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PARTIAL RECOVERY AND WEAK CONSISTENCY IN THE NON-UNIFORM
HYPERGRAPH STOCHASTIC BLOCK MODEL

IOANA DUMITRIU, HAIXIAO WANG, AND YIZHE ZHU

ABSTRACT. We consider the community detection problem in sparse random hypergraphs under the non-
uniform hypergraph stochastic block model (HSBM), a general model of random networks with community
structure and higher-order interactions. When the random hypergraph has bounded expected degrees, we
provide a spectral algorithm that outputs a partition with at least a ~ fraction of the vertices classified
correctly, where v € (0.5, 1) depends on the signal-to-noise ratio (SNR) of the model. When the SNR grows
slowly as the number of vertices goes to infinity, our algorithm achieves weak consistency, which improves
the previous results in [24] for non-uniform HSBMs.

Our spectral algorithm consists of three major steps: (1) Hyperedge selection: select hyperedges of certain
sizes to provide the maximal signal-to-noise ratio for the induced sub-hypergraph; (2) Spectral partition:
construct a regularized adjacency matrix and obtain an approximate partition based on singular vectors;
(3) Correction and merging: incorporate the hyperedge information from adjacency tensors to upgrade the
error rate guarantee. The theoretical analysis of our algorithm relies on the concentration and regularization
of the adjacency matrix for sparse non-uniform random hypergraphs, which can be of independent interest.

1. INTRODUCTION

Clustering is one of the central problems in network analysis and machine learning [46, 51, 47]. Many
clustering algorithms make use of graph models, which represent pairwise relationships among data. A
well-studied probabilistic model is the stochastic block model (SBM), which was first introduced in [28] as
a random graph model that generates community structure with given ground truth for clusters so that
one can study algorithm accuracy. The past decades have brought many notable results in the analysis of
different algorithms and fundamental limits for community detection in SBMs in different settings. A major
breakthrough was the proof of phase transition behaviors of community detection algorithms in various
connectivity regimes [41, 10, 43, 45, 44, 2, 4]. See the survey [1] for more references.

Hypergraphs can represent more complex relationships among data [9, 8], including recommendation
systems [11, 38], computer vision [26, 55], and biological networks [42, 53], and they have been shown
empirically to have advantages over graphs [61]. Besides community detection problems, sparse hypergraphs
and their spectral theory have also found applications in data science [29, 62, 27], combinatorics [20, 22, 52],
and statistical physics [12, 50].

With the motivation given by this broad set of applications, many efforts have been made in recent years
to study community detection on random hypergraphs. The hypergraph stochastic block model (HSBM), as
a generalization of graph SBM, was first introduced and studied in [23]. In this model, we observe a random
uniform hypergraph where each hyperedge appears independently with some given probability depending on
the community structure of the vertices in the hyperedge.

Succinctly put, the HSBM recovery problem is to find the ground truth clusters either approximately or
exactly, given a sample hypergraph and estimates of model parameters. We may ask the following questions
about the quality of the solutions (see [1] for further details in the graph case).

(1) Strong consistency (a.k.a. exact recovery): With high probability, find all clusters exactly (up
to permutation).

(2) Weak consistency: With high probability, find a partition of the vertex set such that at most o(n)
vertices are misclassified.

(3) Partial recovery: Given a fixed v € (0.5,1), with high probability, find a partition of the vertex
set such that at least a fraction v of the vertices are clustered correctly.
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FIGURE 1. Uniform HSBM and Non-uniform HSBM.

(4) Detection: With high probability, find a partition correlated with the true partition.

For exact recovery of uniform HSBMs, it was shown that the phase transition occurs in the regime of
logarithmic expected degrees in [39, 15, 14] and the exact threshold was given in [32, 59], by a generalization
of the techniques in [2, 3]. Spectral methods were considered in [14, 5, 17, 59, 57], while semidefinite
programming methods were analyzed in [32, 35]. Weak consistency for HSBMs was studied in [14, 15, 24,
25, 31]. For detection of the HSBM, the authors of [7] proposed a conjecture that the phase transition occurs
in the regime of constant expected degrees, and the positive part of the conjecture for the binary case was
solved in [49].

1.1. Non-uniform hypergraph stochastic block model. The non-uniform HSBM was first studied in
[24], which removed the uniform hypergraph assumption in previous works, and it is a more realistic model
to study higher-order interaction on networks [40, 55]. It can be seen as a superposition of several uniform
HSBMs with different model parameters. We first define the uniform HSBM in our setting and extend it to
non-uniform hypergraphs.

Definition 1.1 (Uniform HSBM). Let V = {Vi,...V;} be a partition of the set [n] into k blocks of size
n/k (assuming n is divisible by k). For any set of m distinct vertices i1, ...14m,, a hyperedge {i1,.. .1} is
generated with probability am/(m711) if the vertices i1, .. .1, are in the same block; otherwise with probability
bm/(mﬁl). We denote this distribution on the set of m-uniform hypergraphs as

b
(1.1) H,, ~ HSBM,), (”?f) . 2<m< M,
k (m—l) (m—l)

where am/(mn_l) and bm/(mn_l) denote the connecting probabilities within and across blocks, respectively.

Definition 1.2 (Non-uniform HSBM). Let H = (V, E) be a non-uniform random hypergraph, which can be
considered as a collection of m-uniform hypergraphs, i.e., H = U%:z H,, with each H,, from Equation (1.1).

Examples of 2-uniform and 3-uniform HSBM, and an example of non-uniform HSBM with M = 3 and
k = 3 can be seen in Figure 1.

1.2. Main results. In this paper, we consider partial recovery and weak consistency in the non-uniform
HSBM given in Definition 1.2. The accuracy of the recovery is measured as follows.

Definition 1.3 (y-correctness). Suppose we have k disjoint blocks Vi,...,Vi. A collection of subsets
Vi,.oo, Vi of V is y-correct if |V; N V;| > ~4|V;| for all i € [k]. Note that we do not require Vy,...,Vj
to be a partition of V.

The following theorem provides an algorithm that outputs a ~y-correct partition of a non-uniform HSBM
with high probability, when k > 3 is fixed.



Theorem 1.4 (k > 3). Given any v € (0.5,1), assume an, > by, are constants independent of n for all
m € M, where M C {2,..., M} is obtained from Algorithm 4.1, and

d:= Z (m—1ay, > C,
meM

(1.2) 3" (m = 1)(am — bm) = Cp - kMmaxy flog (%)d

meM

for some constants C,C,,. Then with probability 1 — O(n=2), for sufficiently large n, Algorithm 1.1 outputs
a ~y-correct partition with v = max{v, 1 — kp} and p := exp (—Cxr - SNRrq), where

[pMmax—1 _ (1 — p)Mmax—1]2

[Smendlm = 1) ()]
(13)  SNRy = meM - M= M = 12 - 2273

Smen(m = 1) (e 4 b))

Remark 1.5. Taking M = 2, Theorem 1.4 can be reduced to [16, Lemma 9] for the graph case. The failure
probability O(n=2) can be decreased to O(n=P) for any p > 0, as long as one is willing to pay a price in
making the graph denser (increasing d).

Our algorithm for Theorem 1.4 requires the input of model parameters am, by, m € M, and they can be
estimated by counting cycles in hypergraphs as shown in [43, 56]. Estimation of the number of blocks can be
done by counting the outliers in the spectrum of the non-backtracking operator [33, 7].

Our Algorithm 1.1 can be summarized in 3 steps:

(1) Hyperedge selection: select hyperedges of certain sizes to provide the maximal signal-to-noise
ratio (SNR) for the induced sub-hypergraph.

(2) Spectral partition: construct a regularized adjacency matrix and obtain an approximate partition
based on singular vectors (first approximation).

(3) Correction and merging: incorporate the hyperedge information from adjacency tensors to up-
grade the error rate guarantee (second, better approximation).

Algorithm 1.1 Partition

Input: The adjacency tensors T ., k, am, by, for m € {2,---  M}.
Output: The corrected sets \71, e ,XA/k.
1: function Partition(A, a,,, b,, for m € M)
Run Algorithm 4.1 Pre-processing to obtain the subset M which achieves maximal SNR.
Randomly color the hyperedges red or blue with equal probability.
Randomly partition V into 2 disjoint subsets Y and Z by assigning 4+1 or —1 to each vertex with
equal probability.
5: Let B denote the adjacency matrix of the bipartite hypergraph between Y and Z consisting only of
the red hyperedges, with rows indexed by Z and columns indexed by Y.
6: Run Algorithm 4.2 Spectral Partition on the red hypergraph and output Uj,--- ,Uj.
This step only uses the red hyperedges between vertices in'Y and Z and outputs approzimate clusters for
U, =V,NnZ, withi=1,...,k
Run Algorithm 4.3 Correction on the red hypergraph and output [71, e ,(A]k.
Run Algorithm 4.4 Merging on the blue hypergraph and output 171, e ,‘7k.
This step only uses the blue hyperedges between vertices in' Y and Z and assigns the vertices in 'Y to an
appropriate approximate cluster.
9: end function

W

We generalize the innovative graph algorithm in [16] to uniform hypergraphs with a more detailed analysis.
In particular, the random partitioning step in Algorithm 1.2 was explained only in the case when the output
is an equi-partition; in general, the output sets ‘71, ceey ‘A/k are only approximately equal in size, and we give
complete explanations of the general case here.



A non-uniform HSBM can be seen as a collection of noisy observations for the same underlying community
structure through several uniform HSBMs of different orders. A possible issue is that some uniform hyper-
graphs with small SNR might not be informative (if we observe an m-uniform hypergraph with parameters
A, = by, including hyperedge information from it ultimately increases the noise). To improve our error rate
guarantees, we start by adding a pre-processing step for hyperedge selection according to SNR, and then
apply the algorithm on the sub-hypergraph with maximal SNR.

When the number of blocks is 2, we give a simpler algorithm (Algorithm 1.2) for partial recovery with a
better error rate guarantee, as shown in the following Theorem 1.6. Algorithm 1.2 does not need the merging
routine in Algorithm 1.1, since once we cluster one block, the other one is clustered automatically.

Theorem 1.6 (k =2). Givenv € (0.5,1), assume a,, > by, are constants independent of n for allm € M,
d:i= Y (m-1)an,>C,
meM
Z (m —1)(am — by) > €, - 2Mmaxt2/( |
meM

for some constants C,C,,. Then with probability 1 — O(n=2), for sufficiently large n, Algorithm 1.2 outputs
a ~y-correct partition with v = max{v, 1 — 2p} and p = 2exp(—Cpr - SNR ), where

[Smendm = 1) ()] [(v) Mt — (1= p) Mo ]2
1.5 SNRp = m , Cpnp o= .
(5 M em(m — 1) (U5t b, M 8(Mmax — 1)?

Algorithm 1.2 Binary Partition

Input: The adjacency tensors T ™), a,, by, for m € {2,--+, M}.

Output: The corrected sets ‘71, ‘72

1. function Partition(7™) a,,, by, for m € {2,--- , M})

2: Run Algorithm 4.1 Pre-processing to obtain the subset M which achieves maximal SNR.
3 Randomly color the hyperedges red or blue with equal probability.

4 Run Algorithm 4.5 Spectral Partition on the red hypergraph and output V{, V.

5: Run Algorithm 4.6 Correction on the blue hypergraph and output ‘71, V.

6 return the corrected sets \71, ‘72.

7: end function

Throughout the proofs for Theorems 1.4 and 1.6, we make only one assumption on the growth or finiteness
of d and SNR ¢, and that happens in estimating the failure probability in the proof of Lemma 5.9 as noted
in Remark 5.13. As a consequence, we can also give the following corollary, which covers the case when d
and SNR ¢ grow with n.

Corollary 1.7 (Weak consistency). For fized M and k, if
_ 2
(> e (m —1) (4 )]
ZWLEM(m - 1) (%%ljlm + bm)

and SNRy = o(logn), then with probability 1 — O(n=2), Algorithm 1.1 outputs a partition with only o(n)
misclassified vertices.

SNRM =

— 00,

Here, the failure probability is of order O(exp[—nexp(—SNR)]), and it fails to go to zero if SNR 4 is
not smaller than o(log(n)).

1.3. Comparison with existing results. Although many algorithms and theoretical results have been
developed for hypergraph community detection, most of them are restricted to uniform hypergraphs, and
few results are known for non-uniform ones. We will discuss the most relevant ones here and compare our
results to theirs.



In [31], the authors studied the degree-corrected HSBM with general connection probability parameters
by using a tensor power iteration algorithm and Tucker decomposition. Their algorithm achieves weak con-
sistency for uniform hypergraphs when the average degree is w(log2 n), which is the regime complementary to
the regime we studied here. They discussed a way to generalize the algorithm to non-uniform hypergraphs,
but the theoretical analysis remains open. The recent paper [60] analyzed non-uniform hypergraph commu-
nity detection by using hypergraph embedding and optimization algorithms and obtained weak consistency
when the expected degrees are of w(logn), again a complementary regime to ours. Results on spectral norm
concentration of sparse random tensors were obtained in [19, 48, 29, 36, 62], but no provable tensor algorithm
in the bounded expected degree is known. Testing for the community structure for non-uniform hypergraphs
was studied in [56, 30], which is a problem different from community detection.

