the subspace spanned by the data, where

θ̂ and the OLS solution are identical.

As mentioned, θ̂ is a perturbation of the OLS estimator. In particular, it is perturbed by α⋆Proj⊥X(w),
where Proj⊥X(w) is the projection of w onto the subspace orthogonal to the row span of X and α⋆ is

a scalar random variable that depends on the data. We shall demonstrate in Lemma 4.3 that, under

the setting specified by the theorem, α⋆ concentrates around
2
√
σn1/4

3s
1/4
k

. The final term in the excess

risk bound, Ξ, corresponds to the fluctuation of α⋆. We might think of θ(0) (and hence w) as being

constructed from ψ and an estimate of α∗; from this point of view, Ξ accounts for the contribution

to the excess risk arising from the error in estimating α⋆. Next we derive sufficient conditions for the

excess risk to go to zero as n, p → ∞. Consider the case where λ1, ‖θ⋆‖, ‖ψ‖ and log(1/δ) are all

bounded by constants. (In the case of ‖ψ‖, this can be achieved by appropriately scaling θ(0).) For

Bias to go to zero it suffices if

sk
n

→ 0.
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For Variance to decrease to zero it suffices if

k

n
→ 0 and

n

Rk
→ 0.

Finally, for Ξ to approach zero it suffices for

r0
n

→ 0

which also implies the condition sk
n → 0 needed to control the Bias term. (To see that r0

n → 0

suffices, recall that we have assumed that λ1, log(1/δ) and ‖ψ‖ are constants. Further, the quantity

in the square brackets of our bound on Ξ is at most a constant, which can be seen as follows. The

definition of rk implies that rk ≥ bn, and Lemma 2.2 gives Rk ≥ rk. Finally, we have assumed that

n ≥ cmax{k, sk}.) To summarize, if k
n ,

r0
n ,

n
Rk

→ 0, the excess risk of this estimator approaches

zero. Some discussion and examples of when this condition is satisfied are given in [Bar+20; TB20].

To develop intuition, we consider a special case of Theorem 3.1 defined as follows.

Definition 3.2 ((k, ε)-spike model). For ε > 0 and k ∈ N, a (k, ε)-spike model is a setting where the

eigenvalues of Σ are λ1 = . . . = λk = 1 and λk+1 = . . . = λp = ε.

Instantiating Theorem 3.1 in the case of the (k, ε)-spike model, and removing some dominated

terms, yields the following corollary.

Corollary 3.3. Under Assumptions (A.1)-(A.6), there exist constants c0, . . . , c8 such that in the (k, ε)-

spike model for any δ ∈ (e−c0
√
n, 1−c1e−c2n), if p > c3(n+k), n ≥ c4max {k, εp} and ‖θ⋆‖, ‖w‖ ≤

c5 then with probability at least 1− c6δ

Risk(θ̂) ≤ Bias+ Variance+ Ξ,

where

Bias ≤ c7

(
‖(θ⋆ − ψ)1:k‖2

(εp
n

)2
+ ε‖(θ⋆ − ψ)k+1:p‖2

)
≤ c8‖θ⋆ − ψ‖2

(εp
n

)
;

Variance ≤ c7 log(1/δ)

(
k

n
+
n

p

)
;

Ξ ≤ c7λ1‖ψ‖2
[
n

p
+
εp

n
+

log(1/δ)

n
+
k2

n2

]
max

{√
k + εp

n
,

√
log(1/δ)

n

}
.

Again, in the case where λ1, ‖ψ‖ and log(1/δ) are bounded by constants, a sufficient condition for

the excess risk to decrease to zero is when εp
n ,

k
n ,

n
p → 0.

Next we establish a lower bound. It is proved in Section 5.

Proposition 3.4. If a(0) and W (0) are chosen randomly, independent of X and y, so that the distri-

bution of a(0)⊤W (0) is symmetric about the origin, then

Ea(0),W (0),X,y[Risk(θ̂)] ≥ E

[
θ⋆⊤Bθ⋆

]
+ σ2E [Tr(C)] ,

where

B :=
(
I −X⊤(XX⊤)−1X

)
Σ
(
I −X⊤(XX⊤)−1X

)
and

C := (XX⊤)−1XΣX⊤(XX⊤)−1.

7



Remark 3.5. For the distribution of a(0)⊤W (0) to be symmetric about the origin, it suffices that a(0)

and W (0) are chosen independently, and that either the distribution of a(0) is symmetric about the

origin, or the distribution of W (0) is.

Remark 3.6. Bartlett et al. [Bar+20] proved that E[Tr(C)] ≥ c
(
k
n + n

Rk

)
for a constant c. Tsigler

and Bartlett [TB20] proved a lower bound on E[θ⋆⊤Bθ⋆] under the assumption that the signs of the

components of θ⋆ are chosen uniformly at random. For the case that ψ = 0, their lower bound matches

the upper bound on Bias from Theorem 3.1 of this paper under the assumptions of that theorem.

However, there is a gap in the upper and lower bounds when ψ 6= 0.

4 Proof details

The proof of Theorem 3.1 is built up in parts. First, in Lemma 4.1 we show that θ̂ can be viewed as

a random perturbation of the ordinary least squares (OLS) solution in the subspace orthogonal to the

row span of X. In Lemma 4.2, we show that the excess risk can be decomposed into two terms, one

that can bounded above by Variance and the other that is upper bounded by Bias+Ξ. The next piece is

Lemma 4.3 which is crucial in helping us characterize the perturbation to the OLS solution. To do this

we first present concentration inequalities in Section 4.1, then we establish upper and lower bounds on

Tr((XX⊤)−1) in Section 4.2, and finally prove Lemma 4.3 in Section 4.3. We finish by combining

all of these elements to prove the theorem in Section 4.4. Throughout this section we assume that the

assumptions made in Theorem 3.1 are in force.

A note about constants. As mentioned earlier, we will not always provide specific constants. The

constants c1, c2, . . . in our proofs are independent of the problem parameters, but they can depend on

one another. It will not be hard to verify, however, that the constraints on their values are satisfiable.

When we write “ci is large enough”, this should be understood to be relative to the constants previously

introduced in the proof not including b, the constant used in the definition of rk. Loosely speaking, b

is chosen last: it should be taken to be large relative to all other constants.

We begin with the following lemma that provides a closed-form formula for θ̂ as a perturbation of

the ordinary least squares solution.

Lemma 4.1. The solution θ̂ can be expressed as follows:

θ̂ = θ̂OLS + α⋆(I −X⊤(XX⊤)−1X)w,

where θ̂OLS = X⊤ (XX⊤)−1
y is the ordinary least squares solution (minimum ℓ2-norm interpolant)

and

α⋆ =

√
8‖w̃n+1:p‖2 +

√
64‖w̃n+1:p‖4 + 1296‖ỹ‖2

81
. (4)

where w̃ and ỹ are defined in (3).
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Proof. Recall that X = UDV ⊤ is the singular value decomposition of X. Therefore,

θ̂ ∈ argmin
θ∈Rp

‖θ‖3/2 − w⊤θ, s.t., y = Xθ

⇐⇒ θ̂ ∈ argmin
θ∈Rp

‖θ‖3/2 − w⊤θ, s.t., D†U⊤
y = D†U⊤Xθ

⇐⇒ θ̂ ∈ argmin
θ∈Rp

‖θ‖3/2 − w⊤θ, s.t., ỹ = D†U⊤Xθ

⇐⇒ V ⊤θ̂ ∈ argmin
θ∈Rp

‖V ⊤θ‖3/2 − (w⊤V )V ⊤θ, s.t., ỹ = D†U⊤XV (V ⊤θ)

(since the Euclidean norm is rotation invariant and V V ⊤ = Ip)

⇐⇒ θ̃ ∈ argmin
θ∈Rp

‖θ‖3/2 − w̃⊤θ, s.t., ỹ = D†U⊤XV θ.

Since the bottom p−n rows ofD† are identically zero, the vector ỹ has the form (ỹ1, . . . , ỹn, 0, . . . , 0)
⊤.

Since the SVD of X = UDV ⊤ we have that

D†U⊤XV θ = D†U⊤UDV ⊤V θ = D†Dθ =
[
In 0

0 0

]
θ.

Hence, for the constraint to be satisfied, the first n coordinates of θ̃ are required to be equal to

(ỹ1, . . . , ỹn), and the remaining coordinates of θ̃ can be anything. That is, the constraints are sat-

isfied when θ̃ = (ỹ1, . . . , ỹn, 0, . . . , 0)
⊤ + φ, for some φ ∈ R

p with its first n coordinates all equal to

zero.

To find this optimal vector φ⋆ we can now proceed to solve the following unconstrained optimiza-

tion problem:

φ⋆ ∈ argmin
φ∈Rp

(
‖θ̃1:n‖2 + ‖φ‖2

)3/4
−

p∑

j=n+1

w̃jφj .

Since the first term in the objective function above is rotationally invariant, it must be the case that

the minimizer has the form φ⋆ = α⋆w̃n+1:p, for some α⋆ > 0. That is, it is positively aligned with

the tail of the vector w̃. (If φ⋆ was not in the span of w̃n+1:p, removing the projection of φ⋆ in the

subspace orthogonal to this direction would improve the norm without affecting the second term, and

if φ⋆ · w̃n+1:p < 0, then −φ⋆ would be a better solution than φ⋆.) In particular, we have

w̃n+1:p = 0 ⇒ φ⋆ = 0.

Otherwise, φ⋆ = α⋆w̃n+1:p for the solution α⋆ of the following one-dimensional problem:

α⋆ ∈ argmin
α>0

(
‖θ̃1:n‖2 + α2‖w̃n+1:p‖2

)3/4
− α‖w̃n+1:p‖2.

To simplify notation, let ρ := ‖θ̃1:n‖2 and ζ := ‖w̃n+1:p‖2 > 0. The first derivative of the objective

function is as follows:

d

dα

[(
ρ+ ζα2

)3/4 − αζ
]
=

3ζα

2 (ρ+ ζα2)1/4
− ζ.

9



Setting this first derivative equal to zero we get that

3ζα

2 (ρ+ ζα2)1/4
− ζ = 0

⇐⇒ 3α

2 (ρ+ ζα2)1/4
− 1 = 0

⇐⇒ 3α

2
=
(
ρ+ ζα2

)1/4

⇐⇒ 81α4

16
= ρ+ ζα2 (because α > 0 at the optimum)

⇐⇒ 81α4 − 16ζα2 − 16ρ = 0.

We can view this as a quadratic equation in α2, so

α2 =
16ζ ±

√
256ζ2 + 5184ρ

162
=

16ζ
(
1±

√
1 + 81ρ

4ζ2

)

162
,

but the solution with the negative sign can be ignored since α2 must be positive. Taking square roots

we get that

α = ±

√√√√8ζ
(
1 +

√
1 + 81ρ

4ζ2

)

81
.

Again, we drop the negative solution since we know that α > 0 at the optimum. Thus we find that

θ̃ = ỹ + α⋆w̃n+1:p

for

α⋆ =

√√√√8ζ
(
1 +

√
1 + 81ρ

4ζ2

)

81
=

√√√√√√
8‖w̃n+1:p‖2

(
1 +

√
1 + 81‖θ̃1:n‖2

4‖w̃n+1:p‖4

)

81

=

√√√√8‖w̃n+1:p‖2 +
√

64‖w̃n+1:p‖4 + 1296‖θ̃1:n‖2
81

=

√
8‖w̃n+1:p‖2 +

√
64‖w̃n+1:p‖4 + 1296‖ỹ‖2

81
.

