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Abstract

Robust Markov decision processes (RMDPs) are a useful building block of robust
reinforcement learning algorithms but can be hard to solve. This paper proposes
a fast, exact algorithm for computing the Bellman operator for S-rectangular ro-
bust Markov decision processes with L..-constrained rectangular ambiguity sets.
The algorithm combines a novel homotopy continuation method with a bisection
method to solve S-rectangular ambiguity in quasi-linear time in the number of
states and actions. The algorithm improves on the cubic time required by leading
general linear programming methods. Our experimental results confirm the prac-
tical viability of our method and show that it outperforms a leading commercial
optimization package by several orders of magnitude.

1 Introduction

Markov decision processes (MDPs) are a powerful framework for dynamic decision-making prob-
lems and reinforcement learning (Bertsekas and Tsitsiklis, 1996; Puterman, 2005; Sutton and Barto,
2018). The MDP model assumes that the exact transition probabilities and rewards are available.
However, these transition probabilities are typically unknown and must be estimated from sampled
data. Such estimations are prone to errors, and the MDP’s solution is sensitive to the introduced
statistical errors. In particular, the quality of the optimal policy degrades significantly even with
small errors in the transition probabilities (Le Tallec, 2007).

Robust MDPs (RMDPs) mitigate MDPs’ sensitivity to estimation errors by computing an optimal
policy for the worst plausible realization of the transition probabilities. This set of plausible transi-
tion probabilities is known as the ambiguity set. In this paper, we study RMDPs with S-rectangular
ambiguity sets, which can be solved in polynomial time (Hansen, Miltersen, and Zwick, 2013).
However, computing the worst-case realization of transition probabilities often requires solving a
linear program (LP) or another convex optimization problem. Modern solvers are powerful and
efficient, but as the problem size grows, solving an LP for every state becomes computationally
prohibitive (Ho, Petrik, and Wiesemann, 2018).

Most prior work has focused on RMDPs with L;-constrained ambiguity sets because both conve-
nient concentration inequalities (Weissman et al., 2003; Petrik, Ghavamzadeh, and Chow, 2016;
Russel, Gu, and Petrik, 2019) and fast algorithms (Iyengar, 2005; Petrik and Subramanian, 2014;
Ho, Petrik, and Wiesemann, 2020) exist for this scenario. The concentration inequalities play an
important role in the data-driven construction of high-confidence RMDPs. However, ambiguity sets
defined by the L,-norm are more natural and interpretable by human modelers (Givan, Leach, and
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Dean, 2000; Delgado et al., 2016), and can significantly outperform L;-based ambiguity sets in
many circumstances (Behzadian et al., 2021). Unfortunately, RMDPs with S-rectangular ambiguity
sets defined in terms of the L, ball can currently be solved only using general-purpose LP solvers,
which are complex and slow.

As our main contribution, we propose a new, fast algorithm for solving RMDPs with L, -constrained
ambiguity sets. Our algorithm combines a new homotopy continuation method with a bisection
method to achieve quasi-linear O(S A log S) time complexity with respect to the number of states .S
and actions A. This computational complexity compares favorably with the cubic O((SA)3-%) time
complexity of general interior-point LP algorithms. We identify new simplifying properties of the
robust optimization problem defined over L, balls to develop our algorithms.

Although bisection and homotopy methods have been used previously in the context of robust MDPs,
their use and assumptions differ significantly from this work. A bisection method was used to solve
SA-rectangular RMDPs (Nilim and El Ghaoui, 2005), but their approach does not generalize to
S-rectangular RMDPs that we target. Homotopy and bisection methods have been used to solve
L;-constrained ambiguity sets (Ho, Petrik, and Wiesemann, 2018, 2020) but these methods are
based on sparsity properties of the L;i-norm, which do not hold for the L.,-norm. We elaborate
on this important difference after we introduce our algorithm. The existing efficient algorithms
are developed for the SA-rectangular RMDPs with L, balls (Givan, Leach, and Dean, 2000), but
they do not generalize to S-rectangular RMDPs. Developing fast optimization algorithms for S-
rectangular RMDPs is especially challenging because optimal policies may need to be randomized.