In our approach, we relied on knowing the tensors for each uniform hypergraph. However, in computations,
we only ran the spectral algorithm on the adjacency matrix of the entire hypergraph, since the stability of
tensor algorithms does not yet come with guarantees due to the lack of concentration, and for non-uniform
hypergraphs, M — 1 adjacency tensors would be needed. This approach presented the challenge that, unlike
for graphs, the adjacency matrix of a random non-uniform hypergraph has dependent entries, and the
concentration properties of such a random matrix were previously unknown. We were able to overcome this
issue and prove concentration bounds from scratch, down to the bounded degree regime. Similar to [21, 34],
we provided here a regularization analysis by removing rows in the adjacency matrix with large row sums
(suggestive of large degree vertices) and proving a concentration result for the regularized matrix down to
the bounded expected degree regime (see Theorem 3.3).

In terms of partial recovery for hypergraphs, our results are new, even in the uniform case. In [6, Theorem
1], for uniform hypergraphs, the authors showed detection (not partial recovery) is possible when the average
degree is Q(%), in addition, the error rate is not exponential in the model parameters. In the graph case, it
was shown in [58] that the error rate in Equation (1.3) is optimal up to a constant in the exponent. It’s an
interesting open problem to extend the analysis in [58] to obtain a minimax error rate for hypergraphs.

In [24], the authors considered weak consistency in a non-uniform HSBM model with a spectral algorithm
based on the hypergraph Laplacian matrix, and showed that weak consistency is achievable if the expected
degree is of Q(log2 n) with high probability [23, Theorem 4.2]. Their algorithm can’t be applied to sparse
regime straightforwardly since the normalized Laplacian is not well-defined due to the existence of isolated
vertices in the bounded degree case. In addition, our weak consistency results obtained here are valid as long
as the expected degree is w(1) and o(logn), which is the entire set of problems on which weak consistency
is expected. By contrast, in [24], weak consistency is shown only when the expected degree is Q(log?(n)),
which is a regime complementary to ours and where exact recovery should (in principle) be possible: for
example, this is known to be an exact recovery regime in the uniform case [15, 32, 35, 59].

Finally, although our analysis does not provide a way to identify the exact threshold for the phase
transition of detection in the non-uniform hypergraph, we conjecture that (similar to [7] in the uniform case)
SNR A = 1 in Equation (2.6) is the exact threshold for detection.

1.4. Organization of the paper. In Section 2, we include the definitions of adjacency matrices of hyper-
graphs. The concentration results for the adjacency matrices are provided in Section 3. The algorithms for
partial recovery are presented in Section 4. The proof for correctness of our algorithms for Theorem 1.4
and Corollary 1.7 are given in Section 5. The proof of Theorem 1.6 as well as the proofs of many auxiliary
lemmas, and useful lemmas in the literature are provided in the Appendices.

2. PRELIMINARIES

Definition 2.1 (Adjacency tensor). Given an m-uniform hypergraph H,, = ([n], E.), we can associate to it
an order-m adjacency tensor T For any m-hyperedge e = {i1,...,im}, let Tgm) denote the corresponding
entry T™) h that
YT i eim]? SUE a
(m) ._ 4-(m) _
(2.1) T = TV — e,y

[E1, estm]

Definition 2.2 (Adjacency matrix). For the non-uniform hypergraph H (Definition 1.2), let T be the
order-m adjacency tensor of the underlying m-uniform hypergraph for each m € {2,...,M}. The adjacency
5



matric A := [A;j]nxn of the non-uniform hypergraph H is defined by

M
(2.2) A= Lizjy Z Z Tgm) )

m=2 e€E,,
{i.5}Ce

We compute the expectation of A first. In each H,,, we pick two vertices 7,j € V arbitrarily, then the
expected number of m-hyperedges containing i and j can be computed as follows. Since our model does not
allow for loops, in the below, we only consider the case i # j. Recall that n/k € N.

e If i and j are from the same block, the m-hyperedge can either be sampled with probability a,,/ (mril)
when the other m — 2 vertices are from the same block as ¢ and j, otherwise they are sampled with
probability by, /(," ;). Then

nmmas = (E )+ (70 - (G0 iy

e If ¢ and j are not from the same block, we sample the m-hyperedge with probability b,/ (mril)7 and
n—2 b
Bm = ]EAij = < )(;n,

m—2 m—l)

By assumption a,, > by, then o, > B, for each m € {2,..., M}. Summing over m, the ezpected adjacency
matrix under the k-block non-uniform HSBM can written as

Oz.]% ﬁJLkl cee BJ%

5.]2 aJn cee ﬁJg
(2.3) EA=| " " N —oln,

ﬁJ% ﬁJ% cee OzJ%
with

M M
(24) o = Z A /6 = Z /Bma
m=2 m=2

where J» € R%*% denotes the all-one matrix. The Lemma 2.3 can be verified through direct computation.

Lemma 2.3. The eigenvalues of EA are given below:

M(EA) = (ot (k- 1)8) ~ a,

M(EA) = —a, k+1<i<n.

In our proof, Lemma 2.4 is used for more approximately equal partitions, meaning that we can approximate
the eigenvalues of EA by eigenvalues EA when n is sufficiently large.

Lemma 2.4. For any partition (Vi,...,Vi) of V, consider the following matriz
aJnl ﬁJanHQ BJnlxnk_l BJnlxnk
ﬂJ’I’sznl aJng e /BJnQXTLk71 /BJnQXTLk
EA=| A | e,
ﬁ']nk_lxnl ﬁ‘]nk_l XNg e aJnk_l 5Jnk_1><nk
BJ’I’Lanl ﬁJ’I’Lk Xna e /BJTLk XNp—1 a‘]’ﬂk

where n; .= |V;|. Assume that n; = (n/k) + O(y/nlogn) for all i € [k]. Then, for all1 <i <k,

IN(EA) — N (EA)|
G (EA)| —O<n /4log1/2(n)).

Note that both (EA + ol,) and (EA + ol,,) are rank k matrices, then )\i(fEK) = N(EA) = —a for all
(k+1)<i<n.

6



Definition 2.5 (signal-to-noise ratio, SNR). We define the signal-to-noise ratio as

[Z%:z( - 1) (%= m)r
Yoo (m = 1) (4l + b))

(2.6) SNR :=

SNR is related to the following quantity

MEAP  [n—Ra—ng?  [Semalm =D (spte)]

MEA)  k[(n—ka+nk -1 M (m—1) (%2l +b,)

(1+o(1)).

When M = 2 and k is fixed, (2.6) is equal to
graph in [16], see also [1, Section 6].

W, which corresponds to the SNR for the undirected

3. SPECTRAL NORM CONCENTRATION

The correctness of Algorithm 1.1 and Algorithm 1.2 relies on the concentration of the adjacency matrix
of H. We include the following two concentration results for general random hypergraphs. The proofs are
given in Appendix A.

Theorem 3.1. Let H = U H,,, where Hy,, = ([n], E;,) is an Erdds- Rényi imhomogeneous hypergraph

of order m with 2 < m < M wzth a probability tensor T™ such that T[Zl = dj,,..in/ (") and
dy, = maxd;, .. ;,.1- Suppose for some constant ¢ > 0,

~im]

M

(3.1) d .= Z(m—1)~dm2010gn.

m=2

Then for any K > 0, there exists a constant C = 512M (M — 1)(K 4 6)[2+ (M — 1)(1 + K)/c] such that
with probability at least 1 — 2n~ K — 2™, the adjacency matriz A of H satisfies

(3.2) A -EA| < CVd.

Taking M = 2, Equation (3.2) is the result for graph case obtained in [21, 37]. Result for uniform
hypergraph is obtained in [35]. Note that d is a fixed constant in our community detection problem, thus
Equation (3.1) does not hold and Theorem 3.1 cannot be directly applied. However, we can still prove a
concentration bound for a regularized version of A, following the strategy of the proof for Theorem 3.1.

Definition 3.2 (Regularized matrix). Given any n x n matriz A and an indezx set Z, let Az be the n x n
matriz obtained from A by zeroing out the rows and columns not indexed by Z. Namely,

(3.3) (Az)ij = Lygijery - Ayj -

Since every hyperedge of size m containing ¢ is counted (m — 1) times in the i-th row sum of A, the i-th
row sum of A is given by

row (4 ZA”: ZH{Z#}Z Z 7' Z(m—l) Z Tgm).

m=2 eck,, m=2 eck,,:ice
{ij}ce

Theorem 3.3 is the concentration result for the regularized Az, by zeroing out rows and columns corre-
sponding to vertices with high row sums.

Theorem 3.3. Following all the notations in Theorem 3.1, for any constant T > 1, define
Z ={i€ [n]:row(i) < 7d}.

Let Az be the reqularized version of A, as in Definition 3.2. Then for any K > 0, there ezists a constant
C. depending on M, 7, K, such that ||(A — EA)z|| < C.v/d with probability at least 1 — 2(e/2)™" —n~ K.
7



4. SPECTRAL ALGORITHMS

In this section, we present the algorithmic blocks that we use to construct our main partition algorithm
(Algorithm 1.1): pre-processing (Algorithm 4.1), first attempt at partition (Algorithm 4.2), correction of
blemishes via majority rule (Algorithm 4.3), and merging (Algorithm 4.4), together with their proofs of
correctness. We start by giving the algorithms.

Algorithm 4.1 Pre-processing

1: function Pre-processing(Parameters a,,, b, for all m € {2,--- ,M})
2: For each subset S C {2,---, M}, let Hs = |J,,cs Hm denote the restriction of the non-uniform
hypergraph H on §. Compute SNR of Hgs, denoted by
- 2
[Cmestm =1 ()"
5 estm — ) (St + 6,)
3: Among all the S, find the subset M such that

M :=arg max SNRg,
Sc{2,- ,M}

SNRs :=

with Myax denoting its maximal element.
return M.
5: end function

Algorithm 4.2 Spectral Partition

1: function Spectral Partition(B, k, a.,, b, for m € M)

2: Randomly label vertices in Y with +1 and —1 sign with equal probability, and partition Y into 2
disjoint subsets Y7 and Y.

3: Let By (resp. Ba) denote the adjacency matrices with all vertices in Z U Y7, with rows indexed by Z
and columns indexed by Y7 (resp. Y2). Pad By, By with zeros to obtain the n x n matrices A; and As.

4: Let d:= 3} ca((m—1)an. Zero out all the rows and columns of A; corresponding to vertices whose
row sum is bigger than 20 M paxd, to obtain the matrix (Aq)z,.

5: Find the space U, spanned by the first k left singular vectors of (A)z, .

Randomly sample s = 2klog®n vertices from Y, without replacement. Denote the corresponding

columns in Ag by a;,,...,a;,. For each i € {i1,---,is}, project a; — @ onto U, where the elements in
vector @ € R™ is defined by a(j) = Ljecz - (@ + ()/2
7: For each projected vector Py(a;—a), identify the top n/(2k) coordinates in value as a set U;. Discard

half of the s sets U, those with the lowest blue hyperedge density in them.

8: Sort the remaining sets according to blue hyperedge density and identify first & distinct subsets
Ui, -+, U, such that [U/NUj| < [(1 —v)n/k] if i # j.

9: return U{,---,Uj.

10: end function

Algorithm 4.3 Correction

1: function Correction(A collection of subsets U7, --- ,U}, C Z and a graph on Z)

2: For every u € Z, if i € {1,2,---,k} is such that u has more neighbors in U] than in any other U7,
for j # i, then add u to Ul Break ties arbitrarily.

3: return Uy, --- , Ug.

4: end function

4.1. Three or more blocks (k > 3). The proof of Theorem 1.4 is structured as follows.
8



Algorithm 4.4 Merging

1: function Merging(A partition Uy, U of (ZNWM)u(ZNVa)U---U(ZNV;) and a graph between
vertices Y and Z.)

2: Forallu e Y, add u to a if the number of hyperedges, which contains v with the remaining vertices
located in vertex set Uj;, is at least uy. Label the conflicts arbitrarily.
3: return the label classes as the clusters Vp,--- , Vj.

4: end function

Lemma 4.1. Under the assumptions of Theorem 1.4, Algorithm 4.2 outputs a v-correct partition U7, --- ,Uj,
of Z=(ZNWV))U---U(ZN V) with probability at least 1 — O(n=2).

Lemma 4.2. Under the assumptions of Theorem 1.4, given any v-correct partition U{,--- U} of Z =
(ZNWV)U---U(ZNVg) and the red hypergraph over Z, Algorithm 4.3 computes a ~yc-correct partition

Uy, -, U with probability 1 — O(e™"™"), while y¢ = max{v, 1 — kp} with p := kexp (—Cxq - SNR ) where
M is obtained from Algorithm /4.1, and SNRyq and Caq are defined in Equation (1.3).

Lemma 4.3. Given any v-correct partition Uy, -+ , Uy of Z = (ZNWV1)U---U(ZNV}) and the blue hypergraph
between Y and Z, with probability 1 — O(e™ "), Algorithm /.4 outputs a ~y-correct partition Vi, -+, Vi of
ViUV U--- UV, while v = max{v, 1 — kp}.

4.2. The binary case (k = 2). The spectral partition step is given in Algorithm 4.5, and the correction
step is given in Algorithm 4.6.

Algorithm 4.5 Spectral Partition
1: function Spectral Partition(A, 7T)

2: Zero out all the rows and the columns of A corresponding to vertices with row sums greater than
20 M axd, to obtain the regularized matrix Az.
3: Find the subspace U, which is spanned by the eigenvectors corresponding to the largest two eigen-

values of Az.
Compute Pyl,, the projection of all-ones vector onto U.
5: Let v be the unit vector in U perpendicular to Pyl,,.
Sort the vertices according to their values in v. Let V/ C V be the corresponding top n/2 vertices,
and V5 C V be the remaining n/2 vertices.
7: return V/, VJ.
8: end function

Lemma 4.4. Under the conditions of Theorem 1.6, the Algorithm 4.5 outputs a v-correct partition V{,Vy
of V.= Vi U Va with probability at least 1 — O(n=2).