Recall that by definition θ̃ = V ⊤θ̂, ỹ = D†U⊤
y and w̃ = V ⊤w and hence

θ̂ = V ỹ + α⋆V w̃n+1:p

= V D†U⊤
y + α⋆V w̃n+1:p

= X⊤
(
XX⊤

)−1
y + α⋆V w̃n+1:p

= θ̂OLS + α⋆V w̃n+1:p

= θ̂OLS + α⋆V

[
0n×n 0n×(p−n)

0(p−n)×n Ip−n

]
V ⊤w.
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Recall that the SVD of X is UDV ⊤, and the last (p−n) columns of D are zero. Thus, the last (p−n)
rows of V ⊤ span the null space of X.

Furthermore, (Ip −X⊤(XX⊤)−1X) represents the projection onto this null space of X. This can

be seen as follows. First, any member u of this null space is mapped to itself (since Xu = 0). On the

other hand, for each row x of X, (Ip −X⊤(XX⊤)−1X)x⊤ = 0, as

(Ip −X⊤(XX⊤)−1X)X⊤ = 0.

Recalling that the last (p− n) rows of V ⊤ span the null space of X, we have

V

[
0n×n 0n×(p−n)

0(p−n)×n Ip−n

]
V ⊤ = Ip −X⊤(XX⊤)−1X.

This wraps up our proof. �

Armed with this formula for θ̂ we can now bound the excess risk.

Lemma 4.2. The excess risk of θ̂ satisfies

Risk(θ̂) ≤ c(θ⋆ − α⋆w)⊤B(θ⋆ − α⋆w) + c log(1/δ)Tr(C)

with probability at least 1− δ over ε, where

B :=
(
I −X⊤(XX⊤)−1X

)
Σ
(
I −X⊤(XX⊤)−1X

)
and

C := (XX⊤)−1XΣX⊤(XX⊤)−1.

Proof. Since ε = y − x⊤θ is conditionally mean-zero given x,

Risk(θ̂) = Ex,y

[
(y − x⊤θ̂)2

]
− Ex,y

[
(y − x⊤θ⋆)2

]

= Ex,y

[
(y − x⊤θ⋆ + x⊤(θ⋆ − θ̂))2

]
− Ex,y

[
(y − x⊤θ⋆)2

]

= Ex

[(
x⊤(θ⋆ − θ̂)

)2]
.

Using the formula of θ̂ from Lemma 4.1, and because y = Xθ⋆ + ε we find that

Risk(θ̂) = Ex

[(
x⊤
(
I −X⊤(XX⊤)−1X

)
(θ⋆ − α⋆w)− x⊤X⊤(XX⊤)−1

ε

)2]

≤ 2Ex

[(
x⊤
(
I −X⊤(XX⊤)−1X

)
(θ⋆ − α⋆w)

)2]
+ 2Ex

[(
x⊤X⊤(XX⊤)−1

ε

)2]

= 2(θ⋆ − α⋆w)⊤B(θ⋆ − α⋆w) + 2ε⊤Cε.

Now by [Bar+20, Lemma 19] we find that 2ε⊤Cε ≤ c′σ2y log(1/δ)Tr(C) ≤ c log(1/δ)Tr(C) with

probability at least 1− δ. This completes the proof. �

The following lemma provides upper and lower bounds on the value of α⋆ that are tight up to the

leading constant when p is large relative to n + k and when n is sufficiently large relative to k and

sk =
∑

j>k λj .
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Lemma 4.3. There are constants c0, . . . , c5 such that for any δ ∈ (e−c0
√
n, 1), if p ≥ c1(n + k),

n ≥ c2 max {k, sk} and ‖θ⋆‖, ‖w‖ ≤ c3 then with probability at least 1− c4δ,
∣∣∣∣∣∣∣

α⋆

2
√
σn1/4

3s
1/4
k

− 1

∣∣∣∣∣∣∣
≤ c5

[√
n

Rk
+
n

rk
+

√
sk
n

+

√
log(2/δ)

n
+
k

n

]
.

Lemma 4.3 is proved over the next few subsections. As might be expected, for α⋆ to reliably fall

within a small interval, X must be well conditioned in some sense. We begin by establishing bounds

on the singular values of submatrices of X in Sections 4.1, whose proofs are provided Appendix B. In

Section 4.2, we show that the Tr((XX⊤)−1) is concentrated. Armed with these bounds, we build up

our analysis of α⋆ in stages in Section 4.3.

4.1 Bounds on the extreme singular values of submatrices of X

In this subsection, we will derive bounds on the largest and smallest singular value of a submatrix of

X. Given a subset S of [p], let XS ∈ R
n×|S| be a submatrix of X where only the columns with indices

in S are included.

With this in place, we are now ready to prove our concentration results. We prove this lemma in

Appendix B.1.

Lemma 4.4. There exists a positive absolute constant c such that, for any subset S ⊆ [p] and any

t ≥ 0, with probability at least 1− 2e−t, for all j ∈ {1, . . . ,min(n, |S|)}
∣∣∣µj(XSX

⊤
S )− s(S)

∣∣∣ ≤ cs(S)

(
t+ n

r(S)
+

√
t+ n

R(S)

)
.

This lemma provides an additive lower bound on the minimum singular value of submatrices of X.

Next, we will provide a sharper multiplicative bound on the smallest singular value of such matrices.

Its proof can be found in Appendix B.2.

Lemma 4.5. There exist absolute positive constants c0, . . . , c3 such that given any subset S ⊆ [p] if,

r(S) ≥ c0n then for all t < c1 < 1

P

[
µn(XSX

⊤
S ) ≤ t · s(S)

]
≤ (c2t)

c3·r(S).

This sharper multiplicative bound provides a much more refined lower tail probability estimate for

the minimum eigenvalue than the previous additive bound in Lemma 4.4, especially when t is close

to zero. This is useful in our analysis to control E[Tr(XX⊤)−1] which is in turn used to establish

Lemma 4.6 that bounds Tr((XX⊤)−1).

4.2 Concentration of Tr((XX
⊤)−1)

In this subsection we shall prove the following lemma which shows that Tr((XX⊤)−1) concentrates.

Lemma 4.6. There are positive constants c0, . . . , c4 such that, if p ≥ c0(n+ k) then with probability

at least 1− c1e
−c2n
∣∣∣∣Tr
(
(XX⊤)−1

)
− n

sk

∣∣∣∣ ≤
c3n

sk

[√
n

Rk
+
n

rk
+
k

n
+ e−c4

√
n

]
.
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The proof of Lemma 4.6 in turn requires some lemmas. To state them, we need some additional

notation and definitions.

Recall that we have assumed without loss of generality that Σ is diagonal. Let λ1 ≥ . . . ≥ λp be

the elements of its diagonal, and define the random vectors

zi :=
Xei√
λi

∈ R
n.

These random vectors zi have entries that are independent, σ2x-sub-Gaussian random variables [see

Bar+20, Lemma 8]. Note that we can write the matrix

XX⊤ =

p∑

i=1

λiziz
⊤
i .

Definition 4.7. Define the shorthand A := XX⊤, and define

H :=
k∑

i=1

λiziz
⊤
i and T :=

p∑

i=k+1

λiziz
⊤
i .

Therefore A = H + T .

To prove Lemma 4.6 we shall prove the following four results:

• in Lemma 4.8, we show that Tr(A−1) is close to the Tr(T−1) with high probability;

• in Lemma 4.9, we show that E
[
Tr(A−1)

]
is well approximated by E

[
Tr(T−1)

]
;

• in Lemma 4.10, we show that Tr(T−1) is close to its expectation with high probability;

• finally, in Lemma 4.11, we establish upper and lower bounds on E
[
Tr(A−1)

]
that match up to

leading constants.

By using these four results and the triangle inequality we shall demonstrate that Tr(A−1) is close to

n/sk with high probability and prove Lemma 4.6. Throughout this subsection we shall assume that

the dimension p ≥ c0(n + k), for a sufficiently large constant c0. Under this condition, Lemma A.1

implies that the tail matrix T is full-rank and invertible.

4.2.1 Tr(A−1) is close to Tr(T−1)

We begin by showing that Tr(A−1) is close to Tr(T−1) with high probability.

Lemma 4.8. There exist positive constants c0, . . . , c3 such that, for all β < c0 < 1, with probability

at least 1− 2 exp(−rk/β2)− (c1β)
c2·rk ,

∣∣Tr(A−1)− Tr(T−1)
∣∣ ≤ c3k

β4sk
.
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Proof. Recall that A = XX⊤ =
∑k

i=1 λiziz
⊤
i +

∑p
i=k+1 λiziz

⊤
i = H + T . Let u1, . . . , uk ∈ R

n

be an orthonormal basis for the row span of H , and let u1, . . . , un be an extension to a basis for Rn.

Write U = [u1, . . . , un] = [E;F ], where E is n× k. Thus

Tr(A−1)
(i)
= Tr

(
U⊤A−1U

)

= Tr

([
U⊤AU

]−1
)

= Tr

([
U⊤(H + T )U

]−1
)

= Tr

([
U⊤HU + U⊤TU

]−1
)

= Tr

([(
E⊤HE E⊤HF
F⊤HE F⊤HF

)
+ U⊤TU

]−1
)

(ii)
= Tr

([(
E⊤HE 0

0 0

)
+ U⊤TU

]−1
)

= Tr

([(
E⊤

0

)
H
(
E 0

)
+ U⊤TU

]−1
)
,

where (i) follows since U is a unitary matrix, (ii) follows since the columns of F are outside the span

of H . Continuing, we apply the Sherman-Morrison-Woodbury identity to get that

Tr(A−1)

= Tr

([
U⊤TU

]−1
)

− Tr

([
U⊤TU

]−1
(
E⊤

0

)[
H† +

(
E 0

) [
U⊤TU

]−1
(
E⊤

0

)]−1 (
E 0

) [
U⊤TU

]−1
)

= Tr
(
T−1

)

− Tr

(
U⊤T−1U

(
E⊤

0

)[
H† +

(
E 0

)
U⊤T−1U

(
E⊤

0

)]−1 (
E 0

)
U⊤T−1U

)

(i)
= Tr

(
T−1

)
− Tr

(
U⊤T−1EE⊤

[
H† + EE⊤T−1EE⊤

]−1
EE⊤T−1U

)

= Tr
(
T−1

)
−Tr

(
T−1EE⊤

[
H† + EE⊤T−1EE⊤

]−1
EE⊤T−1

)
, (5)

where (i) follows since (E; 0)U⊤ = (E; 0)(E;F )⊤ = EE⊤. Now

0 ≤ Tr

(
T−1EE⊤

[
H† + EE⊤T−1EE⊤

]−1
EE⊤T−1

)

≤ Tr

(
T−1EE⊤

(
EE⊤T−1EE⊤

)−1
EE⊤T−1

)

= Tr

(
T−1EE⊤

(
EE⊤

)†
T
(
EE⊤

)†
EE⊤T−1

)
, (6)
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where the second inequality holds because

H† � 0

⇒
(
EE⊤T−1EE⊤

)−1
−
(
H† + EE⊤T−1EE⊤

)−1
� 0

⇒ T−1EE⊤
((

EE⊤T−1EE⊤
)−1

−
(
H† + EE⊤T−1EE⊤

)−1
)
EE⊤T−1 � 0

⇒ T−1EE⊤
(
EE⊤T−1EE⊤

)−1
EE⊤T−1 � T−1EE⊤

((
H† + EE⊤T−1EE⊤

)−1
)
EE⊤T−1

along with the fact that, for any symmetric positive semi-definite matrices Q and S such that Q � S,

for all i, µi(Q) ≥ µi(S) ≥ 0.

