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PRIVATE MEASURES, RANDOM WALKS, AND SYNTHETIC DATA

MARCH BOEDIHARDJO, THOMAS STROHMER, AND ROMAN VERSHYNIN

ABSTRACT. Differential privacy is a mathematical concept that provides an information-
theoretic se curity guarantee. While differential privacy has emerged as a de facto standard
for guaranteeing privacy in data sharing, the known mechanisms to achieve it come with
some serious limitations. Utility guarantees are usually provided only for a fixed, a priori
specified set of queries. Moreover, there are no utility guarantees for more complex—but
very common—mmachine learning tasks such as clustering or classification. In this paper we
overcome some of these limitations. Working with metric privacy, a powerful generalization
of differential privacy, we develop a polynomial-time algorithm that creates a private measure
from a data set. This private measure allows us to efficiently construct private synthetic
data that are accurate for a wide range of statistical analysis tools. Moreover, we prove
an asymptotically sharp min-max result for private measures and synthetic data for general
compact metric spaces. A key ingredient in our construction is a new superregular random
walk, whose joint distribution of steps is as regular as that of independent random variables,
yet which deviates from the origin logarithmically slowly.
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1.1. Motivation. The right to privacy is enshrined in the Universal Declaration of Human
Rights [7]. However, as artificial intelligence is more and more permeating our daily lives,
data sharing is increasingly locking horns with data privacy concerns. Differential privacy
(DP), a probabilistic mechanism that provides an information-theoretic privacy guarantee,
has emerged as a de facto standard for implementing privacy in data sharing [23]. For

instance, DP has been adopted by several tech companies [21] and will also be used
connection with the release of the Census 2020 data [3, 2].
Yet, current embodiments of DP come with some serious limitations [18, 26, 52]:
1
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(i) Utility guarantees are usually provided only for a fixed set of queries. This means that
either DP has to be used in an interactive scenario or the queries have to specified in
advance.

(ii) There are no utility guarantees for more complex—but very common—machine learning
tasks such as clustering or classification.

(iii) DP can suffer from a poor privacy-utility tradeoff, leading to either insufficient privacy
protection or to data sets of rather low utility, thereby making DP of limited use in
many applications [18].

Another approach to enable privacy in data sharing is based on the concept of synthetic
data [9]. The goal of synthetic data is to create a dataset that maintains the statistical
properties of the original data while not exposing sensitive information. The combination
of differential privacy with synthetic data has been suggested as a best-of-both-world solu-
tions [24, 9, 31, 35, 13]. While combining DP with synthetic data can indeed provide more
flexibility and thereby partially address some of the issues in (i), in and of itself it is not a
panacea for the aforementioned problems.

One possibility to construct differentially private synthetic datasets that are not tailored
to a priori specified queries is to simply add independent Laplacian noise to each data point.
However, the amount noise that has to be added to achieve sufficient DP is too large with
respect to maintaining satisfactory utility even for basic counting queries [53], not to mention
more sophisticated machine learning tasks.

This raises the fundamental question whether it is even possible to construct in a nu-
merically efficient manner differentially private synthetic data that come with rigorous utility
guarantees for a wide range of (possibly complex) queries, while achieving a favorable privacy-
utility tradeoff? In this paper we will answer this question to the affirmative.

1.2. A private measure. A main objective of this paper is to construct a private measure
on a given metric space (7, p). Namely, we design an algorithm that transforms a probability
measure p on 1T into another probability measure v on 7', and such that this transformation
is both private and accurate.

For clarity, let us first consider the special case of empirical measures, where our goal can be
understood as creating differentially private synthetic data. Specifically, we are looking for a
computationally tractable algorithm that transforms true input data X = (Xy,...,X,,) € T"
into synthetic output data Y = (Y1,...,Y,,) € T™ for some m, and which is e-differentially
private (see Definition 2.1) and such that the empirical measures

1 < 1 &
= — dx. d = — oy,
mx n;& an ny mgyl

are close to each other in the Wasserstein 1-metric (recalled in Section 2.2.2):

EWi (ux, py) <7, (1.1)

where v > 0 is as small as possible.

The main result of this paper is a computationally effective private algorithm whose ac-
curacy v that is expressed in terms of the multiscale geometry of the metric space (T, p).
A consequence of this result, Theorem 9.6, states that if the metric space has Minkowski
dimension d > 1, then, ignoring the dependence on ¢ and lower-order terms in the exponent,
we have

E W (ux, py) ~n~ (1.2)
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The dependence on n is optimal and quite intuitive. Indeed, if the true data X consists of
n ii.d. random points chosen uniformly from the unit cube T' = [0, 1]d, then the average
spacing between these points is of the order n=1/%. So our result shows that privacy can
be achieved by a microscopic perturbation, one whose magnitude is roughly the same as the
average spacing between the points.

Our more general result, Theorem 7.2, holds for arbitrary compact metric spaces (7', p)
and, more importantly, for general input measures (not just empirical ones). To be able to
work in such generality, we employ the notion of metric privacy which reduces to differential
privacy when we specialize to empirical measures (Section 2.1).

1.3. Uniform accuracy over Lipschitz statistics. The choice of the Wasserstein 1-metric
to quantify accuracy ensures that all Lipschitz statistics are preserved uniformly. Indeed, by
Kantorovich-Rubinstein duality theorem, (1.1) yields

B LS - 3 )
=1 =1

where the supremum is over all 1-Lipschitz functions f: T — R.

Standard private synthetic data generation methods that come with rigorous accuracy
guarantees do so with respect to a predefined set of linear queries, such as low-dimensional
marginals, see e.g. [8, 44, 22, 13]. While this may suffice in some cases, there is no assurance
that the synthetic data behave in the same way as the original data under more complex,
but frequently employed, machine learning techniques. For instance, if we want to apply a
clustering method to the synthetic data, we cannot be sure that the results we get are close to
those for the true data. This can drastically limit effective and reliable analysis of synthetic
data.

In contrast, since the synthetic data constructed via our proposed method satisfy a uniform
bound (1.3), this provides data analysts with a vastly increased toolbox of machine learning
methods for which one can expect outcomes that are similar for the original data and the
synthetic data.

As concrete examples let us look at two of the most common tasks in machine learn-
ing, namely clustering and classification. While not every clustering method will satisfy a
Lipschitz property, there do exist Lipschitz clustering functions that achieve state-of-the-art
results, see e.g. [32, 55]. Similarly, there is distinct interest in Lipschitz function based clas-
sifiers, since they are more robust and less susceptible to adversarial attacks. This includes
conventional classification methods such as support vector machines [51] as well as classi-
fiers based on Lipschitz neural networks [50, 10]. These are just a few examples of complex
machine learning tools that can be reliably applied to the synthetic data constructed via
our private measure algorithm. Moreover, since our results hold for general compact metric
spaces, this paves the way for creating private synthetic data for a wide range of data types.
We will present a detailed algorithmic and numerical investigation of the proposed method
in a forthcoming paper.

<7 (1.3)

1.4. A superregular random walk. The most popular way to achieve privacy is by adding
random noise, typically either by adding an appropriate amount of Laplacian noise or Gauss-
ian noise (these methods are aptly referred to as Laplacian mechanism and Gaussian mech-
anism, respectively [23]). We, too, can try to make a probability measure p on T private by
discretizing T (replacing it with a finite set of points) and then adding random noise to the
weights of the points. Going this route, however, yields suboptimal results. For example, it is
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not difficult to check that if T is the interval [0, 1], the accuracy of the Laplacian mechanism
can not be better than n~/2, which is suboptimal compared to optimal accuracy n~ ' in
(1.2).

This loss of accuracy is caused by the accumulation of additive noise. Indeed, adding n
independent random variables of unit variance produces noise of the order n'/2. This prompts
a basic probabilistic question: can we construct n random variables that are “close” to being
independent, but whose partial sums cancel more perfectly than those of independent random
variables? We answer this question affirmatively in Theorem 3.1, where we construct random
variables Z1, ..., Z, whose joint distribution is as regular as that of i.i.d. Laplacian random
variables, yet whose partial sums grow logarithmically as opposed to n'/2:

2
]Elrgnl?gxnwl + -+ Zi| = O(log* n).
One can think of this as a random walk that is locally similar to the one with i.i.d. steps,
but globally is much more bounded. Our construction is a nontrivial modification of Lévy’s
construction of Brownian motion. It may be interesting and useful beyond applications to
privacy.

1.5. Comparison to existing work. The numerically efficient construction of accurate
differentially private synthetic data is highly non-trivial. As case in point, Ullman and Vad-
han [45] showed (under standard cryptographic assumptions) that in general it is NP-hard
to make private synthetic Boolean data which approximately preserve all two-dimensional
marginals. There exists a substantial body of work for generating privacy-preserving syn-
thetic data, cf. e.g. [4, 15, 1, 17, 36], but—unlike our work—without providing any rigorous
privacy or accuracy guarantees. Those papers on synthetic data that do provide rigorous
guarantees are limited to accuracy bounds for a finite set of a priori specified queries, see for
example [8, 12, 44, 22, 13, 14], see also the tutorial [46]. As discussed before, this may suffice
for specific purposes, but in general severely limits the impact and usefulness of synthetic
data. In contrast, the present work provides accuracy guarantees for a wide range of machine
learning techniques. Furthermore, our our results hold for general compact metric spaces, as
we establish metric privacy instead of just differential privacy.

