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PRIVATE SAMPLING: A NOISELESS APPROACH FOR
GENERATING DIFFERENTIALLY PRIVATE SYNTHETIC DATA
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ABSTRACT. In a world where artificial intelligence and data science become omnipresent,
data sharing is increasingly locking horns with data-privacy concerns. Differential pri-
vacy has emerged as a rigorous framework for protecting individual privacy in a statistical
database, while releasing useful statistical information about the database. The stan-
dard way to implement differential privacy is to inject a sufficient amount of noise into
the data. However, in addition to other limitations of differential privacy, this process of
adding noise will affect data accuracy and utility. Another approach to enable privacy
in data sharing is based on the concept of synthetic data. The goal of synthetic data
is to create an as-realistic-as-possible dataset, one that not only maintains the nuances
of the original data, but does so without risk of exposing sensitive information. The
combination of differential privacy with synthetic data has been suggested as a best-of-
both-worlds solutions. In this work, we propose the first noisefree method to construct
differentially private synthetic data; we do this through a mechanism called “private
sampling”. Using the Boolean cube as benchmark data model, we derive explicit bounds
on accuracy and privacy of the constructed synthetic data. The key mathematical tools
are hypercontractivity, duality, and empirical processes. A core ingredient of our pri-
vate sampling mechanism is a rigorous “marginal correction” method, which has the
remarkable property that importance reweighting can be utilized to exactly match the
marginals of the sample to the marginals of the population.

1. INTRODUCTION

In a world where artificial intelligence and data science are penetrating more and more
aspects of our life, data sharing is increasingly locking horns with data-privacy concerns.
This conflict is playing out around the globe, as private and public organizations are
trying to find ways to share data without compromising sensitive personal information.

There exist various attempts to protect sensitive information in data. Historically
the way to share private information without betraying privacy was through anonymiza-
tion [45], i.e., by stripping away enough identifying information from a dataset, so that
the so-modified data could be shared freely. Anonymization, however, proved to be a
fragile means to protect data privacy. In actuality, identifying individuals using seem-
ingly non-unique identifiers is far easier than proponents of data anonymization expected.
For instance, Netflix and AOL customers were all accurately identified from purportedly
anonymized data. De-identification requires precise definitions of “unique identifiers”.
Furthermore, de-identification suffers from an aging problem: it is already quite difficult
enough to determine exactly what data identifies information that needs to be protected

(say, the identity of individuals), but it is even more difficult to accurately predict what
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potential auxiliary information could be available in the future. This leads to an arms
race between de-identification and re-identification.

The well-documented failures of anonymization have prompted aggressive research on
data sanitization, ranging from k-anonymity [38, 5] to today’s highly acclaimed differ-
ential privacy [21]. The concept of k-anonymity was introduced to address the risk of
re-identification of anonymized data through linkage to other datasets. The idea behind
k-anonymity is to maintain privacy by guaranteeing that for every record in a database
there are k of indistinguishable copies.

Differential privacy is a framework to quantify the extent to which individual privacy
in a statistical database is preserved while releasing useful statistical information about
the database [21]. Differential privacy is a popular and robust method that comes with
a rigorous mathematical framework and provable guarantees. Differential privacy can
protect aggregate information, but not sensitive information in general. Also, if enough
identical queries are asked, the protection provided by differential privacy is diluted.
Additionally, if the query being asked requires high specificity, then it is more difficult
to uphold differential privacy. In any case, in all the aforementioned methods the basic
tradeoff between utility and privacy represents a serious limitation.

Synthetic data provide a promising concept to solve this conundrum [7]. The goal of
synthetic data is to create an as-realistic-as-possible dataset, one that not only maintains
the nuances of the original data, but does so without risk of exposing sensitive informa-
tion. Synthetic datasets are generated from existing datasets and maintain the statistical
properties of the original dataset. Since (ideally) synthetic data contain no protected in-
formation, the datasets can be shared freely among investigators in academia or industry,
without security and privacy concerns.

It has been frequently recommended that synthetic data may be combined with differ-
ential privacy to achieve a best-of-both-worlds scenario [23, 7, 27, 29, 10]. As observed
in [7], “The most ideal data to use in any analysis will always be original data. But
when that option is not available, synthetic data plus differential privacy offers a great
compromise.” Synthetic data are not only a succinct way of representing the answers to
large numbers of queries, but they also permit one to carry out other data analysis tasks,
such as visualization or regression.

The standard way to achieve differential privacy is to add noise, either to the data
queries, the data themselves, or in case of synthetic data during the data generation
process, for a small sample of work see e.g. [21, 23, 24, 3, 29, 16]. Unfortunately, noise will
negatively affect utility and can inject systematic errors—hence bias—into the data [36,
47, 22]. To illustrate these issues, assume the dataset under consideration consists of
images, each depicting the face of a person. We can attempt to generate a differentially
private synthetic dataset by adding a sufficient amount of noise to each image (e.g., by
adding random noise [32] or by distorting or blurring the images [37, 44]), such that the
persons in the images can no longer be identified. Ignoring for the moment the possibility
of re-identifying a person by applying denoising or deblurring techniques to the distorted
images, it is clear that utility of this dataset can decrease significantly during this process
of adding noise, perhaps to the point that many of the nuances one might be interested
in are no longer present.
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To illuminate the effect of introducing systematic error when adding noise to ensure dif-
ferential privacy, we just need to look at the issues reported with differentially private US
Census 2020 demonstration data, which have resulted in diminished quality of statistics
for small populations such as tribal nations [42, 36, 22].

These considerations raise a fundamental question:

Can we generate differentially private synthetic data without adding noise?

In this paper, we give a positive and constructive answer. Using the Boolean cube as
our data model, we will develop a noiseless method to generate synthetic data, which
approximately preserve low-dimensional marginals of the original dataset. Our method
is based on a private sampling framework and comes with explicit bounds on privacy
and accuracy. The key mathematical tools are hypercontractivity, duality, and empirical
processes. A core ingredient of our private sampling framework is a rigorous “marginal
correction” method, which has the remarkable property that importance reweighting can
be utilized to ezactly match the marginals of the sample to the marginals of the population.

There exist other methods to generate differentially private synthetic data without
adding noise, such as those based on generative adversarial networks [30, 1, 12, 46, 17].
However, these methods are just empirical and do not come with any rigorous bounds
regarding accuracy or privacy. Those deep learning based methods that do come with
privacy guarantees—but still without any accuracy guarantees—require injecting noise
into the synthetic data generation process [43, 26, 6].

2. SYNTHETIC DATA AND DIFFERENTIAL PRIVACY

Differential privacy has emerged as the de facto standard for guaranteeing privacy in
data sharing. Recall the definition of differential privacy:

Definition 2.1 (Differential Privacy [21]). A randomized mechanism M : S¥ — R
satisfies e-differential privacy if for any two adjacent datasets X, Xo € SV differing by
one element, and any output subset O € R it holds that

PIM(X,) € O] < ¢ - PIM(X3) € O).

Numerous techniques have been proposed for generating privacy-preserving synthetic
data (e.g. [2, 13, 1, 15, 31]), but without providing formal privacy guarantees. Almost all
existing mechanisms to implement differential privacy inject some sort of noise into the
data or the data queries, see e.g. the Laplacian mechanism [19]. This is also the case for
differentially private synthetic data, see for instance [28, 4].

Obviously, we want our synthetic data to be similar to the original data. To that end
we need some metrics to measure similarity. A common and natural choice is to try to
(approximately) preserve low-dimensional marginals [4, 39]. A marginal of the data X
is the fraction of the elements x; with specified values of specified parameters. On the
one hand, marginals are important in their own right as a tool of statistical analysis.
On the other hand, if the synthetic data preserve e.g. two-dimensional marginals (i.e.,
covariance matrices) with sufficient accuracy, the synthetic dataset is expected to inherit
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other significant properties from the original dataset, such as similar behavior with respect
to clustering, classification or regression®.

However, we are immediately met with a remarkable no-go theorem due to Ullman
and Vadhan [40]. They proved the surprising result that (under standard cryptographic
assumptions) there is no polynomial-time differentially private algorithm that takes a
dataset X € ({0,1}?)" and outputs a synthetic dataset Y € ({0,1}?)* such that all
two-dimensional marginals of Y are approximately equal to those of X.