Algorithm 4.6 Correction

1: function Correction(T, partition V{, VJ, and a blue graph on V{ U V)

2: For any v € V{, label v “bad” if the number of blue neighbors of v in V5 is at least “T% and “good”
otherwise.

3 Do the same for v € VJ.

4: If v € V/ is good, assign it to ‘A/i, otherwise ‘73_,;.

5 return 171, ‘72

6: end function

Lemma 4.5. Given any v-correct partition V{,Vy of V.= Vi U Vi, with probability at least 1 — O(e™"™"),
the Algorithm 4.6 computes a y-correct partition Vi, Vo with v = {v, 1 — 2p} and p = 2exp(—Cxr - SNRpq),
where SNRy and Crq are defined in Equation (1.5).

9



5. ALGORITHM’S CORRECTNESS

In this section, we will show the correctness of Algorithm 1.1. We first introduce some definitions.

Vertex set splitting and adjacency matriz. In Algorithm 1.1, we first randomly partition the vertex set V into
two disjoint subsets Z and Y by assigning +1 and —1 to each vertex independently with equal probability.
Let B € RIZXIYI denote the submatrix of A, while A was defined in Equation (2.2), where rows and columns
of B correspond to vertices in Z and Y respectively. Let n; denote the number of vertices in Z N V;, where
Vi denotes the true partition with |V;| = n/k for all ¢ € [k], then n; can be written as a sum of independent
Bernoulli random variables, i.e.,

(5.1) ni=1ZNV|= Z Livezy
veV;

and |Y NV;| =|Vi| = |ZNV;| =n/k —n,; for each i € [k].

Definition 5.1. The splitting V = Z UY s perfect if |Z NV;| =Y NV;| = n/(2k) for all i € [k]. And the
splitting Y = Y1 U Y3 s perfect if [Y1 NV;| = |Ya N V;| = n/(4k) for all i € [K].

However, the splitting will actually be imperfect in most cases, since the size of Z and Y would not be ex-
actly the same under the independence assumption. The random matrix B is parameterized by {T(m) Fmem
and {n;}%_. If we take expectation over {T™},,crq given the block size information {n;}¥_,, then it gives
rise to the expectation of the imperfect splitting, denoted by ]§,

aJan(%fnl) BJan(%f’RQ) e BJnlx(%fnk)

~ 5Jn2><(%—n1) CYJn2><(%_nQ) BJTWX(%—TL;C)

B = . . . )
BJnkX(%fnl) BJTLkX(%f’IlQ) R aJnkX(%fnk)

where «, 8 are defined in Equation (2.4). In the perfect splitting case, the dimension of each block is
n/(2k) x n/(2k) since En; = n/(2k) for all i € [k], and the expectation matrix B can be written as

QJ% ﬁJﬁ 5.]%
5.]% QJ% BJ;T

In Algorithm 4.2, Y7 is a random subset of Y obtained by selecting each element with probability 1/2
independently, and Y2 = Y \ Y3. Let n} denote the number of vertices in Y3 NV;, then n) can be written as
a sum of independent Bernoulli random variables,

(5.2) ng=[YiNVil =Y Lieny
veV;

and [YaN V| = Vi = |ZN0V;| = |[Y1NV;| =n/k —n; —n} for all i € [k].

Induced sub-hypergraph.

Definition 5.2 (Induced Sub-hypergraph). Let H = (V, E) be a non-uniform random hypergraph and S C V
be any subset of the vertices of H. Then the induced sub-hypergraph H[S] is the hypergraph whose vertex set
is S and whose hyperedge set E[S] consists of all of the edges in E that have all endpoints located in S.

Let H[Y1UZ](resp. H[Y2UZ]) denote the induced sub-hypergraph on vertex set YUZ (resp. Y2UZ), and
B, € RIZIXIMI (resp. By € RIZIXI1Y2l) denote the adjacency matrices corresponding to the sub-hypergraphs,
where rows and columns of By (resp. Bs) are corresponding to elements in Z and Y7 (resp., Z and Y3).
Therefore, By and By are parameterized by {7 },cn, {n:}5; and {n/}%_,, and the entries in B; are
independent of the entries in Bs, due to the independence of hyperedges. If we take expectation over
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k

(T} em conditioning on {n;};_, and {n; k|, then it gives rise to the expectation of the imperfect

splitting, denoted by B1,

allJnl xnj ] BlkJnl ><’n;C
(5.3) B, = : : ,
Bkl']nk xnj e akk‘]nk XNl
where
- n; +n. — 2\ am — b Ef'_l(nl +n)) =2\ by
(5.4a) Qi = ( ' )n + ( = - ,
mg m—2 (m—l) m—2 (m—l)
k /
~ ~(ng+n)—2\ by .
(5.4b) Bym X (BT B iziig e,
meM m = (mfl)

The expectation of the perfect splitting, denoted by B1, can be written as

@JﬁXﬁ BJLXﬁ éJLXﬁ
. ﬁ.]%xﬁ QJ%X%C ﬂJﬁXﬁ
(5.5) B, = . . ) ) ,
Blgoxae B g O g i
where

IR (U e S ey P o Gy et

The matrices ]§2, B, can be defined similarly, since the dimensions of |Y2NV;| are also determined by n; and
n}. Obviously, By = By since En} = E(n/k —n; —nl) = n/(4k) for all i € [k].

Fizing Dimensions. The dimensions of B, and ]AE§27 as well as blocks they consist of, are not deterministic—
since n; and nf, defined in Equation (5.1) and Equation (5.2) respectively, are sums of independent random
variables. As such we cannot directly compare them. In order to overcome this difficulty, we embed B; and
B: into the following n x n matrices:

(5.7) A= {Olzlle B, OZ|x|Yz} Ay [Ozwz Ozjxv;  Bo } .

Ovixizi Oixivil Opyix|vel Ovixizi Oyixivil Opyix|va|
Note that A7 and A, have the same size. Also by definition, the entries in A are independent of the entries
in Ay. If we take expectation over {7(™},,cas conditioning on {n;}*_, and {n}}%_,, then we obtain the
expectation matrices of the imperfect splitting, denoted by A (resp. As), written as

(5.8) A, = {OlleZI B, OZ|x|YQ}7 A, = [Ozmz 02)xv1| B, }
Olyixizl Oyixvi|  Opy|x|val Oivixizl Oyixivil  Oyix|vy|

The expectation matrix of the perfect splitting, denoted by A(resp. As), can be written as

A, = (Q5xz Bro Oppl o |05xy Opxg Bo
(5.9) A= 0 S R S T A
$x3 Ogxy Ogxy i3 Ogxg Ogxy

Obviously, Kz and ]~3i(resp. A; and B;) have the same non-zero singular values for i = 1,2. In the remaining
of this section, we will deal with A; and A; instead of B; and B; for i = 1,2.

5.1. Spectral Partition: Proof of Lemma 4.1.
11



5.1.1. Proof Outline. Recall that A; is defined as the adjacency matrix of the induced sub-hypergraph
H[Y1 U Z] in Section 5. Consequently, the index set should contain information only from H[Y; U Z]. Define
the index sets

I ={i€n]:row(i) <20Mpmaxd}, I1= {z € [n] : row(4) oz

< 2()-/\/lmaxd} ’

where d =3\ (m — 1)a,,, and row 0 if

1€Y1 UZ, and for vertex i € Y1 U Z,

row(z')‘YlUZ = Z Z Z T = Z (m—1) Z T

j=1meM e€E,,[Y1UZ] meM e€E,,[Y1UZ]
fig}ce {ig}ce

is the row sum of ¢ on H[Y; U Z]. We say row

(i)’yluz (i)|Y1UZ =

As a result, the matrix (Aq)z, is obtained by restricting A; on index set Z;. The next 4 steps guarantee
that Algorithm 4.2 outputs a v-correct partition.
(i) Find the singular subspace U, which is spanned by the first k left singular vectors of (A1)z,.

(ii) Randomly pick s = 2klog?n vertices from Y5 and denote the corresponding columns in Ay by
a;,,...,a;,. Project each vector a; — @ onto the singular subspace U, with @ € R" defined by
a(j) = Ljez - (@+ B)/2, where @, B were defined in Equation (5.6).

(iii) For each projected vector Py(a; — @), identify the top n/(2k) coordinates in value and place the
corresponding vertices into a set U/. Discard half of the obtained s subsets, those with the lowest
blue edge densities.

(iv) Sort the remaining sets according to blue hyperedge density and identify k distinct subsets U7, - - - , Uy,
such that (U NUJ| < [(1 —v)n/k] if i # j.

Based on the 4 steps above in Algorithm 4.2, the proof of Lemma 4.1 is structured in 4 parts.

(i) Let U denote the subspace spanned by the first k left singular vectors of .&1, as defined in Equa-
tion (5.8). Section 5.1.2 shows that the subspace angle between U and U is of order o(1).

(ii) The vector 5, defined in Equation (5.14), reflects the underlying true partition Z N Vj; for each i €
[s], where k(i) denotes the membership of vertex i. Section 5.1.3 shows that 8; can be approximately
recovered by the projected vector Py(a; — @), since the projection error ||Py(a; — @) — &;|2 is of

order O(1/y/n).

(iii) Section 5.1.4 indicates that the coincidence ratio between the remaining sets and the true partition
is at least v, after discarding half of the sets with lowest blue hyperedge densities.

(iv) Lemma 5.11 proves that we can find k distinct subsets U! within klog? n trials w.h.p.

5.1.2. Bounding the angle between U and U. Recall that the angle between subspaces U and U is defined
as sin (U, U) := ||Py — Pgl|. A natural idea is to apply Wedin’s sin © Theorem (Lemma D.7).

Lemma 5.3 indicates that the difference of o;(A;) and o3(A1) is relatively small, compared to o;(Aq).

Lemma 5.3. Let o;(Ay)(resp. oi(Ay)) denote the singular values of Ay (resp. Ay) for all i € [k], where
the matrices Ay and Ay are defined in Equation (5.9) and Equation (5.8) respectively. Then

_ 77?,[54-(]6—1)3]7 n 3 _ 9N q,, — b 3 _9\ b,

meM m—1 m—1

— n(a— B) n (3"—2>am—bm ,
(A = - Yoo ) <<k,
7 2v/2k 2v/2k e N2 (1) -

with @, B defined in Equation (5.6). Moreover, with probability at least 1 — 2k exp(—klogz(n)),
|03 (A1) — 0i(Ay)|
O‘i(Al)

=0 (n‘1/4 log1/2(n)) .
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Therefore, with Lemma 5.3, we can write 0;(A;) = 0;(A1)(1 + o(1)). Define E; := A; — A; and its
restriction on Z; as

(5.10) (E1)z, = (A1 — A1)z, = (Ay)z, — (A)z,
as well as A 1= (;&1)11 — A,. Then (Ay)z, — A is decomposed as
(A1), — Ar = [(A)z, — (A)z ]+ [(A))z, — Ay] = (By)z, + Ay
Lemma 5.4 shows that the number of high degree vertices is relatively small with high probability.

Lemma 5.4. Letd =),  _\(m —1)a,,, where M is obtained from Algorithm 4.1. There exists a constant
C1 such that if d > C4, then with probability at least 1 — exp (—d_Qn/Mmax), no more than d—3n vertices
have row sums greater than 20 My axd.

Consequently, Corollary 5.5 indicates ||A;|| < v/d with high probability.
Corollary 5.5. Assume d > max{C1,/2}, where C, is the constant in Lemma 5.4, then ||A+| < Vd w.h.p.

Proof. Note that n—|Z| < d=3n and Z C Zy, then n—|Z;| < d~3n. From Lemma 5.4, there are at most d—3n
vertices with row sum greater than 20 M., d in the adjacency matrix Ay, then the matrix A; = (Aq)z, —A;
has at most 2d~3n? non-zero entries. As defined in Equation (5.8), every entry in A; is bounded by «, then,

1AL <A lle = [I(A1)z, = Ade

<V2dnta =2dn Y KTZ{L >am—bm+<n—2) b ]
meM

<V2d-3 Y (m—1)a, < V241 < Vd.

meM

Moreover, taking 7 = 20 M pax, K = 3 in Theorem 3.3, with probability at least 1 —n~2, we have
(5.12) I(B1)z, || < C5Vd

where C3 is a constant depending only on Mpay. Together with upper bounds for ||(E;)z, || and [|A4]],
Lemma 5.6 shows that the angle between U and U is relatively small with high probability.

Lemma 5.6. For any c € (0,1), there exists some constant Cy such that, if Y \(m — 1)(am — bp) >
CokMmax=11/d | then sin Z(U, I~J) < ¢ with probability 1 —n~2. Here /(U, INJ) 1s the angle between U and U.

