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Abstract

Off-policy Evaluation (OPE) methods are a crucial

tool for evaluating policies in high-stakes domains

such as healthcare, where exploration is often infea-

sible, unethical, or expensive. However, the extent

to which such methods can be trusted under adver-

sarial threats to data quality is largely unexplored.

In this work, we make the first attempt at investi-

gating the sensitivity of OPE methods to marginal

adversarial perturbations to the data. We design

a generic data poisoning attack framework lever-

aging influence functions from robust statistics to

carefully construct perturbations that maximize

error in the policy value estimates. We carry out

extensive experimentation with multiple healthcare

and control datasets. Our results demonstrate that

many existing OPE methods are highly prone to

generating value estimates with large errors when

subject to data poisoning attacks, even for small

adversarial perturbations. These findings question

the reliability of policy values derived using OPE

methods and motivate the need for developing OPE

methods that are statistically robust to train-time

data poisoning attacks.

1 INTRODUCTION

In reinforcement learning (RL), off-policy evaluation (OPE)

methods are popularly used to estimate the value of a pol-

icy from previously collected data [Thomas et al., 2015,

Voloshin et al., 2020, Levine et al., 2020]. These methods

are instrumental in high-stakes decision problems such as in

medicine and finance, where deploying a policy directly is

often infeasible, unethical, or expensive [Gottesman et al.,

2020, Ernst et al., 2006b]. In such cases, one must estimate

the value solely from a batch of data collected using a differ-

ent and possibly unknown policy. Only if the OPE methods

estimate the value of a policy to be sufficiently high will

stakeholders deploy it. Otherwise, the policy will be rejected.

It is therefore essential that OPE methods do not severely

overestimate the values of bad policies or underestimate the

values of good policies [Gottesman et al., 2020].

Despite the importance of OPE methods, their sensitivity

to adversarial contamination of logged data is not well un-

derstood. The complexity of OPE methods offers ample

opportunities for attackers to introduce significant errors

in OPE estimates with only small perturbations to the in-

put data. For example, some OPE methods compute the

value of a policy in a given state as a function of its value

in future states. Therefore, even small errors introduced

in the value estimates of these future states can accumu-

late and result in significant errors in the value estimates

at the initial states, where critical strategic decisions are

often made. This property could be exploited by attackers.

Another possible avenue for an attack is the importance sam-

pling weights. Popular OPE methods, such as the Doubly

Robust and the Importance Sampling methods [Jiang and

Li, 2016, Voloshin et al., 2020] use importance sampling

weights to correct for dataset mismatch when evaluating the

given policy with logged data from a different policy. The

weights depend on the estimate of the policy used for the

logged data. Attackers could perturb the data in a way that

forces the agent to wrongly estimate the policy used to col-

lect data and consequently introduce significant errors in the

value estimates. Such vulnerabilities motivate the need for a

thorough analysis of the effect of data poisoning attacks on

OPE methods.

While some prior works have studied adversarial attacks

in the context of policy learning in online and batch RL

settings [Rakhsha et al., 2020, Ma et al., 2019, Chen et al.,

2019], they mainly focus on teaching an agent to learn an

adversarial policy or driving the agent to an adversarial

state [Rakhsha et al., 2020, Zhang et al., 2021], and do

not specifically investigate the effect of these attacks on

OPE methods. In this work, we address the aforementioned

gaps and study the effect of data poisoning attacks on OPE
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methods. More specifically, our work answers the following

question: Can we construct small perturbations to the train-

ing data that significantly change a given OPE method’s

estimate of the value of a given policy? To this end, we

propose a novel data poisoning framework to analyze the

sensitivity of model-free OPE methods to adversarial data

contamination at train time. We formulate the data poisoning

problem as a bi-level optimization problem and show that it

can be adapted to diverse model-free OPE methods, namely,

Bellman Residual Minimization (BRM) [Farahmand et al.,

2008], Weighted Importance Sampling (WIS), Weighted

Per-Decision Importance Sampling (PDIS) [Precup, 2000,

Powell and Swann, 1966, Rubinstein, 1981], Consistent Per-

Decision Importance Sampling (CPDIS) [Thomas, 2015],

and Weighted Doubly Robust methods (WDR) [Jiang and

Li, 2016]. To solve the aforementioned bilevel optimization

problem in a computationally tractable manner, we derive

an approximate algorithm using influence functions from

robust statistics [Koh et al., 2018, Koh and Liang, 2017,

Diakonikolas and Kane, 2019, Broderick et al., 2021]. To

the best of our knowledge, our work is the first to study the

sensitivity of a wide range of OPE methods to train-time

data poisoning attacks.