There is an extensive literature on privately releasing answers to linear queries, but
without producing synthetic data, see e.g. [25, 33, 20] for a small sample. Another line
of important work deals with with privacy-preserving data analysis in a statistical frame-
work [18, 14]; but they also are not concerned with synthetic data. The papers [4, 24, 23, 9]
propose a range of interesting methods for producing approximately accurate private
synthetic data. However, the associated algorithms have running time that is at least
exponential in p.

Luckily, already a slightly relaxed formulation of the worst-case no-go result in [40]
already leads to positive results. For example, if we relax “all marginals” to “most
marginals”, it is shown in [10] that there exists a polynomial-time differentially pri-
vate algorithm generating synthetic data Y € ({0,1}?)F such that the error between
the marginals of Y and X is small. Remarkably, the result does not only hold for two-
dimensional marginals, but for marginals of all dimensions. If we relax “worst data”
to “typical data”, generating accurate differentially private synthetic Boolean (or other
domain constrained) data becomes tractable [11].

Yet, in all the aforementioned papers differential privacy is achieved by adding noise
during the data generation process. In this paper we propose an alternative, noise-free,
mechanism called private sampling.

3. MAIN RESULT

We model the true data X = (z1,...,x,) as a sequence of n points from the Boolean
cube {0,1}?, which is a standard benchmark data model [4, 40, 23, 35, 29, 8]. For
example, X might represent the health records of n patients, where each health record
consists of p parameters. These parameters are 0/1 numbers that represent the answers
to the standard health history questionnaire, such as “does the patient smoke?”, “does
the patient have diabetes?”. We can also represent categorical data (gender, occupation,
etc.) or numerical data (by splitting them into intervals) on the Boolean cube via binary
or one-hot encoding.

We would like to manufacture a synthetic dataset Y = (yi,...,yx), another sequence
of k elements of the cube. Our two desiderata are privacy and accuracy. Specifically, we
would like the synthetic data to be differentially private, and all low-dimensional marginals
of Y to exactly or approximately match those of X.

We recall that on the Boolean cube, a marginal of a function f : {—1,1}’ — R is defined
as a sum of values of f on the points of the cube that have specified values of specified pa-
rameters. For example, a two-dimensional marginal of fis 3> 1y [(2)L{z)=e(2)=1} ().

IS0 far this expectation has only been verified empirically in various papers, while a rigorous mathe-
matical verification is an important open problem.
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If f is a density, a marginal can be interpreted as the probability that a random point Z
drawn from the cube according to f has specified values of specified parameters; in the
example below it is P {Z(1) = Z(2) = 1}. Marginals of the data X = (21,...,,) can be
interpreted as marginals of the uniform density f, = %Z?:l 1,, on X. An example of a
two-dimensional marginal is the fraction of elements x; whose first and second parame-
ters equal 1, i.e. %Z?:1 14z, (1)=a:(2)=13- This could represent for example the number of
patients who smoke and have diabetes.

Here we explore a new noiseless approach: take a new sample S = (s1,..., ;) uni-
formly from the cube, reweight S to make the marginals match those of the true data X,
and resample from the weighted sample S.

But is this even possible? Let us assume the dataset X = (z1,...,2,) is drawn from
the cube independently and according to some unknown density. Draw a new sample
S = (s1,...,8n) according to some known density, for example uniformly from the cube?.

Can we reweight S so that the reweighted sample has approximately the same marginals

as X7 Note that there are precisely ( z d) marginals of degree at most d, where ( 2 d) =

(g) + (’f) +---+ (Z). Surprisingly, we can even match all marginals ezactly.
Let us state it this result informally; a rigorous, non-asymptotic and more general

statement is given in Theorem 8.1.

Theorem 3.1 (Matching marginals). Consider two regularly varying densities® on the
cube {0, 1}, and draw two independent samples X and S from the cube according to these
two distributions. If min(X|,|S]) > €*(2)), then with probability 1 — o(1) there exists
a density on S that has exactly the same marginals up to dimension d as the uniform
distribution on X.

Remark 3.2. To match all ( z d) marginals of dimension at most d, it makes sense to have at
least as many data points. This explains the requirement on n in the theorem heuristically

(but not rigorously). The prefactor e*® is negligible compared to (2, if d < p.

As a “non-example” for Theorem 3.1, consider a probability measure supported on the
set of patients whose first parameter equals 0, and a different probability measure sup-
ported on the set of patients whose first parameter equals 1. Then even a one-dimensional
marginal — the distribution of the first parameter — will be different for X and Y, no mat-
ter how Y is reweighted. This example shows that some form of regularity assumption
will be required in the theorem.

The density h* on S that is guaranteed by Theorem 3.1 can be computed efficiently.
Indeed, this task can be set up as a linear program with |S| variables (the values of the
density on ), ( z d) linear equations (to match the marginals to those of X), and | S| linear
inequalities (to ensure the density is nonnegative on S).

2Since the cardinality of S will be chosen to be smaller than that of the dataset X, we call S also the
reduced space.

3A density f is regularly varying if sup f(z)/f(y) = O(1) where the supremum is over all points z and
y in the cube. Our results are more general; as we will see shortly, the regularity assumption can be
relaxed.
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Once this density h* is computed, we can generate synthetic data Y = (y1,...,yx) by
drawing independent points from S according to the density h*.

3.1. Private sampling. Is such synthetic data Y private? Here is a general tool that
basically says: yes, Y is private as long as the density h* has bounded sensitivity.

Lemma 3.3 (Private sampling). Let Q) be a finite set. Let f be a mapping that takes a
dataset X as input and returns a probability mass function f(X) on Q. Suppose € > 0
and k € N are chosen so that

||f(X1)/f(X2)HOO < exp(e/k)

for all datasets Xy and X5 that differ on a single element. Then the algorithm that takes
X as input and returns a sample of k points drawn from Q) independently and according
to the distribution f(X) is e-differentially private.

Proof. The probability that a given k-tuple of points wq,...,wr € Q is drawn when
sampled from distribution f(X;) equals Hle f(X1)(w;). Similarly, the probability that
this same tuple is drawn when sampled from distribution f(X5) equals [T5_, f(X5)(w:).
If the databases X; and X, differ on a single element, the assumption implies that the
ratio of these probabilities is bounded by []V_, exp(e/k) = exp(e). This means that the
sampling mechanism is e-differentially private. U

3.2. Difficulties and their resolution. Unfortunately, the density h* guaranteed by
Theorem 3.1 is too sensitive. Indeed, the sensitivity bound in Lemma 3.3 needs to be
proved for arbitrary input data, while Theorem 3.1 only works with high probability. For
some input data X, a suitable density exists, and for another input data Z, no suitable
density exists. Moving from X toward Z by changing one data point at a time, we can
find a pair of datasets X; and X, that differ in a single data point so that the algorithm
succeeds to find a density for X; and fails for X5. This means that the algorithm is
non-private.

The other issue is that there can be (and usually are) many suitable densities h*. Which
one to chose? How to devise a selection rule that upholds privacy?

In other words, we need to work around the possible non-existence and non-uniqueness
of the solution. We resolve both issues here. To ensure existence, we employ shrinking:
we move the solution space (the set of all functions on S, possibly negative-valued, that
have the same marginals as X) toward the uniform density on S until the resulting set
contains a nonnegative function (thus a density). For the selection rule, we choose the
closest solution to the uniform density on S in the L? metric.

Furthermore, while S is chosen randomly, we do need S to be well-conditioned in a
sense that will be discussed in detail in Section 9. At this point suffice it to say that
(i) the well-conditionedness of S can be expressed in terms of a bound on the smallest
singular value oy, (M) of the m x ( r d) matrix M with entries w(s), where s € S and w
is a Walsh function® of degree at most d; (ii) the well-conditionedness of M can be easily
achieved and easily verified.

This leads us to the algorithm outlined in the next subsection.

4See Section 4 for basic definitions related to Fourier analysis of the Boolean cube.
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3.3. Algorithm. We provide a high-level description of our proposed method in Algo-
rithm 1.