Thus combining equations (5) and (6) we get that

∣∣Tr(A−1)− Tr
(
T−1

)∣∣ ≤
∣∣∣∣Tr
(
T−1EE⊤

(
EE⊤

)†
T
(
EE⊤

)†
EE⊤T−1

)∣∣∣∣ .

The rank of T−1EE⊤ (EE⊤)† T
(
EE⊤)†EE⊤T−1 is at most k, so

∣∣Tr(A−1)− Tr
(
T−1

)∣∣ ≤ k

∥∥∥∥T
−1EE⊤

(
EE⊤

)†
T
(
EE⊤

)†
EE⊤T−1

∥∥∥∥
op

≤ k‖T−1‖2op‖EE⊤(EE⊤)†‖2op‖T‖op

≤ kµ1(T )

µn(T )2
. (7)

Next by invoking Lemma 4.4, for any t > 2n, with probability at least 1− 2e−t

µ1(T ) ≤ sk

[
1 + c

(
t+ n

rk
+

√
t+ n

Rk

)]

≤ sk

[
1 + 3c

(
t

rk
+

√
t

Rk

)]

≤ c′sk

[
1 +

(
t

rk
+

√
t

Rk

)]
.

Recall that rk ≥ bn by the definition of the index k in Definition 2.3. Given a β < c0 < 1, where c0
is small enough, set t = min {rk, Rk} /β2 = rk/β

2 (since rk ≤ Rk by Lemma 2.2) to get that

µ1(T ) ≤ c′sk

[
1 +

(
1

β2
+

1

β

)]

with probability at least 1 − 2 exp(−rk/β2). Next, note that p − k ≥ ∑
j>k λj/λk+1 = rk ≥ bn.

Therefore, by Lemma 4.5, for any β < c0 < 1,

P [µn(T ) ≤ βsk] ≤ (c1β)
c2·rk .

Combining the last two inequalities we find that, for any β < c0 < 1

µ1(T )

µn(T )2
≤ c′

sk



1 +

(
1
β2 + 1

β

)

β2


 ≤ c3

β4sk

with probability at least 1−2 exp(−rk/β2)−(c1β)
c2·rk . Combined with inequality (7) this completes

our proof. �

15



4.2.2 E
[
Tr(A−1)

]
is close to E

[
Tr(T−1)

]

Next, we show that E
[
Tr(A−1)

]
is close to E

[
Tr(T−1)

]
.

Lemma 4.9. There exists a positive constant c0 such that

∣∣E
[
Tr(A−1)

]
− E

[
Tr(T−1)

]∣∣ ≤ c0k

sk
.

Proof. Given any β define

ω =
ck

β4sk
=

ck

β4rkλk+1
.

By Lemma 4.8 for any ω > c1k
sk

, where c1 is a large enough constant

P
[∣∣Tr(A−1)− Tr(T−1)

∣∣ > ω
]
≤ 2 exp

(
−c′r3/2k

√
λk+1

k

√
ω

)
+

(
c′′k
ωsk

) c2·rk
4

.

Thus

∣∣E[Tr(A−1)]− E[Tr(T−1)]]
∣∣

≤ E
[∣∣Tr(A−1)− Tr(T−1)

∣∣]

=

∫ ∞

0
P
[∣∣Tr(A−1)− Tr(T−1)

∣∣ > ω
]
dω

=

∫ c1k
sk

0
P
[∣∣Tr(A−1)− Tr(T−1)

∣∣ > ω
]
dω +

∫ ∞

c1k
sk

P
[∣∣Tr(A−1)− Tr(T−1)

∣∣ > ω
]
dω

≤ c1k

sk
+

∫ ∞

c1k
sk

2 exp

(
−c′r3/2k

√
λk+1

k

√
ω

)
dω

︸ ︷︷ ︸
=:♠

+

∫ ∞

c1k
sk

(
c′′k
ωsk

) c2·rk
4

dω

︸ ︷︷ ︸
=:♣

. (8)

First we control ♠ as follows:

♠ =

∫ ∞

c1k
sk

2 exp

(
−c′r3/2k

√
λk+1

k

√
ω

)
dω

= 4exp (−c3rk)
c3rk + 1

(
c′r3/2k

√
λk+1

k

)2 (since
∫
exp(−√

z) = −2e−
√
z(
√
z + 1) + c)

=
4k

sk

[
exp (−c3rk)

c3rk + 1

(c′rk)
2

]
(since sk = rkλk+1)

≤ c4k

sk
. (9)
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Next we control ♣ as follows

♣ =

∫ ∞

c1k
sk

(
c′′k
ωsk

) c2·rk
4

dω =

(
c′′k
sk

) c2·rk
4
∫ ∞

c1k
sk

(
1

ω

) c2·rk
4

dω

=

(
c′′k
sk

) c2·rk
4

× 1
c2·rk
4 − 1

×
(
sk
c1k

) c2·rk
4

−1

=
c5k

sk

(
(c′′)

c2·rk
4 × 4

c2 · rk − 4
×
(

1

c1

) c2·rk
4

−1
)

≤ c5k

sk
(10)

where the last inequality follows because the constant c1 large enough and because rk ≥ bn for a large

enough constant b. Combining inequalities (8), (9) and (10) we conclude that

∣∣E
[
Tr(A−1)

]
− E

[
Tr(T−1)

]∣∣ ≤ c1k

sk
+
c4k

sk
+
c5k

sk
≤ c0k

sk
,

wrapping up the proof. �

4.2.3 Tr(T−1) concentrates around its mean

Finally, we shall show that Tr(T−1) is close to its expectation E
[
Tr(T−1)

]
with high probability.

Lemma 4.10. There exists a positive constant c0 such that with probability at least 1− 2e−n,

∣∣Tr(T−1)− E
[
Tr(T−1)

]∣∣ ≤ c0n

sk

[√
n

Rk
+
n

rk

]
.

Proof. We use a symmetrization argument:

∣∣Tr(T−1)− E
[
Tr(T−1)

]∣∣ =
∣∣∣∣∣

n∑

i=1

1

µi(T )
− E

[
1

µi(T )

]∣∣∣∣∣ ≤
n∑

i=1

∣∣∣∣
1

µi(T )
− E

[
1

µi(T )

]∣∣∣∣

=

n∑

i=1

∣∣∣∣
1

µi(T )
− ET ′

[
1

µi(T ′)

]∣∣∣∣ ,

where in the equation above the matrices T and T ′ are independent and identically distributed. Thus

∣∣Tr(T−1)− E
[
Tr(T−1)

]∣∣ ≤
n∑

i=1

∣∣∣∣ET ′

[
1

µi(T )
− 1

µi(T ′)

]∣∣∣∣ ≤
n∑

i=1

ET ′

[∣∣∣∣
1

µi(T )
− 1

µi(T ′)

∣∣∣∣
]

=

n∑

i=1

ET ′

[ |µi(T ′)− µi(T )|
µi(T )µi(T ′)

]
. (11)

By Lemma 4.4, with probability at least 1− 2e−n, for all i ∈ [n],

sk

[
1− c1

(
n

rk
+

√
n

Rk

)]
≤ µi(T ) ≤ sk

[
1 + c1

(
n

rk
+

√
n

Rk

)]
. (12)

We will assume that the event described above, which controls the singular values of T , occurs going

forward. (This determines the success probability in the statement of the lemma.) The game plan now
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is to evaluate the expectation with respect to T ′ in equation (11) by integrating tail bounds. Since (12)

holds,

∣∣µi(T )− µi(T
′)
∣∣

= max{µi(T )− µi(T
′), µi(T ′)− µi(T )}

≤ max

{
sk

[
1 + c1

(
n

rk
+

√
n

Rk

)]
− µi(T

′),

µi(T
′)− sk

[
1− c1

(
n

rk
+

√
n

Rk

)]}

≤ max

{
sk

[
1 + c1

(
n

rk
+

√
n

Rk

)]
− sk

[
1− c2

(
t+ n

rk
+

√
t+ n

Rk

)]
,

sk

[
1 + c2

(
t+ n

rk
+

√
t+ n

Rk

)]
− sk

[
1− c1

(
n

rk
+

√
n

Rk

)]}

(by Lemma 4.4)

≤ c3sk

(
t+ n

rk
+

√
t+ n

Rk

)
, (13)

with probability 1− 2e−t.
Next, by Lemma 4.5, we know that for all β < c4 < 1

P
[
µn(T

′) ≤ βsk
]
≤ (c5β)

c6·rk . (14)

Combining equations (13) and (14), and because condition (12) holds, we get that

P


∃ i ∈ [n] :

|µi(T )− µi(T
′)|

µi(T )µi(T ′)
≥

c3

(
t+n
rk

+
√

t+n
Rk

)

βsk

[
1− c1

(
n
rk

+
√

n
Rk

)]


 ≤ 2e−t + (c5β)

c6·rk .

Now since rk ≥ bn for a large enough constant b by the definition of k, and since Rk > rk by

Lemma 2.2, we can simplify the denominator in the equation above to get that

P


∃ i ∈ [n] :

|µi(T )− µi(T
′)|

µi(T )µi(T ′)
≥
c7

(
t+n
rk

+
√

t+n
Rk

)

βsk


 ≤ 2e−t + (c5β)

c6·rk .

Setting t = n/β yields

P


∃ i ∈ [n] :

|µi(T )− µi(T
′)|

µi(T )µi(T ′)
≥
c7

(
n(β+1)
βrk

+
√

n(β+1)
βRk

)

βsk


 ≤ 2e−n/β + (c5β)

c6·rk .

Now since β < c4 < 1, we find that

P

[
∃ i ∈ [n] :

|µi(T )− µi(T
′)|

µi(T )µi(T ′)
≥ c8
sk

max

{
n

β2rk
,

√
n

β3/2
√
Rk

}]

≤ 2e−n/β + (c5β)
c6·rk . (15)
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For every β define

ω :=
c8
sk

max

{
n

β2rk
,

√
n

β3/2
√
Rk

}
.

Inverting the map from β to ω yields

β(ω) =





(
c8
√
n

ω
√
Rksk

)2/3
if ω ≤ ωτ :=

c8
sk

(
r3k
R2

kn

)
,

√
c8n
ωrksk

otherwise.
(16)

Let ω0 be such that β(ω0) = c4, and define

ω− := min {ω0, ωτ} and ω+ := max {ω0, ωτ} .

Applying inequality (15) we have that, for all ω ∈ (ω−, ωτ ]

P

[
∃ i ∈ [n] :

|µi(T )− µi(T
′)|

µi(T )µi(T ′)
≥ ω

]

≤ 2 exp

(
−c9

(
ωn
√
Rksk

)2/3)
+

(
c10

√
n

ω
√
Rksk

)c11·rk
, (17)

and for ω > ω+, we have

P

[
∃ i ∈ [n] :

|µi(T )− µi(T
′)|

µi(T )µi(T ′)
≥ ω

]
≤ 2 exp

(
−c12 (ωnrksk)1/2

)
+

(
c13n

ωrksk

)c14·rk
. (18)

Thus

ET ′

[ |µi(T ′)− µi(T )|
µi(T )µi(T ′)

]
=

∫ ∞

0
P

[ |µi(T ′)− µi(T )|
µi(T )µi(T ′)

≥ ω

]
dω

=

∫ ω0

0
P

[ |µi(T ′)− µi(T )|
µi(T )µi(T ′)

≥ ω

]
dω

+

∫ ωτ

ω−

P

[ |µi(T ′)− µi(T )|
µi(T )µi(T ′)

≥ ω

]
dω

+

∫ ∞

ω+

P

[ |µi(T ′)− µi(T )|
µi(T )µi(T ′)

≥ ω

]
dω

≤ ω0 +

∫ ωτ

ω−

P

[ |µi(T ′)− µi(T )|
µi(T )µi(T ′)

≥ ω

]
dω

︸ ︷︷ ︸
=:♠

+

∫ ∞

ω+

P

[ |µi(T ′)− µi(T )|
µi(T )µi(T ′)

≥ ω

]
dω

︸ ︷︷ ︸
=:♣

. (19)

Let us perform each of these two integrals ♠ and ♣ separately.
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First,

♠

=

∫ ωτ

ω−

P

[ |µi(T ′)− µi(T )|
µi(T )µi(T ′)

≥ ω

]
dω

≤
∫ ωτ

ω−

[
2 exp

(
−c9

(
ωn
√
Rksk

)2/3)
+

(
c10

√
n

ω
√
Rksk

)c11·rk]
dω (by inequality (17))

≤ I[ω− < ωτ ]

∫ ∞

ω−

[
2 exp

(
−c9

(
ωn
√
Rksk

)2/3)
+

(
c10

√
n

ω
√
Rksk

)c11·rk]
dω.