A special example of the topic investigated in this paper is the publication of differentially
private histograms, which is a well studied problem in the privacy literature, see e.g. [27, 40,
37, 54, 53, 38, 56, 2] and Chapter 4 in [34]. In the specific context of histograms, the Haar
function based approach to construct a superregular random walk proposed in our paper
is related to the wavelet-based method [53] and to other hierarchical histogram partitioning
methods [27, 40, 56]. Like our approach, [27, 53] obtain consistency of counting queries across
the hierarchical levels, owing to the specific way that noise is added. Also, the accuracy
bounds obtained in [27, 53] are similar to ours, as they are also polylogarithmic (although we
are able to obtain a smaller exponent). There are, however, several key differences. While
our approach gives a convenient way to generate accurate and differentially private synthetic
data Y from true data X, the methods of the aforementioned papers are not suited to create
synthetic data. Instead, these methods release answers to queries. Moreover, accuracy is
proven for just a single given range query and not simultaneously for all queries like we do.
This limitation makes it impossible to create accurate synthetic data with the algorithms
in [27, 53]. Moreover, unlike the aforementioned papers, our work allows the data to be quite
general, since we prove metric privacy and not just differential privacy. Furthermore, our
results apply to multi-dimensional data, and are not limited to the one-dimensional setting.
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There exist several papers on the private estimation of density and other statistical quan-
tities [28, 19], and sampling from distributions in a private manner is the topic of [41]. While
definitely interesting, that line of work is not concerned with synthetic data, and thus there
is little overlap with this work.

1.6. The architecture of the paper. The remainder of this paper is organized as follows.
We introduce some background material and notation in Section 2, such as the concept of
metric privacy which generalizes differential privacy. In Section 3 we construct a superregular
random walk (Theorem 3.1). We analyze metric privacy in more detail in Section 4, where
we also provide a link from the general private measure problem to private synthetic data
(Lemma 4.1). In Section 5 we use the superregular random walk to construct a private
measure on the interval [0, 1] (Theorem 5.4). In Section 6 we use a link between the Traveling
Salesman Problem and minimum spanning trees to devise a folding technique, which we apply
in Section 7 to “fold” the interval into a space-filling curve to construct a private measure on
a general metric space (Theorem 7.2). Postprocessing the private measure with quantization
and splitting, we then generate private synthetic data in a general metric space (Corollary 7.4).
In Section 8 we turn to lower bounds for private measures (Theorem 8.5) and synthetic data
(Theorem 8.6) on a general metric space. We do this by employing a technique of Hardt and
Talwar, which we present in a Proposition 8.1 that identifies general limitations for synthetic
data. In Section 9 we illustrate our general results on a specific example of a metric space: the
Boolean cube [0, 1]%. We construct a private measure (Corollary 9.1) and private synthetic
data (Corollary 9.2) on the cube, and show near optimality of these results in Corollary 9.3
and Corollary 9.4, respectively. Results similar to the ones for the d-dimensional cube hold
for arbitrary metric space of Minkowski dimension d. For any such space, we prove an
asymptotically sharp min-mazx results for private measures (Theorem 9.5) and synthetic data
(Theorem 9.5).

2. BACKGROUND AND NOTATION

The motivation behind the concept of differential privacy is the desire to protect an in-
dividual’s data, while publishing aggregate information about the database [23]. Adding or
removing the data of one individual should have a negligible effect on the query outcome, as
formalized in the following definition.

Definition 2.1 (Differential Privacy [23]). A randomized algorithm M gives e-differential
privacy if for any input databases D and D’ differing on at most one element, and any
measurable subset S C range(M), we have

P{M(D) € S}
F{M(D) €5} = =P

where the probability is with respect to the randomness of M.

2.1. Defining metric privacy. While differential privacy is a concept of the discrete world
(where datasets can differ in a single element), it is often desirable to have more freedom
in the choice of input data. The following general notion (which seems to be known under
slightly different, and somewhat less general, versions, see e.g. [5] and the references therein)
extends the classical concept of differential privacy.

Definition 2.2 (Metric privacy). Let (T, p) be a compact metric space and E be a measurable
space. A randomized algorithm A : T — E is called a-metrically private if, for any inputs
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xz,7" €T and any measurable subset S C E, we have

P {A(z) € S}

W < exp (ap(z,2')) . (2.1)

To see how this metric privacy encompasses differential privacy, consider a product space
T = X™ and equip it with the Hamming distance

pr(z,a’) =|{i € [n] : z; # zi}]. (2.2)
The a-differentially privacy of an algorithm A : X™ — FE can be expressed as

P{A(z) € S} <

W <exp(a) whenever py(z,2’) <1. (2.3)

Note that (2.3) is equivalent to (2.1) for p = pgy. Obviously, (2.1) implies (2.3). The converse
implication can be proved by replacing one coordinate of z by the corresponding coordinate
of 2/ and applying (2.3) pg(z, ') times, then telescoping. Let us summarize:

Lemma 2.3 (MP vs. DP). Let X be an arbitrary set. Then an algorithm A : X™ — E is
a-differentially private if an only if A is a-metrically private with respect to the Hamming
distance (2.2) on X".

Unlike differential privacy, metric privacy goes beyond product spaces, and thus allows the
data to be quite general. In this paper, for example, the input data are probability measures.
Moreover, metric privacy does away with the assumption that the data sets D, D’ be different
in a single element. This assumption is sometimes too restrictive: general measures, for
example, do not break down into natural single elements.

2.2. Distances between measures. This paper will use three classical notions of distance
between measures.

2.2.1. Total variation. The total variation (TV) norm [20, Section III.1] of a signed measure
v on a measurable space (£2, F) is defined as’

1
lulzy =5 sup > |4 (2.4)

U; A;

where the supremum is over all partitions {2 into countably many parts 4; € F. If Q is
countable, we have

llley = 5 Sl {))] (25)

wef

The TV distance between two probability measures p and v is defined as the TV norm of
the signed measure . — v. Equivalently,

I = vy = sup|u(A) — v(A4)|.
AeF

IThe factor 2 is chosen for convenience.
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2.2.2. Wasserstein distance. Let (€2, p) be a bounded metric space. We define the Wasser-
stein 1-distance (henceforth simply referred to as Wasserstein distance) between probability
measures 4 and v on 2 as [49]

Wilp,v) = inf /ng p(@,y) dy(z,y) (2.6)

where the infimum is over all couplings v of 1 and v, or probability measures on €2 x 2 whose
marginals on the first and second coordinates are p and v, respectively. In other words,

W1 (v, ) minimizes the transportation cost between the “piles of earth” p and v.
The Kantorovich-Rubinstein duality theorem [49] gives an equivalent representation:

Wi(p,v) = sup (/hdu /hdu)
|hHLlp<1

where the supremum is over all continuous, 1-Lipschitz functions h : 2 — R.
For probability measures p and v on R, the Wasserstein distance has the following repre-
sentation, according to Vallender [47]:

Wip,v) =[|Fy = Fo[| 11 ) - (2.7)

Here F,(z) = p((—o0,2]) is the cumulative distribution function of p, and similarly for
F,(z).

Vallender’s identity (2.7) can be used to define Wasserstein distance for signed measures
on R. Moreover, for signed measures on [0, 1], the Wasserstein distance defined this way is
always finite, and it defines a pseudometric.

3. A SUPERREGULAR RANDOM WALK

The classical random walk with independent steps of unit variance is not bounded: it
deviates from the origin at the expected rate ~ n'/2. Surprisingly, there exists a random
walk whose joint distribution of steps is as regular as that of independent Laplacians, yet
that deviates from the origin logarithmically slowly.

Theorem 3.1 (A superregular random walk). For every n € N, there exists a probability
density of the form f(z) = %e*V(Z) on R™ that satisfies the following two properties.

(i) (Regularity): the potential V is 1-Lipschitz in the {* norm, i.e.

V() -V(y)| <lz—yl, foralzyeR" (3.1)

(ii) (Boundedness): a random vector Z = (Zu,...,Zy,) distributed according to the density
f satisfies

< 2 .
Efél/?é{n‘zl + -+ Zg| < Clog”n, (3.2)
and
3
max E|Zi +---+ Z;| < Clog2n, (3.3)

where C' > 0 is a universal constant.
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3.1. Heuristics. The first candidate for the random walk could be a discretization of the
standard Brownian motion on the interval [0,1]. The reflection principle yields the bound-
edness property in the theorem, even without any logarithmic loss. However, the regularity
property fails miserably.

To achieve regularity, we would like to grant Brownian motion more freedom. This will
be done by modifying Levy’s construction of the Brownian motion. In this construction, the
path of a Brownian motion on an interval [0, n] is defined as a random series with respect to
the Schauder basis of the space of continuous functions, see also [11, Section IX.1].

To that end, we recall the definition of the Schauder basis of triangular functions of C[0, 1].
Let I; be the semi-open interval [0, 1) and N, the set of all integers j such that 2971 < j < 24.
For any integer j there exists a unique pair of integers (g, p;) such that j = 2% + p; where
0<p; <2471 —1. Let

o Dy pj+1 A_2pj+1
IJ_{t.qu_lgt i } t=H,

and define ¢ (t) =t for t € I and

2% (t — 2(11?3'_1 for t € Igj,
g)j =42% 53;:11 —1 for t € Igj.H,
0 otherwise.

The modification of this definition from C[0,1] to C[0,n] is obvious by dilation: ¢;(t) =
85(t/m).

Thus, the basis functions ¢; are defined by levels £ = 0,1,2,.... At level £ = 0, we have
two functions ¢1 and ¢2, and each level £ > 1 contains 2¢ functions ¢; supported in disjoint
intervals of length n/2¢. Throughout this section, £(j) will denote the level the function ¢;
belongs to, e.g. £(1) = £(2) =0, £(3) = £(4) = 1, £(5) = £(6) = £(7) = £(8) = 2, etc. See
Figure 1 for an illustration of these functions.

