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Abstract

Off-policy Evaluation (OPE) methods are a crucial
tool for evaluating policies in high-stakes domains
such as healthcare, where exploration is often infea-
sible, unethical, or expensive. However, the extent
to which such methods can be trusted under adver-
sarial threats to data quality is largely unexplored.
In this work, we make the first attempt at investi-
gating the sensitivity of OPE methods to marginal
adversarial perturbations to the data. We design
a generic data poisoning attack framework lever-
aging influence functions from robust statistics to
carefully construct perturbations that maximize
error in the policy value estimates. We carry out
extensive experimentation with multiple healthcare
and control datasets. Our results demonstrate that
many existing OPE methods are highly prone to
generating value estimates with large errors when
subject to data poisoning attacks, even for small
adversarial perturbations. These findings question
the reliability of policy values derived using OPE
methods and motivate the need for developing OPE
methods that are statistically robust to train-time
data poisoning attacks.

1 INTRODUCTION

In reinforcement learning (RL), off-policy evaluation (OPE)
methods are popularly used to estimate the value of a pol-
icy from previously collected data [Thomas et al., 2015,
Voloshin et al., 2020, Levine et al., 2020]. These methods
are instrumental in high-stakes decision problems such as in
medicine and finance, where deploying a policy directly is
often infeasible, unethical, or expensive [Gottesman et al.,
2020, Ernst et al., 2006b]. In such cases, one must estimate
the value solely from a batch of data collected using a differ-
ent and possibly unknown policy. Only if the OPE methods

estimate the value of a policy to be sufficiently high will
stakeholders deploy it. Otherwise, the policy will be rejected.
It is therefore essential that OPE methods do not severely
overestimate the values of bad policies or underestimate the
values of good policies [Gottesman et al., 2020].

Despite the importance of OPE methods, their sensitivity
to adversarial contamination of logged data is not well un-
derstood. The complexity of OPE methods offers ample
opportunities for attackers to introduce significant errors
in OPE estimates with only small perturbations to the in-
put data. For example, some OPE methods compute the
value of a policy in a given state as a function of its value
in future states. Therefore, even small errors introduced
in the value estimates of these future states can accumu-
late and result in significant errors in the value estimates
at the initial states, where critical strategic decisions are
often made. This property could be exploited by attackers.
Another possible avenue for an attack is the importance sam-
pling weights. Popular OPE methods, such as the Doubly
Robust and the Importance Sampling methods [Jiang and
Li, 2016, Voloshin et al., 2020] use importance sampling
weights to correct for dataset mismatch when evaluating the
given policy with logged data from a different policy. The
weights depend on the estimate of the policy used for the
logged data. Attackers could perturb the data in a way that
forces the agent to wrongly estimate the policy used to col-
lect data and consequently introduce significant errors in the
value estimates. Such vulnerabilities motivate the need for a
thorough analysis of the effect of data poisoning attacks on
OPE methods.

While some prior works have studied adversarial attacks
in the context of policy learning in online and batch RL
settings [Rakhsha et al., 2020, Ma et al., 2019, Chen et al.,
2019], they mainly focus on teaching an agent to learn an
adversarial policy or driving the agent to an adversarial
state [Rakhsha et al., 2020, Zhang et al., 2021], and do
not specifically investigate the effect of these attacks on
OPE methods. In this work, we address the aforementioned
gaps and study the effect of data poisoning attacks on OPE
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methods. More specifically, our work answers the following
question: Can we construct small perturbations to the train-
ing data that significantly change a given OPE method’s
estimate of the value of a given policy? To this end, we
propose a novel data poisoning framework to analyze the
sensitivity of model-free OPE methods to adversarial data
contamination at train time. We formulate the data poisoning
problem as a bi-level optimization problem and show that it
can be adapted to diverse model-free OPE methods, namely,
Bellman Residual Minimization (BRM) [Farahmand et al.,
2008], Weighted Importance Sampling (WIS), Weighted
Per-Decision Importance Sampling (PDIS) [Precup, 2000,
Powell and Swann, 1966, Rubinstein, 1981], Consistent Per-
Decision Importance Sampling (CPDIS) [Thomas, 2015],
and Weighted Doubly Robust methods (WDR) [Jiang and
Li, 2016]. To solve the aforementioned bilevel optimization
problem in a computationally tractable manner, we derive
an approximate algorithm using influence functions from
robust statistics [Koh et al., 2018, Koh and Liang, 2017,
Diakonikolas and Kane, 2019, Broderick et al., 2021]. To
the best of our knowledge, our work is the first to study the
sensitivity of a wide range of OPE methods to train-time
data poisoning attacks.