Several new, fast methods have been proposed recently for solving RMDPs more efficiently. They
propose replacing the standard value and policy iteration methods with more efficient algorithms,
such as forms of modified policy iteration (Kaufman and Schaefer, 2013; Ho, Petrik, and Wiesemann,
2020) or gradient descent (Grand-Clément and Kroer, 2021). Most of these accelerated methods can
further benefit from the fast Bellman operator algorithms that we propose in this work.

The remainder of the paper is organized as follows: Section 2 describes the basic robust MDP frame-
work. Then, Section 3 proposes a new homotopy method for solving SA-rectangular ambiguity sets,
which serves as a building block for our main contribution. In Section 4, we propose a bisection
method that can solve, in combination with the homotopy method, RMDPs with S-rectangular am-
biguity sets. Finally, Section 5 presents experimental results that show that our method is over
1000 times faster than using Gurobi, a leading commercial linear solver, when solving RMDPs with
hundreds of states.

Notation: We reserve lower- and uppercase bold characters for vectors and matrices respectively.
The symbol A” denotes the probability simplex in R% . Finally, we use I, 1, O to denote an identity
matrix, a vector of ones, and a vector of zeros respectively.

2 Preliminaries: Robust MDPs

This section surveys the basic properties of RMDPs; for example, please see (Iyengar, 2005; Wiese-
mann, Kuhn, and Rustem, 2013; Ho, Petrik, and Wiesemann, 2020) for more details. We consider
a finite RMDP model with states S = {1,...,S} and actions A = {1,..., A}. The agent takes an
action @ € Ain state s € S, it receives a reward 75 , € R, and it transitions to the next state s’ € S
with a probability of p, , . The transition probabilities p; 4 - are unknown but are restricted to be
in an ambiguity set P C (AS)5*4, The initial state is distributed according to p, € A®.

We aim to compute a policy 7 : S — A“ from the set of stationary randomized policies II that max-
imizes the expected y-discounted return p : II x P — R for the worst-case transition probabilities:

max min p(m,p) . (1)
Here, p(m,p) is the standard discounted infinite-horizon return for a policy = defined as p(w,p) =
E[> oo’ - r(Se, A) | Ap ~ 7(St), St41 ~ Ps,.a, S0 ~ Po|. The optimization problem in (1)
can be seen as a zero-sum game, where adversarial nature chooses transition probabilities from
the ambiguity set in order to minimize the agent’s return. Since solving the general optimization
problem in (1) is NP-hard (e.g., (Wiesemann, Kuhn, and Rustem, 2013)), most research has focused
on RMDPs with S-rectangular and SA-rectangular ambiguity sets that can be solved in polynomial
time (Iyengar, 2005; Le Tallec, 2007; Wiesemann, Kuhn, and Rustem, 2013).



SA-rectangular ambiguity sets P are defined as Cartesian products of sets Ps , C A for each state
sand action aas P = {p € (A%)¥*4 | p, , € Py, s €S, a € A}. The intuitive interpretation
of SA-rectangularity is that nature can choose the worst transition probabilities from sets P; , for
each state s and action a independently. We focus on ambiguity sets bounded by L ,-norm distance
from nominal transition probabilities p, , € AS defined as

Ps,a = {ps,a € AS | ||I_)s,a 7ps,a||oc S ’{57(1} ’ (2’)

where ks, > 0 is the robustness budget, and the nominal transition probability p, , is typically
estimated from samples of state transitions.

To streamline the definition of the robust Bellman operator, we follow the notation of Ho, Petrik,
and Wiesemann (2018) and define a nature response function q : R, x R® — R that represents the
nature’s response for a particular state s, action a, and budget £ as

Geal&w) = min {routy-p" | [P, —ol, <€} 3)

Then, the SA-rectangular robust Bellman operator ¥ : RS — R for a value function v € R? is

(Fw)s = max min 0s,a(&,0) . )

>SRs,a

The optimal value function v* € R® must satisfy the robust Bellman optimality equation v* = Tv*
and can be computed using value iteration, policy iteration, or other methods (Iyengar, 2005; Ho,
Petrik, and Wiesemann, 2020; Kaufman and Schaefer, 2013; Grand-Clément and Kroer, 2021).