! n/2 n n/2 n I

n/4 n ?,751 n

Level 0: ¢1, ¢o Level 1: ¢3, ¢4 Level 2: ¢s5,...,¢3 Level ¢

Figure 1. Schauder basis
Lévy’s definition of the standard Brownian motion on the interval [0, n] is
Zz DI2G;65(0), (34)

where G are i.i.d. standard normal random variables.
To grant more freedom to Brownian motion, we get rid of the suppressing factors 2—(7)/2
in the Levy construction (3.4). The resulting series will be divergent, but we can truncate it
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defining
Wa(t) =Y G;o,(t). (3.5)
j=1

The random walk in the theorem could then be defined as Z; + -+ + Z = Wy, (k). It is
more volatile than the Brownian motion, but still can be shown to satisfy the boundedness
assumption.

This is essentially the idea of the construction that yields Theorem 3.1. We make two
minor modifications though. First, since regularity is defined using ¢! norm, it is more
natural to use the Laplacian distribution for G; instead of the normal distribution. We will
make G, i.i.d. random variables with distribution? Lap(logn). Second, instead of defining
the random walk and then taking its differences to define Z;, it is more convenient to define
the differences directly. This corresponds to working with the derivative of the random walk,
i.e. with “white noise”

Wa(t) =) Gid;(b),
j=1

and set Z; = W, (7). The derivatives of the functions constituting the Schauder basis {¢;(t)}
form the Haar basis {1;(t)}, cf. [42, 11]. For notational convenience, we denote

Uit) = G() =1 and ilt) = S64(D), i=23,...

The Haar basis is illustrated in Figure 2; it is an orthogonal basis of £2[n], see [11].
4 g‘TL
n n ;-I

Level 0: 1,19 Level 1: 43,14 Level 2: 5,..., 93 Level ¢

s

1
n

S|=
}
>
=118
}
>
1IN
]
,
=1\
R N—
[ _
]

Figure 2. Haar basis

3.2. Formal construction. First observe that the regularity property (3.1) of a probability
distribution on R™ passes on to the marginal distributions. For example, regularity of a
random vector (X7, X2) € R? means that

fx1,x0) (71, 72) < exp(—|r1 — y1] —[72 — v2|) fx1,x0) (Y1, ¥2),
for all (z1,1), (x2,y2) € R?. In particular,
fx1,50) (%1, 22) < exp(—|z2 — y2l) fx;,x,) (%1, 2)-
Taking integral with respect to ;1 on both sides yields
fxy(w2) < exp(—|z2 — v2|) fx, (v2),

which is equivalent to the regularity of the random vector Xy € R!. The same argument
works in higher dimensions.

Define X ~ Lap(c) by P {|X| > t} = exp(—t/o).
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Thus, by dropping at most n/2 terms if necessary, we can assume without loss of generality
that
n=2" for some L € N. (3.6)
Consider i.i.d. random variables Ay, ..., A, ~ Lap(L +2) and the Haar basis 91, ..., of
%[n] introduced in the previous subsection. Define the random function Z : [n] — R by

Z =Y Aji;.
j=1

Define the increments by Z; = Z(i) for i = 1,...,n. The construction is complete. It remains
to check boundedness and regularity.

3.3. Boundedness. Fix k € [n]. We would like to bound the partial sum

k k n
Sk = Z Z; = Z Z(i) =(Z, 1)) = ZAjakj where ag; = (¥, L))
i=1 i=1 j=1
(Here we use the inner product in ¢2[n], and denote by 1) the indicator of the discrete
interval [k] = {1,...,k}.)

For every k,j € [n] we have
Jans| < [[05 11t mlle = 1-

Moreover, the random variables A; ~ Lap(L + 2) are subexponential,® and HAJH " < L.

~

Hence
HAjaijwl 5} L Vk,je [n] (37)
Furthermore, we claim that for each k € [n], at most L + 2 terms ay; are nonzero. Indeed,
let us fix k£ and recall that the definition of Haar functions yields

akj = <¢j, 1[k:}> =0 if ]f ¢ Supp(?,/)j).
On any given level £ € {1,..., L}, the Haar functions ¢; have disjoint support, so there is a
single j = j(k, ) for which k € supp(¢);). Therefore, for each level £ € {1,..., L}, there can
be at most one nonzero coefficient ay;. Two more nonzero coefficients can be on level £ = 0,
coming from the functions ¢; and ¢o. This proves our claim that, for each k € [n], there
number of nonzero coefficients a; is bounded by L + 2.

Summarizing, we showed that for each & € [n], the sum Sy = 377 Ajay; is a sum of
at most L + 2 independent mean zero subexponential random variables that satisfy (3.7).
Applying Bernstein’s inequality (see [48, Theorem 2.8.1]), we obtain for every k € [n] and
t>0:

P{|Sk| >t} <2exp (—cmin(tQ/L3, t/L)) .

Let s > 1 and apply this bound for ¢t = C'sL? where C is a sufficiently large absolute constant.
We obtain

P {|Sk| > C’sL2} < 2exp (72 min(s?, 5)L> < %exp(fs),

where we used that s > 1 and (3.6) in the last step. Taking the union bound over k € [n],
we get

P S| > CsL? b <2 —s) Vs>1.
{él%xn| k| > Cs } exp(—s) Vs>

3For basic facts about subexponential random variables used in this argument, refer e.g. to [48, Section 2.8].
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This implies that Emax;<<,|Sk| < L? < log?n and proves the first boundedness property
(3.2).

The second boundedness property (3.3) follows similarly, and even in a simpler way, if we
choose t = C'sL?/? and bypass the union bound.

3.4. Regularity. Recall that the Haar functions 1)1, . . ., %, form an orthogonal basis of £2[n].
However, this basis is not orthonormal, as the norm of each function 1; on level ¢ satisfies
4515 = 2¢/n. Thus, every function = € £2[n] admits the orthogonal decomposition

T = Z)\(:U)j Y; where \(z); = %(1/13,38)
=1

The key property of the coefficient vector A(z) is its approximate sparsity, which we can
express via the ¢! norm.

Lemma 3.2 (Sparsity). For any function x € £2[n], the coefficient vector \(z) satisfies
M)y < (2 + 2kl -

Proof. First, let us prove the lemma for the indicator of any single point k € [n], i.e. for
x = 1yy. Here we have

Ma); = g (k).

By construction, any function v; on level £ takes on three values: 0 and +2¢/n. Moreover,
on any given level £ > 1, the functions 1; have disjoint support, so there is a single well-defined
J = j(k,¢) for which k € supp(¢;). Therefore, among all functions ); on a given level £ > 1,
only one can make A(x); nonzero, namely the one with j = j(k,¢), and such a nonzero value
always equals (n/2°)(£2%/n) = +1. Summarizing, the level £ = 0 contributes two nonzero
coefficients A(x);, while each further level £ € {1,...,L} contributes only one. Hence A(x)
has L + 2 nonzero coefficients \(z);, (z)]], < L+2.

To extend this bound to a general function € £*[n], decompose it as z = Y p_; 2(k) 1.

Then, by linearity, A(z) = > _;_; x(k)A(1xy), so

@Iy < 3 =@l -
k=1

The bound H)\(l{k}) Hl < L+ 2 from the first part of the argument completes the proof of the
lemma. O

We are ready to prove regularity. Consider the random function Z = Z;‘L:1 A1 con-

structed in Subsection 3.2. In our new notation, the coefficient vector of Z is A\(Z) =
(A1,...,A,) = A. We have for any z,y € £*[n]:

densx () _ densy (A(x))
densx(y)  densa(A(y))

To see this, recall that the map = + A(z) is a linear bijection on ¢?[n]. Hence for any ¢ > 0
and for the unit ball B of £?[n], we have

P{Xecxz+eB} P{AecA(z)+eA(B)}
P{Xey+eB} P{Aec)(y) +eA(B)}

r(z,y) = (3.8)
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Taking the limit on both sides as ¢ — 04 and applying the Lebesgue differentiation theorem
yield (3.8).

By construction, the coefficients A; of the random vector A € R" are Lap(L + 2) i.i.d.
random variables. Hence

1 z
densa (2) = 57—y ( - ”E)v zER"

Thus,

r(z,y) = exp (H)‘(y)Hz:_HQ)\(x)Hl)

By the triangle inequality and Lemma 3.2, we have

AW, =A@, <[[Mz) =A@, < (L +2)llz =y, -

Thus
r(z,y) < exp(|z —yll;).
If we express the density in the form densx(z) = %e‘v, the bound we proved can be
written as

exp (V(y) — V(z)) < exp(|z — ylly),

or V(y) — V(z) <|lz — yll;. Swapping = with y yields |V (z) — V(y)| <[l — y|;. The proof
of Theorem 3.1 is complete. O

3.5. Optimality. The reader might wonder if the logarithmic factors are necessary in The-
orem 3.1. While we do not know if this is the case for the bound (3.3), the logarithmic factor
can not be completely removed from the uniform bound (3.2):

Proposition 3.3 (Logarithm is needed in (3.2)). Let n > 4 be a natural number and consider
a probability density of the form f(z) = %e*V(z) on R™. Assume that the potential V is 1-
Lipschitz in the £*-norm, i.e. (3.1) holds. Then a random vector Z = (Z1,. .., Zy,) distributed
according to the density f satisfies

1
E VA e+ 2l > =1 .
1I£l?§}<n| 1+ + k| Z 3 ogn

Proof. Since triangle inequality yields || Z]|, = maxi<ip<n|Zk| < 2maxi<p<n|Zi + -+ Zg|,
it suffices to check that

E[Z]] oo

Y

-1 .
7 logn

Assume for contradiction that this bound fails. Then, considering the cube
1
Q={seR": ol < logn}.

we obtain by Markov’s inequality that P {Z € Q} > 1/2.
Let eq, ..., e, denote the standard basis vectors in R” and consider the following translates
of the cube @:
1 .
Q; :Q—l—ilog(n)ei, t=1,...,n.