We evaluate our framework using five different datasets
spanning medical (Cancer and HIV) and control (Moun-
tain Car, Cartpole, Continuous Gridworld) domains. Our
experiments show that corrupting only 3%-5% of the ob-
served states achieves more than 340% and 100% error in
the estimate of the value function of the optimal policy in
the HIV and MountainCar domains, respectively. Through
our experimental results, we show that out of the five OPE
methods, WDR, PDIS, and BRM are generally the least
statistically robust, and CPDIS and WIS are relatively more
statistically robust to such adversarial contamination. Fi-
nally, our findings question the reliability of policy values
derived using OPE methods and motivate the need for devel-
oping OPE methods that are statistically robust to train-time
data poisoning attacks.

2 PRELIMINARIES

We model a sequential decision-making problem as a
Markov Decision Process (MDP). An MDP is a tuple of the
form (S, A, R, P, py, ) representing the set of states, set of
actions, reward function, transition probability model, initial
state distribution, and discount factor respectively. When
taking an action a € A in a state s € S and transitioning
to state s’ € S, the scalar R(s,a,s’) denotes the reward
received by the agent and P(s, a, s’) denotes the probability
of transitioning to a state s’ on taking an action a in a state
s.

A randomized policy 7 : S — Al prescribes the probabil-
ity of taking each action in each state. The value function
v™: S — R of a policy 7 at a state s is the expected dis-

counted returns of the policy starting from state s and is
given by

St7At7 t+1) ‘ , S() =S
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The value of a policy is computed as pf v™. The state-action
value function (also known as the Q-value function) g™ : S x
A — R of a policy 7 at a state s and an action « is the
expected discounted returns obtained by taking action a in
state s and following policy 7 thereafter. The state-action
value function ¢™ for a policy 7 is the unique fixed point of
the Bellman operator T™: S x A — RS*4 defined as

(TTq)(s,a) = )
(s,a,8") +yP(s,a,8")m(s",a")q(s', a')).
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We assume the standard batch RL setting (e.g. [Levine et al.,
2020]) in which the agent is given a batch of n=N x T
transition tuples D:((sj,aj,rj)f )N |, generated by a
behavior policy 7, for N episodes of length T'. The goal
of OPE is to use D to evaluate the value of the evaluation
policy 7. Let Dy be a set of initial states sampled from the

distribution pq.

The value function is approximated using features £: S —
R?. As is standard in linear value function approximation,
we assume also that the state-action value function ¢” is ap-
proximated as a linear combination of state-action features
$: S x A — R4 The state-action features for a given
state-action pair (s,a) are constructed by using the state
features £(s) at the indices corresponding to a and zero else-
where, i.e. ¢(s,a)[ad : (a+1)d] < &(s). Because the value
function is estimated from data, we need to define a sample
feature matrix ® € R"*? where the rows correspond to
the state-action features ¢(s, a) for the n state-action pairs
in D. Similarly, ®, € R"*¢ denotes the sample feature
matrix for the next states such that each row corresponds
to ¢(s, m(s})) for the next states s in D. The sample re-
ward matrix 7 € R"*! is constructed such that the i*" row
corresponds to the reward r; in D. More details on the con-
struction of the sample feature matrices ®, ®,, and reward
matrix 7 can be found in Section 4 in [Lagoudakis and Parr,
2003].

OPE methods are broadly classified into three categories: Di-
rect, Importance Sampling, and Hybrid Methods [Voloshin
et al., 2020]. Direct Methods estimate the value of the eval-
uation policy by solving for the fixed point of the Bell-
man Equation (1) with an assumed model for the state-
action value function ¢ or the transition model P. We il-
lustrate our attack on one of the most popular Direct Meth-
ods, namely the Bellman Residual Minimization (BRM)
method [Voloshin et al., 2020, Farahmand et al., 2008].
BRM solves a sequence of supervised learning problems



with state-action features ¢(s, a) as the predictor and the 1-
step Bellman update 7™ q = r + vy Pq as the target response.
The objective optimized in BRM is the Mean Squared Bell-
man residual (MSBR), defined as a weighted Ly norm:

MSBR(1) = llay — T"aylliy - @
Here, the linear Q-value function g, is parameterized by 7 as
q = Pn. The weight matrix is computed as W = diag[u"|
where ;™ € [0, 1]° represents the stationary state distribu-
tion of policy 7. The value of a policy is then computed as

UBRM = Z ZPO
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) an(s,a) . (3)