Proof. From Equation (5.12) and Corollary 5.5, with high probability,
I(A)z, — Al < [(B)z ]| + 1AL < (Cs + 1)V,

Since UkH(j&l) = 0, using Lemma 5.3 to approximate ak(fxl), we obtain
_ 1
or(A1) = o1 (A1) = 0 (Ar) = (1 +0(1))ok(Ay) > 70k(A1)

o 2, () e 2 () e

meM m—1

M —2
1 /1 CoVd
> (= > — —b) > 2V
~ 3% (2k) (m = 1)(am = bm) = 537 =3

meM

Then for any ¢ € (0,1), we can find Cy = [2Mmax+2(C5 4-1) /c] such that ||(A1)z, — Aq]| < (1—1/v2)ok (A1),
and by Wedin’s Theorem (Lemma D.7), the angle between U and U is bounded by

VI(Az, Al _ VG 1) VB
n(A) G T

| Pu — Pgll < c<ec.
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5.1.3. Bound the projection error. Randomly pick s = 2k log® n vertices from Y. Let @iy s -y s Qiyye -y
ai,,...,a;, and e; ,...,e; be the corresponding columns of A, AQ, Ay and Ey := Ay — A2 respectlvely,

s

where Ay, Ay and Ay were defined in Equation (5.7), Equation (5.8) and Equation (5.9). Let k(i) denote
the membership of vertex ¢, hence i € Vi ;) N Ys for any i € {1, -+ ,is}. Define the corresponding vector

gi € R™ with the entries of a; and gl given by

ag, ifjeZnVyg (@i — Bij)/2 >0, ifjeZn Viti)
0, ifjey 0, ifjeyYy

where av;, Bij were defined in Equation (5.4a), Equation (5.4b) respectively. Consequently, we can identify
the block ZNVy ;) by recovering 5 accordlng to the sign difference between elements in ZNVy ;) and Z \Vk( )-
However, it is hard to handle with §; due to the randomness of & Qi 5” A good approximation of 5; was
given by 8; := @; — @, where @(j) := Ljcz - (@ + ()/2 and entries of §; given by

a, ifjeZnVy (@—p)/2>0, ifjeZnVy
ai(j)=08, ifj€Z\Vipy, 6:(j)=4B-@/2<0, ifjeZ\ Vi -
0, ifjeY 0, ifjeY
By construction, d; identifies Z N Vis) in the case of perfect splitting for any i € {iy,--- ,is}. However,

the fluctuations of n; and n} are up to O(y/nlogn) w.h.p., as proved in Lemma 5.3. The error in this
approximation can be then corrected in Algorithm 4.3. Note that

a,—a=(a;,—a;)+(@;—a;,)+ @ —a) =e+(a; —a;) +8;, VieVyyNYaN{ir, - ,is}.
Since we do not have access to gi and §;, we use Py(a; — @) as a good approximation, and
Py(a; — @) — 6; = Pye; + Py(a; — a;) + Pud; — 6; .
By definitions of @ and 3 in Equation (5.6), we have

1Po(@; —@)s < @ — @2 < Ok - vnlogn - (@— B)*]"/* = On=3/* - 10g"/*(n)]

B B N k 172
P68, = Bl < 18k + 1812 =2 (S ) - @-F7] =0,
i=1
Lemma 5.7 shows that with high probability, at least half of the vectors in e;,, ..., e;, has small ls-norm

of order O(n~'/?), after projection onto U.

Lemma 5.7. With probability 1 — O(n=k°8") at least s/2 of the vectors e;,, ..., e;, satisfy

(5.16) |Pueillz < 2v/k(a 4+ dMupax/n) = O(n=Y2), Yiy,--- i, € [n].

To avoid introducing extra notations, let a;,, ..., a;, denote those vectors satisfying

||PUeij H2 S 2\/[{7(0& + dM?naX/n)

for j € [s1], hence referred as good vectors. Lemma 5.7 indicates that the number of good vectors satisfies
s1>8/2= klog?® n. Together with Lemma 5.6 and discussion in Section 5.1.3, Lemma 5.8 proves that good
vectors have vanishing projection errors.

Lemma 5.8 (Projection error). If conditions in Lemma 5.6 are satisfied, then for all good vectors a;; with

Jj € [si1], [[Pu(a;; — @) — gij |2 = O(n=Y2) holds with probability 1 — O(n~F).
14



5.1.4. Accuracy. For each projected vector Py(a; — @), let U/ denote the set of its top n/(2k) coordinates
in value, where @ € {i1,--- ,is} and s = 2k log® n. In Algorithm 4.2, we discard half of the obtained subsets
U/ with lowest blue hyperedge densities. Lemma 5.9 shows that for every good index ¢; with vanishing
projection errors as referred in Lemma 5.8, the vertex set Ui’j contains at least v fraction of the vertices in
Vi(i;) N Z, where k(i;) denotes the membership of vertex i;.

Lemma 5.9. Suppose that we are given a set X C Z with size | X| = n/(2k). Define

et o {[(8) CE 2 ()
g S {[(C5) s (] e () )

meM
and pr = (u1 + p2)/2 € [u1, u2). There is a constant ¢ > 0 depending on k,a,,v such that for sufficiently
large n,
(i) If |IXNV;| <v|X| for alli € [k], then with probability at least 1 —e ™", the number of blue hyperedges
in the hypergraph induced by X is at most pr.
(i1) Conversely, if | X NV;| > (1/2) - (1 4+ v)|X| for some i € {1,...,k}, then with probability at least
1 —e™°", the number of blue hyperedges in the hypergraph induced by X is at least pr.

Remark 5.10. When taking M = 2, Lemma 5.9 reduces to [16, Lemma 31]. The original proof of [16,
Lemma 31] contains an error and we are able to fix it in our proof.

Let U] denote the set of n/(2k) largest coordinates of the projected vector Py(a; — @) with i € Vi) NYa.
According to Lemma 5.9, if the blue hyperedge density inside U/ is at least pr, then it guarantees that
|U; N Viyiy| > v|U]|. Therefore, it is enough to consider half of the sets with highest blue edge densities in
Algorithm 4.2.

Lemma 5.11. Through random sampling without replacement in Step 6 of Algorithm 4.2, we can find at least
k vertices in Yo among klog®n samples which belongs to distinct Vy, i € [k] with probability 1 — n—ogn)

5.2. Local Correction: Proof of Lemma 4.2. For notional convenience, let U; := Z NV, denote the
intersection of Z and true partition V; for all ¢ € [k]. In Algorithm 1.1, we first color the hyperedges by red
and blue with equal probability. By running Algorithm 4.2 on the red hypergraph, we obtain a v-correct
partition U7, ..., U, i.e.,

n
(5.18) AU < (L =v)- Uil = (L =v)- o, Vi€ [k].
In the rest of this subsection, we condition on the event (5.18). Consider a hyperedge e = {i1, - ,i,,} in the
underlying m-uniform hypergraph. If vertices iy, - ,14,, are from the same block, then e is a red hyperedge
with probability a,/2 (mﬁl); if vertices i1, ,4,, are not from the same block, then e is a red hyperedge
with probability b,/ 2( 711) The presence of those two types of hyperedges can be denoted by

m

T . b’m
Te(am) ~ Bernoulli( a:: > , Te(bm) ~ Bernoulh( - ) ,
2(m—1) 2(m—1)
respectively. For any finite set S, let [S]' denote the family of I-subsets of S, i.e., [S]' = {Z|Z C S,|Z| = }.
Consider a vertex u € Uy := Z N V;. The weighted number of red hyperedges, which contains u € U; with
the remaining vertices in U, can be written as

(5.19) S1(u) = Z (m—1)- Z Tiem) 4 Z TOm) S wel,

meM e £{%m ecePm)
where Sl(flj’"') = Ep([Uh1]", [Uy N U™ 1) denotes the set of m-hyperedges with one vertex from [U;]' and
the other m — 1 from [U; N U™, while 5f?j’-") = Em([Ul]l, [T\ [Ur 0 U;]mfl) denotes the set of
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m-hyperedges with one vertex in [U1]' while the remaining m — 1 vertices in [U}]™~"\ [U; N U] (not all
m vertices are from V) with their cardinalities

gl IUmU\ £l = |U’| _ (10N Uj]
’ -1 m—1 '

We multiply (m — 1) in Equation (0.19) as weight since the rest m — 1 vertices are all located in U}, which
can be regarded as u’s neighbors in UJ. According to the fact |U; N U;| > (vn/2k) in Equation (5.18) and

\Uj| = n/(2k) for j € [k],
vn (1-v)n
ez () e () i
m—1 m—1

To simplify the calculation, we take the lower and upper bound of |&; am)| and \5(a’")| (j # 1) respectively.
m)

By taking expectation with respect to Te( @) and Te( , then for any u € U, we have

O R (Eh e MRS
sai0- S () (Bt o0

meM m—1 m—1

By assumptions in Theorem 1.4, ES}; (u) — ES];(u) = Q(1). Define

(5.21) po = ;m%:w(m— 1) { [(mSZ 1) + (:f:):ﬂ m e (mﬂ 1) 2(::21) } '

In Algorithm 4.3, vertex u is assigned to U; if it has the maximal number of neighbors in U/. If u € Uy is
mislabeled, then one of the following events must happen:

e 51, (u) < pue, meaning that v was mislabeled by Algorithm 4.3.
o 5. ;(u ) > g, for some j # 1, meaning that u survived Algorithm 4.3 without being corrected.

Lemma 5 12 shows that the probabilities of those two events are exponentially small.
Lemma 5.12. For sufficiently large n and any w € Uy = Z NVy, we have
(5.22) p =P (S (u) <pc) <p, pf =P (Sw) > pc) <p, (J#1),
where p := exp (—Caq - SNR ) with SNRyq and Cyy defined in Equation (1.3).
As a result, the probability of that either of those events happened is bounded by p. The number of
mislabeled vertices in Uy after Algorithm 4.3 is at most
|U1 | K 10nU;]

Yy ¥ A

where I'; (resp. A¢) are i.i.d indicator random varlables with mean pj (vesp. pjj, j # 1). Then

k‘p—M

ER1<—p1+Z 5

- 2k ]_Qk'

Let t; := np/2, where v is the correctness after Algorithm 4.2, then by Chernoff bound (Lemma D.1),
(523) ]P)(Rl Z np) = P(Rl - ’/lp/2 Z tl) S P (R1 - ]ERl Z tl) S €7Ct1 = O(Ginp) .

Then with probability 1 — O(e™™?), the fraction of mislabeled vertices in Uy is smaller than kp, i.e., the
correctness of Uy is at least y¢ := max{v,1 — kp}. Therefore, Algorithm 4.3 outputs a yg-correct partltlon
Uy, , Uy with probability 1 — O(e™").

Remark 5.13. When SNR o = Q(logn), we have p = Q(n™1) and e = Q(1) in Equation (5.23), which

may not decrease to 0 as n — co. As a result, we assume SNR = o(logn) in the statement of Corollary
1.7.
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5.3. Merging: Proof of Lemma 4.3. By running Algorithm 4.3 on the red graph, we obtain a ~yg-correct

partition Uy, - -+ , U, where ¢ := max{v,1 — kp} > v, i.e.,
~ —~ vn .
(5.24) |UvjﬁUvj|ZV|UvJ|:%7 VjE[k]

In the rest of this subsection, we shall condition on this event and abbreviate Y NV, by W; :=Y NV,. The
failure probability of Algorithm 4.4 is estimated by presence of hyperedges between vertex sets Y and Z.

Consider a hyperedge e = {41, - , i, } in the underlying m-uniform hypergraph. If vertices iy, - - , 4., are
all from the same cluster V;, then the probability that e is an existing blue edge conditioning on the event
that e is not a red edge is

A

(5.25) Y =P [e is a blue edge |e is not a red edge | = T 2("";112 = 2((17:; ) (1+0(1)),
- Q(Mﬁl) m—1

and the presence of e can be represented by an indicator random variable Céa"") ~ Bernoulli (¢,,,). Similarly,

if vertices i1, ,4,, are not all from the same cluster V;, the probability that e is an existing blue edge
conditioning on the event that e is not a red edge is
b,

n b,
(5.26) G =P [e is a blue edge |e is not a red edge } =1 2("L;1) = 207 (1+0(1)),
— 2(7”21) m—1

and the presence of this hyperedge can be represented by an indicator random variable §§b"”) ~ Bernoulli (¢, ).

For any vertex w € W; := Y NV, with fixed [ € [k], we want to compute the number of hyperedges
containing w with all remaining vertices located in vertex set ﬁj for some fixed j € [k]. Following a similar
argument given in Section 5.2, this number can be written as

(5.27) Siw)= > (m-1)-¢ Y e+ Y gt d o wew,
meM ec a(jlj"") eeé\l(,bj"L)
where 6’\’[(3’”) = E, (W] U n ﬁj]m_l) denotes the set of m-hyperedges with 1 vertex from [W;]' and the

other m — 1 vertices from [U; NU;]™!, while gl(f;’") = En (W)Y, [U;)™ 2\ [U; nT;)™ 1) denotes the set of

m-hyperedges with 1 vertex in [W;]! while the remaining m — 1 vertices are in [(73]"“1 \[UiN ﬁj]m’l, with

their cardinalities
gem) = (I0NUN gy _ | (Uil ) _ (00T
! Tk m—1 m—1

’J m—1
Similarly, we multiply (m — 1) in Equation (5.27) as weight since the rest m — 1 vertices can be regarded as
u’s neighbors in U;. By accuracy of Algorithm 4.3 in Equation (5.24), |U; NU;| > vn/(2k), then

vn N (1-v)n
é’\(avn) > 2k S(Q'rrt) < 2k : l.
|l,l _(m—l ) ‘17] = m—l a]#
Taking expectation with respect to (é“m) and fébm), for any w € W, we have

BSutw) = X om0 | (5 Jon=om+ (| )on].

meM
N (1—v)n n
ES;(w) = Y (m—1)- szk 1>(wm — ¢m) + (m% 1)%] T
meM

By assumptions in Theorem 1.4, ES;(w) — IES’\U (w) = Q(1). We define

it 1= ;m;M(m— 1) { Km% 1) + (:}fl)] (Y — ) +2<m2n§ 1)¢m} .
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After Algorithm 4.4, if a vertex w € W; is mislabelled, one of the following events must happen
° §zl(w) < pym, which implies that u was mislabelled by Algorithm 4.4.
o Syj(w) > pm if j # 1, which implies that u survived Algorithm 4.4 without being corrected.