Note the following two properties. First, the cubes @; are disjoint. Second, since V is 1-
Lipschitz in the ¢!-norm, for each i = 1,...,n, the densities of the random vectors Z and
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Z—1Llog(n)e; and (Z1,..., Z,) differ by a multiplicative factor of at most exp(4 logn) = /n
pointwise. Therefore,

]P’{ZGQZ-}:IP{Z—;Iog(n)eieQ}2\}HP{ZGQ}>2\1/H, 1=1,...,n.

Hence, using these two properties we get

n
n
12) P{zeq)> L
=1
It follows that n < 4, which contradicts the assumption of the lemma. The proof is complete.
O

3.6. Beyond the /' norm? One may wonder why specifically the ¢! norm appears in the
regularity property of Theorem 3.1. As we will see shortly, the regularity with respect to
the ¢! norm is exactly what is needed in our applications to privacy. However, it might be
interesting to see if there are natural extensions of Theorem 3.1 for general ¢’ norms. The
lemma below rules out one such avenue, showing that if a potential V' is Lipschitz with respect
to the 2 norm for some p > 1, the corresponding random walk deviates at least polynomially
fast (as opposed to logarithmically fast).

Proposition 3.4 (No boundedness for (P-regular potentials). Let n € N and consider a
probability density of the form f(z) = %e*V(Z) on R™. Assume that the potential V is 1-
Lipschitz in the (P-norm. Then a random vector Z = (Z1,...,%Zy,) distributed according to
the density f satisfies

1
E|Z1+ 4 Za| 2 g0 7

Proof. We can write Z1 + -+ + Z, = (Z,u) where u = (1,...,1)T. Since Hn_%qu =1 and

1
V' is 1-Lipschitz in the /P norm, the densities of the random vectors Z +n" ru and Z differ
by a multiplicative factor of at most e pointwise. Therefore,

E|(Z,u)| > e E[(Z + n” vu,u)]
>e ! (’(n_%% u)| —E|(Z,u)] ) (by triangle inequality)

=e ! (nlf% —E[(Z, u)| )

Rearranging the terms, we deduce that

E[(Z,u)| >

which completes the proof. ]

In light of Theorem 3.1 and Proposition 3.4 it might be interesting to see if an obstacle
remains for the density f(z) = %e‘v(z)p for p > 1.
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4. METRIC PRIVACY

4.1. Private measures. The superregular random walk we just constructed will become
the main tool in solving the following private measure problem. We are looking for a private
and accurate algorithm A that transforms a probability measure p on a metric space (T, p)
into another finitely-supported probability measure A(u) on (T, p).
We need to specify what we mean by privacy and accuracy here. Metric privacy offers

a natural framework for our problem. Namely, we consider Definition 2.2 for the space
(M(T),TV) of all probability measures on T equipped with the TV metric (recalled in
Section 2.2.1). Thus, for any pair of input measures p and p' on T that are close in the TV
metric, we would like the distributions of the (random) output measures A(u) and A(y') to
be close:

P{A(n) € S}

P{A(y) e S}
The accuracy will be measured via the Wasserstein distance (recalled in Section 2.2.2). We
hope to make Wi (A(u), 1) as small as possible. The reason for choosing W; as distance is
that it allows us to derive accuracy guarantees for general Lipschitz statistics, as outlined
below.

< exp (llp— i lpy) (4.1)

4.2. Synthetic data. The private measure problem has an immediate application for dif-
ferentially private synthetic data. Let (T,p) be a compact metric space. We hope to find
an algorithm B that transforms the true data X = (Xi,...,X,) € T™ into synthetic data
Y =(Y1,...,Y,) € T™ for some m such that the empirical measures

1 < 1 &
= — dx. and = — Oy,
fix nle nd py mZ;Y

are close in the Wasserstein distance, i.e. we hope to make Wi (ux, py) small. This would
imply that synthetic data accurately preserves all Lipschitz statistics, i.e.

W COBES YYD
=1 =1

for any Lipschitz function f: T — R.

This goal can be immediately achieved if we solve a version of the private measure problem,
described in Section 4.1, with the additional requirement that A(x) be an empirical measure.
Indeed, define the algorithm B by feeding the empirical measure px into A, i.e. set B(X) =
A(ux). The accuracy follows, and the differential privacy of B can be seen as follows.

For any pair X, X’ of input data that differ in a single element, the corresponding empirical
measures differ by at most 1/n with respect to the TV distance, i.e.

1

lnx = pxrllpy < .
Then, for any subset S in the output space, we can use (4.1) to get
P{B(X)e S} P{A(ux)e S}
P{B(X/) GS} P{A(,U,X/) GS}

Thus, if @ = en, the algorithm B is e-differentially private. Let us record this observation
formally.

<exp (@ [l = 1| py) < expla/n).
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Lemma 4.1 (Private measure yields private synthetic data). Let (T, p) be a compact metric
space. Let A be an algorithm that inputs a probability measure on T, and outputs something.
Define the algorithm B that takes data X = (Xi,...,X,) € T" as an input, creates the
empirical measure px and feeds it into the algorithm A, i.e. set B(X) = A(ux). If A is
a-metrically private in the TV metric and a = en, then B is e-differentially private.

Thus, our main focus from now on will be on solving the private measure problem; private
synthetic data will follows as a consequence.

5. A PRIVATE MEASURE ON THE LINE

In this section, we construct a private measure on the interval [0, 1]. Later we will extend
this construction to general metric spaces.

5.1. Discrete input space. Let us start with a somewhat restricted goal, and then work
toward wider generality. In this subsection, we will (a) assume that the input measure p is
always supported on some fixed finite subset

Q={wi,...,wp} where0<w; <---<w,<1

and (b) allow the output A(u) to be a signed measure. We will measure accuracy with the
Wasserstein distance.

5.1.1. Perturbing a measure by a superregular random walk. Apply the Superregular Ran-
dom Walk Theorem 3.1 and rescale the random variables Z; by setting U; = (2/a)Z;. The
regularity property of the random vector U = (U, ...,U,) takes the form

densy ()

«
< —|lx — for all R"™ 1
ot <exp (Gl -yl ) forallzy € R 65.)

and the boundedness property takes the form

Clog?
og2n
max E|Uy + -+ Uy < —2- "

5.2
1<k<n (5.2)

Let us make the algorithm A perturb the measure x4 on Q by the weights U;, i.e. we set
A(p)(wi) = p({wi}) + Uiy, i=1,...,n. (5.3)

5.1.2. Privacy. Any measure v on {2 can be identified with the vector 7 € R" by setting
V; = v({w;}). Then, for any measure n on , we have

dens 4,y (n) = densgy (1) = densy (7 — fi). (5.4)
Fix two measures p and p' on Q. By above, we have

dens 4(,,) (1) _ densy (77 — /:A)
densA(ul) (?7) densy (77 - :u/)

<ew (Gla-il,) Gy G1)

—exp (aflu=1lyy)  (by (25).

This shows that the algorithm A is a-metrically private in the TV metric.

(by (5.4))
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5.1.3. Accuracy. If v and p are signed measures on 2, then with the definition (2.7) of the
Wasserstein metric for signed measures, we have

1
Wi (v, ) = /0 ([0, 2]) — ([0, 2])| de

1
- /0 ST wwh) = Y pw))| de

7w <x 1 wi<x
k

" k
= Z(wk+1 — wg) Z {wz} ZN({WI}) )
k=1 i=1

=1

where we set wp4+1 = 1.
Applying this general observation for v = A(u) and using (5.3), we obtain

n
Wi(A(), 1) =Y (i1 —wp)[Ur+ -+ + Uy
k=1
Take expectation on both sides and use (5.2) to conclude that

3
Clogzn
E W (A(p), 1) < —2=

The following result summarizes what we have proved.

Proposition 5.1 (Input in discrete space, output signed measure). Let Q be finite subset
of [0,1] and let n =|Q2|. Let o > 0. There exists a randomized algorithm A that takes a
probability measure p on 0 as an input and returns a signed measure v on £ as an output,
and with the following two properties.

(1) (Privacy): the algorithm A is c-metrically private in the TV metric.
(i1) (Accuracy): for any input measure pu, the expected accuracy of the output signed measure
v in the Wasserstein distance is
3
Clogzn
EW, (v, p) < —2- 2

«

Let v be the signed measure obtained in Proposition 5.1. Let 7 be a probability measure
on 2 that minimizes W1 (v,v). (The minimizer could be non-unique.) Note that this is a
convex problem, since by (7?), this problem is equivalent to minimizing

k

n k
> (s =) |37l = 3wl
k=1 i=1

=1

under the constraints 7({w;}) > 0 and 3% 7({w;}) = 1.
By mlnlmahty, 441 (/V\7 V) <W (,U’7 V)' So Wy (7)7 N) <W (/V\) V) + Wl(”) ,U') <2W (/’L7 V)'

Proposition 5.2 (Private measure on a finite subset of the interval). Let Q2 be finite subset
of [0,1] and let n = |Q|. Let o > 0. There exists a randomized algorithm B that takes
a probability measure p on € as an input and returns a probability measure v on € as an
output, and with the following two properties.

(i) (Privacy): the algorithm B is a-metrically private in the TV metric.
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(i1) (Accuracy): for any input measure u, the expected accuracy of the output measure v in
the Wasserstein distance is
3
Clog?
EW: (v, ) < ——22° ",

o
5.2. Extending the input space to the interval. Next, we would like to extend our

framework to a continuous setting, and allow measures to be supported by the entire interval
[0,1]. We can do this by quantization.