We evaluate our framework using five different datasets

spanning medical (Cancer and HIV) and control (Moun-

tain Car, Cartpole, Continuous Gridworld) domains. Our

experiments show that corrupting only 3%–5% of the ob-

served states achieves more than 340% and 100% error in

the estimate of the value function of the optimal policy in

the HIV and MountainCar domains, respectively. Through

our experimental results, we show that out of the five OPE

methods, WDR, PDIS, and BRM are generally the least

statistically robust, and CPDIS and WIS are relatively more

statistically robust to such adversarial contamination. Fi-

nally, our findings question the reliability of policy values

derived using OPE methods and motivate the need for devel-

oping OPE methods that are statistically robust to train-time

data poisoning attacks.

2 PRELIMINARIES

We model a sequential decision-making problem as a

Markov Decision Process (MDP). An MDP is a tuple of the

form ïS,A, R, P, p0, µð representing the set of states, set of

actions, reward function, transition probability model, initial

state distribution, and discount factor respectively. When

taking an action a ∈ A in a state s ∈ S and transitioning

to state s′ ∈ S, the scalar R(s, a, s′) denotes the reward

received by the agent and P (s, a, s′) denotes the probability

of transitioning to a state s′ on taking an action a in a state

s.

A randomized policy Ã : S → ∆|A| prescribes the probabil-

ity of taking each action in each state. The value function

vπ : S → R of a policy Ã at a state s is the expected dis-

counted returns of the policy starting from state s and is

given by

vπ(s) = E

�

∞
"

t=0

µtR(St, At, S
′
t+1) | Ã, S0 = s

�

.

The value of a policy is computed as pT0 v
π . The state-action

value function (also known as the Q-value function) qπ : S×
A → R of a policy Ã at a state s and an action a is the

expected discounted returns obtained by taking action a in

state s and following policy Ã thereafter. The state-action

value function qπ for a policy Ã is the unique fixed point of

the Bellman operator T π : S ×A → R
S×A defined as

(T πq)(s, a) = (1)
"

s′∈S

"

a′∈A

(R(s, a, s′) + µP (s, a, s′)Ã(s′, a′)q(s′, a′)) .

We assume the standard batch RL setting (e.g. [Levine et al.,

2020]) in which the agent is given a batch of n=N × T
transition tuples D=((sij , a

i
j , r

i
j)
T
j=1)

N
i=1, generated by a

behavior policy Ãb for N episodes of length T . The goal

of OPE is to use D to evaluate the value of the evaluation

policy Ã. Let D0 be a set of initial states sampled from the

distribution p0.

The value function is approximated using features À : S →
R
d. As is standard in linear value function approximation,

we assume also that the state-action value function qπ is ap-

proximated as a linear combination of state-action features

ϕ : S × A → R
|A|·d. The state-action features for a given

state-action pair (s, a) are constructed by using the state

features À(s) at the indices corresponding to a and zero else-

where, i.e. ϕ(s, a)[ad : (a+1)d]← À(s). Because the value

function is estimated from data, we need to define a sample

feature matrix Φ ∈ R
n×d where the rows correspond to

the state-action features ϕ(s, a) for the n state-action pairs

in D. Similarly, Φp ∈ R
n×d denotes the sample feature

matrix for the next states such that each row corresponds

to ϕ(s′i, Ã(s
′
i)) for the next states s′i in D. The sample re-

ward matrix r ∈ R
n×1 is constructed such that the ith row

corresponds to the reward ri in D. More details on the con-

struction of the sample feature matrices Φ, Φp and reward

matrix r can be found in Section 4 in [Lagoudakis and Parr,

2003].

OPE methods are broadly classified into three categories: Di-

rect, Importance Sampling, and Hybrid Methods [Voloshin

et al., 2020]. Direct Methods estimate the value of the eval-

uation policy by solving for the fixed point of the Bell-

man Equation (1) with an assumed model for the state-

action value function q or the transition model P . We il-

lustrate our attack on one of the most popular Direct Meth-

ods, namely the Bellman Residual Minimization (BRM)

method [Voloshin et al., 2020, Farahmand et al., 2008].