Algorithm 1 Private sampling synthetic data algorithm

Input: a sequence X of n points in {—1,1}? (true data); m: cardinality of S; d: the
degree of the marginals to be matched; parameters J, A with A > ¢§ > 0.

1. Draw m points from {—1,1}” independently and uniformly, and call this set S
(reduced space).

2. Form the m x () matrix M with entries w(s), where s € S and w is a Walsh
function of degree at most d. If the smallest singular value of M is bounded below
by /m/2e?, call S well conditioned and proceed. Otherwise return “Failure” and
stop.

3. Consider the affine space H consisting of all densities on S that have exactly the
same marginals up to dimension d as the true data X.

4. Tf necessary, shrink H toward the uniform density on .S just so the resulting affine
space H contains a density that is lower bounded by 2§/m and upper bounded by
(A —9)/m.

5. Among all densities in H that are lower bounded by & /m and upper bounded by
A/m, pick one closest to the uniform density in the L? norm.

Output: a sequence Y of k points from S according to this density.

The well-conditionedness of S in Algorithm 1 defined via the condition oy, (M) >
vm/2e? essentially says that the subsampled Walsh basis is almost orthogonal. The
scaling /m is natural: the entries of M all have absolute value 1, hence the columns of M
have Euclidean norm +/m. If we had o, (M) = /m, this would imply that the columns
of M (the subsampled Walsh functions) are mutually orthogonal. We require a relaxed
(by a factor 2e?) version of this orthogonality.

What if S fails the desired condition? We can simply resample S until it is well
conditioned. But this is only a useful strategy if the chances of success are sufficiently
high. Under some mild conditions (see Section 9) success happens with probability > 1/2,
hence the expected number or trials until success is < 2. This way Algorithm 1 succeeds
deterministically, but its running time becomes random (albeit with the rather modest
expected overhead time < 2).

Definition 3.4. We say that the synthetic dataset Y is 6-accurate if each of its marginals
up to degree (or dimension) d is within & from the corresponding marginal of the true
dataset X.

The following theorem guarantees the accuracy and privacy of the algorithm. We state
it informally here, and more accurately in Theorems 12.2 and 12.4.

Theorem 3.5 (Privacy and accuracy). Let the size of the reduced space S satisfy m =
(2.
<d

(a) Algorithm 1 succeeds (i.e. does not return “Failure”) with high probability.
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(b) If the size of the synthetic data satisfies k < /n/m, then Algorithm 1 is o(1)-
differentially private.

(c) Suppose n > e* (<pd), k> log (<pd), and the true data points X are sampled indepen-
dently from some density that is upper bounded by A/2P. Then, with high probability,
the synthetic data generated via Algorithm 1 is o(1)-accurate up to dimension d.

For a more formal presentation of Algorithm 1, see Algorithm 2 below. A formal version
of part (a) of Theorem 3.5 is shown in Proposition 9.3; part (b) is shown in Theorem 12.2
and Remark 12.3; part (c) is shown in Theorem 12.4. The mathematical techniques to
prove these results revolve around Fourier analysis of Boolean functions and empirical
processes, see Sections 4-7.

In case the true data X is sampled form a regular density, the algorithm will not apply
any shrinkage, since in this case Theorem 3.1 guarantees the existence of a solution. (We
make this rigorous in Remark 12.5.) In this case, the private synthetic data Y will be
sampled in an unbiased way from the density h* that has exactly the same marginals as
the true data X.

3.4. Further remarks. There is a one-sample version of Theorem 3.1. Let us state it
here informally; a more accurate statement is given in Theorem 8.2.

Theorem 3.6 (Marginal correction). Consider a reqularly varying density f on the cube
{0,1}? and draw an independent sample S from the cube according to this distribution. If
S| > e (fd), then with probability 1 — o(1) there exists a density h on S that has exactly
the same marginals as f up to dimension d. Moreover, h is within a 1+ o(1) factor of
the uniform density on S.

The law of large numbers tells us that the sample S must have approzimately the same
marginals as the density f from which S was drawn. Theorem 3.6 tells us that we can
make the marginals ezxactly the same by a slight reweighting of S, i.e. by weights that are
all 1+ o(1).

4. FOURIER ANALYSIS

The proof of Theorem 3.1 is based on hypercontractivity, duality, and empirical pro-
cesses.

Let us start by recalling the basic Fourier analysis on the Boolean cube [34]. It is more
convenient to work on {—1,1}? than on {0, 1}; all results are easily translatable from
one cube to the other.

The Walsh functions wy : {—1,1}* — {—1,1} are indexed by subsets J C [p] and are

defined as
wy(z) = [[=0), (4.1)
jeJ
with the convention wy = 1.
The canonical inner product on the space of real-valued functions on {—1, 1}? is defined
as

o= S F@)gla)

a:E{—l,l}P



PRIVATE SAMPLING AND SYNTHETIC DATA 9

This inner product defines the space L? = L*({—1,1}?). More generally, for 1 < ¢ < oo,
the L? = L9({—1,1}?) is the space of real-valued functions on the cube with the norm

= (o X @)

ze{-1,1}p

Walsh functions form an orthonormal basis of L%, so any function f : {—1,1}? — R
admits a Fourier expansion

f= Z frwy, where f; = (f,w,) are Fourier coefficients.
Jelp]

Thus, any function f on the cube can be orthogonally decomposed into low and high
frequencies:

[ =g g
where

= >0 (fwpwy and = N (fww,.

Jep],|J|<d JE[p],|J|>d

Clearly, the function f=¢ is determined by the Fourier coefficients of f up to dimension
d, and vice versa.
We say that a function f on the cube has degree at most d if f = f=?. Such functions

b

form the “low-frequency” space

W=t = {f: f:fgd} = span{wy : |J| < d},

and it has dimension ( 2 d). The orthogonal complement to this subspace in L? is the

“high-frequency” subspace
MV>d::{f: f::j>d}::span{wJ:\Jy>>d}
The following result is well known, see [34, Theorem 9.22]:

Theorem 4.1 (Hypercontractivity). For any d < p and any function f: {-1,1}Y - R
of degree at most d, we have

1F1lz2 < €ellf Il

4.1. Connection to marginals. The low-degree Fourier coefficients of f : {—1,1}? — R
determine the low-dimensional marginals of f. More precisely, f<¢ determines the values
of all marginals of f up to dimension (or degree) d.

To see this, consider the example of the two-dimensional marginal in which the first
parameter is set to 1 and the second is set fo —1. The value of such marginal of f is

er{—m}p f(x)l{x(l)zl,x@):_l}. NOW,

1+z(1)y 1—x(2)
Liz)=1,22=-1} () = 1z)=1}(2) Lz@)=—1) = ( 9 )( 2 >’

so expanding the right hand side and using the definition of Walsh functions, we see that

1
Lam=te@=1) = 7 (w0 +wpy —wizy —wpzy) -
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Thus, the marginal can be written as
Z J(2)1p0)=1,22)=—1} = (f@ + fray — fioy — f{1,2}) :
ze{-1,1}p
and so it depends only on the Fourier coefficients on f up to degree 2, or equivalently
only on f=2.
5. EMPIRICAL PROCESSES

Let p be a probability measure on {—1,1}?, and let

1 m
- E;(Sei

be the corresponding (random) empirical measure, i.e., the uniform probability measure
on the sample {6,...,60,,} of points drawn from the cube independently according to
the distribution p. These two measures define the population and empirical L? norms of
functions on the cube:

1 m
1F Ny =E[FO"s 1 G, = — D_|FE)". (5.1)
i=1
We clearly have E|[F|| .,y =[F11(,). The following result provides a uniform deviation
inequality.

Proposition 5.1 (Deviation of the empirical L' norm). Let u be a probability measure
on {—1,1}? and p,, be the empirical counterpart. Then
L(p
<25 (da)

The L? norm on the left side is with respect to the uniform probability measure on the
cube.