5.2.1. Quantization. Fix n € N and let N = {w1,...,wp} be a (1/n)-net of [0, 1]. Consider
the proximity partition
0,1]=6LU---UI,
where we put a point x € [0,1] into I; if z is closer to w; that to any other points in . (We
break any ties arbitrarily.)
We can quantize any signed measure v on [0, 1] by defining

vy ({wi}) =v(l), i=1,...,n. (5.5)

Obviously, vy is a signed measure on N. Moreover, if v is a measure, then so is vnr. And if
v is a probability measure, then so is var. In the latter case, it follows from the construction
that

Wi(v,vn) < 1/n. (5.6)
(By definition of the net, transporting any point z to the closest point w; covers distance at
most 1/n.)

Lemma 5.3 (Quantization is a contraction in TV metric). Any signed measure v on [0, 1]
satisfies

lvarllry < IWllpy -
Proof. Using (2.5), (5.5), and (2.4), we obtain

1 & 1
lowllzy = 5 Slvwib)] = 5 S| <vley
i=1 =1
The lemma is proved. O

5.2.2. A private measure on the interval.

Theorem 5.4 (Private measure on the interval). Let o > 2. There exists a randomized
algorithm A that takes a probability measure p on [0,1] as an input and returns a finitely-
supported probability measure v on [0,1] as an output, and with the following two properties.

(i) (Privacy): the algorithm A is a-metrically private in the T'V metric.
(ii) (Accuracy): for any input measure p, the expected accuracy of the output measure v in
the Wasserstein distance is
3
Clog2? o
EW; (v,p) < 08t a

«

Proof. Take a measure u on [0, 1], preprocess it by quantizing as in the previous subsection,
and feed the quantized measure js into the algorithm B of Proposition 5.2 for Q = N.
The contraction property (Lemma 5.3) ensures that

[ = ||y < e = 1 ||y -



18 MARCH BOEDIHARDJO, THOMAS STROHMER, AND ROMAN VERSHYNIN

This and the privacy property of Proposition 5.2 for measures on N guarantee that quanti-
zation does not destroy privacy, i.e. the algorithm p — B(uyr) is still a-metrically private as
claimed.

As for the accuracy, Proposition 5.2 for the measure pa gives
3

Clogzn

EWh (B(/“’LN)7IU’N) < Y

Moreover, the accuracy of quantization (5.6) states that Wi(u,un) < 1/n. By triangle
inequality, we conclude that

1 Clog?
0] n
EWy (B(uw),p) <~ + ————.

Taking n to be the largest integer less than or equal to « yields the conclusion of the theorem.
O

«

6. THE TRAVELING SALESMAN PROBLEM

In order to extend the construction of the private measure on the interval [0, 1] to a general
metric space (7T, p), a natural approach would be to map the interval [0, 1] onto some space-
filling curve of T'. Since a space filling curves usually are infinitely long, we should do this
on the discrete level, for some d-net of T" rather than T itself. In this section, we will bound
length of such discrete space-filling curve in terms of the metric geometry of T'. In the next
section, we will see how this bound determines the accuracy of a private measure in 7.

A natural framework for this step is related to Traveling Salesman Problem (TSP), which
is a central problem in optimization and computer science, and whose history goes back to
at least 1832 [6].

Let G = (V, E) be an undirected weighted connected graph. We occasionally refer to the
weights of the edges as lengths. A tour of G is a connected walk on the edges that visits
every vertex at least once, and returns to the starting vertex. The TSP is the problem of
finding a tour of G with the shortest length. Let us denote this length by TSP(G).

Although it is NP-hard to compute TSP(G), or even to approximate it within a factor
of 123/122 [30], an algorithm of Christofides and Serdyukov [16, 43] from 1976 gives a 3/2-
approximation for TSP, and it was shown recently that the factor 3/2 can be further improved
[29].

6.1. TSP in terms of the minimum spanning tree. Within a factor of 2, the traveling
salesman problem is equivalent to another key problem, namely the problem of finding the
minimum spanning tree (MST) of G. A spanning tree of G is a subgraph that is a tree and
which includes all vertices of G. It always exists and can be found in polynomial time [33, 39].
A spanning tree of G with the smallest length is called the minimum spanning tree of G; we
denote its length by MST(G). The following equivalence is a folklore.

Lemma 6.1. Any undirected weighted connected graph G satisfies
MST(G) < TSP(G) < 2MST(G).

Proof. For the lower bound, it is enough to find a spanning tree of G of length bounded by
TSP(G). Consider the minimal tour of G of length TSP(G) as a subgraph of G. Let T be a
spanning tree of the tour. Since the tour contains all vertices of G, so does T', and thus T is
a spanning tree of G. Since T is obtained by removing some edges of the tour, the length of
T is bounded by of the tour, which is TSP(G). The lower bound is proved.
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For the upper bound, note that dropping any edges of G can only increase the value of
TSP. Thus TSP of GG is bounded by the TSP of its spanning tree T. Moreover, TSP of any
tree T equals twice the sum of lengths of the edges of T'. This can be seen by considering the
depth-first search tour of T', which starts at the root and explores as deep as possible along
each branch before backtracking, see Figure 3. ([l

Figure 3. The depth-first search tour demonstrates that the TSP of a tree equals
twice the sum of lengths of its edges.

6.2. Metric TSP. Let (T, p) be a finite metric space. We can consider 7' as a complete
weighted graph, whose weights of edges are defined as the distances between the points. The
TSP for (T, p) is known as metric TSP.

Although a tour can visit the same vertex of 1" multiple times, this can be prevented by
skipping the vertices previously visited. The triangle inequality shows that skipping can only
decrease the length of the tour. Therefore, the shortest tour in a complete graph is always
a Hamiltonian cycle, a walk that visits all vertices of T" exactly once before returning to the
starting vertex. Let us record this observation:

Lemma 6.2. The TSP of a finite metric space (T, p) equals the smallest length of a Hamil-
tonian cycle of T'.

6.3. A geometric bound on TSP. We would like to compute TSP(T) in terms of the
geometry of the metric space (7', p). Here we will prove an upper bound on TSP(T) in terms
of the covering numbers. Recall that the covering number N (T, p,¢) is defined as the smallest
cardinality of an e-net of T, or equivalently the smallest number of closed balls with centers
in 7" and radii € whose union covers T', see [48, Section 4.2].

Theorem 6.3 (TSP via covering numbers). For any finite metric space (T, p), we have
o0
TSP(T) < 16/ (N(T,p,z) — 1) dz.
0

Proof. Step 1: constructing a spanning tree. Let us construct a small spanning tree Ty of
T and use Lemma 6.1. Let ¢; = 277, j € Z, and let N be g;-nets of T with cardinalities
‘/\/J‘ = N(T, p,€;j). Since T is finite, we must have ‘./\/'j} =1 for all sufficiently small j. Let jo
be the largest integer for which ‘Mo‘ =1.

At the root of Ty, let us put a single point that forms the net Aj,. At the next level,
put all the points of the net N 41, and connect them to the root by edges. The weights of
these edges, which are defined as the distances of the points to the root, are all bounded by
€jo- At the next level, put all points of the net N 42, and connect each such point to the
closest point in the previous level N, ;1. (Break any ties arbitrarily.) Since the latter set is
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a €jy+1-net, the weights of all these edges are bounded by €,4+1. Repeat these steps until the
levels do not grow anymore, i.e. until the level contains all the points in T'; see Figure 4 for
illustration.

Njo+2

Figure 4. Chaining: construction of a spanning tree of a metric space.

If all the nets N that make up the levels of the tree Tp are disjoint, then Tp is a spanning
tree of T. Assume that this is the case for time being.

Step 2: bounding the length of the tree. For each of the levels j = jo + 1,750 + 2, ..., the
tree Ty has ’/\/'J} edges connecting the points of level j to the level j — 1, and each such edge
has length (weight) bounded by €;_1. So MST(T") is bounded by the sum of the lengths of
the edges of Tp, i.e.

o0
MST(T) S Z Ej—l‘-/\[j‘-
J=Jjo+1
Step 3: bounding the sum by the integral. Our choice e; = 2~ J yields gj—1 =4(ej —€j41).
Moreover, our choice of jy yields }N ‘ > 2 for all j > jo + 1, which implies !N ‘ < 2 (| ‘ -1)
for such j. Therefore

MST(T) <8 > (g5 —gj41) (M| — 1) (6.1)

'_j0+1

=38 Z / N(T,p,ej) —1)dx (since ’./\/H = N(T,p,€j))

J=jo+1" €I+l
§8/ (N(T, p,z) — 1) da.
0

An application of Lemma 6.1 completes the proof.

Step 4: splitting. The argument above assumes that all levels N; of the tree Ty are disjoint.
This assumption can be enforced by splitting the points of T'. If, for example, a point w € N
is also used in N, for some k < j, add to T' another a replica of w — a point w’ that has zero
distance to w and the same distances to all other points as w. Use w in N and ' in Nj.
Preprocessing the metric space (T, p) by such splitting yields a pseudometric space (17, p) in
which all levels N; are disjoint, and whose TSP is the same. ([l

Remark 6.4 (Integrating up to the diameter). Note that N (T, p,z) = 1 for any x > diam(T’),
since any single point makes an z-net of T' for such z. Therefore, the integrand in Theorem 6.3
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vanishes for such x, and we have
diam(7T")
TSP(T) < 16/ N(T,p,x)dz. (6.2)
0
6.4. Folding. It is a simple observation that an interval of length TSP (T") can be embedded,

or “folded”, into T

Proposition 6.5 (Folding). For any finite metric space (T, p) there exists a finite subset
of the interval [0, TSP(T)| and a 1-Lipschitz bijection F: Q@ — T.