By an argument similar to Lemma 5.12, we can prove that for any w € W,
pr=P(Su(w) < pm) <p,  pji=P(S(w) > p) < p, (G #1),

where p := exp (—Caq - SNR (). The mis-classified probability for w € W; is upper bounded by Z§:1 pi <

kp. The number of mislabelled vertices in W is at most R; = Z‘tV:Vil I';, where T'; are i.i.d indicator random

variables with mean kp and ER; < n/(2k) - kp =np/2. Let t; := np/2, by Chernoff bound (Lemma D.1),
P(Rl > np) = P(Rl — np/2 > tl) < P(Rl —ER; > tl) < el = O(einp) .

Hence with probability 1 — O(e~"), the fraction of mislabeled vertices in W; is smaller than kp, i.e., the
correctness in W, is at least yv := max{v, 1 — kp}.

5.4. Proof of Theorem 1.4. Now we are ready to prove our main result (Theorem 1.4). Note that the
correctness of Algorithm 4.3 and Algorithm 4.4 are v¢ and 7y respectively, then with probability at least
1—o0(1), the correctness v of Algorithm 1.1 is v := min{yc, ym} = max{v, 1 — kp}. We will have vy =1 —kp
if v <1 — kp, equivalently,

k

1—v’

1
(5.29) SNRm > ——log
Cm
otherwise v = v. The inequality (5.29) holds since

(S mem(m = 1) (%5)]"
> mem(m—1) (a;;"m_—bf" + bin)
> mem(@m — bm))? > (C,)? k 1 k

> 1 > -1
_kQMmax_2<Mmax - 1)d N Mmax -1 o8 1-v ™ CM o8 1-
where the first two inequalities holds according to d := ) \.(m — 1)a,, and Condition (1.2), while the

last inequality holds when taking C, in (1.2) satisfying C, > \/ (Mmax — 1)/Cn, which finishes the proof.

SNRy =

B .

Remark 5.14. Condition (5.29) indicates that the improvement of accuracy from local refinement (Algo-
rithm 4.3 and Algorithm 4.4) will be guaranteed when SNRq is large enough. If SNRaq is small, we use
correctness of Algorithm /.2 instead, i.e., v = v, to represent the correctness of Algorithm 1.1.

5.5. Proof of Corollary 1.7. For any fixed v € (0.5,1), SNRq — oo implies p = 0and d =} (m —
1)am, — oo. Since
ZmEM(m B 1)(am - bm)2 > Eme./\/l(m - 1)(am - bm)2
2o (m = 1)am T Xm(m = )R am + k™ o)
Condition (1.2) is satisfied. Applying Theorem 1.4, we find v = 1 — o(1), which implies weak consistency.
The constraint of SNR vy = o(logn) is used in the proof of Lemma 4.2, see Remark 5.13.

= SNR,
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APPENDIX A. PROOF OF THEOREM 3.1 AND THEOREM 3.3
A.1. Discretization. To prove Theorem 3.1, we start with a standard e-net argument.

Lemma A.1 (Lemma 4.4.1 in [54]). Let W be any Hermitian n x n matriz and let Nz be an e-net on the
unit sphere S*~1 with e € (0,1), then [W|| < 1= supgen. [(We, z)|.

By [54, Corollary 4.2.13], the size of AV, is bounded by |[N;| < (1+2/¢)™. We would have log || < nlog(5)
when N is taken as an (1/2)-net of S™. Define W := A —EA, then W;; = 0 for each i € [n] by the definition
of adjacency matrix in Equation (2.3), and we obtain

(A1) |[A—EA| :=||W]| <2sup {Wz,x)|.
zeN
For any fixed & € S"~!, consider the light and heavy pairs as follows.

(A.2) L(z) = {(z‘,j) wiws| < ‘f} H(z) = {(i,j) i) > ‘f}

where d = Zﬁ{:z (m — 1)d,,. Thus by the triangle inequality,

|<.’B,W3}>| S Z Wijmimj —+ Z Wiijﬂ}j y
(i,5)€L(x) (i,)EH(x)
and by Equation (A.1),
2N (i) eL () 2N (i) eri@)
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A.2. Contribution from light pairs. For each m-hyperedge e € E,,, we define W™ := 7(m) _ g7 (m)
Then for any fixed & € S"~!, the contribution from light couples can be written as

M
Z W,;jmia:j = Z Z Z ng) T
(i,7)€L(x) (i,5)€L(z) | m=2 e€E,,

{i,j}Ce

M M
(A.4) =S S wm S e | =YY v,
m=2eckE,, (i,5)EL(x) m=2e€kE,,
i#j,{i,5}Ce

where the constraint ¢ # j comes from the fact W;; = 0 and we denote

y(m) W(m) Z T,
(i,5)EL(x)
i#5, {i,5}Ce
Note that EY{™ = 0, and by the definition of light pair (A.2),
V| < m(m — 1)Vd/n < M(M —1)Vd/n, Vme{2,---,M}.

Moreover, Equation (A.4) is a sum of independent, mean-zero random variables, and

3 5 ot 3 5 v 3 )]

m=2e€kE,, m=2e€k,, (i,5)eL(x)
i#5,{i,j}Ce
M Mod -m(m—=1)( n
sZZFMMMWw(Z )| < 3 () X
m=2e€E (i,5)€L(x) m=2 m—1 (i,5)€[n]?
i#5,{i,j}Ce
M M
dpm(m —1)% 2 L 20(M —1)?
< < — d, —_—
mzz:z n—m+ 2 ~n mz::z m( n ’

when n > 2m — 2, where d,,, = maxd;, ., and d= Z%:Q(m —1)d;,. Then Bernstein’s inequality (Lemma

D.3) implies that for any o > 0,
> om/&) = P(

P( Z Wijq:imj
a?d n

(i,7)€L(x)
; 5
<2exp| — <2exp| — .
2 (N - 1)2 4 LM - 1)MYdaVd A(M —1)2  22MOM

n

£ 5ol

m=2eck,,

Therefore by taking a union bound,

]P( sup Z Wij:BiSCj > Oé\/;l> < |N| . P( Z Wija:iacj > 00/&)
2N (i)eL (@) (i.)eL(=)

a2n —n
(A.7) <2exp <10g(5) = AM—12+ 2a(1\/[31)M> <27,

where we choose o« = 5M (M — 1) in the last line.
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A.3. Contribution from heavy pairs. Note that for any i # j,

M M
n—2\ dn (m—-1)d,, d

(A.8) EA;; < ( )n = v -Am_ 2

mZZQ m— 2 (m_l) —= n n
and

d xix?
(A.9) S EAyzz = > ]EA” o | = > - 7 J| <Vd Y alxl<Va
(i,§)EM(z) (i,§)EM(z) J (i,4)EM () i (i,§) EH(z)

Therefore it suffices to show that, with high probability,
(4,9)EH (=)

Here we use the discrepancy analysis from [21, 18]. We consider the weighted graph associated with the
adjacency matrix A.

Definition A.2 (Uniform upper tail property, UUTP). Let M be an n x n random symmetric matriz with
non-negative entries and define

n n

pe= > QuEMy, &%= Y QLEM;.

ij=1 1,5=1

We say that M satisfies the uniform upper tail property UUTP (co,v0) with co > 0,7y > 0, if for any a,t > 0
and any n x n symmetric matric Q with entries Q;; € [0,a] for alli,j € [n],

IP)<f(;2(1\/1) > (1 +’Yo)u+t> < exp (— quih(?i)).

where function fq(M) : R™*™ — R is defined by fq(M) := ZZj:l Q;;M;; for M € R" ", and function
h(z) .= (14 2x)log(l+x) —x for all x > —1.

Lemma A.3. Let A be the adjacency matriz of the non-uniform hypergraph H = UM_, H,,, then A satisfies
UUTP(co,vo) with co = [M(M —1)]71, 40 = 0.

Proof. Note that

TR Z Qij(Aij —EAj;) = Z Qz‘jwij

=1 ij=1
M M
- Q”<Z 2 WSW)) “2 2 WW( > Qz-]) =2 > &
i,7=1 l#]eg{fjmj'ce m=2 eckE,, {i,j}Ce, i#] m=2 ecE,,

where ng) = ng)(z{i,j}Ce,i;ﬁj Qij) are independent centered random variables upper bounded by
1Zm)] < Dtigrceizi Qij < M(M — 1)a for each m € {2,..., M} since Q; € [0,a]. Moreover, the
variance of the sum can be written as

PO o SEL (S

m=2eckE,, m=2 eckE,, {i,j}Ce, i#j
M n
< STETM mm—1) > QG <MM-1)Y QEA;=MOM—1)5”.
m=2 ecE,, {i,j}Ce,i#j i,j=1
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where the last inequality holds since by definition EA;; = SSM_ S e, E[T(™]. Then by Bennett’s
{i,j}Ce

&2 a
S =)

where the inequality holds since the function z - h(1/z) = (14 x)log(1 + 1/z) — 1 is decreasing with respect
to x. |

inequality D.4, we obtain

Definition A.4 (Discrepancy property, DP). Let M be an n X n matriz with non-negative entries. For
S, T C [n], define em(S,T) = ZieSjeT M;;. We say M has the discrepancy property with parameter § > 0,
K1 > 1,ke >0, denoted by DP(8, k1, K2), if for all non-empty S,T C [n], at least one of the following hold:

(1) em(S,T) < k16| S|[TY;

(2) em(8.T) - log <65Ms(ﬁ’$|)> < (IS [T1) - log <|S|evn|T|>'

The following shows that if a symmetric random matrix A satisfies the upper tail property UUTP (¢, v0)
with parameter ¢y > 0,7y > 0, then the discrepancy property holds with high probability.

Lemma A.5 (Lemma 6.4 in [18]). Let M be an n X n symmetric random matriz with non-negative entries.
Assume that for some § > 0, EM,;; <6 for alli,j € [n] and M has UUTP ¢y, vo) with parameter cy,vo > 0.
Then for any K > 0, the discrepancy property DP (3, k1, ko) holds for M with probability at least 1 — n=X
with k1 = €(1+70)% ko = Z(1+70)(K +4).

When the discrepancy property holds, then deterministically the contribution from heavy pairs is O(v/d),
as shown in the following lemma.

Lemma A.6 (Lemma 6.6 in [18]). Let M be a non-negative symmetric n x n matriz with all row sums
bounded by d. Suppose M has DP (0, k1, ka) with § = Cd/n for some C > 0,k1 > 1,k9 > 0. Then for any
z €SP,

Z Ml-ja:imj § Oéo\/g,

(i,7)eH ()

where ag = 16 + 32C (1 + k1) + 64rk2(1 +

K1 log K1 )

The next lemma shows A has bounded row and column sums with high probability.

Lemma A.7. For any K > 0, there is a constant o, > 0 such that with probability at least 1 —n~K,
. <
(A.13) max Z A <wd

j=1

, _ 2(M—1)(14+K)
with o =4 + —_—

and d > clogn.
Proof. For a fixed i € [n],

n M
SNoA;=> Y m-nT™M, (A - Z ST (m-nwim,

j=1 m=2eckE,,:i€e j=1 m=2e€Fk,,:i€e
Z Az] < Z < >nl)dm = da
j=1 (m—l)
M M
STm-12 > EWM?I <Y (m-1? Y BT < (M -1)d.
m=2 e€FE,,:i€e m=2 e€E,,:i€e
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(M—-1)(1+K)

Then for a; = 4 + 2 , by Bernstein’s inequality, with the assumption that d > clogn,

3c
j=1 j=1
1 _1)\2,92 clar—1)2
(A.15) <exp| — 2(011 1) < n_wff(n%zull)H) <np i K
(M — 1)d+ g(M — 1)(0[1 — 1)d
Taking a union bound over i € [n], then Equation (A.13) holds with probability 1 — n=%. a

Now we are ready to obtain Equation (A.10).

Lemma A.8. For any K > 0, there is a constant 8 depending on K,c, M such that with probability at least
1—2n"K,

(A.16) < BVd.

E Aija:iacj

(i,)€H(z)

Proof. By Lemma A.3, A satisfies UUTP(m, 0). From Equation (A.8) and Lemma A.5, the property

DP (4, k1, ko) holds for A with probability at least 1 — n~% with

d

§=—, Ki=¢€% ky=2M(M—1)(K +4).

n
Let & be the event that DP (4, k1, k2) holds for A. Let & be the event that all row sums of A are bounded
by ajd. Then P(&; N &) > 1 —2n~%. On the event & N &, by Lemma A.6, Equation (A.16) holds with
B8 = apay, where

2(M —1)(1 + K)

ag=16+32(1 +e?) +128M(M — 1)(K +4)(1+e %), a3 =4+ " .

A.4. Proof of Theorem 3.1.

Proof. From (A.7), with probability at least 1 —2e™", the contribution from light pairs in (A.3) is bounded

by 2aV/d with o = 5M (M —1). From (A.9) and (A.16), with probability at least 1 —2n =% the contribution

from heavy pairs in (A.3) is bounded by 2v/d + 26+/d. Therefore with probability at least 1 —2e~™ — 2n~ K
|A —EA| < CyVd,

where C)y is a constant depending only on ¢, K, M such that Cy; = 2(a+140). In particular, we can take o =

SM(M—1), = 512M (M —1)(K+5) (2 + w) and Cyy = 512M (M —1)(K +6) (2 + w) .