E sup ||F||L1

—[1¥]]
FeWSd ||F|,2=1 L)

(Mm)

Proof. Any function F' € W=% is a linear combination of low-degree Walsh functions,

Without loss of generality (by rescaling) we can assume that
2
1F)I7 = > o =1. (5.2)
|J|<d

By definition of the L'(x) norm in (5.1), we have

1F | =B ajw,(61)] = E[(w(6)),a)|,
|7|<d
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where, for every € in the cube, w(f) = (wJ(G))‘JKd is a vector in ]R@d), and similarly
a = (ay) <4 denotes the coefficient vector in R(Z). By (5.2), a is a unit vector, i.e.

acS (Z)7". In a similar way, the definition of the empirical L' norm in (5.1) yields

171y = 3 D0/ s8] = 2= 3|6

i=1J|<d i=1
Then

E=E sup
FeWS4 ||F||2=1

FE M Ly =N N 2

1 m
=FE sup —ZRU)(@'),@’ —E|<w(91),a>‘ .
p m £
aeS(Sd)71 =1
Applying a symmetrization inequality for empirical processes (see e.g. [41, Exercise 8.3.24)),
we get

Y

1 m
E<2E sup EE eil (w(8), a)
i=1

a€S<§pd)_1

where (g;)7, denote i.i.d. Rademacher random variables, which are independent of the
sample points (6;)7;.

The exterior absolute value can be removed using the symmetry of the Rademacher
random variables, and the interior absolute values can be removed using Talagrand’s
contraction principle, see [41, Exercise 6.7.7], thus continuing our bound as

1 m
E<oE sp 53 efw(6).a)
aGS(<p‘i>71 " =1

m

1
=2E|— > (b,
Hm gw(6;)

i=1

9 m 2\ 1/2 9 m 1/2
< E(E > ew(6;) > = E(ZEHM@')”;)
9 i=1 2 =1

where the last step follows by conditioning on (6;). Since all ( 2 d) coordinates of all vectors

w(#;) equal £1, we have Hw(@z)H; = (2)) deterministically. Substituting this bound, we
complete the proof. - m

6. ENFORCING A UNIFORM BOUND AND SPARSITY

We will now prove that for any function F' on the Boolean cube, there is another
function that simultaneously satisfies the three desiderata: (a) it has the same marginals
(or Fourier coefficients) as F' up to dimension d; (b) it is very sparse — in fact, it is
supported on a random set of a given cardinality; and (c) it is uniformly bounded. The
following result guarantees the existence of such function F' — w.
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Theorem 6.1. Let p be a probability measure on the cube {—1,1}" whose density is

bounded below by o /2P, and let pu,,, be the empirical counterpart. If m > 16(ay)2e**(2),

then the following holds with probability at least 1—~. For any function F : {—1,1}? — R,
we have

inf{||F—w||Oo: weW> F-—wcS m} < —

am

where S, denotes the set of the functions supported on supp(tm).

Throughout the proof, let us denote
S = Supp(fim)-
The L' norm of any function F : {—1,1}? — R naturally decomposes as
[ = [1F sl +[[ FLse

where 15 denotes the indicator function of S. Given § > 0, consider the weighted space
L; where the norm is defined by

I gy = sl o 4 O F e o -

Ll

Lemma 6.2. Consider the subspace (W=2, || HL};) of L}. With probability at least 1 — 7,
for every 6 > 0 we have

2¢49P
< :
am

Ja: o=y - 2

Proof. Proposition 5.1 combined with Markov’s inequality and rescaling implies that, with
probability 1 — v, the following holds for all F' € W=

2 /1 /(p «
10y = 1P| < 245 (2,) 1P Die < Pl

where in the last step we used the assumption on m.
Applying hypercontractivity (Theorem 4.1), the regularity assumption of u, and the
bound above, we obtain

1 1 1 1
F s 1Pl < PNy < lFlag) + 520 Fll
Rearranging the terms, we obtain
1 1 2P 2P
Pl < S Fllgrg,) = — | FLsll < —|Fll,

where in the middle step we used the definitions of S and of the norms in L'(x) and
L*(ft,,). Multiplying both sides by 2e? completes the proof. O

Proof of Theorem 6.1. Let us dualize Lemma 6.2 with respect to the inner product on L2.
The identity operator is self-adjoint, and the adjoint operator has the same norm. So,
with probability at least 1 — v, for every > 0 we have

2ed2P B

am

< . B.

HId : (L2)* — (W§d7 | HL};)*
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The Hilbert space L? is self-dual. The dual to the weighted space L} is the weighted space
L‘fj s defined as

1
P L A L P (6.1)
The dual of a subspace is a quotient space of the dual:
(W= Hley)" = (L5)/ (W=t = L /W=,
Putting these considerations together, we get

Wd:L”ﬁL?ﬂVﬁ < B.

By definition of the quotient norm, this bound means that for every function F' :
{—1,1}? — R there exists w € W>4 such that

1 = wll oo < BJIFl 2 -
By definition (6.1) of the weighted norm, this means that
|(F —w)ls|| < B||F|,. and ||(F—w)ls

o SOB||F|| - (6.2)
Since the second bound holds for arbitrary ¢ > 0, it follows that H (F —w)lge

=0 tle
supp(F —w) C S

as claimed in the theorem. Together with the first bound in (6.2), this proves that
1 = wll o < BI[F[l2

Thus, we showed every function F': {—1,1}? — R satisfies
inf {HF —w|, weW, F—wc Sum} < B||F|,.

Finally, note that the term ||F||,. on the right hand side can automatically be improved
to || F=|| .. To see this, apply the above bound for F<* and absorb the term F>¢ into
w. Theorem 6.1 is proved. 0

7. LOW-DEGREE PROJECTIONS OF EMPIRICAL MEASURES

Consider two probability measures v and p on {—1,1}”, and let f and g denote their
densities (or probability mass functions):

f(z) =v({z}) and g(z) = p({z}), =ze{-1,1}".

The densities of the empirical probability measures v, and pu,, are

1 < 1 &
n= — 1, and g, =— 1, 7.1
f n Zzl i n g m Zzl Yi ( )
where zy,...,2, and vy, ...,y are i.i.d. points drawn from the cube according to the

densities f and g, respectively. The functions f, and g¢,, provide unbiased estimators of
f and g:
E f n — f > ]Egm =4g.
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Assume that f(z) = 0 whenever g(z) = 0. Consider the function

Gm = (f/9)gm- (7.2)
Although g, is supported on the sample drawn from density g, it provides an unbiased
estimator of f:
Egm = (f/9)Egn=(f/9)9 =TI
This property will be crucial in the proof of Theorem 3.1.
Let us look at the low-degree projections of f,, and g, and try to bound their mean
magnitude and deviation from the mean. Toward this end, note that

» 1/2 4
Vo e {_17 1}p’ H(]-x)gd”LQ = (< d) E (73)

Indeed, to see this, use Parseval’s identity

= = X e = 3 (o))

[J]<d |J]<d

and recall that the Walsh function w; takes 1 values. Furthermore, by definition of f,
and the triangle inequality, (7.3) yields

1/2
d p 1 L
H(fn)S HL2 < (S d) > deterministically. (7.4)

Lemma 7.1 (Deviation). We have

Y P \Y2 1
el - =) "< (L) 75

Moreover, zf”f/gHL2 < Kk then we have

(EllGn -~ D=,.) " < <§pd) " NG

Proof. By Parseval’s identity,

[(Fo = HZ50 = S (fa = fows)2e. (7.5)

|J]<d

By definition (7.1) of f,, each term of this sum can be expressed as

(fum sz =+ 3 (L, — Frwghee

i=1

n

The terms on the right hand side are i.i.d. mean zero random variables, so
1
E(fn - fa U)J)%z = _E<1I1 - fa wJ>%2

< —E(1,,,w;)3. (the variance is bounded by the second moment)

1 2 1
E <§wJ($1)> = _n22p’

SI—3—3
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since the Walsh function w; takes 1 values. Substitute this bound into Parseval’s identity

(7.5) to get
<d||2 P 1
Bl -0l < (L)

This proves the first part of the lemma.
The second part of the lemma can be derived similarly. Indeed,

G = D=2 =D (G — )2 (7.6)

|J]<d

By definition (7.1) of g,, and (7.2) of g,,, each term of this sum can be expressed as

_ 1 Zm f(y:)
<gm_f7wJ>L2:_ < 1z_fan>
m <~ \g(y) %
The terms on the right hand side are i.i.d. mean zero random variables, so

E(Gm — frwi)72 = ! ]E<f83 .
fy)

n

2
1y1 - fva>L2

2
< E< ) 1y, w J> , (the variance is bounded by the second moment)
Y1 L

1
= B (o)

= m“f/guiz < %

where in the last line we used the fact that the Walsh function w; takes 41 values and
the assumption on f/g. Substitute this bound into Parseval’s identity (7.6) to get

8 p K2
B[ G — 5<% < ( ) d) e

This proves the second part of the lemma. 0

8. PROOF OF THEOREM 3.1

The following master theorem is a more general version of Theorem 3.1, as we will see
shortly. Recall that g,,, ftm, §m are defined in (7.1).