BRM solves a sequence of supervised learning problems



with state-action features ϕ(s, a) as the predictor and the 1-

step Bellman update T πq = r+ µPq as the target response.

The objective optimized in BRM is the Mean Squared Bell-

man residual (MSBR), defined as a weighted L2 norm:

MSBR(¸) = ∥qη − T
πqη∥

2
W . (2)

Here, the linear Q-value function qη is parameterized by ¸ as

q = Φ¸. The weight matrix is computed as W = diag[µπ]
where µπ ∈ [0, 1]S represents the stationary state distribu-

tion of policy Ã. The value of a policy is then computed as

vBRM =
"

s∈D0

"

a∈A

p0(s) · Ã(s, a) · qη(s, a) . (3)

Importance Sampling Methods (IS) [Kahn and Marshall,

1953] are based on Monte-Carlo techniques and compute

unbiased but high-variance value estimates. The key idea is

to compute the value of policy Ã as the weighted average

of the returns of the trajectories in D, where each trajectory

is re-weighted by its probability of being observed under

evaluation policy Ã. We focus on attacking three popular

variants of importance sampling methods, namely the Per-

Decision, Consistent Weighted Per-Decision, and Weighted

IS methods (PDIS, CPDIS, WIS) [Precup, 2000, Thomas,

2015, Rubinstein, 1981]. Let giT =
�T
t=0 µ

trit represent the

returns observed for the ith trajectory in the dataset D and

assume that the behavior policy is parameterized by ¹b and

estimated from data D using maximum likelihood estima-

tion (MLE) [Vaart, 1998]. In this setting, the MLE method

effectively minimizes the Cross Entropy Loss (CEL) on the

predictions of the behavior policy. In order to define the OPE

estimates of the value functions, we need the importance

sampling weights Äi0:t for time step t defined as

Äi0:t =
t
�

t′=0

Ã(sit′ , a
i
t′)

Ãθbb (ait′ |s
i
t′)

.

Here, the estimate of the behavior policy is defined as

Ãθbb (a|s) = exp(ϕ(s, a)¹b)(
�

a′∈A exp(ϕ(s, a′)¹b))
−1 for

each s ∈ S and a ∈ A. Then the WIS, PDIS, and CPDIS

value function estimates are defined as

vWIS =

"

N
"

i=1

Äi0:T

"−1
N
"

i=1

Äi0:T g
i
T , (4)

vPDIS =
1

N

N
"

i=1

T
"

t=1

µt−1Äi0:tr
i
t, (5)

vCPDIS =

T
"

t=1

µt−1

�N
i=1 Ä

i
0:tr

i
t

�N
i=1 Ä

i
0:t

. (6)

Hybrid Methods combine both Direct and IS methods to

generate value estimates with low bias and variance. An

important hybrid method is the Doubly Robust (DR) estima-

tor [Jiang and Li, 2016], which decreases the variance in the

IS estimate by using the estimate from a method like BRM.

The DR and Weighted DR (WDR) estimators are given by

vDR =
1

N

N
"

i=1

T−1
"

t=0

Äi0:tw
i
t +

1

N

N
"

i=1

vη(s
i
0).

vWDR =

N
"

i=1

T−1
"

t=0

Äi0:t
�N
i=1 Ä

i
0:t

wit +
1

N

N
"

i=1

vη(s
i
0).

(7)

where wit = (rit − qη(s
i
t, a

i
t) + vη(s

i
t)) and vη(s

i
t) =

�

a∈A Ã(s
i
t, a) · qη(s

i
t, a). Here the parameters of the value

function q are estimated using Direct Methods like BRM.

Because empirical studies show that there are no clear win-

ners among the three methods [Voloshin et al., 2020], we

investigate attacks on representative methods from each

type.

3 DOPE FRAMEWORK

We first present our attack framework called DOPE for

Data poisoning attacks on Off-Policy Evaluation. Then we

demonstrate how to use the framework to attack the three

types of OPE methods discussed in Section 2. The objective

and scope of the attacks considered in DOPE are as follows.

Scope: We assume the setting of a white-box attack, i.e. the

attacker has access to the batch data D, evaluation policy Ã,

the value of the discount factor µ, and the attacker knows

how the agent estimates the behavior policy and the state-

action value function from the data. This kind of a setting is

commonplace in the healthcare domains [Gottesman et al.,

2020, Ernst et al., 2006a, Yu et al., 2021] where models

are typically benchmarked and often made available to the

general public so that they can be independently vetted and

validated before deployment. Further, for the attack to be

unnoticeable, we allow the attacker to only perturb at most

³ fraction of the transitions in D while conforming to some

perturbation budget ε g 0 to be defined later.