This finishes the proof of Theorem 3.1. O

A.5. Proof of Theorem 3.3. Let & C [n] be any given subset. From (A.7), with probability at least

1—2e™",
Z (AS — EA3> LT
(i.§) €L () i

Since there are at most 2" many choices for S, by taking a union bound, with probability at least 1—2(e/2)™™,
we have for all S C [n], Equation (A.17) holds. In particular, by taking S = Z = {i € [n] : row(i) < 7d},
with probability at least 1 — 2(e/2)~™, we have

(A.17) sup < B5M(M —1)Vd.

zeN

(A.18) sup < 5M(M —1)Vd.

zeN

> [(A-EA))iza;
(1,5)€L()

25



Similar to Equation (A.9), deterministically,

(A.19) > (BA)z)jmix;| < (M — 1)V

(i,7)€H(2)

Next we show the contribution from heavy pairs for Az is bounded.

Lemma A.9. For any K > 0, there is a constant B, depending on K,c, M, such that with probability at

least 1 — n= K,

(A.20) > (A)glimix;| < BV

(i,5)€H(2)

Proof. Note that A satisfies UUTP (m, O) from Lemma A.3. Then from Lemma A.5, with probability
at least 1 —n= % DP(4, k1, k2) holds for A with

§= %, K1 =€, ko =2M(M —1)(K +4).

The DP (6, 1, ko) property holds for Az as well, since Az is obtained from A by restricting to Z. Note that
all row sums in Az are bounded by 7d. By Lemma A.G,

(A.21) Z [Az]ijxz;| < apV7d,
(1,7)EH(x)
where we can take oy = 16 + %(1 +€%) +128M (M — 1)(K +4) (1 + e%) . O

We can then take 8, = ag+/7 in Equation (A.20). Therefore, combining Equation (A.18), Equation (A.19),
Equation (A.21), with probability at least 1 — 2(e/2)™" — n~ % there exists a constant C, depending only
on 7, M, K such that ||(A — EA)z| < C;Vd, where C; = 2((5M 4 1)(M — 1) 4 ag+/7). This finishes the
proof of Theorem 3.3.

APPENDIX B. TECHNICAL LEMMAS

B.1. Proof of Lemma 2.4.

Proof. By Weyl’s inequality D.5, the difference between eigenvalues of EA and EA can be upper bounded
by

IM(EA) — Ai(EA)| < |[EA —EA|; < |[EA — EA|p
< [26- - Vilogn) - (a = 9] = O(n*10g*(m) @ - B)).
The lemma follows, as \;(EA) = Q (n(a — B)) for all 1 <i < k. O

1/2

B.2. Proof of Lemma 5.3.

Proof. We first compute the singular values of B;. From Equation (5.5), the rank of matrix B; is k, and
the least non-trivial singular value of B; is

— n

— n 3—"—2 Ay — b
Gk(B1)=m(a—5):m Z (TZ_2>(71)’

meM m—1

where M is obtained from Algorithm 4.1. By the definition of A; in Equation (5.9), the least non-trivial
singular value of A is

n ) n 3n_ A — Om
oulB) =B = o P = 3 ()

meM m—1
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Recall that n;, defined in Equation (5.1), denotes the number of vertices in Z N V;, which can be written as
ni = Y ey, Livezy- By Hoeffding’s Lemma D.2,

7

Similarly, n}, defined in Equation (5.2), satisfies
P ( > \/ﬁlog(n)) < 2exp (—k‘logQ(n)) )

As defined in Equation (5.3) and Equation (5.5), both By and B; are deterministic block matrices. Then with

n; — 27;{‘ > ﬁlog(n)) < 2exp (—klog*(n)) .

nl — %
4k

probability at least 1 —2k exp (fk: logQ(n)), the dimensions of each block inside ]§1 and B are approximately
the same, with deviations up to v/nlog(n). By Weyl’s Lemma D.5, for any i € [k],

[0:(B1) — 0i(B1)| = |oy(A1) = 03(A1)| < A1 = Alla < AL = Ay
_.q1/2 _
< [2k- 2 Vnlog(n) - @=B)?| " = O (n¥/*10g'*(n) - (@~ B)).
As a result, with probability at least 1 — 2k exp(—klog?(n)), we have

ok (A1) — on(Ay)) _ ok (B1) — 0% (B1))
or(A1) or(B1)

=0 <n71/4 logl/g(n)) .

B.3. Proof of Lemma 5.4.

Proof. Without loss of generality, we can assume M = {2,..., M}. If M is a subset of {2,..., M}, we can
take a,, = b,, = 0 for m ¢ M. Note that in fact, if the best SNR is obtained when M is a strict subset, we
can substitute M. for M.

Let X C V be a subset of vertices in hypergraph H = (V, E) with size | X| = ¢n for some ¢ € (0,1) to be
decided later. Suppose X is a set of vertices with high degrees that we want to zero out. We first count the
m-uniform hyperedges on X separately, then weight them by (m — 1), and finally sum over m to compute
the row sums in A corresponding to each vertex in X. Let F,,(X) denote the set of m-uniform hyperedges
with all vertices located in X, and E,,(X¢) denote the set of m-uniform hyperedges with all vertices in
X°¢=V\ X, respectively. Let E,,(X, X¢) denote the set of m-uniform hyperedges with at least 1 endpoint
in X and 1 endpoint in X¢. The relationship between total row sums and the number of non-uniform
hyperedges in vertex set X can be expressed as

M
(B.3) Y row(v) < 3 (m - 1)(m|Em(X)| +(m—1)|Ep(X, Xc)\)

If the row sum of each vertex v € X is at least 20Md, where d = Z%:Q (m — 1)ay, it follows that
M

(B.4) (m — 1)(m|Em(X)\ + (m — 1)|Ep(X, XC)|) > en - (20Md) .
m=2
Then either
M M
> m(m = 1)|En(X)| > 4Mend, or Y (m —1)?|En (X, X¢)| > 16Mend.
m=2 m=2

B.3.1. Concentration of Z%:Q m(m — 1)|E,,(X)|. Recall that |Ep,(X)| denotes the number of m-uniform
hyperedges with all vertices located in X, which can be viewed as the sum of independent Bernoulli random
variables Te(a’") and Te(b’"’) given by

(B.5) T(@m) ~ Bernoulli <(a]j)> . T®m) ~ Bernoulli <(bm)> .

m—1 m—1
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Let {V4,...,Vi} be the true partition of V. Suppose that there are n;cn vertices in block V; N X for each
i € [k] with restriction Zle n; = 1, then | Ep, (X)| can be written as

|En(X)] = > T+ Y Tém,

e€EE, (X,am) e€E, (X,bm)

where E,, (X, a,,) := UF_, E,,(V; N X) denotes the union for sets of hyperedges with all vertices in the same
block V; N X for some ¢ € [k], and

Ep(X,bn) i= Bn(X)\ B (X, am) = Em(X) \ (uf En(Vin X))

denotes the set of hyperedges with vertices crossing different V; N1 X. We can compute the expectation of
|Em(X)| as

(B.6) E|En(X)| =3 (77“3"> (_bm n (fg) (b;" 7

i=1 me1) mt
Then
M M en\ ay — cn m
(B.7) mggm( 1) E[En( mZ:Qm m—1) l; (m ) (. 1b) " <m> (:}ll)]'

k
As Y m; =1, it follows that S | (7:") < (") by induction, thus

‘ m
i=1

T s () () -0 i (-5 00)

where both terms on the right are positive numbers. Using this and taking b,, = a,,, we obtain the following
upper bound for all n,

M M o\ a M
Z m(m — 1DE|E,,(X)] < Z m(m — 1) (m)(’tn) <cn Z(m —Da,, =cnd.

m=2 m=2 m—1 m=2

Note that Z%:z m(m — 1)|E,,(X)] is a weighted sum of independent Bernoulli random variables (corre-
sponding to hyperedges), each upper bounded by M?2. Also, its variance is bounded by

M
02:=Var<z m(m = 1)| B ) Zm m = 12Var (| (X))

m=2
M

< Y m?(m—1)’E|E,(X)| < M?cnd.

m=2

We can apply Bernstein’s Lemma D.3 and obtain

P (12”: m(m — 1)|Ep(X)| > 4Mcnd> <P (i m(m — 1)(|Ep(X)| = E|[Ep(X)]) > 3Mcnd>

m=2 m=2

(3Mend)?
B.8 < — < —6end) .
(B-8) = P ( M?2end + M?end/3 ) — exp(—6end)

B.3.2. Concentration of 2%22(771 —1)2|E,,(X, X¢)|. For any finite set S, let [S]? denote the family of j-

subsets of S, i.e., [S}Y = {Z|Z C S,|Z| = j}. Let E,([Y)’,[Z]™7) denote the set of m-hyperedges, where

j vertices are from Y and m — j vertices are from Z within each m-hyperedge. We want to count the

number of m-hyperedges between X and X°¢, according to the number of vertices located in X€¢ within each

m-hyperedge. Suppose that there are j vertices from X¢ within each m-hyperedge for some 1 < j <m — 1.
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(i) Assume that all those j vertices are in the same [V; \ X]7. If the remaining m — j vertices are from
[Vi N X]™=J then this m-hyperedge is connected with probability a,,/ (mﬁl), otherwise b,/ (mil).
The number of this type m-hyperedges can be written as

k
S| X w3 1ol

=1 eeg(_“jn) eeg(_bjn)
where £ := E,,,([Vi 0 X, [V; 0 X]™7), and

e i= B (Vi N XY, [X]" 7\ [V n X]"7)
denotes the set m-hyperedges with j vertices in [V; N X¢)/ and the remaining m — j vertices in
[X]7\ [V; N X]). We compute all possible choices and upper bound the cardinality of £ ;Z’") and £ ;zM)

by
1)) s () ()
J m—j)’ J m—j m—j
(ii) If those j vertices in [V \ X]’ are not in the same [V; N X]? (which only happens j > 2), then the

number of this type hyperedges can be written as 3 __com) T
J

, where

£ = B (IV\ XY\ (UL Vi \ XP), [X)777),

(-5 ]G

Therefore, |E,, (X, X¢)| can be written as a sum of independent Bernoulli random variables,

CRIE

m—1

k | m—1
(B.10) | (X, X°)| S Yz Y e | £ Y 7t

j=1 i=1 (am) (bm) j=2 (bm)
J=L e€E;’; e€E; ] I=% ecg;

Then the expectation can be rewritten as

(B.11) E (|Em(X, X))

SR (A 1) - ()l )

S5 ‘;“)”)] (W)

R B

()~ () (2] ey

2\ (men) (5 —mon\ | am —bn L
m m m (1)
where we used the fact ((1 c)") = f 1 ((1/ k_"ic)") in the first equality and Vandermonde’s identity
("1;;"2) = Z ( )( ) in last equality. Note that

- (0)-()-(2)
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counts the number of subsets of V' with m elements such that at least one element belongs to X and at least
one element belongs to X¢. On the other hand,

=3 [(2)- () - (4]

counts the number of subsets of V' with m elements such that all elements belong to a single V;, and given
such an 4, that at least one element belongs to X NV, and at least one belongs to XN V;. As Figure 2

XNnwW

XNy

XﬂVk

FIGURE 2. Comparison of f. and g.

shows, g. only counts the blue pairs while f. counts red pairs in addition. By virtue of the fact that there
are fewer conditions imposed on the sets included in the count for f., we must have f. > g.. Thus, rewriting
Equation (B.11), we obtain

B(En(X, X)) = 0oy + gg(b:””) -

Since both terms in the above sum are positive, we can upper bound by taking a,, = b,, to obtain

E (|Em (X, X)) < f. (:ﬁ) = [(;) - <i:> - <(1 mC)n)] (:TZ) '

By summing over m, the expectation of 2%22(m —1)?|E, (X, X¢)| satisfies

M M n cn —c)n am
m:2(m— 1) E(|En (X, X)) < mZ::z(m— 1)? <m> - (m> - (U m) )] SR

M
<2n Z(l —cm=(1=e)™)(m—1)a, <8Mecend,

m=2

where the last upper inequality holds when ¢ < ¢y = ¢o(m) is sufficiently small, since

(1=¢)+m == (1=-c)™

= (T) (1= te+ (T;) (1—c)m 22 4+ (m”z 1) (1—c)temt

(B.13) < <T>c+ (T;>CQ+...+ (mTi 1>cm1 <14+ -1<2(14+mec—1) <2mec.
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Similarly, we apply Bernstein Lemma D.3 again with K = M?2, 0 < 8M?3cnd and obtain

M
P (Z (m —1)2|Epm (X, X°)| > 16Mcnd>

m=2
M
(B.14) <P (Z (m — 1)2(| B (X, X°)| — B| B\ (X, X9)]) > 8Mcnd> < exp(—6end/M) .
m=2
By the binomial coefficient upper bound ( ) (%)k for 1 <k < mn, there are at most
n e cn
. <(2Z) = — —
(B.15) (cn) < (c) exp(—c(loge — 1)n)

many subsets X of size |X| = cn. Let d be sufficiently large so that d=3 < ¢y. Substituting ¢ = d=3 in
(B.15), we have

n -
<d—3n> < exp [3d*log(d)n] .
Taking ¢ = d~2 in (B.8) and (B.14), we obtain

M

P <Z (m — 1) (m|Em (X)| + (m = 1)|En (X, X)) > 20Md—2n> < 2exp(—2d~2n/M).
m=2

Taking a union bound over all possible X with |X| = d=3n, we obtain with probability at least 1 —

2exp(3d—3logdn —2d~?n/M) < 1—2exp(—d~?n/M), no more than d~3n many vertices have total row sum

greater than 20Md. Note that we have imposed the condition that d=3 < ¢y (as in B.13), so d needs to be

sufficiently large. O

B.4. Proof of Lemma 5.7.