Now, for ζ := c9
(
n
√
Rksk

)2/3
, we have that

2

∫ ∞

ω−

exp

(
−c9

(
ωn
√
Rksk

)2/3)
dω

= 2

∫ ∞

ω−

exp
(
−ζω2/3

)
dω

=
3ω

1/3
− exp(−ζω2/3

− )

ζ
+

3
√
π
(
1− erf

(√
ζω

1/3
−
))

2ζ3/2

(since
∫
exp(−z2/3) = 3

4

(√
πerf(z1/3)− 2e−z

2/3
z1/3

)
+ c)

≤ 3ω
1/3
− exp(−ζω2/3

− )

ζ
+

3exp(−ζω2/3
− )

2ζ2ω
1/3
−

=
c15 exp

(
−c9

(
n
√
Rksk

)2/3
ω
2/3
−
)

(n
√
Rksk)2/3

(
ω
1/3
− +

1
(
n
√
Rksk

)2/3
ω
1/3
−

)
. (20)

Continuing our work of bounding ♠, we have that

∫ ∞

ω−

(
c10

√
n

ω
√
Rksk

)c11·rk
dω =

(
c10

√
n√

Rksk

)c11·rk ∫ ∞

ω−

(
1

ω

)c11·rk
dω

=

(
c10

√
n√

Rksk

)c11·rk
× 1

c11 · rk − 1

(
1

ω−

)c11·rk−1

≤ c16

(
c10

√
n√

Rksk

)c11·rk ( 1

ω−

)c11·rk−1

, (21)

where the last inequality follows since rk ≥ bn for a large enough constant b. By combining inequal-

ities (20) and (21) we get the following bound on the integral ♠:

♠ ≤ I[ω− < ωτ ]
c15 exp

(
−c9

(
n
√
Rksk

)2/3
ω
2/3
−
)

(n
√
Rksk)2/3

(
ω
1/3
− +

1
(
n
√
Rksk

)2/3
ω
1/3
−

)

+ I[ω− < ωτ ]c16

(
c10

√
n√

Rksk

)c11·rk ( 1

ω−

)c11·rk−1

. (22)

20



Let us now bound ♣

♣ =

∫ ∞

ω+

P

[ |µi(T ′)− µi(T )|
µi(T )µi(T ′)

≥ ω

]
dω

≤
∫ ∞

ω+

[
2 exp

(
−c12 (ωnrksk)1/2

)
+

(
c13n

ωrksk

)c14·rk]
dω (applying inequality (18)).

For ζ ′ := c12 (nrksk)
1/2

, we have

2

∫ ∞

ω+

exp
(
−c12 (ωnrksk)1/2

)
dω

= 2

∫ ∞

ω+

exp
(
−ζ ′ω1/2

)
dω

=
4exp(−ζ ′√ω+)(ζ

′√ω+ + 1)

ζ ′2
(since

∫
exp(−√

z) = −2e−
√
z(
√
z + 1) + c)

=
c17 exp

(
−c12 (nrkskω+)

1/2
) [
c12 (nrkskω+)

1/2 + 1
]

nrksk
. (23)

We continue to bound the other integral in ♣ as follows

∫ ∞

ω+

(
c13n

ωrksk

)c14·rk
dω ≤ c18

(
c13n

rksk

)c14·rk ( 1

ω+

)c14·rk−1

, (24)

where the bound follows by mirroring the logic used to arrive at inequality (21) above. Therefore,

combining inequalities (23) and (24) we get that

♣ ≤
c17 exp

(
−c12 (nrkskω+)

1/2
) [
c12 (nrkskω+)

1/2 + 1
]

nrksk

+ c18

(
c13n

rksk

)c14·rk ( 1

ω+

)c14·rk−1

. (25)

Having controlled both ♠ and ♣ in (22) and (25) respectively, by using the decomposition in (19)

we find that

ET ′

[ |µi(T ′)− µi(T )|
µi(T )µi(T ′)

]

≤ ω0 + I[ω− < ωτ ]
c15 exp

(
−c9

(
n
√
Rksk

)2/3
ω
2/3
−
)

(n
√
Rksk)2/3

(
ω
1/3
− +

1
(
n
√
Rksk

)2/3
ω
1/3
−

)

+ I[ω− < ωτ ]c16

(
c10

√
n√

Rksk

)c11·rk ( 1

ω−

)c11·rk−1

+
c17 exp

(
−c12 (nrkskω+)

1/2
) [
c12 (nrkskω+)

1/2 + 1
]

nrksk

+ c18

(
c13n

rksk

)c14·rk ( 1

ω+

)c14·rk−1

. (26)

We now consider two cases.
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Case 1: (ω0 < ωτ ). In this case, using the fact that β(ω0) = c4 and the formula for β in equa-

tion (16) we get that

ω0 =
c8
√
n

c
3/2
4

√
Rksk

=
c19

√
n√

Rksk
,

and that

ω− = min{ω0, ωτ} = ω0 =
c8
√
n

c
3/2
4

√
Rksk

,

ω+ = max{ω0, ωτ} = ωτ =
c8r

3
k

R2
knsk

.

Also note that in this case since,

ω0 =
c8
√
n

c
3/2
4

√
Rksk

<
c8r

3
k

R2
knsk

= ωτ ⇒ Rk ≤
c4r

2
k

n

and so ω+ ≥ c8n
c24rksk

.

Thus, substituting the above values of ω0, ω− in inequality (26), and, because the RHS of this

inequality is a decreasing function in ω+ (since the function z 7→ exp(−z)(z + 1) is a decreasing

function for all positive z), replacing ω+ with the above lower bound, we find that

ET ′

[ |µi(T ′)− µi(T )|
µi(T )µi(T ′)

]

≤ c19
√
n√

Rksk
+
c20 exp(−c21n)√

nRksk
+
c20 exp(−c21n)
n3/2

√
Rksk

+
c16c8

√
n

c
3/2
4

√
Rksk

(
c10c

3/2
4

c8

)c11·rk
+
c22 exp(−c23n)

rksk
+
c18c8n

c24rksk

(
c13c

2
4

c8

)c14·rk

(i)

≤ c19
√
n√

Rksk
+
c20 exp(−c21n)√

nRksk
+
c20 exp(−c21n)
n3/2

√
Rksk

+
c16c8

√
n

c
3/2
4

√
Rksk

+
c22 exp(−c23n)

rksk
+
c18c8n

c24rksk

≤ c24
√
n√

Rksk
+
c25n

rksk
,

where (i) follows since c4 is small enough. This combined with inequalities (11) and (12) proves the

lemma in this case.

Case 2: (ω0 ≥ ωτ ). In this case, using the fact that β(ω0) = c4 and the formula for β in equa-

tion (16) we get that

ω0 =
c8n

c24rksk

and that

ω− = min{ω0, ωτ} = ωτ ,

ω+ = max{ω0, ωτ} = ω0 =
c8n

c24rksk
.
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Now by applying inequality (26) we get that

ET ′

[ |µi(T ′)− µi(T )|
µi(T )µi(T ′)

]
≤ c8n

c24rksk
+
c26 exp(−c27n)

rksk
+
c28n

rksk

(
c13c

2
4

c8

)c14·rk

(i)

≤ c8n

c24rksk
+
c26 exp(−c27n)

rksk
+
c28n

rksk
≤ c29n

rksk
,

where (i) follows since c4 is small enough. Again, combining this inequality with inequalities (11)

and (12) proves the lemma in this second case. �

4.2.4 Bounds on E
[
Tr(A−1)

]

To characterize Tr
(
A−1

)
in terms of relevant problem parameters we will need to establish upper and

lower bounds that are tight up to the leading constant on its expectation.

Lemma 4.11. There are positive constants c0 and c1 such that

∣∣∣∣E
[
Tr
(
A−1

)]
− n

sk

∣∣∣∣ ≤
c0n

sk

[√
n

Rk
+
n

rk
+
k

n
+ e−c1

√
n

]
.

Proof. By Lemma 4.9 we know that

E
[
Tr(T−1)

]
− ck

sk
≤ E

[
Tr(A−1)

]
≤ E

[
Tr(T−1)

]
+
ck

sk
. (27)

Thus, we shall instead upper and lower bound E
[
Tr(T−1)

]
.

The lower bound: By definition

E
[
Tr(T−1)

]
= E

[
n∑

i=1

1

µi(T )

]
≥ E

[
n

1
n

∑n
i=1 µi(T )

]
(by the AM-HM inequality). (28)

By Bernstein’s inequality (see Theorem B.5) we know that with probability at least 1− 2e−t,

1

n

n∑

i=1

µi(T ) =
1

n
Tr(T )

=
1

n

∑

i>k

λiTr(ziz
⊤
i )

=
1

n

∑

i>k

λi‖zi‖2

≤
∑

i>k

λi + c2 max



tλk+1,

√
t
∑

i>k

λ2i





= sk

[
1 + c2 max

{
t

rk
,

√
t

Rk

}]
(since sk =

∑
j>k λj)

≤ sk

[
1 + c2 max

{
t√
Rk

,

√
t

Rk

}]
,
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since rk ≥
√
Rk by Lemma 2.2. Setting t =

√
n implies that

1

n

n∑

i=1

µi(T ) ≤ sk

[
1 + 2c2

√
n

Rk

]

with probability at least 1− 2e−
√
n. Thus by inequality (28)

E
[
Tr(T−1)

]
≥ n

sk

(
1 + 2c2

√
n
Rk

)P
[
1

n

n∑

i=1

µi(T ) ≤ sk

[
1 + 2c2

√
n

Rk

]]

≥ n

sk


 1− 2e−

√
n

1 + 2c2
√

n
Rk


 . (29)

Combined with the lower bound in inequality (27) we find that

E
[
Tr(A−1)

]
≥ n

sk


 1− 2e−

√
n

1 + 2c2
√

n
Rk


− c1k

sk

≥ n

sk


1−

2c2
√

n
Rk

+ 2e−
√
n

1 + 2c2
√

n
Rk

− c1k

n




≥ n

sk

[
1− c0

(√
n

Rk
+
k

n
+ e−

√
n

)]
(since Rk ≥ rk ≥ bn). (30)

This proves the desired lower bound.