Importance Sampling Methods (IS) [Kahn and Marshall,
1953] are based on Monte-Carlo techniques and compute
unbiased but high-variance value estimates. The key idea is
to compute the value of policy 7 as the weighted average
of the returns of the trajectories in D, where each trajectory
is re-weighted by its probability of being observed under
evaluation policy . We focus on attacking three popular
variants of importance sampling methods, namely the Per-
Decision, Consistent Weighted Per-Decision, and Weighted
IS methods (PDIS, CPDIS, WIS) [Precup, 2000, Thomas,
2015, Rubinstein, 1981]. Let g = Z?:o v!ri represent the
returns observed for the i trajectory in the dataset D and
assume that the behavior policy is parameterized by 6, and
estimated from data D using maximum likelihood estima-
tion (MLE) [Vaart, 1998]. In this setting, the MLE method
effectively minimizes the Cross Entropy Loss (CEL) on the
predictions of the behavior policy. In order to define the OPE
estimates of the value functions, we need the importance
sampling weights pf , for time step ¢ defined as

i ﬁ 7(sy, ap)
Poe= 11 —5 575

t'=0 Ty (a§,|s§,)

Here, the estimate of the behavior policy is defined as
7 (als) = exp(e(s,a)0) (X ye 4 exp(d(s,a’)0y)) " for
each s € S and a € A. Then the WIS, PDIS, and CPDIS
value function estimates are defined as
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Hybrid Methods combine both Direct and IS methods to
generate value estimates with low bias and variance. An

important hybrid method is the Doubly Robust (DR) estima-
tor [Jiang and Li, 2016], which decreases the variance in the

IS estimate by using the estimate from a method like BRM.
The DR and Weighted DR (WDR) estimators are given by

N T-1 N
UDR = 7ZZPO swi + szn(sé)
i=1 t=0 i=1 )
N T-1 ,0 L&
UWDR —ZZ — Z+NZUW(SZO).
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where w; = (rj — qy(s},a}) + vy(s})) and v,(s}) =

> aca (s} a) - qy(s}, a). Here the parameters of the value
function ¢ are estimated using Direct Methods like BRM.
Because empirical studies show that there are no clear win-
ners among the three methods [Voloshin et al., 2020], we
investigate attacks on representative methods from each

type.

3 DOPE FRAMEWORK

We first present our attack framework called DOPE for
Data poisoning attacks on Off-Policy Evaluation. Then we
demonstrate how to use the framework to attack the three
types of OPE methods discussed in Section 2. The objective
and scope of the attacks considered in DOPE are as follows.

Scope: We assume the setting of a white-box attack, i.e. the
attacker has access to the batch data D, evaluation policy 7,
the value of the discount factor v, and the attacker knows
how the agent estimates the behavior policy and the state-
action value function from the data. This kind of a setting is
commonplace in the healthcare domains [Gottesman et al.,
2020, Ernst et al., 2006a, Yu et al., 2021] where models
are typically benchmarked and often made available to the
general public so that they can be independently vetted and
validated before deployment. Further, for the attack to be
unnoticeable, we allow the attacker to only perturb at most
« fraction of the transitions in D while conforming to some
perturbation budget € > 0 to be defined later.

Objective: The goal of the attacker is to add small adversar-
ial perturbations to a subset of transitions in D such that it
maximizes the error in the value estimate of a given policy
in the desired direction. This means that the attacker may
choose to decrease or increase its estimated value for the
policy being evaluated such that a good evaluation policy is
rejected or a bad evaluation policy is approved.

Components: The DOPE framework for a given OPE
method has four major components: Features (V): the part
of the transition tuples targeted by the attack; Value esti-
mation function (p): function used by the OPE method for
computing the value; Estimated parameter (6): model pa-
rameters learned by the OPE method from the data; Loss
function (L): loss optimized by the OPE method for model-
fitting. We define each component in detail in Section 3.1.
We can now formulate our attack model as a problem of



finding the perturbation matrix A = (§;)7_,,5; € R? that
maximizes the difference between values found using the
perturbed and the original data under constraints dictating
that the perturbations are small:

maximize P(Bpert; ¥+ A) — p(Oorg, V) (8a)
subjectto fperx € argmin L(6, ¥ + A) (8b)
0eRP
Oorg € argmin L(60, ¥) (8¢)
HcRP
I16:ll, < e i=1,...,N (8d)
> sz < an. (8e)

=1

The DOPE objective in (8a) increases the estimated value
from the original value, thereby increasing the error. Al-
ternatively, if the attacker wants to decrease the estimated
value of the given policy, they may do so by simply chang-
ing the sign of the objective. The constraint (8b) estimates
the optimal parameter 0pe from D after perturbing ¥ to
U + A. The constraint (8d) ensures that the perturbation
added to each sample §;, i.e. i row of A, is limited to the
user-defined budget € in £, norm. This prevents the attack
framework from generating adversarial transitions that can
be easily detected as anomalous. Further, the constraint (8e)
limits the number of transitions that the attacker can per-
turb. Finally, note that 6, is only computed once with the
original features W and p(for,, V) is a constant that can be
ignored while solving the optimization problem.