Proof. Note that U is spanned by the first k singular vectors of (A1)z,. Let ug,...,u; be an orthonormal
basis of the subspace U, then the projection Py is given by Py := Ef:1<ul, -Yu;. For some fixed vertex ¢

with k(i) indexing its membership, we have for i € V5 N Yo N {iy, -+ ,is},
k k
Pye; =Y (w,e)u, ||Pueil3 =Y (u,e;).
1=1 1=1

By definition of A; and Ay in Equation (5.7), and the independence between entries in A; and entries
in Ao, we know that {u;}}_, and e; are independent of each other, since {u;}F_, is constructed from A;
and e; is chosen from columns of Ey := Ay — 112. If we take expectation over {T(m)}me M conditioning on
{w;}F_,, then by direct calculation,

{w}i 1} Zuz ([ )ji—(EAz)jiD =0,

E{T(m)}mEM |:<ul7 ez

E 71 epe | 1Poeil3|{m}is] = ZE{T<m>} o [ e? ]

where M is obtained from Algorithm 4.1. We expand each (u;,e;)? and rewrite it into 2 parts,

k
Z w(j1)e;(j1)ui(j2)ei(jz2)

1j2=1

%
M=

<ula

.

1

(B.16)

|
-M?T

[ ()Pl + Y wlies(i)wlia)ei(j2), L€ [K].
J1#52
(a) (b)
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The expectation of part (a) in Equation (B.16) is upper bounded by « as defined in Equation (2.4), since

k
E{T(m)}mE Z {ul}l 1

n

= Y ()P Var((Az);i) < Y[ (BAz) <o, Ve k],
j=1

j=1
where |lu;]]2 = 1 and Aj is defined in Equation (5.7). For part (b),

Egrnymen | O wli)ei(i)wliz)e(z) {uwti,

J17#J2
> w(i)w(is)E [((A2)j1i - (EAz)jli) ((A2)m - (EAQ)jzi)}

J1#52

DRTAMISE S SR wC AR L) ORI W EE |
]

J1#£J2 MEM e€Ep,[Y2UZ MEM e€E,[Y2UZ]
{i,j1}Ce {i,j2}Ce

e
then only the terms with hyperedge e D {i, j1, j2} have nonzero expectation. Then the expectation of part

(b) can be rewritten as

According to Definition 2.1 of the adjacency tensor, ’T(T) and Tg;”) are independent if hyperedge e; # es,

Eromyen | D wlinei(i)wiiz)e(Gs) {w}i,

J1#£3j2
= Y wlwmG) >, >, E(TUW-ET)
J1#J2 MEM e€En,[Y2UZ]
{i,j1,32}Ce
< Z wi(j1)wi(J2) Z Z ET{™
J1#£72 meEM e€E,,[Y2UZ]
{i)jlx.j2}ce
. . am
(B.19) = wlwla) Y, Y s
J1#Jj2 MEM e€E,,[YaUuZ] \m—1
{i,J1,52}Ce

Note that |Yo U Z| < n, then the number of possible hyperedges e, while e € E,,[Y2 U Z] and e D {4, j1, 2},
is at most (mﬁg). Thus Equation (B.19) is upper bounded by

> wliyw(is) Y (mn 3>(anm)

J1#£72 meM m—1
< Y wlvuli) X e, < e S it
J1#£3j2 meM J1#3j2
< P S ()] + fan(o))?) < PHmatn =1 ( >l () + Z[uz(jz)]2> < M,
J1#]2 J=1 2=l

where [|uill2 =1, d =) -\ (m — 1)a,,. With the upper bounds for part (a) and (b) in Equation (B.16),
the conditional expectation of || Pye;||2 is bounded by

2

)

k
E(remymem {HPUez'||§‘{uz}f€:1} =Y E(rei)men [<Ulvei>2’{ul}f:1} < k(a
=1
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By Markov’s inequality,

D P d ? T(m ||P 6”2‘{11: }k
+ (m) me U€q|[2 l 1
<|| |[€i||2 > :2 k(a Mmax)> < { } M 1 <

1
4k (o + dMpax /1) 4’
Let X; be the Bernoulli random variable defined by
X; = 1{||Pueillz > 2v/k(a + dMuax/n)}, i € {i1, - ,is}.
Obviously, EX; = P(X; = 1) < 1/4. Define

0=

S

37_1 Z 1.
2y EX;,

Since s = 2klog® n, then by Chernoff’s Lemma D.1,
S S S S S B . 2n
P(ZXi,- > 2) Z]P’(ZXij > (1 —|—5)ZEXij> < exp <— C5QZEXij> = O(eFlog™ny |
j=1 j=1 j=1 j=1

for some constant ¢ depending on k. Therefore, with probability 1 — O(n=F18") at least s/2 of the vectors
€ir,- .., e, satisfy | Pueillz < 2/k(a + dMpax/n) for each i € {iy, iz, -+ ,is}. O

B.5. Proof of Lemma 5.9.

Proof. We start with the following simple claim: for any m > 2 and any v € [1/2,1),
1 m
(B.21) V4 (1= 1) < < ;”) .

Indeed, one quick way to see this is by induction on m; we will induct from m to m + 2. Assume the
inequality is true for m; then

V2 (1—)™? = VA (1) (1)
= V(1 =24+ )1 —v)" < VA" 21— )"
= M (=) < 0P (L= D)+ (- 0)™)

< 1+v 2 1+v mi 1+v 2
2 2 B 2 ’
where we have used the induction hypothesis together with 1 —2v < 0 and (1—v)? > 0. After easily checking
that the inequality works for m = 2,3, the induction is complete. We shall now check that the quantities

defined in Lemma 5.9 obey the relationship ue > p1 and ps — pu; = Q(n), for n large enough. First, note
that the only thing we need to check is that, for sufficiently large n,

vn (1-v)n (14+v)n (1-v)n
2k 4 2k < 4k + (k _ 1) 4k(k—1) :
m m o m m

in fact, we will show the stronger statement that for any m > 2 and n large enough,

vn (1—v)n (1+v)n
(B22) (2k> + ( 2k ) < < 4k > ,
m m m

and this will suffice to see that the second part of the assertion, ps —p; = (n), is also true. Asymptotically,

(ZE) ~ i:; (%)m, (%) ~ % (%)m7 and ((1%;>n) ~ (1;7;)7” (%)m Note then that (B.22) follows
from (B.21).

Let {V4,...,Vi} be the true partition of V. Recall that hyperedges in H = UyearrH,y, are colored red
and blue with equal probability in Algorithm 1.1. Let E,,(X) denote the set of blue m-uniform hyperedges
with all vertices located in vertex set X. Assume | X N V;| = ;| X| with Zle n; = 1. For each m € M, the
presence of hyperedge e € E,,(X) can be represented by independent Bernoulli random variables

b
T(@m) ~ Bernoulli [ —~™ |, 7= ~ Bernoulli | —2— | |,
) (2(mnl)> ) (2(mn1)>
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depending on whether e is a hyperedge with all vertices in the same block. Denote by
En(X,am) :=U_ B, (VinX)
the union of all m-uniform sets of hyperedges with all vertices in the same V; N X for some 4 € [k], and by
Eun(X,bn) = En(X)\ Enn(X, ) = En(X)\ (UF BV 0 X))

the set of m-uniform hyperedges with vertices across different blocks V; N X. Then the cardinality | E,,(X)]

can be written as the
En(X)|= > Tl >y T,
e€E (X, am) e€E, (X,bm)

and by summing over m, the weighted cardinality |E(X)| is written as

[EX)] =Y m(m=1|Eu(X)]= Y m(m—1) Yoo T Y Ty

meM meM e€E (X, am) e€EEm (X,bm)

with its expectation

v wmore g e ()55 ()

meM i=1

since

I (Xam|_§;|E Vi N X) :g(%k) Ep (X, by )—(%)-i(”ﬂ%)

Next, we prove the two statements in Lemma 5.9 separately. First, assume that | X NV;| < v|X]| (i
n; < v) for all ¢ € [k]. Then

sooys] 3w of[(2)+ ()] 5+ () )

To justify the above inequality, note that since Z n; = 1, the sum Z ("mi) is maximized when all but 2

of the n; are 0, and since all n; < v, this means that

k n vn (1-v)n
Z Mgk ) < (26 ) 4 (26 ).
Pl m - \m m

Note that m(m — 1)(T*) — ETL*) and m(m — 1)(T") — ET{*")) are independent mean-zero random
variables bounded by M (M — 1) for all m € M, and Var(|E(X)|) < M?(M — 1)?E|E(X)| = Q(n). Recall
that pr = (u1 + p2)/2. Define t = pr — E|E(X)|, then 0 < (p2 — p1)/2 < t < pr, hence t = Q(n). By
Bernstein’s Lemma D.3, we have

P(IEQO| > pr) = B(IEQO| - EIEX)| 2 t) < exp (~amreamr=mes) = 0™

where ¢ > 0 is some constant. On the other hand, if | X NV;| > 32| X| for some i € [k], then

ElE(X)| > ;mg/[m(m_ 1) { l(“}'g)") + (k- 1)(4(’1(;’7‘3:)%)] m—f— (’2:%)(:}2)} =: iz .

The above can be justified by noting that at least one |X N V;| > 1| X|, and that the rest of the vertices
will yield a minimal binomial sum when they are evenly split between the remaining V;. Similarly, define
t=pr — E|E(X)], then 0 < (u2 — p1)/2 < —t = Q(n), and Bernstein’s Lemma D.3 gives

t2/2 —c'n
P(1B0)| < o) = B(IECOI~ BIECO| < 1) < exp (— e ) — 0,

where ¢’ > 0 is some other constant. O
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B.6. Proof of Lemma 5.11.

Proof. If vertex i is uniformly chosen from Y5, the probability that i ¢ V; for some [ € [k] is

P(i¢w|iemzp(i§1/l,ieifg) 4 [ViNYa| i %—km—n; ’
(i € Y2) Y2 n—> _(ne+ny)
where ny and nj}, defined in Equation (5.1) and Equation (5.2), denote the cardinality of ZNV; and Y1 NV,
respectively. As proved in Appendix B.2, with probability at least 1 — 2exp(—klog®(n)), we have |n, —
n/(2k)| < y/nlog(n) and |n} — n/(4k)| < v/nlog(n), then P(i ¢ Vi|[i € Y2) =1 — %(1 + 0(1)) . After klog®n
samples from Y5, the probability that there exists at least one node which belongs to V} is at least

klogZn
- (1 _ 110(1)) _ 1 _ (o) log(gky) log .

Le k],

The proof is completed by a union bound over [ € [k].

B.7. Proof of Lemma 5.12.

Proof. We calculate P(S1;(u) < pc) first. Define t1¢ := pc — ESf;(u), then by Bernstein’s inequality
(Lemma D.3) and taking K = Myax — 1,

P (S (w) < pe) =P (51 (u) — ES) (u) < to)

12/2 320/ (Muax — 1)
— < _
P ( Var[S], ()] + (Munax — 1) -tlc/3> = ( 6(Momax — 1) - ES, (u) + ztlc>

QAm —Om 2
exp [ [0 = UMt 5 (= D) ()]
(Mg — 1)2 - 2Memncts 52 (1) (Sl 1 b,

IN

IN

where M is obtained from Algorithm 4.1 with M., denoting the maximum value in M, and the last two
inequalities hold since Var[S}; (u)] < (Mmax — 1)?ES7; (u), and for sufficiently large n,

tio = pe — BS) (u) = —% > (m=1): [(mgz 1) B <:15:)71L>] %ﬂ

meM m—1
1 )™t -1 —py)mt G — bm
S-3 Z om Hm — DW(I Foll))
meM
(v)Mmax—1 _ (1- ) Mumax—1 am — by
< - T — Z(m_l)'W’
meM

6(Mmax — DES; (u) + 2t1c = 2uc + (6Mpax — 8)ES]; (u)

S (m—1) { [(6Mmax —7) (m% 1) + (:Lgf):)} %’L + 6(Mmax — 1) (m"‘f 1) 2(b7§1) }

m—1

meM m
B (6Mumax —7) - ()™ 4+ (1 =)™ 4y — b (6Mumax — 6)bin
= m;w(m -1 [ T T + S T ] (1+0(1))
(6Mpax —7) - (v)™ 1 + (1 —p)m—1 G — b,
< m; o “(m—1) (kml + bm> (1+0(1))
< MM =) S ) (S )

meM
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Similarly, for P(S7;(u) > uc), define tjc := pc — ES7;(u) for j # 1, by Bernstein’s Lemma D.3,
P (S7;(u) > pc) =P (S1;(u) —ES;(u) > tic)

ox . tj20/2 < ex C/(Mmax B )
P VarlST )] + (Mo — 1) - 650/3 ) = “ P\ 6(Mnax — 1) - ES] (u) + 2650

)
o ([P e[ ) (2t
> (Mmax _ 1)2 . 22Mpax+3 ZmeM( - 1) (a]:ﬁn_bm b )

The last two inequalities holds since Var[S];(u)] < (Mmax — 1)?ES7;(u), and for sufficiently large n,

tic == pc — ES7;(u) :% Z (m—1)- [(mgg 1> B <:125)71L)] a;Enb;”

meM m—1
(V)Mmax_l — (1 _ V)Mmax_l bm

= I Mmax+2 Z( _1) km T

IA

6ES]; (u) + 2tic = 2uc + (6Mumax — 8)ES];(u)

_"%A(m_n{[(mg?l)+(6Mmax—7)<;5§):>]er Momax — 1 (mnf> 1}
) -

1
(V)m_l + (GMIIlaX - 7) . (1 - V)m_l Gy, — by (6Mmax —6) b
> - ( ~ gt

3

meM m m—1
()™ (6Mpax — 7) - (1 —v)™ 1 —b
< ";/[ om “(m—1) <k’m1 + bm> (14 0(1))
g% > (m-1 (erbm).

meM

APPENDIX C. ALGORITHM’S CORRECTNESS FOR THE BINARY CASE

We will show the correctness of Algorithm 1.2 and prove Theorem 1.6 in this section. The analysis will
mainly follow from the analysis in Section 5. We only detail the differences.