The upper bound: To obtain the upper bound we shall bound

E
[
Tr(T−1)

]
= E

[
n∑

i=1

1

µi(T )

]
≤ nE

[
1

µn(T )

]
. (31)

We will upper bound the expected value of 1/µn(T ) again by integrating tail bounds. We have

E

[
1

µn(T )

]
=

∫ ∞

0
P

[
1

µn(T )
≥ ω

]
dω

=

∫ ∞

0
P

[
µn(T ) ≤

1

ω

]
dω

=

∫ 1

sk

[

1−c3

(

n+η
rk

+

√

n+η
Rk

)]

0
P

[
µn(T ) ≤

1

ω

]
dω

︸ ︷︷ ︸
=:♣

+

∫ 1
c4sk

1

sk

[

1−c3

(

n+η
rk

+

√

n+η
Rk

)]

P

[
µn(T ) ≤

1

ω

]
dω

︸ ︷︷ ︸
=:♠

+

∫ ∞

1
c4sk

P

[
µn(T ) ≤

1

ω

]
dω

︸ ︷︷ ︸
=:♦

, (32)

where
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• c3 is the constant c from Lemma 4.4,

• c4 is smaller than the constant c21 in Lemma 4.5, and

• η is small enough such that it satisfies c4 ≤ 1− c3

(
n+η
rk

+
√

n+η
Rk

)
.

Below we will set η to scale linearly with n, thus, this condition will be satisfied since Rk ≥ rk ≥ bn

for a large enough value of b.

The first term ♣ is positive because η scales linearly with n and Rk ≥ rk ≥ bn for suitably large b,

and so it can be bounded as follows:

♣ ≤ 1

sk

[
1− c3

(
n+η
rk

+
√

n+η
Rk

)] . (33)

Next, consider the term ♠. Here we will use the additive concentration inequality (Lemma 4.4). By

Lemma 4.4 we know that with probability at most 2e−t

µn(T ) ≤ sk

[
1− c3

(
t+ n

rk
+

√
t+ n

Rk

)]

≤ sk

[
1− c3

(
t+ n

rk
+

√
t+ n

rk

)]
(since rk ≤ Rk by Lemma 2.2)

≤ sk

[
1− 2c3 max

{
t+ n

rk
,

√
t+ n

rk

}]
. (34)

Also, the integral term ♠ is positive, because c4 is chosen to be small enough, η scales linearly with

n, and Rk ≥ rk ≥ bn for suitably large b. Thus,

♠ =

∫ 1
c4sk

1

sk

[

1−c3

(

n+η
rk

+

√

n+η
Rk

)]

P

[
µn(T ) ≤

1

ω

]
dω

≤
∫ 1

c4sk

1

sk

[

1−c5

√

n+η
rk

]

P

[
µn(T ) ≤

1

ω

]
dω

≤ 2

∫ 1
c4sk

1

sk

[

1−c5

√

n+η
rk

]

exp


−rkmin





(
1− 1

ωsk

)

2c3
,

(
1− 1

ωsk

)2

4c23





+ n


 dω

(applying inequality (34), and by setting 1/ω equal to the RHS of (34) and solving for t)

≤ 2en
∫ 1

c4sk

1

sk

[

1−c5

√

n+η
rk

]

exp

[
−c6rk

(
1− 1

ωsk

)2
]

dω,

where the last inequality follows since ω > 1/sk and therefore the term in the round bracket is always

smaller than 1. Thus, we get that

♠ ≤ 2en
∫ 1

c4sk

1

sk

[

1−c5

√

n+η
rk

]

exp

[
−c6rk

(
1− 1

ωsk

)2
]

dω.
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Now we set η = c7n, for a large enough constant c7, and perform a change of variables, redefining

1− 1
ωsk

→ ω̄, to get

♠ ≤ 2en

sk

∫ 1−c4

c5

√
(c7+1)n

rk

exp
(
−c6rkω̄2

)

(1− ω̄)2
dω̄

≤ 2 exp (−c8n)
sk

∫ 1−c4

c5

√
(c7+1)n

rk

1

(1− ω̄)2
dω

=
2exp (−c8n)

sk


 1

1− c5

√
(c7+1)n
rk

− 1

c4




(i)

≤ c9 exp (−c8n)
sk

, (35)

where (i) holds because rk ≥ bn for a large value of b.

Finally, we turn our attention to the term ♦. By using Lemma 4.5 we know that

♦ =

∫ ∞

1
c4sk

P

[
µn(T ) ≤

1

ω

]
dω

≤
∫ ∞

1
c4sk

(
c10
ωsk

)c11rk
dω

=
1

c4sk(c11rk − 1)
(c4c10)

c11rk ≤ c12
rksk

, (36)

where the last inequality follows since rk ≥ bn and because c4 is chosen to be small enough.

By combining inequalities (32), (33), (35) and (36) we conclude that

E

[
1

µn(T )

]

≤ 1

sk

[
1− c3

(
n+η
rk

+
√

n+η
Rk

)] + c9 exp (−c8n)
sk

+
c12
rksk

≤ 1

sk

[
1− c13

(
n
rk

+
√

n
Rk

)] + c9 exp (−c8n)
sk

+
c12
rksk

(since η = c7n)

=
1

sk


1 + c14




√
n
Rk

+ n
rk

1− c13

(√
n
Rk

+ n
rk

) + exp(−c8n) +
1

rk







≤ 1

sk

[
1 + c15

(√
n

Rk
+
n

rk
+ exp(−c8n)

)]
,

where the last inequality follows since Rk ≥ rk ≥ bn with b being large enough. Hence by inequal-

ity (31)

E
[
Tr(T−1)

]
≤ n

sk

[
1 + c15

(√
n

Rk
+
n

rk
+ exp(−c8n)

)]

≤ n

sk

[
1 + c15

(√
n

Rk
+
n

rk
+ exp(−c8

√
n)

)]
,

which combined with inequality (27) completes our proof. �
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4.2.5 Proof of Lemma 4.6

As mentioned previously, by using the previous four lemmas we will now show that the trace of A−1

is close to n/sk with high probability. Recall the statement of the lemma from above.

Lemma 4.6. There are positive constants c0, . . . , c4 such that, if p ≥ c0(n+ k) then with probability

at least 1− c1e
−c2n

∣∣∣∣Tr
(
(XX⊤)−1

)
− n

sk

∣∣∣∣ ≤
c3n

sk

[√
n

Rk
+
n

rk
+
k

n
+ e−c4

√
n

]
.

Proof. Recall that by definition A = XX⊤. By an application of the triangle inequality,

∣∣∣∣Tr(A
−1)− n

sk

∣∣∣∣ ≤
∣∣Tr(A−1)− Tr(T−1)

∣∣+
∣∣E
[
Tr(A−1)

]
− E

[
Tr(T−1)

]∣∣

+
∣∣Tr(T−1)− E

[
Tr(T−1)

]∣∣+
∣∣∣∣E
[
Tr(A−1)

]
− n

sk

∣∣∣∣ . (37)

By Lemma 4.8 we know that

∣∣Tr(A−1)− Tr(T−1)
∣∣ ≤ c5k

sk
(38)

with probability at least

1− 2 exp(−c6rk)− (c7)
c8rk ≥ 1− c9 exp(−c10rk) ≥ 1− c9 exp(−c11n),

where the last two inequalities follow since rk ≥ bn for some large enough value of b. Next, by

Lemma 4.9 we know that

∣∣E
[
Tr(A−1)

]
− E

[
Tr(T−1)

]∣∣ ≤ c12k

sk
. (39)

By Lemma 4.10 we get that with probability at least 1− 2e−n,

∣∣Tr(T−1)− E
[
Tr(T−1)

]∣∣ ≤ c13n

sk

[√
n

Rk
+
n

rk

]
. (40)

Finally, by Lemma 4.11 we know that

∣∣∣∣E
[
Tr(A−1)

]
− n

sk

∣∣∣∣ ≤
c14n

sk

[√
n

Rk
+
n

rk
+
k

n
+ e−c15

√
n

]
. (41)

Combining the (37)-(41) establishes our claim. �

4.3 Proof of Lemma 4.3

Armed with Lemmas 4.4, 4.5 and 4.6, we are ready to prove Lemma 4.3 and establish upper and lower

bounds on α⋆. This proof is further divided into a series of lemmas.

We prove bounds on α⋆ in terms of ‖ỹ‖ and ‖w‖ in Lemma 4.12. We in turn bound ‖ỹ‖ in terms

of ‖θ⋆‖ and ‖D†U⊤
ε‖ in Lemma 4.13. Next, in Lemma 4.14 we show that, with high probability,

‖D†U⊤
ε‖ is close to σ2Tr

(
(XX⊤)−1

)
. Recall that, in Section 4.2, we showed that Tr

(
(XX⊤)−1

)

concentrates around n/sk.

The next lemma provides an upper and lower bound on α⋆.
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Lemma 4.12. The scaling factor α⋆ satisfies the following

2‖ỹ‖1/2
3

≤ α⋆ ≤ 2‖ỹ‖1/2
3

√√√√
√

1 +
4‖w‖4
81‖ỹ‖2 +

2‖w‖2
9‖ỹ‖ .

Proof. Recall the definition of α⋆ from above

α⋆ =

√
8‖w̃n+1:p‖2 +

√
64‖w̃n+1:p‖4 + 1296‖ỹ‖2

81
.

Note that ‖w̃n+1:p‖ ≥ 0. This immediately leads to the lower bound. For the upper bound note that

‖w̃n+1:p‖ ≤ ‖w̃‖ = ‖V ⊤w‖ = ‖w‖, since V is a unitary matrix. �

The following lemma provides high probability upper and lower bounds on the norm of ỹ.

Lemma 4.13. The squared norm of ỹ satisfies the following

‖D†U⊤
ε‖2

(
1− 2‖θ⋆‖

‖D†U⊤
ε‖

)
≤ ‖ỹ‖2 ≤ ‖D†U⊤

ε‖2
(
1 +

‖θ⋆‖
‖D†U⊤

ε‖

)2

.

Proof. Recall that UDV ⊤ is the SVD of X, ỹ = D†U⊤
y and that y = Xθ⋆ + ε. Therefore

ỹ = D†U⊤(Xθ⋆ + ε) = D†U⊤(UDV ⊤θ⋆ + ε) = D†DV ⊤θ⋆ +D†U⊤
ε

=

[
In

0(p−n)×n

]
V ⊤θ⋆ +D†U⊤

ε.

Define θ̃⋆ := V ⊤θ⋆ and so

ỹ = θ̃⋆1:n +D†U⊤
ε.

Thus,

‖ỹ‖2 = ‖θ̃⋆1:n‖2 + ‖D†U⊤
ε‖2 + 2

(
ε
⊤UD†⊤

)(
θ̃⋆1:n

)
.

Now since 0 ≤ ‖θ̃⋆1:n‖ ≤ ‖θ̃⋆‖ = ‖V ⊤θ⋆‖ = ‖θ⋆‖ we get that

‖ỹ‖2 ≥ ‖D†U⊤
ε‖2 − 2‖D†U⊤

ε‖‖θ⋆‖ = ‖D†U⊤
ε‖2

(
1− 2‖θ⋆‖

‖D†U⊤
ε‖

)

and also that

‖ỹ‖2 ≤ ‖D†U⊤
ε‖2 + 2‖D†U⊤

ε‖‖θ⋆‖+ ‖θ⋆‖2

=
(
‖D†U⊤

ε‖+ ‖θ⋆‖
)2

= ‖D†U⊤
ε‖2

(
1 +

‖θ⋆‖
‖D†U⊤

ε‖

)2

,

which establishes our claim. �

The next result upper and lower bounds ‖D†U⊤
ε‖2 with high probability.