S-rectangular ambiguity sets relax the assumptions of SA-rectangular sets and compute less con-
servative policies but with a higher computational complexity (Wiesemann, Kuhn, and Rustem,
2013). They are defined as Cartesian products of sets P, C (A%)4 for each state s as
P = {pe (A% | (p,,)aca € Ps, Vs € S}. As with SA-rectangular sets, we also con-
sider marginal ambiguity sets P defined in terms of the L ,-norm as

PS = {(ps,a)GG.A € (AS)A | ZHI_)s,a 7ps,aHOO S K/S} )

acA

where ks > 0 is the robustness budget and p, , is the nominal transition probability. The important
distinction from the SA-rectangular setting is that x5 depends only on the state and not the action.
The S-rectangular Bellman operator is then defined as

= i dg - .
(Sv)s = max min o Gs,a(§,0) (5)
acA
Notice that the S-rectangular Bellman operator allows for randomizing actions through the proba-
bility distribution d, which improves robustness but introduces additional significant computational
complexity (Wiesemann, Kuhn, and Rustem, 2013; Ho, Petrik, and Wiesemann, 2020).

The vast majority of RMDP methods employ value iteration and policy iteration principles and
require computing the robust Bellman operator many times during their run (Iyengar, 2005; Wiese-
mann, Kuhn, and Rustem, 2013; Ho, Petrik, and Wiesemann, 2020). Therefore, it is important that
it can be computed efficiently. In the remainder of the paper, we develop new quasi-linear time
algorithms for computing the robust Bellman operator.

3 Computing the SA-Rectangular Bellman Operator in Linear Time

In this section, we develop a new quasi-linear time algorithm for computing the SA-rectangular
robust Bellman operator defined by the L,-norm. This entails solving the optimization in (4). The
algorithm developed in this section also serves as the major building block of the S-rectangular
algorithm described in Section 4. The remainder of the section is organized as follows: Section 3.1
first analyzes the LP formulation of the function ¢, and, then, Section 3.2 uses these properties to
develop a new, fast homotopy continuation algorithm.
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Figure 1: Function ¢(¢) in Example 3.1. Figure 2: Probabilities p*(£) in Example 3.1.

Computing the SA-rectangular robust Bellman operator for a fixed state s, action a, and a value
function v requires one to evaluate the nature response function g, ,(£,v) in (3). Because the sym-
bols s, a, v are fixed throughout this section, we omit them in the notation. For example, we use ¢(§)
instead of ¢, (£, v) and p in place of p; ,. To further eliminate clutter, let 2 = 7, 4 - 1+ -v. Then,
the optimization problem in (3) can be formulated as the following parametric LP:

a(¢) = min {p'z | [P —pllo <&}

(6)
= min {szl1Tp:1a_ggpl_ﬁl§§7p12072217aS}
pERS

The remainder of this section develops fast algorithms for solving (6) for all values £ > 0.

3.1 Properties of Nature Response Function ¢

The LP in (6) can be solved using generic solvers, like Gurobi or Mosek, but these are impractically
slow for solving RMDPs. The optimization in (6) can also be solved in quasi-linear time for any
fixed £ > 0, as we summarize in Appendix C. The known quasi-linear algorithm is, unfortunately,
insufficient for solving the S-rectangular robust Bellman operator in Section 4. In this section, we
prove results that pave the way for solving (6) for all £ > 0 simultaneously in quasi-linear time,
which enables efficient algorithms for both S- and SA-rectangular RMDPs.

It will be convenient to use p*(§) to refer to an optimal solution in (6). To avoid unnecessary tech-
nicalities, we assume that all elements of 2z are distinct, which guarantees that the optimal solution
p*(£) is unique. In practice, one may add an arbitrarily small value to the elements of z to ensure
that they are all distinct.

To get some intuition into the form of the nature response function ¢(§) and its optimal solution
p* (&), consider the following simple example.

Example 3.1. Consider an RMDP with six states, one action, z = (—1,0,1,2,3,4)T, and nominal
transition probabilities p = (0.0,0.1,0.3,0.1,0.2,0.3)". The functions q(¢) and p*(£) are depicted
in Figures 1 and 2, where Figure 2 shows the evolution of each p;(§) using a different color for each
i.

The following property of the function ¢ is indispensable for our analysis and shows that ¢(&) is
always of the form depicted in Figure 1. It follows from standard LP properties and is proved
in Appendix A.1.

Lemma 3.2. The function q(§) is continuous, piecewise linear, non-increasing, and convex in &.

To develop an efficient algorithm, we now analyze the structure of the bases of the LP (6). Recall
that a basis is a subset of S linearly independent constraints in the LP, which must hold with equality.
There are S constraints included in each basis because S is the number of optimization variables.
Note that constraints may be active (or violated) without being included in the basis.