Objective: The goal of the attacker is to add small adversar-

ial perturbations to a subset of transitions in D such that it

maximizes the error in the value estimate of a given policy

in the desired direction. This means that the attacker may

choose to decrease or increase its estimated value for the

policy being evaluated such that a good evaluation policy is

rejected or a bad evaluation policy is approved.

Components: The DOPE framework for a given OPE

method has four major components: Features (Ψ): the part

of the transition tuples targeted by the attack; Value esti-

mation function (Ä): function used by the OPE method for

computing the value; Estimated parameter (¹): model pa-

rameters learned by the OPE method from the data; Loss

function (L): loss optimized by the OPE method for model-

fitting. We define each component in detail in Section 3.1.

We can now formulate our attack model as a problem of



finding the perturbation matrix ∆ = (¶i)
n
i=1, ¶i ∈ R

Q that

maximizes the difference between values found using the

perturbed and the original data under constraints dictating

that the perturbations are small:

maximize
∆∈Rn×Q

Ä(¹pert,Ψ+∆)− Ä(¹org,Ψ) (8a)

subject to ¹pert ∈ argmin
θ∈RP

L(¹,Ψ+∆) (8b)

¹org ∈ argmin
θ∈RP

L(¹,Ψ) (8c)

∥¶i∥p f ε, i = 1, . . . , N (8d)

n
"

i=1

1∥δi∦=0 f ³ · n. (8e)

The DOPE objective in (8a) increases the estimated value

from the original value, thereby increasing the error. Al-

ternatively, if the attacker wants to decrease the estimated

value of the given policy, they may do so by simply chang-

ing the sign of the objective. The constraint (8b) estimates

the optimal parameter ¹pert from D after perturbing Ψ to

Ψ + ∆. The constraint (8d) ensures that the perturbation

added to each sample ¶i, i.e. ith row of ∆, is limited to the

user-defined budget ε in ℓp norm. This prevents the attack

framework from generating adversarial transitions that can

be easily detected as anomalous. Further, the constraint (8e)

limits the number of transitions that the attacker can per-

turb. Finally, note that ¹org is only computed once with the

original features Ψ and Ä(¹org,Ψ) is a constant that can be

ignored while solving the optimization problem.

3.1 ATTACKING OPE METHODS USING DOPE

We are now ready to formally define the four components

of the DOPE framework. Table 1 summarizes the choice of

these components for each OPE method we attack.

(a) Features: Let È(s, a, r) ∈ R
Q be an arbitrary component

of the transition tuple ïs, a, rð in D that is perturbed by the

attacker. For example, È(s, a, r) could either be the state

features Φ or the reward vector r. We will use Ψ ∈ R
n×Q to

represent the sample matrix of È(s, a, r) constructed from

the n samples in D.

(b) Parameters: The parameters ¹(Ψ) ∈ R
P are the parame-

ters of interest for a given OPE method, written as a function

of Ψ to clarify that these are estimated from samples in D.

In BRM, ¹ represents the parameters of the Q-value function

qη(s, a), whereas in IS methods, ¹ represents the parameters

of the estimated behavior policy Ãθbb (a|s).
(c) Loss function: The loss function L(¹,Ψ) with L : RP ×
R
n×Q → R is the empirical loss optimized by the

OPE method to derive the optimal parameter ¹(Ψ) ∈
argminθ′∈RP L(¹′,Ψ) from the data. As an example, L
in BRM and DR is the MSBR error, whereas in IS methods,

L is the CEL loss optimized to estimate the behavior policy.

(d) Value estimation function: Finally, the value estimation

function Ä(¹(Ψ),Ψ) with Ä : RP ×R
n×Q → R is the func-

tion used by the OPE method to compute the mean value

of Ã at the initial states. For example, in BRM, Ä represents

vBRM. We will use the shorthand Ä(Ψ) := Ä(¹(Ψ),Ψ).

The loss function L(¹,Ψ) must be twice continuously dif-

ferentiable and linearly separable with respect to the tran-

sitions in D. We provide some examples of such loss func-

tions such as MSBR and CEL and show that they are twice

continuously differentiable in Section 4. Further, the value

estimation function Ä(¹,Ψ) also needs to be continuously

differentiable with respect to ¹ and È. These assumptions,

as Section 4 shows, are important for the influence functions

to be well-defined [Koh and Liang, 2017].