Lemma 4.14. For any t ≥ 0, with probability at least 1− 2e−t

∣∣∣‖D†U⊤
ε‖2 − σ2Tr

(
(XX⊤)−1

)∣∣∣ ≤ cmax





t

µn(XX⊤)
,

√√√√t

n∑

i=1

1

µ2i (XX
⊤)



 .

28



Proof. Let u1, . . . , un be the columns of U . The matrix U is unitary so each column ui has unit norm.

So

‖D†U⊤
ε‖2 =

n∑

i=1

(u⊤i ε)
2

D2
ii

=

n∑

i=1

(u⊤i ε)
2

µi(XX⊤)

and

Eε

[
‖D†U⊤

ε‖2 | X
]
=

n∑

i=1

E
[
(u⊤i ε)

2 | X
]

D2
ii

=

n∑

i=1

σ2

D2
ii

= σ2Tr
(
(XX⊤)−1

)
.

Since the components are ε are independent, σ2y-sub-Gaussian random variables, with variance σ2, by

invoking the Hanson-Wright inequality [see RV13, Theorem 1] we infer that

∣∣∣‖D†U⊤
ε‖2 − σ2Tr((XX⊤)−1)

∣∣∣ =
∣∣∣ε⊤

(
UD†⊤D†U⊤

)
ε− σ2Tr((XX⊤)−1)

∣∣∣

≤ c1σ
2
ymax





t

µn(XX⊤)
,

√√√√t ·
n∑

i=1

1

µ2i (XX
⊤)





= cmax





t

µn(XX⊤)
,

√√√√t ·
n∑

i=1

1

µ2i (XX
⊤)





with probability at least 1− 2e−t, completing the proof. �

With these lemmas in place we are now ready to prove Lemma 4.3. We restate it here.

Lemma 4.3. There are constants c0, . . . , c5 such that for any δ ∈ (e−c0
√
n, 1), if p ≥ c1(n + k),

n ≥ c2 max {k, sk} and ‖θ⋆‖, ‖w‖ ≤ c3 then with probability at least 1− c4δ,

∣∣∣∣∣∣∣

α⋆

2
√
σn1/4

3s
1/4
k

− 1

∣∣∣∣∣∣∣
≤ c5

[√
n

Rk
+
n

rk
+

√
sk
n

+

√
log(2/δ)

n
+
k

n

]
.

Proof. Using Lemma 4.6, with probability at least 1− c6e
−c7n,

∣∣∣∣Tr(XX
−1)− n

sk

∣∣∣∣ ≤
c8n

sk

[√
n

Rk
+
n

rk
+
k

n
+ e−c9

√
n

]
. (42)

Next, by Lemma 4.4, with probability at least 1− 2e−
√
n, for all i ∈ [n]

µi(XX
⊤) ≥ sk


1− c10


n+

√
n

rk
+

√
n+

√
n

Rk






≥ sk

[
1− c11

(
n

rk
+

√
n

rk

)]
(since Rk ≥ rk by Lemma 2.2)

≥ c12sk (since rk ≥ bn).
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This, combined with Lemma 4.14, tells us that for any δ ∈ (e−c0
√
n, 1) with probability at least

1− c13δ

∣∣∣‖D†U⊤
ε‖2 − σ2Tr((XX⊤)−1)

∣∣∣ ≤ c14 max

{
log(2/δ)

sk
,

√
n log(2/δ)

sk

}

≤ c14
√
n log(2/δ)

sk
.

Combining this with inequality (42) and recalling that σ2 is a constant, we infer that, with probability

at least 1− c3δ,

∣∣∣∣‖D†U⊤
ε‖2 − σ2n

sk

∣∣∣∣ ≤
c15n

sk

[√
n

Rk
+
n

rk
+ e−c9

√
n +

√
log(2/δ)

n
+
k

n

]

≤ c16n

sk

[√
n

Rk
+
n

rk
+

√
log(2/δ)

n
+
k

n

]
(43)

≤ c17n

sk
, (44)

where the last inequality follows since Rk ≥ rk ≥ bn, n ≥ c2k and since δ ≥ e−c0
√
n.

We shall assume that condition (43) holds going forward. (This determines the success probability

in the statement of the lemma.) Now since rk ≥ bn and n ≥ c2 max{k, sk} for a large enough

constants b and c2, by invoking Lemma 4.13, we find that

‖ỹ‖2 ≤ ‖D†U⊤
ε‖2

(
1 +

‖θ⋆‖
‖D†U⊤

ε‖

)2

= ‖D†U⊤
ε‖2

(
1 +

‖θ⋆‖2
‖D†U⊤

ε‖2 +
2‖θ⋆‖

‖D†U⊤
ε‖

)

(i)

≤ σ2n

sk

[
1 + c16

(√
n

Rk
+
n

rk
+

√
log(2/δ)

n
+
k

n

)]

×
(
1 + c18

(‖θ⋆‖2sk
n

+
‖θ⋆‖√sk√

n

))

(ii)

≤ σ2n

sk

[
1 + c16

(√
n

Rk
+
n

rk
+

√
log(2/δ)

n
+
k

n

)](
1 + c19

√
sk
n

)
(45)

≤ c20n

sk
, (46)

where (i) follows by applying inequalities (43) and (44), and also because σ2 is a constant. The second

inequality (ii) follows since ‖θ⋆‖ ≤ c3 and because n ≥ c2sk. Also, by Lemma 4.13, we get that

‖ỹ‖2 ≥ ‖D†U⊤
ε‖2

(
1− 2‖θ⋆‖

‖D†U⊤
ε‖

)

≥ σ2n

sk

[
1− c16

(√
n

Rk
+
n

rk
+

√
log(2/δ)

n
+
k

n

)](
1− c21

√
sk
n

)
(47)

≥ c22n

sk
, (48)
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where the last two inequalities follow by repeating the logic from the previous equation block.

Now recall that, by Lemma 4.12,

2‖ỹ‖1/2
3

≤ α⋆ ≤ 2‖ỹ‖1/2
3

√√√√
√

1 +
4‖w‖4
81‖ỹ‖2 +

2‖w‖2
9‖ỹ‖ . (49)

Using the lower bound in the equation above combining with inequality (47) we find that

α⋆ ≥ 2
√
σn1/4

3s
1/4
k

[
1− c16

(√
n

Rk
+
n

rk
+

√
log(2/δ)

n
+
k

n

)](
1− c23

√
sk
n

)
,

and since n ≥ c2sk for a large enough constant c2,

α⋆

2
√
σn1/4

3s
1/4
k

− 1 ≥ −c24
[√

n

Rk
+
n

rk
+

√
sk
n

+

√
log(2/δ)

n
+
k

n

]
. (50)

Now for the upper bound, since ‖w‖ ≤ c3, by using (48) we have that ‖w‖2/‖ỹ‖ ≤ 1/20, since

n > c2sk, where c2 is large enough. Thus, by (49),

α⋆ ≤ 2‖ỹ‖1/2
3

(
1 +

c25‖w‖
‖ỹ‖1/2

)

≤ 2
√
σn1/4

3s
1/4
k

[
1 + c26

(√
n

Rk
+
n

rk
+

√
log(2/δ)

n
+
k

n

)](
1 + c27

√
sk
n

)

and so

α⋆

2
√
σn1/4

3s
1/4
k

− 1 ≤ c28

[√
n

Rk
+
n

rk
+

√
sk
n

+

√
log(2/δ)

n
+
k

n

]
.

This combined with (50) completes the proof. �

4.4 Proof of Theorem 3.1

Let us first restate the theorem.

Theorem 3.1. Under Assumptions (A.1)-(A.6), there exist constants c0, . . . , c7 such that for any δ ∈
(e−c0

√
n, 1−c1e−c2n), if p ≥ c3(n+k), n ≥ c4 max {k, sk} and ‖θ⋆‖, ‖w‖ ≤ c5 then with probability

at least 1− c6δ

Risk(θ̂) ≤ Bias+ Variance+ Ξ,

where

Bias ≤ c7

(
‖(θ⋆ − ψ)1:k‖2Σ−1

1:k

(sk
n

)2
+ ‖(θ⋆ − ψ)k+1:p‖2Σk+1:p

)
≤ 2c7‖θ⋆ − ψ‖2sk

n
;

Variance ≤ c7 log(1/δ)

(
k

n
+

n

Rk

)
;

Ξ ≤ c7λ1‖ψ‖2
[
n

Rk
+
n2

r2k
+
sk
n

+
log(1/δ)

n
+
k2

n2

]
max

{√
r0
n
,
r0
n
,

√
log(1/δ)

n

}
.
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Proof. By Lemma 4.2, we know that

Risk(θ̂) ≤ c8(θ
⋆ − α⋆w)⊤B(θ⋆ − α⋆w) + c8 log(1/δ)Tr(C)

with probability at least 1− δ, where the matrices

B =
(
I −X⊤(XX⊤)−1X

)
Σ
(
I −X⊤(XX⊤)−1X

)
and

C = (XX⊤)−1XΣX⊤(XX⊤)−1.

Recall that ψ = 2
√
σn1/4w

3s
1/4
k

. Thus, with the same probability

Risk(θ̂) ≤ c8 (θ
⋆ − ψ − (α⋆w − ψ))⊤B (θ⋆ − ψ − (α⋆w − ψ)) + c8 log(1/δ)Tr(C)

= c8‖θ⋆ − ψ − (α⋆w − ψ)‖2B + c8 log(1/δ)Tr(C)

≤ 2c8‖θ⋆ − ψ‖2B + 2c8‖α⋆w − ψ‖2B + c8 log(1/δ)Tr(C)

= 2c8 (θ
⋆ − ψ)⊤B (θ⋆ − ψ)︸ ︷︷ ︸

“Bias”

+ c8 log(1/δ)Tr(C)︸ ︷︷ ︸
“Variance”

+2c8‖B‖op‖α⋆w − ψ‖2︸ ︷︷ ︸
“Ξ”

. (51)

We shall bound each of the three terms in the inequality above to establish the theorem.

Recall the definition of the matrix T =
∑

j>k λjzjz
⊤
j from Definition 4.7 above. Define S := {j :

j > k}, and let XS ∈ R
n×|S| be the submatrix formed by the last p − k columns of X ∈ R

n×p. It

can be verified that T = XSX
⊤
S . By Lemma 4.4, with probability at least 1− 2e−n ≥ 1− c9δ, (since

δ ≥ e−c0
√
n)

µ1(T ) ≤ c10
∑

j>k

λj and µn(T ) ≥ c11
∑

j>k

λj.

Therefore, the condition number of the matrix T is a constant with the same probability. Assuming

this bound on the condition number holds we shall bound the first two terms in (51).