To represent a basis in (6), we use sets R g, Dp, N, Tz C {1,...,S} to indicate which constraints
are included in the basis with their meanings summarized in Table 1. If i € Dp, we call it a donor,
ifi € R, we call it a receiver, and if 7 € N, we call it a none. The set Tz = {1,...,S} \ Rp \
Dp \ Np represents the remaining indexes, and i € T is called a trader. Lemma 3.4 below justifies
the names for these sets.



Index i € | Constraints in B

Rp (receiver) | p; —p; < Ein B
Dp (donor) P —p; <€in B
N (none) p; >0in B

Robust Q-function: (&)

Figure 3: Composition of B fori € S.
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Figure 4: An illustration of Algorithm 1.

Our homotopy algorithm will leverage the specific behavior of the optimal solution p*(£) as a func-
tion of £. Because each basis B represents a set of .S linearly independent inequalities with S
variables, there exists a unique solution pg(§) for any value £. Note that pz(£) need not be optimal
or feasible.

The following lemma establishes the properties of the bases in (6) that we need to consider in our
optimization; its proof can be found in Appendix A.1.

Lemma 3.3. Suppose that p* is optimal in (6) for some & > Q. Then, there exists a basis B such that
(1) p* = pg (&), (i) sets R, Dp, N, Tp do not intersect, (iii) |Rg| + |Dg| + |Ns| + |Ts| = S,
(iv) |Te| = 1, and (v) z; < zj < z foreachi € Rp,j € T,k € Dp UNp.

Lemma 3.3 is important because it limits the bases relevant to the optimization, which is crucial for
building fast algorithms. In particular, it shows that the sets R, D, N, T partition the set S, and
there is always exactly one trader. The lemma also shows that z coefficients for receivers are smaller
than the coefficient for the trader, which is smaller than the coefficients for donors and nones.

The following lemma establishes the rate of change of the linear function pz (&), which is the last
necessary component for our homotopy algorithm. The lemma’s proof is in Appendix A.1.

Lemma 3.4. The derivatives p = V¢pg(§) for any basis B that satisfies the properties in
Lemma 3.3 are equal to

pi=lifi€ Rp, pi=-1lifie€Dp, pi=0ifie€Np, p;=|Dp|-[Rp|ificTs.
fori € S. Moreover, the slope is ¢ = Y/ag qp(§) = 3 icr, 20 — 2ojepy % T 2orery Pror -

Note that Lemma 3.3 shows that each 7 € S is either a receiver, a donor, a trader, or none. Lemma 3.4
then shows that with an increasing &, a donor donates its probability mass, a receiver receives
probability mass, a trader either donates or receives at a variable rate, and a none remains unchanged.

3.2 Homotopy Algorithm

We are now ready to describe the proposed homotopy method and prove its correctness and complex-
ity. Algorithm 1 summarizes a conceptual version of the homotopy algorithm. As we discuss below,
one needs to avoid computing the full gradient V¢ pg(€) to achieve quasi-linear time complexity.
The complete algorithm with quasi-linear runtime is described in Algorithm 3 in Appendix A.2.

The main idea of Algorithm 1 is simple: it iteratively computes the linear segments of ¢(¢) for all
& > 0. The algorithm starts with £ = 0, where the optimal solution is p, = p with objective
value gy = plz. Then, the algorithm tracks the optimal bases in q(¢) as ¢ increases. When the
Pp, (§) becomes infeasible with the increasing &, the algorithm finds a new optimal basis B;; and
continues until it arrives at a basis with 4/a¢ ¢(§") = 0; the function ¢ is constant for all £ > £’. Since
q(&) is piecewise linear in & (see Lemma 3.2), we obtain its full description from all optimal bases.

The following theorem proves the correctness of Algorithm 1. Informally, the theorem shows that the
function g is piecewise linear with breakpoints (points of non-linearity) only at &, ¢t = 1,..., T 4 1.
Note that £711 = 1 because this is the upper bound on the L,-norm of a difference of two discrete
probability distributions, and, as a result, the function ¢(&) is constant for £ > 1. The proof can be
found in Appendix A.1.