Without loss of generality, we assume n is even to guarantee the existence of a binary partition of size
n/2. The method to deal with the odd n case was discussed in Lemma 2.4. Then, let the index set be
Z = {i € [n] : row(i) < 20Mpaxd}, as shown in Equation (3.3). Let u; (resp. u;) denote the eigenvector
associated to A\;(Az) (resp. A;(A)) for i = 1,2. Define two linear subspaces U := Span{u;,us} and
U := Span{u;, u,}, then the angle between U and U is defined as sin Z(U, U) := ||Py — Pgl|, where Py
and Pg are the orthogonal projections onto U and U, respectively.

C.1. Proof of Lemma 4.4.

C.1.1. Bound the angle between U and U. The strategy to bound the angle is similar to Section 5.1.2, except
that we apply Davis-Kahan Theorem (Lemma D.6) here.

Define E := A — A and its restriction on Z, namely E7 := (A— Az =A7—Az aswellas A := A7 —A.
Then the deviation A7 — A is decomposed as

Ar—A=(A7-A7)+(Ar—-A)=Ez +A.

Theorem 3.3 indicates [|Ez|| < Cs+v/d with probability at least 1 —n~2 when taking 7 = 20 M pax, K = 3,
where C3 is a constant depending only on M,,x. Moreover, Lemma 5.4 shows that the number of vertices
with high degrees is relatively small. Consequently, an argument similar to Corollary 5.5 leads to the
conclusion ||A|| < v/d w.h.p. Together with upper bounds for |Ez|| and ||A||, Lemma C.1 shows that the
angle between U and U is relatively small w.h.p.
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Lemma C.1. For any c € (0,1), there exists a constant Cy depending on Mmax and ¢ such that if
D7 (m = 1)(am — bm) = Cp - 2Mmmt2V/4,
meM
then sin Z(U, U) < ¢ with probability 1 — n=2.
Proof. First, with probability 1 — n~2, we have
lAz — Al < |[Ez]| + [A]| < (C3 + 1)Vd.

According to the definitions in Equation (2.4), « > g and « = O(1/n), 8 = O(1/n). Meanwhile, Lemma 2.3
shows that |[M\o(A)| = [~a + (o — B)n/2] and |A3(A)| = a. Then

)= W8] = Gla =B =20 = §-Gla—m = Y (277) el

meM m—1

1 (m—1)(am — bm) 1
=1 > gm—2 2 M Y (m—1)(am —bpn) > 4C2Vd.
meM meM

Then for some large enough Cs, the following condition for Davis-Kahan Theorem (Lemma D.6) is satisfied
lAz — K| < (1= 1/v2) (Pa(&)| — As(A)])

Then for any ¢ € (0,1), we can choose Co = (C5 + 1)/c such that

2Az Al _2ACs+1Vd _c

(A) = [Xs(A)| —  4CoVd 2

|Pu — Pgll < <ec.
A2

Now, we focus on the accuracy of Algorithm 4.5, once the conditions in Lemma C.1 are satisfied.

Lemma C.2 (Lemma 23 in [16]). If sin Z(U,U) < ¢ < 1, there exists a unit vector v € U such that
sin Z (w9, v) < 24/c.

The desired vector v, as constructed in Algorithm 4.5, is the unit vector perpendicular to Pyl,, where
Py1,, is the projection of all-ones vector onto U. Lemma C.1 and Lemma C.2 together give the following
corollary.

Corollary C.3. For any c € (0,1), there exists a unit vector v € U such that sin Z(u2,v) < ¢ < 1 with
probability 1 — O(e™™).

Lemma C.4 (Lemma 23 in [16]). If sin Z(u2,v) < ¢ < 0.5, then we can identify at least (1 — 4c®/3)n
vertices from each block correctly.

The proof of Lemma 4.4 is completed when choosing Cs, C3 in Lemma C.1 such that ¢ < 1/4.

C.2. Proof of Lemma 4.5. The proof strategy is similar to Section 5.2 and Section 5.3. In Algorithm 1.2,
we first color the hyperedges with red and blue with equal probability. By running Algorithm 4.6 on the red
graph, we obtain a v-correct partition V{,Vy of V.=V, U Vs, e, [ViNV/| > vn/2 for | =1,2. In the rest
of the proof, we condition on this event and the event that the maximum red degree of a vertex is at most
log?(n) with probability at least 1 — o(1). This can be proved by Bernstein’s inequality (Lemma D.3).

Similarly, we consider the probability of a hyperedge e = {i1,- - , i, } being blue conditioning on the event
that e is not a red hyperedge, in each underlying m-uniform hypergraph separately. If vertices i1, ,im
are all from the same true cluster, then the probability is v,,, otherwise ¢,,, where 9, and ¢,, are defined
in Equation (5.25) and Equation (5.26), and the presence of those hyperedges are represented by random
variables g‘é“m) ~ Bernoulli (¢, ), ((ab’”) ~ Bernoulli (¢, ), respectively.

Following a similar argument in Section 5.2, the row sum of u can be written as

Spw) =Y (m—=1)-¢ > w4 Yo b wew,

meM ecgltm) ecelm
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where €% .= E,.(IV]]Y, [Vi n V/]™1) denotes the set of m-hyperedges with 1 vertex from [V}]' and the
L,j J

other m — 1 vertices from [V; N V/]™~!, while
b — i
& = B (WIY, VI \ N V)

denotes the set of m-hyperedges with 1 vertex in [V;]* while the remaining m — 1 vertices in [V/]"~1\ [V, N

Vi1, with their cardinalities
(VI gy < [() (VY]
“\m-1)" "W = \m-1 m—1

According to the fact [V, N V/| > vn/2, [Vi| =n/2, |V/| =n/2 for | = 1,2, we have

vn 1—v)n
|5(am)| > 2 ‘g(am)| < ( 2 ) . 75 l
Lbot=\m-1)" o=\ 21)0 ! '

To simplify the calculation, we take the lower and upper bound of \Sl(fll’”)| and |Sl(3’”)|(j # 1) respectively.

65

Taking expectation with respect to (éar”) and féb""), for any u € V}, we have

B = 3 m-0- (2 )+ (5 Jon].

meM
((1_2V)n>(¢m - ¢m) + ( % )¢m] .7 7é l.
m—1 m—1 ’

By assumptions in Theorem 1.4, ESj;(u) — ESj;(u) = (1). We define

poi=g 3 m=1) { [(mi e (:f_)l)] (= om) +2(, F 1)¢m} .

After Algorithm 4.4, if a vertex u € V; is mislabelled, one of the following event must happen

® Sl/l(u) < peo,
e 5);(u) > pc, for some j # I.

ESjy ()= Y (m—1)-

meM

By an argument similar to Lemma 5.12, we can prove that
p1 =P (Sp(u) <pc) <p, py="P(S;(u) > puc) <p,

where p = exp (—Cr - SNR ) and

A —bm 2
Speadm 1) (s52))"
Ymen(m = 1) (%= + b)
As a result, the probability that either of those events happened is bounded by p. The number of mislabeled
vertices in V after Algorithm 4.3 is at most

(v Mot — (1= p) M1

CM . 8(Mmax - 1)2 ,

SNRM =

Vi\V/| [Vinvy|

R = Zl I + ; A;,

where T'; (resp. A;) are i.i.d indicator random variables with mean p| (resp. p}). Then

n (1-v)n
P T — (1w j2m.
where v is the correctness after Algorithm 4.2. Let ¢; := (1 4+ v/2)np, then by Chernoff Lemma D.1,

PRy >np) =P[R —(1—-v/2np>t] <P(R—ER, >t) <e " =0(e ™),

ER < —pj +

which means that with probability 1 — O(e™"?), the fraction of mislabeled vertices in V; is smaller than 2p,
i.e., the correctness of Vj is at least v := max{v,1 — 2p}.
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APPENDIX D. USEFUL LEMMAS

Lemma D.1 (Chernoff’s inequality, Theorem 2.3.6 in [54]). Let X; be independent Bernoulli random vari-

ables with parameters p;. Consider their sum Sy = Zf\]:l X; and denote its mean by p = ESy. Then for
any 6 € (0,1],

P(|Sn — pl = o) < 2exp(—cdp) .

Lemma D.2 (Hoeffding’s inequality, Theorem 2.2.6 in [54]). Let X1,...,Xxn be independent random vari-
ables with X; € [a;,b;] for each i € {1,...,N}. Then for any, t > 0, we have

coep| 2
i=1 a Zil\il(bi —a;)? .

Lemma D.3 (Bernstein’s inequality, Theorem 2.8.4 in [54]). Let Xi,..., Xy be independent mean-zero
random variables such that | X;| < K for all i. Let 0% = Zf\il EXZ2. Then for every t > 0, we have

N
t2/2
P I >t] <2 - .
<i—1 _>_ eXP( 02+Kt/3>

Lemma D.4 (Bennett’s inequality, Theorem 2.9.2 in [54]). Let X1, ..., Xy be independent random variables.
Assume that | X; — EX;| < K almost surely for every i. Then for any t > 0, we have

P(i_\[:(Xi—JEXi) 2t> < exp (— ;h(g)> :

where 0% = Ef\il Var(X;), and h(u) := (1 4 u)log(l 4+ u) — w.

Lemma D.5 (Weyl’s inequality). Let A, E € R"™*"™ be two real m x n matrices, then |o;(A+E) —o;(A)| <
|E|| for every 1 < i < min{m,n}. Furthermore, if m = n and A,;E € R"*" are real symmetric, then
[M(A+E) = XN(A)| <|E| for all1 <i<n.

Lemma D.6 (Davis-Kahan’s sin @ Theorem, Theorem 2.2.1 in [13]). Let M and M = M + E be two real
symmetric n X n matrices, with eigenvalue decompositions given respectively by

- Zxﬁu _w o [* T
‘ 7 Wy Wy 0 AL UI )
A o][uUT
M = Z/\ul [U U] [0 AJ [Uﬂ :
Here, {\;}1(resp. {\;},) stand for the eigenvalues of M(resp. M), and w;(resp. w;) denotes the
eigenvector associated \;(resp. \;). Additionally, for some fized integer v € [n], we denote

A = diag{)\1,..., A}, AL :=diag{\11,..., ),
U:=[w,...,u] RV, UL :=[Gri1,..., Gy € RP*P7T),
The matrices A, A, U, U, are defined analogously. Assume that
eigenvalues(A) C [a, 8], eigenvalues(A ) C (—oo,a — AJU[B+A,00), a,BER,A >0,

and the projection matrices are given by Py := UUT, Pg = ﬁﬁT, then one has | Py — Pgl < (2||E||/A).
In particular, suppose that [A1| > |Xa| > <=+ > [N| > [Neg1]| > - [An| (resp. M| > -0 > [\al). If
IE|| < (1—=1/vV2)(|Xl» — |[Ar41), then one has
2||E]|
[Py — Pgll € =——=— -

|)‘T| - |)‘r+1|
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Lemma D.7 (Wedin’s sin ® Theorem, Theorem 2.3.1 in [13]). Let M and M = M + E be two ny x ny real
matrices and ny > no, with SVDs given respectively by

T
¥ 0 0|V
Zgzuzvz U UL] F £l :| [T]
0 ¥, 0 VL

> o0 o][vT
M = Zalulv U U] [0 o 0] [Vﬂ.

Here, @y > --+ > Gp, (resp. oy > --+ > 0y, ) stand for the singular values of M (resp. M), w;(resp. ;)
denotes the left singular vector associated with the singular value @;(resp. o;), and T;(resp. v;) denotes the
right singular vector associated with the singular value &; (resp. o;). In addition, for any fized integer r € [n],
we denote

Y .= diag{o1,...,0.}, X, :=diag{ori1,...,0n,},
U:=[ug,...,u] €R™XT UL i=[tpp1,...,Up,] € RT*M7T)
Vi=[vy,...,v,] ER™*" V| :=[vr41,...,Vn,] € R72X (n2=7)
The matrices %, 3, U, Uy, V, V| are defined analogously. If E = M — M satisfies |E| < &, — Gry1,

then with the projection matrices Py := UU', one has

7

V2max {|ETU||, |EV] }

max | ||Pu — Pgll, |[Pv — Fylly < T
{IPo - Pgll, |1 Pv - Pyll} 5, — o1 — |E]

In particular, if |E|| < (1 —1/v2)(G, — Gry1), then one has
\fHEH

max { || Py — Pgl|, | Pv — Pv||}< —
0r+1
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