4 OPTIMIZATION

In this section, we discuss the challenges of optimizing the

DOPE problem in (8) and propose an approximate scheme

for finding the optimal adversarial perturbations.

There are two major challenges in solving the optimization

problem in Equation (8). First, the constraint (8e) is non-

differentiable and requires the attacker to select a set of at

most ³n transitions, such that perturbing these transitions

results in maximum change in the value of the policy in the

desired direction. It is important to realize that finding this

set requires perturbing all possible subsets of data Ψ whose

size is at most ³n and re-estimating the optimal parameter ¹
for each perturbation. The number of such subsets is larger

than
�

n
αn

�

. Thus, finding the optimal set is computationally

infeasible. Second, observe that (8) is a bilevel optimization

problem where the inner-level problem (8b) is non-linear in

the case of OPE methods which makes it generally NP-Hard

to solve [Wiesemann et al., 2013].

We address these two challenges by deriving an approxima-

tion to the bilevel optimization problem (8) using the Taylor

expansion of Equation (8a). We show that the resulting prob-

lem is simpler to optimize and has a closed-form solution.

In Section 5, we empirically demonstrate the effectiveness

of our approximate solution on several domains.

Approximation We define the influence score of the ith

data point as IΨi
= ∇Ψi

Ä(Ψ) as the rate of change in the

value estimate Ä(Ψ) with respect to the data point Ψi ≡
È(si, ai, ri). Then, using the first-order Taylor expansion of

Ä(Ψ + ∆), we can approximate the net error in the value-

function estimate Ä(Ψ + ∆) − Ä(Ψ) as the weighted sum

of the influence scores of individual data points,

Ä(Ψ +∆)− Ä(Ψ) ≈

n
"

i=1

(∇Ψi
Ä(Ψ))¦¶i. (9)



Method Parameters ¹ Features Ψ Function Ä(Ψ) Loss L(¹,Ψ)
BRM (Farahmand et al. [2008]), Eq. (3) ¸ in qη Φ or r vBRM MSBR

WIS (Rubinstein [1981]), Eq. (4) ¹b in Ãθbb Φ or r vWIS CEL

PDIS (Precup [2000]), Eq. (5) ¹b Φ or r vPDIS CEL

CPDIS (Thomas [2015]), Eq. (6) ¹b Φ or r vCPDIS CEL

WDR/DR (Jiang and Li [2016]), Eq. (7) ¹b, ¸ Φ or r vWDR or vDR CEL + MSBR or MSBR

Table 1: Settings for the four components of the DOPE attack for five different OPE methods.

Using Eq. (9) reduces the optimization in (8) to

max
s∈{0,1}n

max
{δi}N

i=1

�

n
"

i=1

siI
¦
Ψi
¶i

�

�

�
∥¶i∥p f ε, ∀i

"

,

subject to

n
"

i=1

si = ³ · n .

(10)

Here, s ∈ {0, 1}N is a vector of binary indicators such that

si = 1 indicates that the ith transition is amongst the ³n
transitions selected to be perturbed. We can now compute

an approximately optimal set of perturbations in polynomial

time as shown in Theorem 4.1 for norms p = 1, 2,∞.

Theorem 4.1. Let (s∗,∆∗) be an optimal solution to the

optimization problem in (10) and define the approximate

influential set as S∗
α = {i : s∗i = 1, ∀i = 1, . . . , n}. Then,

1. S∗
α can be constructed by choosing the set of ³n tran-

sitions with the largest q-norm of their influence scores

IΨi
. Here, q-norm is the dual of p-norm used in (10),

i.e. 1/p+ 1/q = 1.

2. For all i ∈ [1, . . . n], the optimal ¶∗i for p = 1, 2,∞
can be computed in closed-form as

If p =∞, then ¶∗i = ε · sign(IΨi
)

If p = 2, then ¶∗i = ε ·
IΨi

∥IΨi
∥2
.

If p = 1, then ∀j ∈ [1, Q],

¶∗i,j =







ε · sign(IΨi
(j)) if j ∈ argmax

m∈[1,Q]

IΨi
(m)

0 otherwise

Remark 4.2 (Relation to optimal solution). Solving the ap-

proximate problem (10) gives us a lower bound to the op-

timal solution of the original problem (8). Suppose ∆∗ is

the optimal solution for (10) that we get from Theorem 4.1

while ∆∗∗ is the (intractable) optimal solution for (8). Then,

the maximum error in the value function is at least as much

as what we get,

Ä(Ψ +∆∗∗)− Ä(Ψ) = max
∆∈Rn×Q

Ä(Ψ +∆)− Ä(Ψ)

g Ä(Ψ +∆∗)− Ä(Ψ) .