Algorithm 1 Homotopy method to compute ¢(&)

input: Objective z, and nominal probabilities p ;

1:

2: output: Breakpoints (&;)i—o,... 7+1 and (¢¢)i=o,... 7+1 such that ¢: = q(&) ;

3: Initialize & < 0, ¢ < 0, p, < p and qo < q(&) = Pz, 70 = [S/2] and basis By such that:
4 Tp, ={m0}, Rp, ={ili <7}, Dp, ={jlj > 10}, N, = {}

5: while ¢, < 0 do

6: Compute maximum step size for B; to remain feasible (7, = {7 }):

7: Al < max{{>0 | p, +&-Vepp, (&) >0, |(p, + & Vepp, (&) —P)n| <& +E}s
8: Update breakpoints:

9: D1 < P+ A& - Vepp (&) i1 < D1z &g+ & + A&
10: Let B;41 < next basis with the steepest slope (see Lemma 3.7 and Table 1);
11: Lett<+t+1;
12: end while
13: Let €T+1 < 1and qr+1 < 415

14: return: (gt)t=0,---,T+1v and (qt)t:O,A..,T-‘rl
Type ‘ Bt+1 ‘ D3t+1 RBt+1 TBt+1 NBt+1
LDoN | B | Dp\{} R, T, Np, UL}
22T - N BiQ Dp, Rp, \{m} {m} Np, UTs,
3:7T—=D B3 Dp, U TBt RB, \ {m} {m} NBt

Table 1: Possible types of basis change at a breakpoint £;; described in Lemma 3.7.

Theorem 3.5. Suppose that Algorithm I returns (€;)1—o,... 7+1 and (g)i=o,... 7+1. Then q(o - & +
(1—a)-&i1)=a-q&)+ (1 —a) q(+1) forae0,1]andt =0,...,T + 1.

We will refer to Figure 4 in order to provide the intuition that underlies the construction of Algo-
rithm 1 and its correctness. The figure depicts an example state of Algorithm 1 at ¢t = 2 and Line 10.
The solid lines show the values ¢p, and ¢p, when they are feasible and optimal. The dashed lines
indicate when the bases are infeasible or suboptimal at each one of the breakpoints &, £5. The col-
ored lines at &5 indicate the slopes for the possible candidates for B5. The algorithm chooses a basis
with the minimal slope.

The correctness of Algorithm 1 follows from the following three lemmas. The first lemma shows
that the algorithm chooses the initial basis with the minimum possible slope.

Lemma 3.6. The basis By constructed in Line 3 of Algorithm 1 is feasible at & = 0 and has a
steeper slope than any other basis B that satisfies the conditions of Lemma 3.3:

d/de qp,(0) < d/aeqp(0) .

The second lemma shows that the next basis will be selected according to one of the rules in Table 1.

Lemma 3.7. Let a basis B; be optimal for §; 11 in Algorithm 1, such that p*(§41) = pp, (§i41)
and q(§i11) = qB, (§t41)- Assume that pg, (§) is infeasible for & > & 11. If B are all bases feasible
for some & > &, then one with the steepest slope can be constructed as

3;1 if (g, (&+1)) =0, for somel € Dp,
q(&t41) 2 BiQ if (Pp,(&+1))r =0, and Tp, = {7} )
B® if (p—pp,(&11))r = &r1, and Tp, = {7}

argmin

a
e dg
where Bl, BQ, B3 are defined in Table 1 and m € argmax;ep o i

Lemma 3.7 shows that there are three possible types of basis change; any other possible choice of
the basis would contradict the continuity of ¢(£) (Lemma 3.2). Recall also that Lemma 3.3 shows
that there is always exactly one trader. The first type of basis change occurs when p; for a donor
l € D reaches zero; the donor turns into a none in the new basis. The second type of basis change



occurs when the trader probability mass becomes zero; the trader then turns into a none, and the
receiver with the largest z value becomes the new trader. The third type of basis change happens
when the trader’s gradient satisfies 4/a¢ p,(§) < —1 and its probability mass reaches to its lower
bound for a given £, making the basis infeasible for greater values of £&. The trader then becomes a
donor, and, again, the receiver with the largest z value becomes the new trader.

Finally, the third lemma shows that the optimal basis B, identified at £; remains feasible until &, 1.
Note that the convexity of (&) implies that the feasible basis also remains optimal.

Lemma 3.8. If B, is feasible and optimal at &; in Algorithm 1, then it is also optimal on the interval
[&:, & + A&:] computed in Line 6 of Algorithm 1.