Theorem 8.1. Let f and g be densities on the cube {—1,1}F, and let f, and g, be
their empirical counterparts. Assume that Hf/gHL2 < k for some k > 1 and that g is

bounded below by a/2P. If n > 16(ad) 2y~ ! 2d(<d) and m > 16(ad) 2y 'k2e* (L)) then
the following holds with probability 1 — 2’y There exists h: {—1,1}? — R that satisfies

W=t = f4, supp(h) C supp(gm), ||B = (F/9)gm| <2
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Proof. Let g,, = (f/9)gm and apply Theorem 6.1 for the function F' = f,, — g,,. With
probability 1 — v, there exists w € W>¢ such that

2¢ed2P

am

fn_gm_wesum and ||fn_§m_w||oo S H(fn_gm)SdHL2' (81)

Set
h=f,—w.

Since w € W>4, we have h=¢ = f=¢ as claimed. Since both §,, and b — G, = fr — Gon — W
lie in S,,,,, so does h, as claimed.

Furthermore, combining both bounds of Lemma 7.1 via the Minkowski inequality, we
get

(F10-301) "= (2) " G+ )5

By Chebyshev’s inequality, with probability at least 1 — v we have

o ~ 12,1 1
I = 3=z < m(spd) <ﬁ+¢%>z_p'

We substitute this into (8.1) and get

2edoP » \?/ 1 kN1 6
h— Gull oo < LA 1/2 <_ _>_<_
H gl ) = Tom T <d vn + vm - m’

where we used the assumption on n and m in the last bound. [l

8.1. Proof of Theorem 3.1. Let us explain how Theorem 8.1 is a more general form
of Theorem 3.1. Let f and g be the densities of the two distributions in the statement
of Theorem 3.1, X = (z1,...,2,) and S = (y1,...,Ym) be the samples drawn according
to these densities, and f, = > 1, and g, = = > " | 1, be the empirical densities.
The regularity assumption implies that

f/g =1 pointwise, (8.2)

and in particular the requirement H f/ gH ;> = O(1) holds in Theorem 8.1. The function h
we obtain from that result is supported on S = supp(g,,) and satisfies

4} 1

h>(f/9)gm — — 2 — everywhere on S.

m "~ m
(In the last step we used (8.2) that g, = = >, 1, is lower bounded by 1/m on S.) In
particular, h is positive on S. The condition h<? = f=? means that h has exactly the
same marginals up to dimension d as f,,, the uniform probability distribution on X. Since
fn is a density, the sum of all of its values equals 1. The same must be true for A, since the
sum of the values can be expressed as the zero-dimensional marginal, which must be the
same for h and f,. In other words, h must be a density, too. Theorem 3.1 is proved. [
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8.2. A one-sample version. Here is a one-sample version of Theorem 8.1. It is a rigor-
ous version of Theorem 3.6 we stated informally in the introduction.

Theorem 8.2. Let f be a density on the cube {—1,1}F that is bounded below by a /2P,
and let f,, be its empirical counterpart. If m > 16(ad)2y~'e* (L) then the following

holds with probability 1 — 2. There ezists a density h on supp(f,,) that satisfies

0
hgd:dev ||h_fm||oo§_
m

Proof. The proof is similar to that of Theorem 3.1 above. Choose g = f, n = m, hence
Gm = (f/9)9m = fm, and use F' = f — g,,. Apply only the first bound in Lemma 7.1.
Note that the bound in the conclusion and the fact that f,, = 1/m on its support
implies that h > 1/m — d/m > 0 on supp(f,,), and thus h is a density.
We leave the details to the reader. 0

9. SOLUTION SPACE

Our next focus is on proving Theorem 3.5, which gives guarantees for privacy and
accuracy of the synthetic data created by Algorithm 1.

Let us formally introduce the solution space — the space of all functions on the reduced
sample space S that have the same marginals as a given function wu.

Definition 9.1 (Solution space). Let u be a probability measure on the cube {—1,1}?, and
W be its empirical counterpart. For any function u : {—1,1} — R, consider the affine
subspace H(u) of all functions supported on supp(i,,) and that have the same marginals
up to dimension d as the function u, i.e.

H(u) = {h €8, : h== ugd} = <u— W>d> NSy,

where S,,,, as before, denotes the linear space of all functions supported on the reduced
space S = supp(pim).

9.1. Success with high probability. The Algorithm 1 succeeds, i.e. does not return
“Failure”, when the reduced space S = {6y,...,60,,} is well conditioned. By definition,

this happens if
vm
minM Z 9.1
Sin(M) > Y1 91)

where s, denotes the smallest singular value, and M is the m X (p

<d
entries are w;(0;) for|J| < d, i.e. the matrix whose rows are indexed by the points ; € S,

and whose columns are indexed by Walsh functions w; of degree at most d.
Let us reformulate the condition (9.1) in the dual form, and then deduce from Theo-
rem 6.1 that that it holds with high probability.

) matrix whose

Lemma 9.2 (Well conditioned reduced space). The reduced space S is well conditioned
if and only if any function F: {—1,1}* — R satisfies

inf {|F —wllja,,,): w W F-wes,} <

9.2)
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Proof. Decomposing F' = F'<? + F>4 we see that F’=¢ in the right hand side of (9.2) may
be replaced by F without loss of generality. Furthermore, since || fll j2(,..y = v/22/m|| f| .2
for any f € S,,,, we can rewrite condition (9.2) equivalently as

inf {||F —w| we W F—we Sum} < B|IF| (9.3)
where

B = 2¢? .
m
We will employ a duality argument similar to the one we used in the proof of Theo-
rem 6.1. Given § > 0, consider the weighted Hilbert space L? where the norm is defined
by
1FIIZ2 =1 F L7z + 6] Flse] 7

where 15 denotes the indicator function of S. Then (9.3) is equivalent to
inf {HF — wHL%/(s Cw e W>d} < B||F|,. ¥0>0.

(To see this, note that taking 6 — 0 enforces F —wlge = 0, or equivalently F'—w € S,,,,.)
This can be interpreted as a bound on the norm of the quotient map Q:

Q: L* = L7 )s/W>| < B V§>0.

Let us dualize this bound. The adjoint operator has the same norm, so
HQ* (L) = (12w

The adjoint of the quotient map is the canonical (identity) embedding; the Hilbert space
L? is self-dual, and the dual of a quotient space is a subspace of the dual, i.e.

(L s/ )" = (WD ez ) = =4 s).

Thus, the bound is equivalent to

HId L (WS 2) = L2 < B V8 > 0.

By definition of the operator norm and the norm in L2, this bound is equivalent to
saying that

IF|2. < B (HF1S\|§2 + 5||F1Sc||§2) VE € W=, V5 > 0.

Taking § — 0, we see that this is equivalent to

B? 4e2d
IF|[7> < B?||F1g]7. = HF1s||gz = —IIFlstz VF e W=

Expressing F' through its orthogonal decomposition F' = Z‘ Jl<d GJWy, We can rewrite the
latter condition as

ZCLJ< 4% ZCLJU)J].S
2

|J|<d |J]<d

4e2d m
= Z ( Z ajw,; (0 ) V choice of coefficients a .

i=1 |J|<d
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This in turn is equivalent to
4€2d
lallz < WHMCLH?%

which is finally equivalent to (9.1). O

Proposition 9.3 (Success with high probability). If m > 16y~ 2 (<pd) , then Algorithm 1
succeeds (i.e. does not return “Failure”) with probability at least 1 — .