Influence scores Finally, it remains to discuss how to com-

pute the influence scores of each transition in D: IΨi
=

∇Ψi
Ä(Ψ). Recall that Ä(Ψ) is not only a function of Ψ but

also ¹(Ψ) which is also a function of Ψi. Hence, using the

chain rule, we get for each i ∈ [1 . . . n] that

IΨi
≈
∂Ä(¹,Ψ)

∂Ψi

�

�

�

�

θorg(Ψ)

+
∂Ä(¹,Ψ)

∂¹

�

�

�

�

θorg(Ψ)

∂¹(Ψ)

∂Ψi
. (11)

Algorithm 1: OPE Attack Algorithm

Input: Features Ψ, attack budget ε, % of corrupt

transitions ³, norm-type p
Compute ¹org ← argminθ∈RP L(¹,Ψ) ;

Compute ∥IΨi
∥q for all i = 1, . . . , n using (11) ;

S∗
α ← ³ · n indices i with largest ∥IΨi

∥q ;

for k ∈ S∗
α do

Let ¶∗k ∈ argmax
δ∈RQ

{I¦Ψk
¶ | ∥¶∥p f ε} using Item 2

in Theorem 4.1;

end

Use line search to find the largest step-size ´ ∈ [0, 1]
s. t. the value estimate increases:

Ä(¹,Ψ+ ´ · ¶∗)− Ä(¹,Ψ) > 0;

return Ψ = Ψ+ ´ · ¶∗ ;

The computation of the partial derivative ∂θ(Ψ)/∂Ψi is not

straightforward. However, we can approximately compute

it as ∂θ(Ψ)/∂Ψi = H−1
θorg(Ψ)

∂2L(θ,Ψi)/∂θ∂Ψi

�

�

θorg(Ψ)
where

Hθorg(Ψ) = ∂2L(θ,Ψ)/∂θ2
�

�

θorg(Ψ)
[Koh and Liang, 2017, Sec-

tion 2.2]. See Section 1 for more details.

To compute IΨi
in (11), we require that L(¹,Ψ) is twice

continuously differentiable and linearly separable with re-

spect to the transitions in D, and Ä(¹,Ψ) is continuously

differentiable with respect to ¹ and È. Although these con-

ditions may seem restrictive, they hold true for the OPE

methods we have studied.

The derivatives in (11) can be easily computed using

automatic-differentiation software like PyTorch [Paszke

et al., 2019]. Computing the influence score IΨi
can be

very expensive due to the Hessian-inverse term H−1
θorg(Ψ)

which requires O(P 3) operations to compute. Fortunately,

as shown in [Koh and Liang, 2017], we can avoid the compu-

tation of the Hessian-inverse term while computing IΨi
by

instead first approximately computing the Hessian-inverse



vector product

cprod = H−1
θorg(Ψ)

∂Ä(¹,Ψ)

∂¹

�

�

�

�

θorg(Ψ)

in O(nP ) time using the Pearlmutter’s method [Pearl-

mutter, 1994] and first-order Taylor approximation of the

Hessian-inverse matrix, and then applying the Pearlmut-

ter’s method again to compute the Hessian-vector product

cprod · ∂
2L(θ,Ψi)/∂θ∂Ψi

�

�

θorg(Ψ)
in O(P ) time.

Algorithm outline We outline how to approximately solve

the DOPE optimization (8) in Algorithm 1, which consists

of two main steps. In the first step, we compute an approx-

imation of the optimal set of transitions to perturb S∗
α by

choosing ³n points in Ψ with the largest q-norm of their

influence scores ∥Iψ·
∥q . In the second step, we compute ∆

for all points in S∗
α using Theorem 4.1 and use line search to

find the optimal step size that guarantees an increase in the

error of the value estimate. The second step may be repeated

until no further perturbation to data points in S∗
α results in

an increase in the error in the value estimate.

The main computational bottleneck is in computing the

influence score for each data point. In some cases, this cost

can be reduced. We derive closed-form expressions for the

influence score in the case of the linear BRM method under

two settings a) when the adversary perturbs only the state

features or b) only the reward features.