Heuristically, the map F' “folds” the interval [0, TSP(T)] into the shortest Hamiltonian
path of the metric space T', see Figure 5. We can think of this as a space-filling curve of T'.

L Xy Xg Xy Xn v
———o o y S A ¢ —
o 5‘ 51 8"4 H(M)

Figure 5. The map F folds an interval [0, TSP(M)] into a Hamiltonian path (a “space-
filling curve”) of the metric space T

Proof. Let us exploit the heuristic idea of folding. Fix a Hamiltonian cycle in T' of length
TSP(T'), whose existence is given by Lemma 6.2. Formally, this means that we can label the
elements of the space as T'= {z1,...,2z,} in such a way that the lengths

51':,0(2:2'4_1,2@'), ’i:1,...,n—1,

satisfy 27" 6; < TSP(T). Define Q = {xy,...,z,} by
k—1
1'1:0; kaZ(SZ’,k‘:Q,...,n.
=1

Then all 2, < TSP(T), so  C [0, TSP(T")] as claimed.
Note that for every k =1,...,n — 1 we have

p (Zk41, 2k) = O = Thg1 — T,
Then, for any integers 1 < k < k + j < n, triangle inequality and telescoping give
P (zkags 2k) < P (Zhags 2htjm1) + 0 (Zhtjm1 Zhtjm2) + -+ P (Zhs1, 28)

= (Tr4j — Trpjo1) + (Trpjo1 — Thyjo2) + -+ (@rg1 — k)

= Thtj — Th-
This shows that the folding map F : x; — z; is a bijection that satisfies

p(F(z),F(y)) <|lz—y| forallz,ye

In other words, F'is 1-Lipschitz. The proof is complete. U
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7. A PRIVATE MEASURE ON A METRIC SPACE

We are ready to construct a private measure on an arbitrary compact metric space (7, p).
We do this as follows: (a) discretize T' replacing it with a finite d-net; (b) fold an interval of
length TSP(T') onto T using Proposition 6.5; and (c¢) using this folding, pushforward onto T’
the private measure on the interval constructed in Section 5. The accuracy of the resulting
private measure on T is determined by the length of the interval TSP(T'), which in turn can
be expressed using the covering numbers of T (Theorem 6.3).

7.1. Finite metric spaces. Let us start by extending Proposition 5.2 from a finite subset
on [0, 1] to a finite subset of (T, p).

Proposition 7.1 (Private measure on a finite metric space). Let (T,p) be a finite metric
space and let n = |T|. Let « > 0. There exists a randomized algorithm B that takes a
probability measure p on T as an input and returns a probability measure v on T as an
output, and with the following two properties.

(i) (Privacy): the algorithm B is a-metrically private in the TV metric.
(ii) (Accuracy): for any input measure p, the expected accuracy of the output measure v in
the Wasserstein distance is

3
3
E W (v, ) < C1082 7

TSP(T).

Proof. Applying Folding Proposition 6.5, we obtain an n-element subset  C [0, TSP(T)]
and a 1-Lipschitz bijection F': Q — T. Applying Proposition 5.2 and rescaling by the factor
TSP(T), we obtain an a-metrically private algorithm B that transforms a probability measure
uoon € into a probability measure v on {2, and whose accuracy is

EWi(v,pn) < TSP(T). (7.1)

C log% n

o

Define a new metric p on Q by p(z,y) = p(F(xz),F(y)). Since F is 1-Lipschitz, we
have p(z,y) < |r —y|. Note that the Wasserstein distance can only become smaller if the
underlying metric is replaced by a smaller metric. Therefore, the bound (7.1), which holds
with respect to the usual metric |z — y| on €2, automatically holds with respect to the smaller
metric p(z,y).

It remains to note that (€2, p) is isometric to (7, p). So the accuracy result (7.1), which
as we saw holds in (2, p), automatically transfers to (7', p) (by considering the pushforward
measure). O

7.2. General metric spaces. Quantization allows us to pass from discrete metric spaces
to general spaces. A similar technique was used in Section 5.2 for the interval [0, 1]. We will
repeat it here for a general metric space.

7.2.1. Quantization. Fix § > 0 and let N’ = {w1,...,w,} be a é-net of T such that n =|N| =
N(T, p,9). Consider the proximity partition
T=5LU---UI,

where we put a point z € T into I; if x is closer to w; that to any other points in N. (We
break any ties arbitrarily.)
We can quantize any signed measure v on 1" by defining

v ({wi}) =v(L),i=1,...,n.
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Obviously, vy is a signed measure on N. Moreover, if v is a measure, then so is vnr. And if
v is a probability measure, then so is var. In the latter case, it follows from the construction
that

Wi(v,vn) < 6. (7.2)
(By definition of the net, transporting any point x to the closest point w; covers distance at
most §.) Furthermore, Lemma 5.3 easily generalizes and yields

lvalley <l llpy - (7.3)

Finally, let us bound the TSP of the net A using Theorem 6.3. We trivially have

NWN,p,z) <|N| = N(T,p,0) for any x > 0. Moreover, since N' C T, we also have

NWN,p,z) < N(T,p,x/2), see [48, Exercise 4.2.10]. Using the former bound for z < 26
and the latter bound for x > 2§ and applying (6.2), we obtain

diam(N)
TSP(A) < / NN, p, z) da
0

diam(T)
< 20N(T',p,d) + / N(T,p,z/2)dx
25

diam(7T)/2
—2(oN(Tp0)+ [ N(T, p,z) d
)

) diam(7T)/2
<22 N(T,p,a:)da:+/ N(T,p,z)dz
5/2 5

diam(T')/2
< 4/ N(T,p,z)dz. (7.4)
5/2

7.2.2. A private measure on a general metric space.

Theorem 7.2 (Private measure on a metric space). Let (T, p) be a compact metric space.
Let a,6 > 0. There exists a randomized algorithm A that takes a probability measure 1 on
T as an input and returns a finitely-supported probability measure v on T as an output, and
with the following two properties.

(i) (Privacy): the algorithm A is c-metrically private in the TV metric.
(i1) (Accuracy): for any input measure u, the expected accuracy of the output measure v in
the Wasserstein distance is

C 3 diam(7T)
B <20+ S logh (N(Tpd) [ N(Tpia)da.
)

Proof. Preprocess the input measure p by quantizing as in the previous subsection, and feed
the quantized measure p s into the algorithm B of Proposition 7.1 for the metric space (N, p).
The contraction property (7.3) ensures that

[ = il ey < b= 1|y

for any two input measures g and p/. This and the privacy property in Proposition 7.1
for measures on N guarantee that quantization does not destroy privacy, i.e. the algorithm
A B(uy) is still a-metrically private as claimed.

Next, the accuracy property in Proposition 7.1 for the measure jn on A gives
3
2

E W, (Blaw), i) < © logh (N(T, p,)) TSP
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Moreover, the accuracy of quantization (7.2) states that Wi (u, ua) < 6. By triangle inequal-
ity, we conclude that

3
2

E W, (Blua), ) <5+ log} (N(T, p,)) TSP(N).

Thus, by (7.4),

C 3 diam(T")/2
B (Blux). ) <3+ Lot (V(T.p,5) [ N(T, p,) da.
5/2
Since N(T, p,2d) < N(T,p,0), replacing ¢ by 26 completes the proof of the theorem. O

7.3. Private synthetic data. The output of the algorithm A4 in Theorem 7.2 is a finitely-
supported probability measure v on T'. Quantization allows to transform v into an empirical
measure

1 m
= — Oy, 7.5
py =— ; vi (7.5)
where Y7,...,Y,, is some finite sequence of elements of 7', in which repetitions are allowed.
In other words, we can make the output of our algorithm a synthetic data Y = (Y1,...,Yn).

Let us record this observation.

Corollary 7.3 (Outputting an empirical measure). Let (T, p) be a compact metric space.
Let a,6 > 0. There exists a randomized algorithm A that takes a probability measure jn on
T as an input and returns Y = (Y1,...,Yy) € T™ for some m as an output, and with the
following two properties.

(i) (Privacy): the algorithm A is a-metrically private in the T'V metric.
(ii) (Accuracy): for any input measure p, the expected accuracy of the empirical measure
wy in the Wasserstein distance is

C 3 diam(T)
EWi (ny.p) < 36 + —log? (N(T, p,0)) / N(T,p, ) dx.
é

Proof. Since the output probability measure v in Theorem 7.2 is finitely supported, it has

the form
.
v = Z wj Oy;
=1

for some natural number r, positive weights w; and elements R; € T.

Let us quantize the weights w; by the uniform quantizer with step 1/m where m is a large
integer. Namely, set
| mw]

q(w;) :

Obviously, the total quantization error satisfies

m

r

K= Z (w; — q(w;)) € [0,r/m]. (7.6)

i=1
To make the quantized weights a probability measure, let us add the total quantization error
to any given weight, say the first. Thus, define

wi =qwy)+r and w,:=q(w;), i=2,...,7
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and set
I8
Vo= E wj Oy
i=1

Note the three key properties of /. First, since the weights w) sum to one, v/ is a probability
measure. Second, since v/ is obtained from v by transporting a total mass of x across the
metric space T', we have

Wi(v,v) < k- diam(T) < — - diam(T) < §

r
m
where the second inequality follows from (7.6) and the last one by choosing m large enough.
Third, all quantized weights ¢(w;) belong to %Z by definition. Thus, k =1 —>7_; q(w;) is
also in %Z. Therefore, all weights w) are in %Z, too. Hence, w] = m;/m for some nonnegative
integers m;. In other words,

1 r
/ 2 :
vV = — mléyl
m“
=1

Since v/ is a probability measure, we must have Y . ;m; = m. Redefine the sequence
Y1,...,Y,, by repeating each element Y; of the sequence Yi,...,Y, exactly m; times. Thus
Vv = % >, dy;, as required. O

Corollary 7.3 allows us to transform any true data X = (Xy,...,X,,) into a private syn-

thetic data Y = (Y3,...,Y,,). To do this, feed the algorithm A with the empirical measure
on the true data ux = %Z?:l 0x,. Recall from Lemma 4.1 that if the algorithm A is a-
metrically private for « = en, then the algorithm X — Y = A(ux) yields e-differential
private synthetic data. Let us record this observation:

Corollary 7.4 (Differentially private synthetic data). Let (T, p) be a compact metric space.
Let e,6 > 0. There exists a randomized algorithm A that takes true data X = (Xy,...,X,) €
T™ as an input and returns synthetic data Y = (Y1,...,Yy,) € T™ for some m as an output,
and with the following two properties.