Proof. By definition, Algorithm 1 succeeds if the reduced space S is well conditioned.
Then the conclusion immediately follows from Theorem 6.1 for the uniform density pu,
Lemma 9.2 and the fact that the L?(u,,) norm is bounded by the sup-norm. 0

9.2. All solution spaces are translates of each other. First let us show that with
high probability in p,,, all solution spaces H(u) are nonempty and are translates of each
other. The following elementary lemma will help us.

Proposition 9.4. If the reduced space S is well conditioned, the solution spaces H(u) for
all w: {—1,1} — R are nonempty and are translates of each other.

Proof. Let F': {—1,1}’ — R be an arbitrary function. If S is well conditioned, Lemma 9.2
for F' = u yields the existence of w € W>% and s € S,,,, such that u = s+w. This implies
that u — W>?4 = s — W>%. Hence

H(u) = (u — W>d> NS, = (s — W>d> NS, =s— (W>d N Smn) .

The linear subspace W>% N S, is nonempty as it contains the origin. Therefore, all
solution spaces H(u) are translates of this linear space, and thus of each other. [l

9.3. Sensitivity of the solution space. Next, we will check that the map u — H(u) is
Lipschitz in the Hausdorff metric. Recall that the Hausdorff distance between two subsets
A and B of a normed space X is defined as

acAbeB

dx (A, B) = max {sup inf||a — b||y , sup inf ||a — b||X} :
beB a€A
When A and B are affine subspaces that are translates of each other, we have
dx(A, B) = gn£||a —b||y = distx(a, B) for any a € A.
€
When the norm is clear from the context, we skip the subscript X. When X = L7 we
simply write d (A, B).

Lemma 9.5 (Sensitivity of the solution space). If the reduced space S is well conditioned,
then any pair of functions uy,us : {—1,1}? — R satisfies
2ed2p

doo (H(u1), H(uz)) < NG

||(u1 - ug)SdHL2 ) (9.4)
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Proof. Since, by Proposition 9.4, the affine subspaces H(u;) and H(us) are translates of
each other, it suffices to bound inf,ecpuy)|ls1 — s2|, for any s1 € H(uq).

Pick any s; € H(uy). Since H(uy) = (uy W>d) NS, there exists w; € W>% such
that s; = uy —wy € S,,,,. Apply the bound in Lemma 9.2 for F' = s; — uy. There exists
wy € W>% such that s1 — uy — wy € Sy, and

26 2°
[s1 = ug — wal|, < Vmllsy —ug —wall 2, \/— [(s1—ug —w2)™| . (9.5)

Since both s; and s; — us — wy lie in the linear subspace S, it must be that s, =
us +wy € S, as well. Since wy € W= it follows that sy € (ug + W>9) NS, = H(uy).
Furthermore,

(s1—ug — ’LUQ)Sd = (u3 — wy — ug — ’LUQ)Sd = (ug — Ug)gd

(In the last step, we used that w; and wy are in W>? and so (w;)<? = (w,)=¢ = 0.)
Therefore, we can rewrite (9.5) as
2ed42p
HSl—SQHOO S \/m H('U,l—UQ)SdHL2.
The proof is complete. 0J

9.4. Changing a single data point. The Sensitivity Lemma 9.5 will be applied in the
situation where u; and us are the uniform densities on the two datasets X; and X5 that
are different by a single element. Let us specialize the bound (9.4) to this case.

Suppose X; = (z1,...,2,) and Xy = (x1,...,Zp, Tpe1). Here, in our discussion of
privacy, we allow z; be arbitrary points drawn from {—1,1}?; they do not need to be
random. The corresponding densities are

n+1
1

€Zg*

=1

A direct calculation yields

1
fn+1 fn_ n+1 ( Tpil fn)
Using triangle inequality and then (7.3) and (7.4), we get

w20 < s ([ 000, ) < 2(2) 3 09
n+1 n 2 = n+1 Tn41 L2 n 2 = <d 213' .

10. SELECTION RULE

Next, we want to extend sensitivity to the selection rule. Can we pick one point from
a solution space in such a way that a small change in the solution space always leads to
a small change in the selected point?
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10.1. L? sensitivity. We do not know the best selection rule in the L metric. The
problem is simpler for the L? metric: the proximal point (to a given reference point) is a
good selection rule.

Lemma 10.1 (Sensitivity of the closest point in the Hilbert space). Consider a Hilbert
space X and a reference point r € X. Let x(K) denote a point in a nonempty closed set
K C X that is closest to r, i.e.

2, (K) = argmin {[|z —r[| : € K} .
Then, for any two nonempty closed convex sets K1, Ko C X, we have
[, (K1) — 2, (K)||* < 4max (dist(r, K, ), dist(r, K)) - d(K1, Ko).
In order to prove this lemma, we first observe:

Lemma 10.2. Suppose that K is a nonempty closed convex subset of a Hilbert space X .
Letr € X. Let g = argmin {|lz —r|| : @ € K}. Then

lzo = ylI* <2 (lly —[|* = llwo — 7]1?)
forally € K.

Proof. Without loss of generality, assume that » = 0. Let y € K. Since % e K, we
have || %62 > ||, so

To —Y vo—y|*  |lzoty

2 2 2
Thus, [0 — ylI* < 2([ly[I* — llzol*). [
Proof of Lemma 10.1. If d(Ky, K3) > d(r, K1) + d(r, K3), then we are done, since
[z (K1) = 2 (Ko)| < [l (KG) = 7l 4 [l (K2) — 7
d(?", Kl) + d(?", KQ) S \/(d(’l", Kl) + d(’l“, KQ))d(K17 Kg)

Thus, we may assume that d(K;, Ky) < d(r, K1) + d(r, K2). Without loss of generality,
we may also assume that d(r, Ky) < d(r, K;). By Lemma 10.2,

e (B2) =yl < 2(ly — rl|* = d(r, K1)*),

for all y € K;. Note that we can write z,(K3) = y + d(K1, K3)z for some y € K; and
z € X with ||z]] < 1. Since

ly = rll < l|l2r(K2) — 7| + d(Ky, Ks) = d(r, K2) 4 d(Ky, Ka),
it follows that
Jan(K) — ol
<2[(d(r, Ky) + d(Ky, K3))? — d(r, K1)
=2[d(r, K3) + d(K1, K3) + d(r, Ky)][d(r, K3) + d(K;, Ks) — d(r, K7)]
2[d(r, K) + d(K1, K3) + d(r, K3)]|d(Ky, Ks)
4(d(r, Kq) + d(r, Ks))d(K;, Ks),

2 2 1
+lzol* < ‘ = 5 (lzoll” + llwll)-

<
<
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where the second inequality follows from the assumption that d(r, Ks) < d(r, K7) and the
last inequality follows from the assumption that d(Ky, K3) < d(r, K1) + d(r, K>). O

10.2. Restriction onto the cube. Functions that comprise the solution space H(u)
may take negative values, hence not all of H(u) consists of densities. So, our next goal is
to restrict the affine space H(u) to the positive orthant [0, co)™ and check that sensitivity
still holds. Our Algorithm 1 makes a more aggressive restriction onto the cube [2§/m, (A—
d)/m]™. This is what we will analyze now.

Lemma 10.3 (Restriction onto a cube). Let Hy and Hy be a pair of parallel affine sub-
spaces of R™ with equal dimensions. Assume that for some scalars a < b, we have

H;N[a,b]™" #0, i=1,2.
Fiz any A > 0 and consider the cube QQ = [a — \,b+ A\]™. Then

b—a

do (Hi N O, HmQ)g( +2> du (Hy, Hs) .

Proof. Due to symmetry, it is enough to bound the quantity

su inf hi—h .
hleHFﬁQ haeFanQ (L 2”00

So let us fix any hy € H;NQ and find hy € HyNQ for which [|h; — hyl| is small. To this
end, fix a vector

r1 € Hi N [a,b]m, (101)

which exists by assumption. Due to the definition of Hausdorff distance, we can find
r9 € Hy such that
lze — 21||, < doo(Hy, Hy) = 6. (10.2)

Consider the vector

A
y =z + =(xe — 1)

4]
and set hy to be the following convex combination of hy and y:
) )
he = (1 — —)h —.
2 VAL + VY

(Here we assume that 6 < A. Otherwise, the result follows immediately, since the diameter
of @ in L*°-norm is b — a + 2\.) Figure 1 might help to visualize our construction.