Proposition 4.3. If the attacker only perturbs the reward

vector r constructed from batch of transition tuplesD. Then,

the influence score of the ith data point Iri,θ,Ψ for the BRM

method can be computed as

Ir,θ,Ψ = 4pT0 Φ0

�

(Φ− µ · Φp)
2
�−1

(Φ− µ · Φp) , (12)

where Φ0 is a sample matrix of initial state features con-

structed from D0.

Proposition 4.4. If the attacker only perturbs the state

feature matrix Φ. Then, the influence score of the ith data

point Iφ(si,ai),θ,Ψ for the BRM method can be computed as

IΨ,θ,Ψ = 4 · pT0 · Φ0 ·
�

(Φ− µ · Φp)
2
�−1
·

�

2 · w
�

Φ− 2 · µ · w
�

Φp

+2 · I
�

(Φ · w − µ · Φp · w − r)
�

,

(13)

where
�

denotes the Kronecker product between matrices.

Proposition 4.3 and 4.4 follow from the chain rule and basic

properties of the gradient operator for matrices.

5 EXPERIMENTS

In this section, we investigate the strengths and weaknesses

of the DOPE attack. First, we evaluate the effectiveness of

the DOPE attack on OPE methods for different values of

attack budget and identify which methods are most vulnera-

ble to adversarial contamination. Second, we compare the

performance of DOPE with three custom baselines: Random

DOPE, FSGM-based Attack, and Random Attack.

5.1 DOMAINS AND EXPERIMENTAL SETUP

We first describe the five domains used in the experiments.

Cancer: This domain [Gottesman et al., 2020] models

the growth of tumors in cancer patients. It consists of 4-

dimensional states which represent the growth dynamics of

the tumor in the patient, and two actions that indicate if a

given patient is to be administered chemotherapy or not at a

given time step.

HIV: The HIV domain [Ernst et al., 2006b] has 6-

dimensional states representing the state of the patient, and

four actions that represent four different types of treatments.

Mountain Car: In the Mountain Car [Brockman et al., 2016]

domain, the task is to drive a car positioned between two

mountains to the top of the mountain on the right in the

shortest time possible. The 2-dimensional state represents

the car’s current position and the current time-step, and the

three actions represent: drive forward, drive backward, and

do not move.

Cartpole: The Cartpole domain [Brockman et al., 2016]

models a simple control problem where the goal is to apply

+1/-1 force to keep a pole attached to a moving cart from

falling. The 2-dimensional state represents the cartpole dy-

namics, and the two actions represent the force applied to

the pole.

Continuous Gridworld: The Continuous Gridworld is a cus-

tom domain that consists of a 2-dimensional state space

that represents the coordinates of the agent, and two actions

a0, a1 that determine the direction and step size of the agent.

The agent begins at coordinate (1, 1) and moves towards

coordinates (50, 50) to maximize its rewards.

Implementation details For each domain, we apply Deep

Q-learning (DQN) to a randomly initialized neural network

policy and obtain partially optimized deterministic policies.

We fix the deterministic policy obtained for each domain

as the evaluation policy and use an ϵ-greedy version of the

evaluation policy as our behavior policy [Gottesman et al.,

2020]. We set ϵ = 0.1 for the HIV domain and ϵ = 0.05
for other domains. We use the behavior policy to generate

five datasets, each containing N trajectories of length T
(see Section 3 for the values of N and T ) and use it to

evaluate the value of the evaluation policy. Our code is

made available in the supplementary materials.

For any given OPE method that learns the Q-value function

of the evaluation policy from data, we use linear function

approximators to represent these Q-value functions and op-

timize the squared Bellman residual with L2 regularization



to learn it. Note that we consider linear function approxima-

tions in line with the precedent set by other recent works in

the off-policy evaluation literature [Gottesman et al., 2020,

Jin et al., 2020]. Linear function approximations are com-

monly employed in the off-policy evaluation literature due

to their simplicity, low computational complexity, and con-

vergence guarantees [Gottesman et al., 2020]. While our

framework is general enough to accommodate any differ-

entiable function approximations including deep learning

models, computing the influence functions for non-linear

function approximations is computationally expensive, and

the time complexity grows as the square of the number of

model parameters ¹. Hence, we resort to linear function

approximators. Note, however, that we try to offset the limi-

tations in the expressive power of linear function approxima-

tions by leveraging complex state representations obtained

from the second last layer of a trained deep Q-network as

input features to the linear function approximations in our

experimentation (See Section 3).