3.1 ATTACKING OPE METHODS USING DOPE

We are now ready to formally define the four components
of the DOPE framework. Table 1 summarizes the choice of
these components for each OPE method we attack.

(a) Features: Let (s, a,r) € R? be an arbitrary component
of the transition tuple (s, a, ) in D that is perturbed by the
attacker. For example, (s, a,r) could either be the state
features ® or the reward vector r. We will use ¥ € R"*€ to
represent the sample matrix of ¢ (s, a, ) constructed from
the n samples in D.

(b) Parameters: The parameters (W) € R” are the parame-
ters of interest for a given OPE method, written as a function
of W to clarify that these are estimated from samples in D.
In BRM, 6 represents the parameters of the Q-value function
qn(s, a), whereas in IS methods, 0 represents the parameters
of the estimated behavior policy wgb (als).

(c) Loss function: The loss function L(#, ¥) with L: RF x
R"*Q — R is the empirical loss optimized by the
OPE method to derive the optimal parameter 6(U) €
argming cgr L(#', ¥) from the data. As an example, L
in BRM and DR is the MSBR error, whereas in IS methods,
L is the CEL loss optimized to estimate the behavior policy.
(d) Value estimation function: Finally, the value estimation

function p(0(W), ¥) with p : R” x R"*? — R is the func-
tion used by the OPE method to compute the mean value
of 7 at the initial states. For example, in BRM, p represents
vprm. We will use the shorthand p(U) := p(0(P), T).

The loss function L(6, ¥') must be twice continuously dif-
ferentiable and linearly separable with respect to the tran-
sitions in D. We provide some examples of such loss func-
tions such as MSBR and CEL and show that they are twice
continuously differentiable in Section 4. Further, the value
estimation function p(#, ¥) also needs to be continuously
differentiable with respect to § and . These assumptions,
as Section 4 shows, are important for the influence functions
to be well-defined [Koh and Liang, 2017].

4 OPTIMIZATION

In this section, we discuss the challenges of optimizing the
DOPE problem in (8) and propose an approximate scheme
for finding the optimal adversarial perturbations.

There are two major challenges in solving the optimization
problem in Equation (8). First, the constraint (8e) is non-
differentiable and requires the attacker to select a set of at
most an transitions, such that perturbing these transitions
results in maximum change in the value of the policy in the
desired direction. It is important to realize that finding this
set requires perturbing all possible subsets of data ¥ whose
size is at most an and re-estimating the optimal parameter 6
for each perturbation. The number of such subsets is larger
than (021) Thus, finding the optimal set is computationally
infeasible. Second, observe that (8) is a bilevel optimization
problem where the inner-level problem (8b) is non-linear in
the case of OPE methods which makes it generally NP-Hard
to solve [Wiesemann et al., 2013].

We address these two challenges by deriving an approxima-
tion to the bilevel optimization problem (8) using the Taylor
expansion of Equation (8a). We show that the resulting prob-
lem is simpler to optimize and has a closed-form solution.
In Section 5, we empirically demonstrate the effectiveness
of our approximate solution on several domains.

Approximation We define the influence score of the ™
data point as I'y, = Vg, p(¥) as the rate of change in the
value estimate p(¥) with respect to the data point ¥; =
¥ (8;,a;,7;). Then, using the first-order Taylor expansion of
p(¥ + A), we can approximate the net error in the value-
function estimate p(¥ + A) — p(¥) as the weighted sum
of the influence scores of individual data points,



Method Parameters §  Features ¥ Function p(¥) Loss L(6, )

BRM (Farahmand et al. [2008]), Eq. (3) | nin g, dorr VUBRM MSBR

WIS (Rubinstein [1981]), Eq. (4) 0y in ng dorr VWIS CEL

PDIS (Precup [2000]), Eq. (5) 0, dorr UPDIS CEL

CPDIS (Thomas [2015]), Eq. (6) 0y dorr VUCPDIS CEL

WDR/DR (Jiang and Li [2016]), Eq. (7) | 05, 1 Dorr UWDR OI UpR CEL + MSBR or MSBR

Table 1: Settings for the four components of the DOPE attack for five different OPE methods.

Using Eq. (9) reduces the optimization in (8) to

max max

1y, 5;
s€{0,1}7 {5;}N {X_; Sidy, 0¢

n
subject to Zsi =a-n.

i=1

18]l < 6,Vi},
(10)

Here, s € {0, 1} is a vector of binary indicators such that
s; = 1 indicates that the ™ transition is amongst the an
transitions selected to be perturbed. We can now compute
an approximately optimal set of perturbations in polynomial
time as shown in Theorem 4.1 for norms p = 1, 2, cc.