We now turn to the computational complexity of Algorithm 3. As the following theorem shows, the
number of iterations 7" in Algorithm 1 is at most O(S). Unfortunately, keeping track of p, in each
iteration of Algorithm 1 requires also O(S) time leading to the overall time complexity of O(S?).
To adapt Algorithm 1 to run in quasi-linear time, Algorithm 3, in Appendix A.2, generates the
necessary values &;, g; without tracking the complete p, values. Its runtime is quasi-linear because
it needs to sort the values of z to perform the optimization in Line 10 in constant time.

Theorem 3.9. Algorithm 1 terminates in at most O(S) iterations and can be adapted to run in
O(S'log S) time (see Algorithm 3 in Appendix A.2).

We conclude by discussing the relationship with the homotopy method proposed for solving RMDPs
with the L; ambiguity sets (Ho, Petrik, and Wiesemann, 2018). Although our algorithm is also a
homotopy method, it is based on analysis that departs significantly from earlier work. The simplify-
ing properties for the L., ambiguity sets differ significantly from the L;-norm. When the ambiguity
sets are defined as L; balls, only two components of p change at the time. Figure 2 illustrates that
when the ambiguity sets are L, balls, all components of p may change with the increasing £. The
fast algorithm for the L,-constrained RMDP relies on the more subtle structure of the optimal bases
described in Lemma 3.3, which leads to a more complex algorithm.

4 Computing the S-Rectangular Bellman Operator in Linear Time

In this section, we propose a fast algorithm for computing the robust Bellman operator (5) for S-
rectangular RMDPs. We assume a fixed state s € S and omit the subscripts throughout the section.
For instance, the nominal probabilities for state s and action a are denoted by p, € A“4. We also
assume a fixed value function v € RS and let 2z, = rsq-1+7v-vforae A

The fast algorithm for computing the S-rectangular robust Bellman operator builds on Algorithm 1.
As Theorem 3.9 shows, the function ¢, defined in (3) is piecewise linear with O(.S) linear segments
that can be computed efficiently by Algorithm 3. Since ¢, is piecewise linear, it is easy to construct
its inverse just by swapping &, and g, to get the following function:

g, (w) = min {p—Dall | P’z <u}, Vae A @)
peEAS

The function ¢, ! returns the budget that nature needs to achieve a response u. Using the function
q; ', we can reformulate the S-rectangular robust Bellman operator as:

(iv>s:dr22§5n£@ {Zda~qa(£a> | Zsagn}gg]g {u | an1<u)§n}. ®)

acA acA acA

The correctness of this formulation follows by standard duality arguments and is proved in
Lemma A.3 in Appendix A.3.

The optimization in (8) is remarkable because its objective is a one-dimensional function with one
constraint. A natural algorithm to use with such an optimization problem is the bisection method
outlined in Algorithm 2 (see Algorithm 4 in Appendix A.3 for a more detailed algorithm). Algo-
rithm 2 keeps an interval [tmin, Umax] such that the optimal u* satisfies that u* € [tUmin, Umax]- In
every time step, the algorithm bisects the interval [tmin, Umayx] in half and updates wmin, Umax in
order to preserve that u* € [Umin, Umax]- One may think of uy,;, as the maximal known infeasible
u in (8) and of wy,.x as the minimal known feasible « in (8).



Algorithm 2 Bisection method for solving (7).

1: input: Desired precision e, functions ¢, !,Va € A
2: output: 4 such that |u* — 4| < ¢, where u* is optimal in Equation (7)
3: Initialize bounds Umin < MiNge A se5(2a)ss Umax < MaAXge A se5(2a)s5
4: while v 0y — Umin > 2 € do
5: Let ©  (Umin + Umax)/2 ;
6: if > 4 0ot (u) < k5 then tpay < u else Uiy, < u end if
7: end while
8: return: (Umin + Umax)/2
1,000 1,000
Q ()
E £
5 5
€ 10 I 100
2 2
5 k]
£ £ W
10
100 200 300 400 100 200 300 400
Number of states Number of states
Algorithm Gurobi —+- Homotopy Algorithm Gurobi —+— Bisection

Figure 5: Relative computation time (unitless) of our algorithms and an LP solver over nominal
MDP in SA-rectangular (left) and S-rectangular (right) inventory management RMDPs.