Let us check that the vector hy constructed this way satisfies all the required properties.
First, we claim that

yeQ.
Indeed, the definition of y combined with (10.1) and (10.2) yields
A
y € [a,b]™ + 5[_6’5]m =la—ANb+ A" =0Q.

We claim that
hy € H,.
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Figure 1. Construction in the proof of Lemma 10.3.

Indeed, substituting the definition of y into the expression for hy, we get

hy = (1 . ;) <h1 - m1> + (10.3)

By the assumption, H; and H, are translates of the same linear subspace. This linear
subspace can be expressed as H; — x; or, equivalently, as Hy — x5 since x; € H; and
9 € Hy. In particular, we have t(H; — x1) = Hy — x5 for any t € R, or equivalently
Hy =t(Hy — z1) + x2. Since hy € Hy, it follows from (10.3) that hy € Hy as claimed.
Next, since both h; and y lie in @), their convex combination must lie there, too, so

hs € Q.
Finally, using the definition of hs and recalling that h; and y lie in @, we get
) o ) m
Thus 5 ;
—a
[y = hall,o < S(b—a+2)) ( . +2) 5
The proof if complete. O

10.3. L™ sensitivity of the selection rule. We are ready to analyze the sensitivity of
the L2-proximal selection rule:

Lemma 10.4 (L sensitivity of the selection rule). Let 0 < a < ¢ < (a +b)/2. Let H;
and Hy be a pair of parallel affine subspaces of R™ with equal dimensions. Assume that
H;N[a, 0] #£0, i=1,2.

Let
hi =argmin {[|z —c- 1|, : v € HiNfa— A b+ A"}, i=1,2.

Then
b—a

1y — hal|% §4m(b—c)( +2) do (Hy, Hy) |
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Proof. Lemma 10.3 gives
b—a

doo (K1, ) < ( %—Z)dxxfﬂjfh) (10.4)

where K; = H;N[a— \,b+ A|™. Let us apply Lemma 10.1 for r = ¢-1,, and the L? norm
on R™. Note that

distz2(r, K;) < max [r — hl . < max |r — Al =max{a—c|,|c—b]} =b—c.

h€la,b)™ hela,b]™
Thus, Lemma 10.1 yields
||h1 — hg”ig S 4(b — C) . dL2(K1, KQ) S 4(b — C) . doo(Kla KQ)
To complete the proof, use (10.4) and note that ||k, — ho||>. < m||hy — hal|7». O

11. SHRINKAGE

Another step of Algorithm 1 we need to control is shrinkage. We will check here that
shrinkage onto a cube is Lipschitz in the L*°-Hausdorff metric. Let us start with a general
observation:

Lemma 11.1 (Shrinkage). Let X be a normed space and z € X be a point such that
|zl <1 =03 for some 5 € (0,1). Let r: X — X be the retraction map onto the unit ball
of X toward z, i.e.

r(z) =(1—=Nzx+ Az
where A = X(x) is the minimal number in [0,1] such that||r(z)|| < 1. Then the Lipschitz
norm of the map A(-) is at most 1/83, and the Lipschitz norm of the map r(-) is at most

2/p.
Proof. Fix any pair of vectors x1,xs € X and denote
A =AMar), A= A=), p=|z1— 22 /B

The claim about the Lipschitz norm of A(+) can be stated as|A; — A2| < p. By symmetry,
it suffices to show that
AL < Ay + p. (11.1)
This bound is trivial if Ay + p > 1 since we always have \; < 1. So we can assume from
now on that Ay + p € [0, 1].
Due to the minimality property in the definition of \; = A(zy), in order to prove (11.1)
it suffices to show that
(1= Xo =)oy + (Ao + p)z|| < 1. (11.2)
By triangle inequality, the left hand side is bounded by || A|| + || B|| where
A=1- D —pwra+ Ao+ p)z, B=(1—X—pu)(x;—x9).
Rearranging the terms, we can rewrite
1
1=y
By assumption, a € [0,1]. Then A is a convex combination of the vector (1 — Ag)za + Aoz
whose norm is bounded by 1 by definition of Ay = A(x2) and the vector z whose norm is

A=(1—-a)[(1=X)z2+ Xoz] + az where a=
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bounded by 1 — 8 by assumption. Hence, by triangle inequality and definition of a and
1, we have

A <(1—a)-1+a-(1=8)=1-aB <1—pf=1-|z1— 2.
Furthermore, the assumption 1 — Ay — p € [0, 1] yields
1Bl <llay — a2l -

Hence we showed that ||A]| +||B|| < 1, establishing (11.2) and completing the first part of
the proof (about the Lipschitz norm of \).
To prove the second part of the lemma, we need to show that

[r(21) = r(@)|| < (2/B)]|21 — 22, - (11.3)

Let us first prove this inequality assuming that ||z;|| < 1 or ||zs|| < 1. Without loss of
generality, assume ||z1]| < 1. Denoting 1 = 1 — Ay and ps = 1 — Xy and using triangle
inequality, we obtain

[7(21) = r(z2)|| =[x + Mz = pows — Noz|| <[lpmay — powal| +[M = Nof[l2]|  (11.4)
By the first part of the lemma and since ||z|| < 1 — 3, we have
1
(A= Xalllz] < Zflwn — 2ol |[(1 = B) = (1/8 = 1)[|z1 — 22| (11.5)
Furthermore, adding and subtracting the cross term psx; and using triangle inequality,
we get
[z — poza|| <[p1 — pof [z ]| + p2 |21 — 22|
Now, |1 — po] =M — Ao| <||x1 — 22| /B by the first part of the lemma, ||z1]] < 1 by the
standing assumption, and pus < 1. Hence
lzy = paws| < (1/8 4+ 1)1 — 2o - (11.6)

Substitute (11.5) and (11.6) into (11.4), we conclude the claim (11.3).
Finally, consider the remaining case where both ||z1]| > 1 and ||z2|| > 1. Without loss
of generality, A\; < Ay, so the vectors

T =(1—=X)x1+ XNz and Ty :=(1—A\)zy+ A2
satisfy
|71 =1 and [[Z2]| = 1.

Definition of retraction yields r(#;) = r(z1) and r(Z2) = r(x2). Thus, applying (11.3) for
1 and 2o, we get

[7(@1) = r(@a) || = ||r(21) = r(Z2)]| < (2/8)] 71 — ||
= (2/B)(L = M)ley — 22| < (2/5) ||z — 22| -

The lemma is proved. U

Now we extend our analysis of shrinkage for affine subspaces:



26 MARCH BOEDIHARDJO, THOMAS STROHMER, AND ROMAN VERSHYNIN

Lemma 11.2 (Shrinkage for subspaces). Let K be the unit ball of a finite dimensional
normed space X . Let z,zy € X be points such that z € zy+ (1 — B)K for some € (0,1).
Given an affine subspace H in X, define the affine subspace H by moving H toward z
until it intersects the ball zo + K, i.e.

H=(1-MNH+ Xz

where X = A(H) is the minimal number in [0, 1] such that HN (2 + K) # 0. Then for any
two affine subspaces Hy and Ho that are translates of each other, the Hausdorff distance
satisfies

~ 2
dx(Hi, Hy) < EdX(H17H2>-
Proof. By translation, we can assume without loss of generality that 2y = 0. The
affine subspaces H; and H, are translates of some common linear subspace Hy. Ap-
ply Lemma 11.1 for the quotient space X/Hj instead of X and for H, := z + Hj instead

of z.
The requirement of that lemma is satisfied since

1Ny, = Jf (1P <[l2llx <18 (11.7)

Indeed, the equality here is the definition of the norm in the quotient space, the first in-
equality holds since z € H,, and the last inequality is an equivalent form of the assumption
ze(1-pP)K.