Theorem 4.1. Let (s*, A*) be an optimal solution to the
optimization problem in (10) and define the approximate
influential setas S% = {i: s7 =1,Vi=1,...,n}. Then,

1. S} can be constructed by choosing the set of an tran-
sitions with the largest q-norm of their influence scores
Iy,. Here, g-norm is the dual of p-norm used in (10),
ie.l/p+1/¢g=1

2. Foralli € [1,...n], the optimal &} forp = 1,2,00
can be computed in closed-form as

Ifp = o0, then 0} = ¢ - sign(Iy,)
Iy,
Ifp=1, then Vj € [1,Q],

e - sign(lw, (4))

Ifp=2, then §] =¢ - .
2

if j € argmaxly,(m)
me[1,Q]
0 otherwise

* —
di; =

Remark 4.2 (Relation to optimal solution). Solving the ap-
proximate problem (10) gives us a lower bound to the op-
timal solution of the original problem (8). Suppose A* is
the optimal solution for (10) that we get from Theorem 4.1
while A** is the (intractable) optimal solution for (8). Then,
the maximum error in the value function is at least as much
as what we get,

pT+AT) —p(0) = max p(¥+A)—p(¥)

> p(W + A") — p(T).

Influence scores Finally, it remains to discuss how to com-
pute the influence scores of each transition in D: Iy, =

Vg, p(¥). Recall that p(¥) is not only a function of ¥ but
also () which is also a function of ¥,. Hence, using the
chain rule, we get foreach i € [1...n] that

1, 200 Y)
v, N
o0v; |,

9p(0,¥)

o0

90()
v,

an

org(‘y) eorg(‘p)

Algorithm 1: OPE Attack Algorithm

Input: Features W, attack budget ¢, % of corrupt
transitions o, norm-type p

Compute Oy < arg mingepr L(6, V) ;
Compute || Iy, ||q foralli =1,...,nusing (11);
S* < o - n indices 7 with largest || Iy,
for k& € S% do

Let 6} € arg max{[&,rk5 | 6]l < €} using Item 2

SeRR

q>

in Theorem 4.1;
end
Use line search to find the largest step-size 8 € [0, 1]
s. t. the value estimate increases:
p(6, + B-5%) — p(6,¥) > 0;
return ¥ = VU + 3. §*;

The computation of the partial derivative 99(¥)/aw, is not
straightforward. However, we can approximately compute

it as 90(V)/pw, = H;l(q,)azL((%‘I'i)/aea\yi 0oy (w) Where
org org

Hy,,(w) = PLODo02|, ., [Koh and Liang, 2017, Sec-
org
tion 2.2]. See Section 1 for more details.

To compute Iy, in (11), we require that L(6, ¥) is twice
continuously differentiable and linearly separable with re-
spect to the transitions in D, and p(6, ¥) is continuously
differentiable with respect to 6 and 1. Although these con-
ditions may seem restrictive, they hold true for the OPE
methods we have studied.

The derivatives in (11) can be easily computed using
automatic-differentiation software like PyTorch [Paszke
et al., 2019]. Computing the influence score Iy, can be
very expensive due to the Hessian-inverse term H, 1(](\1,)

which requires O(P3) operations to compute. Fortunately,
as shown in [Koh and Liang, 2017], we can avoid the compu-
tation of the Hessian-inverse term while computing Iy, by
instead first approximately computing the Hessian-inverse



vector product

—1 8[)(9, \II)
bore(¥) 99

Cprod =
00[@(\1,)

in O(nP) time using the Pearlmutter’s method [Pearl-
mutter, 1994] and first-order Taylor approximation of the
Hessian-inverse matrix, and then applying the Pearlmut-
ter’s method again to compute the Hessian-vector product
Cprod + 7L V4) [agow, in O(P) time.

Borg (V)

Algorithm outline We outline how to approximately solve
the DOPE optimization (8) in Algorithm 1, which consists
of two main steps. In the first step, we compute an approx-
imation of the optimal set of transitions to perturb S7 by
choosing an points in ¥ with the largest g-norm of their
influence scores || I, ||,. In the second step, we compute A
for all points in S} using Theorem 4.1 and use line search to
find the optimal step size that guarantees an increase in the
error of the value estimate. The second step may be repeated
until no further perturbation to data points in .S}, results in
an increase in the error in the value estimate.