The time complexity of Algorithm 2 depends on the desired precision €. To remove this dependence
on ¢, it is sufficient to replace the bisection by binary search over the breakpoints; we give the details
of this method in Algorithm 4 in Appendix A.3. The following theorem, proved in Appendix A.3,
summarizes the correctness and complexity of the proposed algorithms.

Theorem 4.1. The combined Algorithms 1 and 2 compute the S-rectangular robust Bellman opera-
tor for any state s € S and can be adapted (see Algorithms 3 and 4) to run in time O(SAlog(SA)).

5 Numerical Results

This section compares the empirical runtime of Algorithms 1 and 2 with the runtime of Gurobi 9.1,
a leading LP solver. The results were generated on a computer with an Intel i17-9700 CPU with 32
GB RAM,; the algorithms are implemented in C++.

As the main benchmark problem, we use the classic Inventory Management (IM) problem (Zipkin,
2000). In this problem, the decision-maker must decide at every time step how much inventory to or-
der. The number of states and actions in this problem corresponds to the holding capacity and order
size respectively. This makes it easy to scale the number of states and actions and evaluate how the
algorithms scale with problem size. To evaluate the performance of our methods on small problems,
we also consider the RiverSwim (RS) domain (Strehl and Littman, 2008) and the Machine Replace-
ment (MR) domain (Delage and Ye, 2010). Please see Appendix B for the detailed description of
these domains.

Figure 5 shows the time to compute the robust Bellman operator for a single state in the inventory
management domain. The x-axis represents the number of states (maximum holding capacity) in
the domain. The number of actions is the same as the number of states. The y-axis represents the
time to compute the robust Bellman operator divided by time to compute the standard (non-robust)
Bellman operator. The results show that even in MDPs with a few hundred states, the algorithms
we propose are about 100 times faster than the leading LP solver. Interestingly, our algorithm is an
order of magnitude faster even for small problems. We use the robustness budget x = 1.2, but the
computation time is insensitive to the particular choice of .

Table 2 compares the time to compute the robust policy for Machine Replacement (MR), RiverSwim
(RS), and Inventory Management (IM) problems. The IM problem has 30 states. It is worth empha-
sizing that MR and RS are very small problems with less than 30 states, yet our algorithms are up to



Rect.  Algorithm MR RS M Rect. Algoritm MR RS M

SA Algorithm 1 <1 3 10 SA [Ho]-Alg.1 <1 2 1

SA Gurobi LP 2960 2240 9770 SA Gurobi LP 92 363 1140

S Algorithm 2 40 52 67 S [Ho]-Alg.2 1 2 5

S Gurobi LP 129 217 2740 S Gurobi LP 79 317 2260
Table 2: Time (ms) to compute the robust pol- Table 3: Time (ms) to compute the robust pol-
icy for S- and SA-rectangular RMDPs with icy for S- and SA-rectangular RMDPs with
L sets. L4 sets (Ho, Petrik, and Wiesemann, 2020).

800 times faster than using an LP solver. This indicates not only that our methods scale well with the
number of states but also that the constant overhead is quite small. For the sake of completeness, we
include in Table 3 the timing results obtained for the RMDP with L; ambiguity sets. These results
show that solving the L.,-constrained RMDP is more difficult than the L;-constrained RMDP, but
also that we can achieve similar dramatic speedups in L., -constrained RMDPs as (Ho, Petrik, and
Wiesemann, 2020).

6 Conclusion

We introduced a new homotopy method for calculating robust Bellman operators for S- and SA-
rectangular ambiguity sets constructed with L,-norm ball. Theoretically, we show that the worst-
case time complexity of our algorithms is quasi-linear: O(SAlog(S)). The algorithms also perform
well in practice, outperforming a leading LP solver by several orders of magnitude.

In addition to being faster than a general-purpose LP solver, our algorithms are also much simpler.
They make it possible to solve L, -constrained RMDPs without the cost and complexity of involving
a general LP solver. Although free and open-source LP solvers are available, their performance falls
significantly short of commercial ones. The algorithms we propose are also easy to combine with
value function approximation methods in RMDPs (Tamar, Mannor, and Xu, 2014).

In terms of future work, we believe that it is important to understand whether similar algorithms can
be developed for RMDPs with more complex ambiguity sets, such as ones defined using Wasserstein
distance, Lo-norm, or KL-divergence.
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