Bound on the bias and variance: Since the condition number of T is at most a constant, by invoking

[TB20, Theorem 1] we get that with probability at least 1− c12δ

Bias ≤ c7

(
‖(θ⋆ − ψ)1:k‖2Σ−1

1:k

(sk
n

)2
+ ‖(θ⋆ − ψ)k+1:p‖2Σk+1:p

)
(52)

and

Variance ≤ c7 log(1/δ)

(
k

n
+

n

Rk

)
. (53)
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We simplify our upper bound on Bias by noting that under our choice of k as follows:

c7

(
‖(θ⋆ − ψ)1:k‖2Σ−1

1:k

(sk
n

)2
+ ‖(θ⋆ − ψ)k+1:p‖2Σk+1:p

)

= c7

p∑

i=1

[
I(i ≤ k)(θ⋆i − ψi)

2 s2k
n2λi

+ I(i > k)λi(θ
⋆
i − ψi)

2

]

= c7

p∑

i=1

λi(θ
⋆
i − ψi)

2

[
I(i ≤ k)

s2k
n2λ2i

+ I(i > k)

]

= c7

p∑

i=1

λi(θ
⋆
i − ψi)

2 (skn )
2

(skn )
2 + λ2i

[
I(i ≤ k)

(
1 +

1

λ2i

(sk
n

)2)
+ I(i > k)

(
1 + λ2i

(
n

sk

)2
)]

(i)

≤ c7

p∑

i=1

λi(θ
⋆
i − ψi)

2 (skn )
2

(skn )
2 + λ2i

[
I(i ≤ k)

(
1 + b2

)
+ I(i > k)

(
1 + λ2i

(
n

sk

)2
)]

≤ c7

p∑

i=1

λi(θ
⋆
i − ψi)

2 (skn )
2

(skn )
2 + λ2i

[
I(i ≤ k)

(
1 + b2

)
+ I(i > k)

(
1 + λ2k+1

(
n

sk

)2
)]

≤ c7

p∑

i=1

λi(θ
⋆
i − ψi)

2 (skn )
2

(skn )
2 + λ2i

[
I(i ≤ k)

(
1 + b2

)
+ I(i > k)

(
1 +

(
n

rk

)2
)]

(ii)

≤ c7

p∑

i=1

λi(θ
⋆
i − ψi)

2 (skn )
2

(skn )
2 + λ2i

[
I(i ≤ k)

(
1 + b2

)
+ I(i > k)

(
1 +

1

b2

)]

≤ c13

p∑

i=1

λi(θ
⋆
i − ψi)

2 (skn )
2

(skn )
2 + λ2i

,

where (i) follows since by definition k = min{j ≥ 0 : rj ≥ bn} and so for i ≤ k, sk/λi ≤ si/λi =

ri < bn. Inequality (ii) follows since rk ≥ bn. Continuing we get that

c7

(
‖(θ⋆ − ψ)1:k‖2Σ−1

1:k

(sk
n

)2
+ ‖(θ⋆ − ψ)k+1:p‖2Σk+1:p

)

≤ c13

p∑

i=1

λi(θ
⋆ − ψ)2i

(
sk
n

)2
( sk
n

)2
+ λ2i

= c13

(sk
n

)2 p∑

i=1

(θ⋆ − ψ)2i
λi(

sk
n

)2
+ λ2i

≤ c13

(sk
n

)2
‖θ⋆ − ψ‖2 max

i∈[p]
λi(

sk
n

)2
+ λ2i

(by Hölder’s inequality)

≤ c13

(sk
n

)2
‖θ⋆ − ψ‖2 max

ζ≥0

ζ
(
sk
n

)2
+ ζ2

=
2c13‖θ⋆ − ψ‖2sk

n
. (54)

Bound on Ξ (the estimation error of α⋆): By Lemma 4.3 with probability at least 1− c14δ

∣∣∣∣∣α
⋆ − 2

√
σn1/4

3s
1/4
k

∣∣∣∣∣ ≤ c15
2
√
σn1/4

3s
1/4
k

[√
n

Rk
+
n

rk
+

√
sk
n

+

√
log(2/δ)

n
+
k

n

]
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and therefore,

‖α⋆w − ψ‖ ≤ c16‖ψ‖
[√

n

Rk
+
n

rk
+

√
sk
n

+

√
log(2/δ)

n
+
k

n

]

≤ c17‖ψ‖
[√

n

Rk
+
n

rk
+

√
sk
n

+

√
log(1/δ)

n
+
k

n

]
(since δ ≤ 1− c1e

−c2n). (55)

To control the operator norm of B, we first observe that

‖B‖op =
∥∥∥
(
I −X⊤(XX⊤)−1X

)
Σ
(
I −X⊤(XX⊤)−1X

)∥∥∥
op

=

∥∥∥∥
(
I −X⊤(XX⊤)−1X

)(
Σ− X⊤X

n

)(
I −X⊤(XX⊤)−1X

)∥∥∥∥
op

≤
∥∥∥I −X⊤(XX⊤)−1X

∥∥∥
2

op

∥∥∥∥Σ− X⊤X
n

∥∥∥∥
op

≤
∥∥∥∥Σ− X⊤X

n

∥∥∥∥
op

.

Thus, by invoking [KL17, Theorem 9] we get that with probability at least 1− δ

‖B‖op ≤ c18λ1 max

{√
r0
n
,
r0
n
,

√
log(1/δ)

n
,
log(1/δ)

n

}

≤ c18λ1 max

{√
r0
n
,
r0
n
,

√
log(1/δ)

n

}
, (56)

where the second inequality follows since δ ≥ e−c0
√
n.

Combining inequalities (55) and (56) we get that with probability at least 1− c19δ

2c8‖B‖op‖α⋆w − ψ‖2 ≤ c20λ1‖ψ‖2 max

{√
r0
n
,
r0
n
,

√
log(1/δ)

n

}

×
[
n

Rk
+
n2

r2k
+
sk
n

+
log(2/δ)

n
+
k2

n2

]
. (57)

Combining inequalities (52), (53), (54) and (57) along with a union bound completes the proof. �

5 Proof of Proposition 3.4

Recall the statement of the proposition.

Proposition 3.4. If a(0) and W (0) are chosen randomly, independent of X and y, so that the distri-

bution of a(0)⊤W (0) is symmetric about the origin, then

Ea(0),W (0),X,y[Risk(θ̂)] ≥ E

[
θ⋆⊤Bθ⋆

]
+ σ2E [Tr(C)] ,

where

B :=
(
I −X⊤(XX⊤)−1X

)
Σ
(
I −X⊤(XX⊤)−1X

)
and

C := (XX⊤)−1XΣX⊤(XX⊤)−1.
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Proof. In the proof of Lemma 4.2, we showed that, for all X,y, we have

Risk(θ̂) = Ex

[(
x⊤
(
I −X⊤(XX⊤)−1X

)
(θ⋆ − α⋆w)− x⊤X⊤(XX⊤)−1

ε

)2]
.

Expanding the quadratic yields

Risk(θ̂) = Ex

[(
x⊤
(
I −X⊤(XX⊤)−1X

)
(θ⋆ − α⋆w)

)2]
+ Ex

[(
x⊤X⊤(XX⊤)−1

ε

)2]

+ 2Ex

[(
x⊤
(
I −X⊤(XX⊤)−1X

)
θ⋆
)(

x⊤X⊤(XX⊤)−1
ε

)]

− 2Ex

[(
x⊤
(
I −X⊤(XX⊤)−1X

)
(α⋆w)

)(
x⊤X⊤(XX⊤)−1

ε

)]
.

Since the distribution of w is symmetric about the origin, and independent of X and y, and since, for

fixed X and y, α⋆ is determined as a function of w, after conditioning on X and y, the distribution

of α⋆w is symmetric about the origin, and therefore has zero mean. This, along with the fact that

E[ε] = 0, gives

E[Risk(θ̂)] = E

[(
x⊤
(
I −X⊤(XX⊤)−1X

)
(θ⋆ − α⋆w)

)2]
+ Ex

[(
x⊤X⊤(XX⊤)−1

ε

)2]

= E[(θ⋆ − α∗w)⊤B(θ − α∗w)⋆] + E

[(
x⊤X⊤(XX⊤)−1

ε

)2]

≥ E[θ⋆⊤Bθ⋆] + E

[(
x⊤X⊤(XX⊤)−1

ε

)2]

≥ E[θ⋆⊤Bθ⋆] + σ2E [Tr(C)] ,

completing the proof. �

6 Discussion

Despite the fact that parameterizing a linear model using a balanced, two-layer linear network has been

shown in previous work to have a substantial effect on the inductive bias of gradient descent [Azu+21],

it remains compatible with benign overfitting, and the initial weights also encode a potentially useful

bias.

While Proposition 3.4 limits the prospects for improving our upper bounds, there still appears to be

a gap between our upper and lower bounds.

Moving beyond the case where the initialization is balanced would be an interesting next step. We

briefly note that, for the initial parameters to be balanced, it is necessary for the weight matrix in the

first layer W ∈ R
m×p to have rank one. In the case where there is a single neuron (m = 1), Theorem 2

by [Azu+21] characterizes the implicit bias of the final solution learnt by gradient flow on the squared

loss. The techniques developed in this paper might perhaps be useful in bounding the excess risk of

this solution.

Yet another interesting open question concerns characterizing the implicit bias of gradient flow

with the squared loss in the case where a linear model is parameterized using a deeper representation

than two layers, building on existing research [Gun+17; Gun+18b; Aro+19; Woo+20; GSD20; RC20;

YKM21; Azu+21; JRG21]. It would also be interesting to prove corresponding excess risk bounds

for such solutions, and to study the effect of depth on the generalization properties of the resulting

models.
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A The design matrix has full rank (and more)

Lemma A.1. Under Assumption (A.4), for any eigenvector v of Σ, and any sample size n, the projec-

tion of the rows of X onto the subspace of Rp orthogonal to v has rank n.

Proof. Assume without loss of generality that Σ is diagonal and v = (1, 0, 0, . . . , 0). Let x1, . . . , xn
denote the rows of X, and let x′1, . . . , x

′
n be obtained from x1, . . . , xn by replacing each of their first

components with 0, thereby projecting them onto the subspace orthogonal to v. It suffices to prove

that, almost surely, x′1, . . . , x
′
n are linearly independent.

We will prove this by induction. The base case, there n = 1, is straightforward. When n > 1, by the

inductive hypothesis, x′1, . . . , x
′
n−1 are linearly independent. Since p > n, Assumption (A.4) implies

that the span of x′1, . . . , x
′
n−1 has probability 0, so that, almost surely, x′n is not a member this span,

completing the proof. �

B Concentration inequalities

For an excellent reference of sub-Gaussian and sub-exponential concentration inequalities we refer

the reader to Vershynin [Ver18]. We begin by defining sub-Gaussian and sub-exponential random

variables.

Definition B.1. A random variable φ is sub-Gaussian if

‖φ‖ψ2 := inf
{
t > 0 : E[exp(φ2/t2)] < 2

}

is bounded. Further, ‖φ‖ψ2 is defined to be its sub-Gaussian norm.

Definition B.2. A random variable φ is said to be sub-exponential if

‖φ‖ψ1 := inf {t > 0 : E[exp(|φ|/t) < 2]}

is bounded. Further, ‖φ‖ψ1 is defined to be its sub-exponential norm.

Next we state a few well-known facts about sub-Gaussian and sub-exponential random variables.

Lemma B.3 (Vershynin 2018, Lemma 2.7.6). If a random variable φ is sub-Gaussian then φ2 is

sub-exponential with ‖φ2‖ψ1 = ‖φ‖2ψ2
.

Lemma B.4 (Vershynin 2018, Lemma 2.7.10). If a random variable φ is sub-exponential then φ−E[φ]

is sub-exponential with ‖φ− E[φ]‖ψ1 ≤ c‖φ‖ψ1 for some positive constant c.

We state Bernstein’s inequality [see, e.g., Ver18, Theorem 2.8.1], a concentration inequality for a

sum of independent sub-exponential random variables.
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Theorem B.5. For independent mean-zero sub-exponential random variables φ1, . . . , φm, for every

η > 0, we have

P

[∣∣∣
m∑

i=1

φi

∣∣∣ ≥ η

]
≤ 2 exp

(
−cmin

{
η2∑m

i=1‖φi‖2ψ1

,
η

maxi‖φi‖ψ1

})
,

where c is a positive absolute constant.

Let us continue by defining an ε-net with respect to the Euclidean distance.

Definition B.6. Let S ⊆ R
p. A subset K is called an ε-net of S if every point in S is within Euclidean

distance ε of some point in K .