The main computational bottleneck is in computing the
influence score for each data point. In some cases, this cost
can be reduced. We derive closed-form expressions for the
influence score in the case of the linear BRM method under
two settings a) when the adversary perturbs only the state
features or b) only the reward features.

Proposition 4.3. If the attacker only perturbs the reward
vector r constructed from batch of transition tuples D. Then,
the influence score of the i™ data point 1., g v for the BRM
method can be computed as

-1
Lo =4pf @0 (2 —v-0,)%)  (2—v-D,), (12)

where ®q is a sample matrix of initial state features con-
structed from Dy.

Proposition 4.4. If the attacker only perturbs the state
feature matrix ®. Then, the influence score of the i data
point Iy(s, a.),0,w for the BRM method can be computed as

Iqx,e,q:=4'PoT"1’0'((‘I’—V"bp)Q)%'
(2'w®@72o7~w®©p
+2~I®((I>-w—’y~<1>p-w—7‘)),

where Q) denotes the Kronecker product between matrices.

13)

Proposition 4.3 and 4.4 follow from the chain rule and basic
properties of the gradient operator for matrices.

S EXPERIMENTS

In this section, we investigate the strengths and weaknesses
of the DOPE attack. First, we evaluate the effectiveness of

the DOPE attack on OPE methods for different values of
attack budget and identify which methods are most vulnera-
ble to adversarial contamination. Second, we compare the
performance of DOPE with three custom baselines: Random
DOPE, FSGM-based Attack, and Random Attack.

5.1 DOMAINS AND EXPERIMENTAL SETUP

We first describe the five domains used in the experiments.
Cancer: This domain [Gottesman et al., 2020] models
the growth of tumors in cancer patients. It consists of 4-
dimensional states which represent the growth dynamics of
the tumor in the patient, and two actions that indicate if a
given patient is to be administered chemotherapy or not at a
given time step.

HIV: The HIV domain [Ernst et al., 2006b] has 6-
dimensional states representing the state of the patient, and
four actions that represent four different types of treatments.
Mountain Car: In the Mountain Car [Brockman et al., 2016]
domain, the task is to drive a car positioned between two
mountains to the top of the mountain on the right in the
shortest time possible. The 2-dimensional state represents
the car’s current position and the current time-step, and the
three actions represent: drive forward, drive backward, and
do not move.

Cartpole: The Cartpole domain [Brockman et al., 2016]
models a simple control problem where the goal is to apply
+1/-1 force to keep a pole attached to a moving cart from
falling. The 2-dimensional state represents the cartpole dy-
namics, and the two actions represent the force applied to
the pole.

Continuous Gridworld: The Continuous Gridworld is a cus-
tom domain that consists of a 2-dimensional state space
that represents the coordinates of the agent, and two actions
aop, a1 that determine the direction and step size of the agent.
The agent begins at coordinate (1,1) and moves towards
coordinates (50, 50) to maximize its rewards.

Implementation details For each domain, we apply Deep
Q-learning (DQN) to a randomly initialized neural network
policy and obtain partially optimized deterministic policies.
We fix the deterministic policy obtained for each domain
as the evaluation policy and use an e-greedy version of the
evaluation policy as our behavior policy [Gottesman et al.,
2020]. We set ¢ = 0.1 for the HIV domain and ¢ = 0.05
for other domains. We use the behavior policy to generate
five datasets, each containing N trajectories of length T'
(see Section 3 for the values of N and T') and use it to
evaluate the value of the evaluation policy. Our code is
made available in the supplementary materials.

For any given OPE method that learns the Q-value function
of the evaluation policy from data, we use linear function
approximators to represent these Q-value functions and op-
timize the squared Bellman residual with Lo regularization



to learn it. Note that we consider linear function approxima-
tions in line with the precedent set by other recent works in
the off-policy evaluation literature [Gottesman et al., 2020,
Jin et al., 2020]. Linear function approximations are com-
monly employed in the off-policy evaluation literature due
to their simplicity, low computational complexity, and con-
vergence guarantees [Gottesman et al., 2020]. While our
framework is general enough to accommodate any differ-
entiable function approximations including deep learning
models, computing the influence functions for non-linear
function approximations is computationally expensive, and
the time complexity grows as the square of the number of
model parameters 6. Hence, we resort to linear function
approximators. Note, however, that we try to offset the limi-
tations in the expressive power of linear function approxima-
tions by leveraging complex state representations obtained
from the second last layer of a trained deep Q-network as
input features to the linear function approximations in our
experimentation (See Section 3).