For OPE methods that require learning behavior policy from

the data, we train a multinomial logistic regression model

to predict the behavior policy’s action probabilities using

maximum likelihood estimation. Following standard prac-

tice in RL, we clip the behavior probabilities to 0.01 to

avoid importance sampling weights from exploding. Note

that although clipping the behavior probabilities prohibits

the attacker from making individual behavior policy action

probabilities too small, an attacker can still leverage the fact

that the importance sampling weights are a function of the

product of behavior policy action probabilities, and thus,

the importance weights can be made very large by simply

making the behavior policy action probabilities of as many

points as possible to close to the clipping threshold.

In all our experiments, we perturb only state features. Fi-

nally, the values of the hyperparameters used in our experi-

ments are discussed in Section 3.

We evaluate the effectiveness of our attack model by com-

puting the percentage error in the value function estimate

relative to the initial value estimate. We report the 95% boot-

strap confidence intervals of the interquartile mean (IQM)

of percentage error using our results from the 10 runs (10

datasets) since the IQM confidence intervals are found to be

more reliable in practice [Agarwal et al., 2021]. In this set-

ting, a large percentage error indicates that the OPE method

is less robust to adversarial contamination.

5.2 EFFECTIVENESS OF DOPE ATTACK

Here we evaluate the effectiveness of the DOPE attack

on five OPE methods for a range of attack budgets. In

our first experiment, we fix the percentage of corrupt data

points ³ = 0.05 and vary the budget ε as frac · Ã, where

frac varies from 0.0 to 0.51 in step-sizes of 0.05 and

Ã2 = 2
N ·(N−1)

�N
i=1

�N
j=i+1 ∥À(si)− À(sj)∥

2
p is the stan-

dard deviation of all pairwise distances between the state-

features in the dataset. Figure 1 compare the percentage er-

ror in the value estimate of the OPE methods in all domains.

Our results show that even when corrupting only 5% of the

data points, the attacker need not perturb the state features

significantly to achieve large errors in the value estimate. In

fact, with a perturbation budget as small as ε = 0.5Ã, DOPE

can result in a substantial error in the policy’s value in HIV,

Cancer, Mountain Car, and Continuous Gridworld domains.

Further, a larger attacker’s budget means the DOPE model

has more leeway on the perturbations that it can add to the

dataset, and hence, we observe larger errors for larger bud-

get values. Note that the percentage errors of CPDIS and

WIS in Figures 1b and 1c are too small to be visible in the

plots.

In the second experiment, we vary the percentage of cor-

rupt data points between 0.0 and 0.10 with a step size of

0.02 for all the domains (Figure 2). We fix the perturbation

budget ε to 1.0Ã. Our experimental results in Figures 1 to 2

demonstrate that corrupting only 0.05% of the data points

using DOPE is sufficient to observe a significant error in the

value estimate of a given policy. It is important to realize

that the attacker’s budget ε is local to each data point and is

not impacted by the number of points perturbed. Hence, we

see that a larger percentage of corrupt data points yields a

larger percentage error in the value estimates. Note that the

percentage errors of CPDIS and WIS in Figures 2b and 2c

are too small relative to BRM and WDR and therefore are

not clearly visible in the plots.

Finally, we summarize the impact of DOPE attack (ε =
0.5Ã and ³ = 1.0, p = 1) on all OPE methods and domains

in Table 2. It can be seen that the DOPE attack has a very

high impact on BRM, PDIS, and WDR methods and an

almost negligible impact on CPDIS and WIS methods. We

hypothesize that CPDIS and WIS methods may be more

robust because the weight normalization that they employ

potentially minimizes the importance of any individual data

point, especially when the rewards are uniformly distributed

throughout the trajectory. On the other hand, the weights in

PDIS are not normalized, and therefore, it appears that in

Cartpole and HIV domains, the DOPE attack model is able

to significantly impact the importance sampling weights and

result in significant errors in the value estimates. In WDR,

the attacker can introduce errors through both, the Q-value

function learned from the data as well as the importance

sampling weights, and therefore, we observe significant

errors in the value estimates of WDR method in HIV and

Gridworld domains.

5.3 COMPARISON WITH BASELINES

Here we compare the DOPE attack to three custom base-

lines: Random Attack and Random DOPE Attack (ablation
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