(i) (Privacy): the algorithm A is e-differentially private.
(ii) (Accuracy): for any true data X, the expected accuracy of the synthetic data Y is

C 3 diam(T)
E W, (/"LY7/"LX) < 30 + QIOgE (N(Tvpa 5))/ N(T,p,l‘) dl‘,
0

where pux and py denote the corresponding empirical measures.

An interested reader may now skip to Section 9.1 where we illustrate Corollary 7.4 for a
specific example of the metric space, namely the d-dimensional cube T = [0, 1]%.

Remark 7.5 (A computationally effective algorithm). We will present a detailed discussion of
the algorithmic aspects of the proposed synthetic data generation method in a forthcoming
paper. Here, we only mention that our algorithm works in polynomial time® with respect
to the cardinality of the dataset. To be more precise, assuming that the input measure p is
given by an oracle for any set A, the oracle gives us u(A) and we need a polynomial number
of calls to such an oracle.

4under the stipulation that an e-net (of polynomial cardinality) can be constructed in polynomial time
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8. A LOWER BOUND

This section is devoted to impossibility results, which yield lower bounds on the accuracy
of any private measure on a general metric space (T, p). While there may be a gap between
our upper and lower bounds for general metric spaces, we will see in Section 9 that this gap
vanishes asymptotically for spaces of Minkowski dimension d.

The proof of the lower bound uses the geometric method pioneered by Hardt and Talwar
[25]. A lower bound is more convenient to express in terms of packing rather than covering
numbers. Recall that the packing number Npack (T, p,€) of a compact metric space (T, p) is
defined as the largest cardinality of an e-separated subset of T'. The covering and packing
numbers are equivalent up to a factor of 2:

Npack (T, p,2) < N(T, p,e) < Npack(T', p, €), (8.1)

see [48, Lemma 4.2.8]. Thus, in all results of this section, packing numbers can be replaced
by covering numbers at the cost of changing absolute constants.

8.1. A master lower bound. We first prove a general result that establishes limitations
of metric privacy. To understand this statement better, it may be helpful to assume that
Mo = My and pg = p1 in the first reading.

Proposition 8.1 (A master lower bound). Let My C M be two subsets, and let p; be a
metric on M;, i = 0,1. Assume that for some t,a > 0 we have

diam(Mo, po) <1 and Npger(Mo, p1,t) > 2€°.

Then, for any randomized algorithm A : Mo — My that is a-metrically private with respect
to the metric pg, there exists x € Mg such that

Epi (A(z),z) > t/4.

Proof. For contradiction, assume that

Ep1 (A(z),z) <t/4, (8.2)
for all x € My. Let N be a t-separated subset of the metric space (Mo, p1) with cardinality
N > 2¢°. (8.3)

The separation condition implies that the balls B(y, p1,t/2) centered at the points y € N
and with radii ¢/2 are all disjoint.
Fix any reference point y € Mg. The disjointness of the balls yields

> P{A(y) € B(x,p1,t/2)} < L. (8.4)

zeN
On the other hand, by the definition of a-metric privacy, for each z € A/ we have:

P {A(y) S B(ac,pl,t/Q)} > exp [—apo(a:,y)] P {A(m) € B(x,pl,t/Q)} )

The diameter assumption yields po(x,y) < 1. Furthermore, using the assumption (8.2) and
Markov’s inequality, we obtain

P {A(z) € B(z,p1,t/2)} =P {,01 (A(z),z) < t/2} >

Combining the two bounds gives
1
P {A(y) € B(w,p1,t/2)} > —

2ea”



PRIVATE MEASURES, RANDOM WALKS, AND SYNTHETIC DATA 27

Substitute this into (8.4) to get

In other words, we conclude that |N| < 2e®, which contradicts (8.3). The proof is complete.
(|

8.2. Metric entropy of the space of probability measures. For a given compact metric
space (T, p), we denote by M(T') the collection of all Borel probability measures on 7. We
are going to apply Proposition 8.1 for My = M; = M(T), for p; = Wasserstein metric
and pp = TV metric. That proposition requires a lower bound on the packing number

Npack (M(T), W, t/3). In the next lemma, we relate this packing number to that of (T, p).

Essentially, it says that if T" is large, then there are a lot of probability measures on 7.

Proposition 8.2 (Metric entropy of the space of probability measures). For any compact
metric space (T, p) and every t > 0, we have

Npack (M (T)a Wla t/3) > exp (CNpack(Ta Py t)) )
where ¢ > 0 is a universal constant.
The proof will use the following lemma.

Lemma 8.3 (A lower bound on the Wasserstein distance). Let (T, p) be a t-separated® com-
pact metric space. Then, for any pair of probability measures p,v on T, we have

Wi(p,v) > w(B€)t where B = supp(v).

Proof. Suppose that «y is a coupling of p and v. Since v is supported on B, we have (B¢ x
B¢) <~(T x B¢) = v(B¢) = 0, which means that y(B¢ x B¢) = 0. Therefore

Y(B° x B) = y(B° x T) — 7(B° x B°) = u(B°).

Since the sets B¢ and B are disjoint, the separation assumption implies that p(x,y) > t for
all pairs x € B¢ and y € B. Thus,

/ p(z,y) dy(z,y) > / p(x,y) dy(z,y) > ty(B° x B) = tu(B°).
TxT BcxB

Since this holds for all coupling v of i and v, the result follows. O

Lemma 8.4 (Many different measures). Let (N, p) be a t-separated compact metric space,
and assume that|N'| > 2n for some n € N. Then there exists a family of at least exp(cn) em-
pirical measures on n points of T' that are pairwise t/3-separated in the Wasserstein distance,
where ¢ > 0 is a universal constant.

Proof. Let = n~1Y " 6x, and v = n= 13" | 0y, be two independent random empirical
measures on 7. Let us condition on v and denote B = supp(v). Then

1 n
BC - — 1 . cl.
wBY) =~ ;:1: {XieBe}
Now, 1(x,epe) are L.i.d. Bernoulli random variables that take value 1 with probability

B 1
IP’{XiGBC}:|W||22,

5This means that the distance between any two distinct points in T is larger than t.



28 MARCH BOEDIHARDJO, THOMAS STROHMER, AND ROMAN VERSHYNIN

since by construction we have |B| < n and by assumption |N| > 2n. Then, applying Chernoff
inequality (see [48, Exercise 2.3.2]), we conclude that u(B¢) > 1/3 with probability bigger
than 1 — e~ where ¢ > 0 is a universal constant. Lemma 8.3 yields that W1 (u,v) > t/3.
Now consider a sequence fi1,...,ur of independent random empirical measures on 7.
Using the result above and taking a union bound we conclude that, with probability at
least 1 — (I;)e*‘r’cn, the inequality Wi(ui,pj) > t/3 holds for all pairs of distinct indices
i,j € {1,...,K}. Choosing K = [e“"] makes K between e (as claimed) and €2“*. Thus,
the success probability is more than 1 — (€2¢")2e~5", which is positive. The existence of the
required family of measures follows. O

Proof of Proposition 8.2. Let N' C T be a t-separated subset of cardinality |N'| = Npack (T, p, t).
Lemma 8.4 implies the existence of a set of at least exp(c|N|) probability measures on T that is
(t/3)-separated in the Wasserstein distance. In other words, we have Npae (M(T), W1,t/3) >
exp(cJN]). Proposition 8.2 is proved. O

8.3. Lower bounds for private measures and synthetic data. Now we are ready to
prove the two main lower bounds on the accuracy for (a) metrically private measures and (b)
differential private data.

Theorem 8.5 (Private measure: a lower bound). Let (T, p) be a compact metric space.
Assume that for somet >0 and o > 1 we have

Npack(T, p, t) > Ca.

Then, for any randomized algorithm A that takes a probability measure p on T as an input
and returns a probability measure v on T as an output and that is a-metrically private with
respect to the TV metric, there exists u such that

EW;(v,pu) > t/12.

Proof. The assumption on the packing number for a sufficiently large constant C' and Propo-
sition 8.2 yield

Npack (M(T), W1,t/3) > €** > 2¢°.
Next, apply Proposition 8.1 with ¢/3 instead of ¢, and for My = M; = M(T), setting py
and pg to be the Wasserstein and the TV metrics, respectively. The required conclusion
follows. O

Theorem 8.6 (Synthetic data: a lower bound). There exists an absolute constant ng such
that the following holds. Let (T, p) be a compact metric space. Assume that for some t > 0
and and some integer n > ng we have

Npaer(T, p, t) > 2n.