For OPE methods that require learning behavior policy from
the data, we train a multinomial logistic regression model
to predict the behavior policy’s action probabilities using
maximum likelihood estimation. Following standard prac-
tice in RL, we clip the behavior probabilities to 0.01 to
avoid importance sampling weights from exploding. Note
that although clipping the behavior probabilities prohibits
the attacker from making individual behavior policy action
probabilities too small, an attacker can still leverage the fact
that the importance sampling weights are a function of the
product of behavior policy action probabilities, and thus,
the importance weights can be made very large by simply
making the behavior policy action probabilities of as many
points as possible to close to the clipping threshold.

In all our experiments, we perturb only state features. Fi-
nally, the values of the hyperparameters used in our experi-
ments are discussed in Section 3.

We evaluate the effectiveness of our attack model by com-
puting the percentage error in the value function estimate
relative to the initial value estimate. We report the 95% boot-
strap confidence intervals of the interquartile mean (IQM)
of percentage error using our results from the 10 runs (10
datasets) since the IQM confidence intervals are found to be
more reliable in practice [Agarwal et al., 2021]. In this set-
ting, a large percentage error indicates that the OPE method
is less robust to adversarial contamination.

5.2 EFFECTIVENESS OF DOPE ATTACK

Here we evaluate the effectiveness of the DOPE attack
on five OPE methods for a range of attack budgets. In
our first experiment, we fix the percentage of corrupt data
points o = 0.05 and vary the budget ¢ as frac - o, where
frac varies from 0.0 to 0.51 in step-sizes of 0.05 and

02 = 2y U S €(ss) — (5|12 s the stan-
dard deviation of all pairwise distances between the state-
features in the dataset. Figure 1 compare the percentage er-
ror in the value estimate of the OPE methods in all domains.
Our results show that even when corrupting only 5% of the
data points, the attacker need not perturb the state features
significantly to achieve large errors in the value estimate. In
fact, with a perturbation budget as small as € = 0.50, DOPE
can result in a substantial error in the policy’s value in HIV,
Cancer, Mountain Car, and Continuous Gridworld domains.
Further, a larger attacker’s budget means the DOPE model
has more leeway on the perturbations that it can add to the
dataset, and hence, we observe larger errors for larger bud-
get values. Note that the percentage errors of CPDIS and
WIS in Figures 1b and 1c are too small to be visible in the
plots.

In the second experiment, we vary the percentage of cor-
rupt data points between 0.0 and 0.10 with a step size of
0.02 for all the domains (Figure 2). We fix the perturbation
budget € to 1.00. Our experimental results in Figures 1 to 2
demonstrate that corrupting only 0.05% of the data points
using DOPE is sufficient to observe a significant error in the
value estimate of a given policy. It is important to realize
that the attacker’s budget € is local to each data point and is
not impacted by the number of points perturbed. Hence, we
see that a larger percentage of corrupt data points yields a
larger percentage error in the value estimates. Note that the
percentage errors of CPDIS and WIS in Figures 2b and 2c
are too small relative to BRM and WDR and therefore are
not clearly visible in the plots.

Finally, we summarize the impact of DOPE attack (¢ =
0.50 and o = 1.0, p = 1) on all OPE methods and domains
in Table 2. It can be seen that the DOPE attack has a very
high impact on BRM, PDIS, and WDR methods and an
almost negligible impact on CPDIS and WIS methods. We
hypothesize that CPDIS and WIS methods may be more
robust because the weight normalization that they employ
potentially minimizes the importance of any individual data
point, especially when the rewards are uniformly distributed
throughout the trajectory. On the other hand, the weights in
PDIS are not normalized, and therefore, it appears that in
Cartpole and HIV domains, the DOPE attack model is able
to significantly impact the importance sampling weights and
result in significant errors in the value estimates. In WDR,
the attacker can introduce errors through both, the Q-value
function learned from the data as well as the importance
sampling weights, and therefore, we observe significant
errors in the value estimates of WDR method in HIV and
Gridworld domains.

5.3 COMPARISON WITH BASELINES

Here we compare the DOPE attack to three custom base-
lines: Random Attack and Random DOPE Attack (ablation



Domain BRM WIS PDIS CPDIS WDR

b ub ) ub b ub b ub b ub
Cancer 0.85 097 | 0.69 0.69 8.95 10.69 | 0.48 0.8 3.36 3.72
HIV 343.35 440.92 0.0 0.1 1.4 242 | 0.09 024 | 139.71 893.31
Gridworld 94.76  98.35 0.0 00| 97.15 98.25 0.0 0.0 25,5 2731
Cartpole 0.0 00| 0.02 0.05 | 4.46e9 4.08e10 0.0 0.0 0.0 0.0
MountainCar 0.05 0.07 | 100.0 100.0 | 98.37 99.62 | 47.38 98.68 0.02 0.03