The following lemma bounds the size of a 1/4-net of unit vectors in R
p.

Lemma B.7. Let S be the set of all unit vectors in R
p. Then there exists a 1/4-net of S of size 9p.

Proof. Follows immediately by invoking [Ver18, Corollary 4.2.13] with ε = 1/4. �

B.1 Proof of Lemma 4.4

Let Σ =
∑p

i=1 λieie
⊤
i be the spectral decomposition of the covariance matrix. Define the random

vectors

zi :=
Xei√
λi

∈ R
n.

These random vectors zi have entries that are independent, σ2x-sub-Gaussian random variables [see

Bar+20, Lemma 8]. Note that we can write the matrix

XSX
⊤
S =

∑

i∈S
λiziz

⊤
i .

Further, its expected value is as follows:

E

[
XSX

⊤
S

]
=
∑

i∈S
λiE

[
ziz

⊤
i

]
=
∑

i∈S
E

[
Xeie

⊤
i X

⊤
]
= In

∑

i∈S
λi = Ins(S).

With this in place, we are now ready to prove our concentration results.

Lemma 4.4. There exists a positive absolute constant c such that, for any subset S ⊆ [p] and any

t ≥ 0, with probability at least 1− 2e−t, for all j ∈ {1, . . . ,min(n, |S|)}

∣∣∣µj(XSX
⊤
S )− s(S)

∣∣∣ ≤ cs(S)

(
t+ n

r(S)
+

√
t+ n

R(S)

)
.

Proof. We shall prove this bound in the case where the set S = [p]. The bound for any other subset S

shall follow by exactly the same logic. First, note that by a standard ε-net argument [see, e.g, Bar+20,

Lemma 25] to bound the operator norm we can use the following inequality:

∥∥∥∥∥XX
⊤ − In

p∑

i=1

λi

∥∥∥∥∥
op

≤ 2 max
vj∈N 1

4

∣∣∣∣∣v
⊤
j

(
XX⊤ − In

p∑

i=1

λi

)
vj

∣∣∣∣∣ , (58)
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where N 1
4

is a 1/4-net of the unit sphere with respect to the Euclidean norm of size at most 9n. (We

know that such a net exists by Lemma B.7.) Consider an arbitrary unit vector v ∈ S
n−1. Then

v⊤
(
XX⊤ − In

p∑

i=1

λi

)
v =

p∑

i=1

λi

(
(z⊤i v)

2 − 1
)
. (59)

By Lemmas B.3 and B.4 we know that the random variables λi((z
⊤
i v)

2−1) are c1λiσ
2
x-sub-exponential,

for some positive constant c1.Therefore we can use Bernstein’s inequality (see Theorem B.5) to upper

bound the sum in equation (59) to get that, with probability at least 1− 2e−t,

∣∣∣∣∣

p∑

i=1

λi

(
(z⊤i v)

2 − 1
)∣∣∣∣∣ ≤ c2σ

2
xmax



λ1t,

√√√√t

p∑

j=1

λ2j



 . (60)

Next by a union bound over all the elements of the cover N 1
4

we find that, with probability at least

1− 2e−t, for all v ∈ N 1
4
,

∣∣∣∣∣

p∑

i=1

λi

(
(z⊤i v)

2 − 1
)∣∣∣∣∣ ≤ c2σ

2
xmax



λ1 (t+ n log(9)) ,

√√√√(t+ n log(9))

p∑

j=1

λ2j



 .

Hence, by using inequality (58) we get that with probability at least 1− 2e−t

∥∥∥∥∥XX
⊤ − In

p∑

i=1

λi

∥∥∥∥∥
op

≤ c3σ
2
xmax



λ1 (t+ n log(9)) ,

√√√√(t+ n log(9))

p∑

j=1

λ2j





≤ c4σ
2
x


λ1(t+ n) +

√√√√(t+ n)

p∑

j=1

λ2j


 .

Recalling that σx is assumed to be a positive constant, this implies that the greatest and least eigenval-

ues of XX⊤ are within c5

(
λ1(t+ n) +

√
(t+ n)

∑p
j=1 λ

2
j

)
of
∑p

i=1 λi, which in turn implies

∣∣∣∣∣µj(XX
⊤)−

p∑

i=1

λi

∣∣∣∣∣ ≤ c5


λ1(t+ n) +

√√√√(t+ n)

p∑

j=1

λ2j




= c5

(
p∑

i=1

λi

)(
t+ n

r0
+

√
t+ n

R0

)
,

completing the proof. �

B.2 Proof of Lemma 4.5

We begin by proving an auxiliary lemma that relates the minimum singular value of a matrix to its

approximation over an ε-net under the assumption that its operator norm is bounded. Recall that

XS ∈ R
n×|S|.
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Lemma B.8. Let Nε be an ε-net of the unit sphere in R
n with respect to the Euclidean norm. For any

a, b ≥ 0, if

inf
z∈Sn−1

‖X⊤
S z‖ ≤ a− εb and ‖X⊤

S ‖op ≤ b

then infz∈Nε‖X⊤
S z‖ ≤ a.

Proof. Let ζ be a function that maps any unit vector z to its nearest neighbour (with respect to the

Euclidean norm) in the net Nε. Therefore, if ‖X⊤
S ‖op ≤ b then

inf
z∈Sn−1

‖X⊤
S z‖ = inf

z∈Sn−1
‖X⊤

S (z − ζ(z)) +X⊤
S ζ(z)‖

≥ inf
z∈Sn−1

‖X⊤
S ζ(z)‖ − inf

z∈Sn−1
‖X⊤

S (z − ζ(z))‖

= inf
z∈Nε

‖X⊤
S z‖ − inf

z∈Sn−1
‖X⊤

S (z − ζ(z))‖

≥ inf
z∈Nε

‖X⊤
S z‖ − ‖X⊤

S ‖op inf
z∈Sn−1

‖z − ζ(z)‖

≥ inf
z∈Nε

‖X⊤
S z‖ − εb.

Further if infz∈Sn−1‖X⊤
S z‖ ≤ a − εb then, due to the inequality above, infz∈Nε‖X⊤

S z‖ ≤ a which

completes the proof. �

With this lemma in place let us prove our result.

Lemma 4.5. There exist absolute positive constants c0, . . . , c3 such that given any subset S ⊆ [p] if,

r(S) ≥ c0n then for all t < c1 < 1

P

[
µn(XSX

⊤
S ) ≤ t · s(S)

]
≤ (c2t)

c3·r(S).

Proof. To reduce notational burden in the proof we shall present a proof in the case where the S = [p],

and therefore XS = X. For any other subset S the proof shall proceed in exactly the same manner.

In the proof we shall prove bounds on the smallest singular value of X, smin(X). This immediately

leads to a bound on µn(XX
⊤) = s2min(X).

Recall that smin(X) = smin(X
⊤). So we will instead prove a bound on the smallest singular value

of X⊤ to simplify our calculations. For some parameter h ≥ c4 ≥ 1 that will be set in the sequel,

decompose the probability into

P


smin(X

⊤) ≤ t

√√√√
p∑

j=1

λj




= P





smin(X

⊤) ≤ t

√√√√
p∑

j=1

λj



 ∩

{
‖X‖op ≤ h

√
λ1p
}



+ P





smin(X

⊤) ≤ t

√√√√
p∑

j=1

λj



 ∩

{
‖X‖op > h

√
λ1p
}



≤ P





smin(X

⊤) ≤ t

√√√√
p∑

j=1

λj



 ∩

{
‖X‖op ≤ h

√
λ1p
}

+ P

[
‖X‖op > h

√
λ1p
]
. (61)
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Now we will control each of these probabilities separately. First, let us control the second probability

P

[
‖X‖op > h

√
λ1p
]
= P

[
‖XΣ−1/2Σ1/2‖op > h

√
λ1p
]

≤ P

[
‖XΣ−1/2‖op > h

√
p
]
≤ e−c4h

2p, (62)

by invoking Proposition 2.4 by Rudelson and Vershynin [RV09].

To control the first probability in inequality (61) we need the following definition. Given a random

vector ξ ∈ R
p define the Lévy concentration function

L(ξ; t) := sup
w∈Rp

P [‖ξ − w‖ ≤ t] .

Let φ ∈ S
n−1 be a fixed unit vector. By Assumption (A.4) we know that for any a ≤ b ∈ R:

P

[
(Σ−1/2X⊤φ)i ∈ [a, b]

]
≤ c|b− a|. (63)

Using this fact we find that for any i ∈ [p]:

L((Σ−1/2X⊤φ)i ; 2t) = sup
w∈R

P

[
|(Σ−1/2X⊤φ)i − w| ≤ 2t

]

= sup
w∈R

P

[
(Σ−1/2X⊤φ)i ∈ [w − 2t, w + 2t]

]
≤ 4c5t.

Next by invoking Theorem 1.5 in [RV15] we infer that

L


X⊤φ; 2t

√√√√
p∑

i=1

λi


 ≤ (ct)c

′r0 .

This implies that

P


‖X⊤φ‖ ≤ 2t

√√√√
p∑

i=1

λi


 ≤ sup

w∈Rp
P


‖X⊤φ− w‖ ≤ 2t

√√√√
p∑

i=1

λi




= L


X⊤φ; 2t

√√√√
p∑

i=1

λi


 ≤ (ct)c

′r0 . (64)

This establishes a small-ball probability (anti-concentration) for a fixed unit vector φ. We will now

proceed by using an ε-net argument. For some ε ∈
(
0, 2th

√∑p
i=1 λi
λ1p

)
let Nε be an ε-net of the unit

vectors in R
n with respect to the Euclidean norm of size at most

(
2
ε + 1

)n
(such a net exists, see, e.g.,

Corollary 4.2.13 in [Ver18]). By a union bound over the elements of the net

P


min
φ∈Nε

‖X⊤φ‖ ≤ 2t

√√√√
p∑

i=1

λi


 ≤ (ct)c

′r0 ·
(
2

ε
+ 1

)n
. (65)
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Next by Lemma B.8 we know that

P





smin(X

⊤) ≤ 2t

√√√√
p∑

i=1

λi − εh
√
λ1p



 ∩

{
‖X‖op ≤ h

√
λ1p
}



= P





 inf
z∈Sn−1

‖X⊤z‖ ≤ 2t

√√√√
p∑

i=1

λi − εh
√
λ1p



 ∩

{
‖X‖op ≤ h

√
λ1p
}



≤ P


min
z∈Nε

‖X⊤z‖ ≤ 2t

√√√√
p∑

i=1

λi




≤ (ct)c
′r0 ·

(
2

ε
+ 1

)n
.

Setting ε = t
h

√∑p
i=1 λi
λ1p

= t
h

√
r0
p we get that

P





smin(X

⊤) ≤ t

√√√√
p∑

i=1

λi



 ∩

{
‖X‖op ≤ h

√
λ1p
}

 ≤ (ct)c

′r0 ·
(
2h

t

√
p

r0
+ 1

)n
.

This combined with inequalities (61) and (62) above yields

P


smin(X

⊤) ≤ t

√√√√
p∑

i=1

λi


 ≤ (ct)c

′r0 ·
(
2h

t

√
p

r0
+ 1

)n
+ e−c4h

2p.

Finally set h = 1
t

√
r0
p to obtain the bound

P


smin(X

⊤) ≤ t

√√√√
p∑

i=1

λi


 ≤ (ct)c

′r0 ·
(
c′′

t2

)n
+ e−c5r0/t

2 (i)

≤ (c2t)
c3·r0

where (i) follows since r0 > c0n for a large enough constant c0 and because t < c1 for a small enough

constant c1. �
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