Then, for any c-differentially private randomized algorithm A that takes true data X =
(X1,...,X,) € T" as an input and returns synthetic data Y = (Y1,...,Y.,) € T™ for some
m as an output, there exists input data X such that

EW1<,u,y, /L)() > t/l?,
where ux and py denote the empirical measures on X and Y.
Proof. First note that a version of Proposition 8.2 holds for empirical measures. Namely,
denote the set of all empirical measures on n points of 7" by M, (T'). If Npaek (T, p,t) > 2n

then we claim that
Npack (M (T), W1,t/3) > 21", (8.5)
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To see this, let N/ C T be a t-separated subset of cardinality |[N'| > 2n. Lemma 8.4 implies
the existence of a set of at least e > 2e“™ members of M, (T) that is (¢/3)-separated in
the Wasserstein distance. The claim (8.5) follows.

In preparation to apply Proposition 8.1, consider the sets Mg :=T" and My = U2 | T k.
Consider the normalized Hamming metric

1, .
po(X, X') = EHZ €nl: Xi # X}
on My, and the Wasserstein metric

p1(X, X") = Wi(px, px)
on M. Then we clearly have diam(My, pg) < 1, and (8.5) is equivalent to Npack (Mo, p1,t/3) >
2e1™,
If A: My — Mj is a c-differentially private algorithm, then A is (¢n)-metrically private in
the metric pg due to Lemma 2.3. Applying Proposition 8.1 with ¢/3 instead of ¢t and o = ¢1n,
we obtain the required conclusion. [l

9. EXAMPLES AND ASYMPTOTICS

9.1. A private measure on the unit cube. Let us work out the bound of Theorem 7.2 for
a concrete example: the d-dimensional unit cube equipped with the ¢°° metric, i.e. (T, p) =
([0,1]%,]]|.)- The covering numbers satisfy

N(T| oo @) < (1/2)7, 2 >0,

since the set xZ9 N [0,1)¢ forms an z-net of T. Thus the accuracy is

3 3
log2(1/5) (! log2(1/6
EWiGn) €6+ 5D [yt < 4+ P gy
§
if d > 2. Optimizing in ¢ yields
3\ 1/d

E Wl(V, M) 5 <10g%> )
which wonderfully extends Theorem 5.4 for d = 1. Combining the two results, for d = 1 and
d = 2, we obtain the following general result:

Corollary 9.1 (Private measure on the cube). Let d € N and o > 2. There exists a
randomized algorithm A that takes a probability measure pu on [0,1]% as an input and returns
a finitely-supported probability measure v on [0,1]¢ as an output, and with the following two
properties.
(i) (Privacy): the algorithm A is c-metrically private in the TV metric.
(i1) (Accuracy): for any input measure u, the expected accuracy of the output measure v in
the Wasserstein distance is

3
log2 a\ 1/d
EWl(I/,/,L)SC( goc ) .

Similarly, by invoking Corollary 7.4, we obtain e-differential privacy for synthetic data:

Corollary 9.2 (Private synthetic data in the cube). Let d,n € N and € > 0. There exists a
randomized algorithm A that takes true data X = (X1,...,X,) € ([0,1]9)" as an input and
returns synthetic data Y = (Y1,...,Yy) € ([0,1]1)™ for some m as an output, and with the
following two properties.
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(i) (Privacy): the algorithm A is e-differentially private.
(i1) (Accuracy): for any true data X, the expected accuracy of the synthetic data'Y is

3
log2(en)\ 1/d
EWl (/‘LYa/‘LX) SC(gE?i)) 9

where px and py denote the corresponding empirical measures.

The two results above are nearly sharp. Indeed, let us work out the lower bound for the
cube, using Theorem 8.5. The covering numbers satisfy

Npack(TvH'Hoo ,T) > (C/l")da x>0,

which again can be seen by considering a rescaled integer grid. Setting t = ¢/ (2Ca)1/ 4 we
get N(T,||-|| o, ,t) > Cv. Hence

EW: (v, 1) > t/12 > (1/a)/4,

which matches the upper bound in Corollary 9.1 up to a logarithmic factor. Let us record
this result.

Corollary 9.3 (Private measure on the cube: a lower bound). Let d € N and o > 2. Then,
for any randomized algorithm A that takes a probability measure p on [0,1]% as an input and
returns a probability measure v on [0, 1]d as an output, and that is a-metrically private with
respect to the TV metric, there exists p such that
1\1/d
EWq (v, p) > c(—) .
Q@
In a similar way, by invoking the lower bound in Theorem 8.6, we obtain the following
nearly matching lower bound for Corollary 9.2:

Corollary 9.4 (Private synthetic data in the cube: a lower bound). Let d,n € N. Then, for

any c-differentially private randomized algorithm A that takes true data X = (X1,...,X,) €

([0, 1)H™ as an input and returns synthetic data Y = (Y1,...,Yy) € ([0,1]9)™ for some m as
an output, there exists input data X such that

1\1/d

EWl(Vy,/Lx) >C(E) .

where pux and py denotes the empirical measures on X and Y.

9.2. Asymptotic result. The only property of the cube T' = [0, l}d we used in the previous
section is the behavior on its covering numbers,® namely that
N(T,p,z) =< (1/z)"%, =z >0. (9.1)
Therefore, the same results on private measures and synthetic data hold for any compact
metric space (T, p) whose covering numbers behave this way. In particular, it follows that
any probability measure p on T' can be transformed into a a-metrically private measure v on
T, with accuracy
EW (v, 1) =< (1/a)Y<. (9.2)
(ignoring logarithmic factors), and this result is nearly sharp. Similarly, any true data X € T"

can be transformed into e-differentially private synthetic data ¥ € T™ for some m, with
accuracy

EW (uy, px) = (1/n)/ (9.3)

6The lower bound used packing numbers, but they are equivalent to covering numbers due to (8.1).
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(ignoring logarithmic factors and dependence on ¢), and this result is nearly sharp.
These intuitive observations can be formalized using the notion of Minkowski dimension.
By definition, the metric space (7', p) has Minkowski dimension d if

log N(T, p,z)
=0 log(1/x)
The following two asymptotic results combine upper and lower bounds, and essentially show
that (9.2) and (9.3) hold in any space of dimension d.

Theorem 9.5 (Private measure, asymptotically). Let (T, p) be a compact metric space of
Minkowsk: dimension d > 1. Then
log(IE W1 (A(p), 1)) 1

lim infsu =—_,
a—oo A up loga d

Here the infimum is over randomized algorithms A than input and output a probability mea-
sure on T and are c-metrically private with respect to the TV metric; the supremum s over
all probability measures p on T'.

Proof. We deduce the upper bound from Theorem 7.2 and the lower bound from Theorem 8.5.

Upper bound. By rescaling, we can assume without loss of generality that diam(7’, p) = 1.
Fix any € > 0. By definition of Minkowski dimension, there exists dg > 0 such that

N(T,p,z) < (1/z)%¢  for all z € (0,0p). (9.4)
Then
1 8o 1
/ N(T, p, ) dx < / (1/x)*ede+ | N(T,p,2)de < K(1/6)4T571 4 1(50)
5 do

where K =1/(d+¢—1) and I(dp) = f5 (T, p,x) dz. The last step follows if we replace do
by infinity and compute the integral.

If we let § | 0, we see that K (1/8)~1 — 0o while I(dy) stays the same since it does not
depend on §. Therefore, there exists §; > 0 such that I(5y) < K(1/8)**~! for all 6 € (0, 51).
Therefore,

1
/ N(T, p,z)dx < 2K(1/6)™1 for all § € (0, min(dy, 1))
d
Applying Theorem 7.2 for such § and using (9.4), we get
inf SUpE Wi (v, ) < 26+ ¢ 1og% ((1/5)d+5) 2K (1)), (9.5)

Optimizing in §, we ﬁnd that a good choice is

5:5(a):<log;(fa)>dﬁ.

For any sufficiently large «, we have § < min(dg, d1) as required, and substituting 6 = §(«)
into the bound in (9.5) we get after simplification:

mfsupEWl(l/ 1) < (1+2CK)(w).

Furthermore, recalling that K does not depend on «, it is clear that
. log (14 2CK)é(a)) 1
lim =— .
a—oo log a d+¢e




32 MARCH BOEDIHARDJO, THOMAS STROHMER, AND ROMAN VERSHYNIN

Thus

. log(inf 4 sup,, E W1 (v, u)) 1
lim sup < — .
a—00 log v d+e

Since € > 0 is arbitrary, it follows that

lim sup inf sup log(E W1 (A(p), 1)) < _

1
a—oo A p log o = d (9-6)

Lower bound. Fix any € > 0. By definition of Minkowski dimension and the equivalence
(8.1), there exists dy > 0 such that

Npack (T, p, ) > N(T, p,z) > (1/2)*¢  for all = € (0, dp).

() = <C1a> -

Then, for any sufficiently large a, we have z € (0,4dy) and

Npack(T7 P .%'(Oé)) > Ca.

Set

Applying Theorem 8.5, we get
iI}lf sup E W1 (v, ) > z(«)/20.
o

It is easy to check that

. log (z()/20) 1
lim = — .
a—ro0 log o d—e
Thus
log(inf EW
g OB, W 0p) 1
a—o0 log « d—e

Since € > 0 is arbitrary, it follows that

log(IE W1 (A(), 1)) 1

lim inf inf sup > ==
a—oo A loga
Combining with the upper bound (9.6), we complete the proof. ([l

In a similar way, we can deduce the following asymptotic result for private synthetic data.
The argument is analogous; the upper bound follows from Corollary 7.4 and the lower bound
from Theorem 8.6.

Theorem 9.6. Let (T, p) be a compact metric space of Minkowski dimension d > 1. Then,
for every e € (0,c), we have
log(E W1 (A(u), 1)) 1

lim infsu = ——.
n=oo A up logn d

Here the infimum is over e-differentially private randomized algorithms A that take true data
X = (X1,...,X,) € ([0,9™ as an input and return synthetic data Y = (Y1,...,Yn) €
([0, 119™ for some m as an output; the supremum is over the input data X.
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