Table 2: Summary of the errors achieved by data poisoning across domains and OPE algorithms at e = 0.50 and « = 1.0 and p = 1.
Here [b and ub denote the lower limit and upper limit of 95% bootstrap confidence intervals of interquartile mean of percentage error in
the value estimates, over 10 runs. We observe that the attack is successful on most of the methods across domains. CPDIS and WIS are
usually the most resilient OPE methods.
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Figure 1: Figures 1a to 1c compares the effect of DOPE attack on BRM, WIS, PDIS, CPDIS and WDR methods in the Cancer, HIV and
Continuous Gridworld domains (left to right) for different values of attacker’s budget ¢ = frac - 0 and p = 1 (¢; norm). Larger the value
of frac, the larger are the perturbations added by the DOPE attack, and accordingly we observe larger errors in the value estimates.
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Figure 2: Figures 2a to 2c compares the effect of DOPE attack on BRM, WIS, PDIS, CPDIS, and WDR methods in Cancer, HIV, and
Continuous Gridworld domains (left to right) for different percentages of corruption o at ¢ = 1.00 and p = 1 ({1 norm). The larger the
value of «, the larger the number of points perturbed by the DOPE attack, and accordingly, we observe larger errors in the value estimates.

of DOPE Attack) and FSGM-based Attack. In Random At-
tack, we choose an random points to perturb and sample per-
turbations for these points from a uniform /; norm ball with
a radius equal to the perturbation budget €. For more details
on the sampling algorithm, see Algorithm 4.1 in [Calafiore
et al., 1998]. In Random DOPE Attack, we select points
randomly and update them using Theorem 4.1. The purpose
of using this ablation is to investigate the benefit of selecting
data points to perturb based on their influence scores as
suggested in Theorem 4.1. The third baseline is an FGSM-
based OPE attack which is a variant of the Fast Gradient
Sign Method (FGSM) [Goodfellow et al., 2015], a popular

test-time attack designed to elicit misclassification errors
from supervised learning models. Note that FGSM has never
been used to attack OPE methods in prior literature, and we
are the first to introduce and leverage a variant of it as a base-
line in this context. Our FGSM-based OPE attack baseline
modifies the transition tuples (features) v (s, a, ) to maxi-
mize the (supervised learning) loss (L(6)) optimized by the
OPE method, thus resulting in sub-optimal estimates of 6.
Note that the FGSM-based OPE attack baseline does not
directly maximize the error in the value function estimates,
unlike our proposed framework. Given these baselines, we
fix the value of « to 0.05 and vary the budget € from 0.0 to
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Figure 3: Figures 3a to 3c compare the effects of Random attack, Random DOPE attack (an ablated version of DOPE), FSGM-based
Attack and DOPE attack on the error in the value function estimates of BRM, IS, and DR methods (left to right) in HIV domain. The
percentage error in the Random attack and FSGM-based attack is small relative to the percentage error due to DOPE and Random DOPE
attack, and hence their curves lies close to the x-axis. DOPE attack outperforms both the Random DOPE and Random attacks at nearly all

values of the attacker’s budget.

0.25 with step size 0.04.

For each dataset and each value of the budget ¢, we average
the percentage change in the value estimate for Random
DOPE attack and Random attack over 50 trials. Results with
the Gridworld domain are shown in Figure 3. See Figures 3
and 5 to 7 in Section 3 for results on other datasets.

The experimental results in Figures 3 and 5 to 7 demonstrate
that in contrast to the DOPE attack, the Random attack and
FSGM-based attack fail to introduce any significant error in
the value-function estimate and, therefore, cannot be used as
an alternative to the DOPE attack model. Further, it can be
seen that when the points to perturb are randomly selected
(Random DOPE), it is likely to result in a smaller adversarial
impact than when influential data points are chosen for
perturbations (DOPE). These results are not surprising as we
would expect the value function to be highly dependent on
the influential data points. In some domains like Cancer and
HIV, there is very little difference between the performance
of DOPE and Random DOPE attacks. We hypothesize that
this is due to all data points having similar influence scores.

6 CONCLUSION

We proposed a novel data poisoning framework to analyze
the sensitivity of OPE methods to adversarial contamination
at train time. We formulated the data poisoning problem
as a bilevel optimization problem and proposed a compu-
tationally tractable solution that leverages the notion of in-
fluence functions from robust statistics literature. Using the
proposed framework, we analyzed the sensitivity of five pop-
ular OPE methods on multiple datasets from medical and
control domains. Our experimental results on various med-
ical and control domains demonstrated that existing OPE
methods are highly vulnerable to adversarial contamination
thus highlighting the need for developing OPE methods that
are statistically robust to train-time data poisoning attacks.
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