We claim that the retraction map r(-) in Lemma 11.1 satisfies

r(H) = H for any translate H of Hy.
Indeed, by definition we have
r(H)=(1—X\H+ \H,

where A is the minimal number in [0, 1] such that HT(H)HX/HO < 1. Since [|H. || y/p, <1
by (11.7), continuity shows that A < 1 and hence

r(H)=(1—XH+ \z.
Moreover, the condition that ||7’(H)HX/HO < 1 1is equivalent to r(H) N K # (). Hence the

definitions of 7(H) and H are equivalent as we claimed.
Lemma 11.1 yields

~ -~ 2
HHl - H2HX/H0 < E [ Hy — HQHX/HO :
It remains to note that, by definition,

1 — Hollyym, =, dof (i = hallx = dx (Hy, Hy),

and similarly for the distance between H; and H,. The proof is complete. O

Finally, we specialize our analysis to the shrinkage onto the cube:
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Lemma 11.3 (Shrinkage onto a cube). Let 0 < a < ¢ < (a + b)/2. Given an affine

subspace H in R™, define the affine subspace H by moving H toward d1,, until it intersects
the cube [a,b]™, i.e.

H=1-MNH+\X-cl,

where X = \(H) is the minimal number in [0,1] such that H N [a,b]™ # 0. Then for any
two affine subspaces Hy and Hy that are translates of each other, the Hausdorff distance
in the L™ norm satisfies

- b—a
doo(HhHQ) S C_adoo(HhHQ)‘
Proof. Apply Lemma 11.2 for
a+b b—a b—aym
= ]-m7 = 1m7 K = |:_ ) ] .
z=c 20 5 5 5

so that zj is the center of the cube [a,b]™, K is the centered cube, and zo + K = [a, b]™.
Now,

b
z—zoz(c—a;L >1m

and

a+b_cz(1_ﬁ)b;a fOfBZZ(bC__aa)a

so z — 29 € (1 — B)K as required in Lemma 11.2. The conclusion of this lemma is that

0<

- 2
dx(Hy, Hy) < EdX(HhHZ)-

Since the unit ball K of X is the cube [—1, 1] scaled by the factor (b — a)/2, the norm
in X is the L*°-norm scaled by that factor. Therefore, the conclusion holds for the L*>°
norm as well. O

12. PRIVACY AND ACCURACY OF THE ALGORITHM

We are ready to analyze the privacy and accuracy of Algorithm 1.

12.1. Algorithm. For convenience we rewrite Algorithm 1, see Algorithm 2 below. Also
note that in Step 5 of Algorithm 2, the L?*(S)-norm is defined as ||h||iQ(S) = L5 h(s)

The standing assumption in this section is that the reduced space S = (s1,...,8m)
is random, and consists of points s; drawn independently and uniformly from the cube.
We would like to show that with high probability over S, the algorithm is differentially
private.
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Algorithm 2 Private sampling synthetic data algorithm

Input: a sequence X of n points in {—1,1}? (true data); m: cardinality of S; d: the
degree of the marginals to be matched; parameters d, A with A > ¢§ > 0.

1. Draw a sequence S = (61,...,6,,) of m points in the cube independently and
uniformly (reduced space).

2. Form the m x (2,) matrix M with entries w,;(6;), i.e. the matrix whose rows are
indexed by the points of the reduced space S and whose columns are indexed by
the Walsh functions of degree at most d. If the smallest singular value of M is
bounded below by /m/2e¢, call S well conditioned and proceed. Otherwise return
“Failure” and stop.

3. Let f,, be the uniform density on true data: f,, = % >, 1,,. Consider the solution

space
H=H(f, = {h :{—1,1}» = R : supp(h) C S, h=' = (fn)gd} :
4. Shrink H toward the uniform density u,, = = > 1, on S: let
H=(1-NH+ \u,
where A € [0,1] is the minimal number such that H N [26/m, (A — §)/m]® # 0.
5. Pick a proximal point
h* = argmin {Hﬁ - um||L2(S) : he HN[o/m, A/m]s} :

Output: a sequence Y = (y1,...,yx) of k independent points drawn from S according
to density h*.

12.2. Sensitivity of density. The privacy guarantee will be achieved via Private Sam-
pling Lemma 3.3. To apply it, we need to bound the sensitivity of the density A* computed
by the algorithm.

Lemma 12.1. Suppose the reduced space S is well conditioned. Then, for any pair of
input datasets Xy and Xo that consist of at least n elements each and differ from each
other by a single element, the densities hy and h computed by the algorithm satisfy

4\/2A3/2¢d/2 D 1/4
Vonmt/4 \<d '

Proof. By Proposition 9.4, the solution subspaces

177 = hsllo <

Hy=H(f,) and Hy=H(fn1)

are translates of each other. The ambient space consists of all functions supported on an
m-element set S, and thus can be identified with R™. Let H; be the result of shrinkage
of the subspaces H; toward the uniform distribution as specified in the algorithm, i.e. the
shrinkage onto the cube [0/m, A/m]™ and toward the uniform distribution u,,. The selec-
tion rule for ~A* specified in the algorithm is stable in the L* metric. Indeed, Lemma 10.4
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applied for the subspaces H; and for
20 A—9

1
a , b=———, ¢c=—
m m m m
yields
4N? -
Ihy = h3l3, < -5 doo(H1, H3).
Next, recall that the shrinkage map is stable. Indeed, Lemma 11.3 applied for the same
a, b, c yields
doo(H17 HQ) S 2A - doo(Hh H2)

Furthermore, the solution space is stable. Indeed, Lemma 9.5 for the uniform density pu
on the cube yields

2e42pP
em H(f" B f"H)Sd”m :

vm

deo(Hy, Hy) <

Finally, recall from (9.6) that

2/ p\"*1
<d Z -
H(fn-i—l_fn) HLQ < n(g d) o

Combining all these bounds, we conclude that

4N2 2e%9P 9 124 2A3ed 1/2
I —mgl, < 2o 22 2P )L SR (P
o0 ) vm n\<d 2p onym \<d

The proof is complete. [l

12.3. Privacy guarantee. Finally, we are ready to give the privacy guarantee of our
algorithm:

Theorem 12.2 (Privacy). If k < ﬁia(é/A)?’/ze_dﬂ(fd)_1/4\/ﬁ/m3/4, then Algorithm 2
1s e-differentially private. -

Proof. Since the reduced space S is drawn independently of the input data X, we can
condition on S. If S is ill conditioned, the algorithm returns “Failure” regardless of the
input data, so the privacy holds trivially. Suppose S is well conditioned.

Let X; and X, be a pair of datasets that consist of at least n elements each and
differ from each other by a single element. By the choice made in the algorithm and by
sensitivity of density (Lemma 12.1), we have

::77

4\/§A3/2ed/2( D )1/4

)
hy > - and |h] — h3| < Tramii \<d

pointwise. Therefore
nm

S () < ()

pointwise, where the last inequality indeed holds due to our assumption on k. Private
Sampling Lemma 3.3 completes the proof. 0J

hi/hs
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Remark 12.3. Suppose we chose the size m of the reduced space S so that m =< e (<pd).
Simplifying the condition in Theorem 12.2, we conclude that if k& < y/n/m, then Algo-

rithm 2 is o(1)-differentially private.
12.4. Accuracy guarantee. The following is the accuracy guarantee of our algorithm:

Theorem 12.4 (Accuracy). Assume the true data X = (z1,...,x,) is drawn indepen-
dently from the cube according to some density f, which satisfies || f]| ., < A/2P. Assume
that n > 1662y~ 1e?(2), 166 2y ' A%e*(2) < m < 2¢/*, and k > 46 %(log(2/7) +
log (<pd)). Then, with probability at least 1 — 4y — \/pr, the algorithm succeeds, and all
marginals of the synthetic data'Y up to dimension d are within 46 from the corresponding
marginals of the true data X.

Proof. Proposition 9.3 and the choice of m guarantee that the algorithm succeeds with
probability at least 1 — 7.

Furthermore, the uniform density on the cube g = 277 satisfies Hf/gHL2 < Hf/g“oo =
| fllo - 27 < A. Therefore, Theorem 8.1 implies that with probability at least 1 — 2+, there
exists h € H = H(f,,) such that

[ = (f/9)gm|| , < %- (12.1)

Since (f/g)gm is a nonnegative function, it follows that
h > —— pointwise.
m

The assumption m < 2°/* implies that with probability 1 — \/% there are no repetitions
in y1,...,Ym, which in turn implies that with probability 1 — \/LTP we have ||gn ||, < 1/m

(otherwise || g, ||, would scale with the number of repetitions in i, ..., ¥ym).
In the following we condition on the event that there are no repetitions in ..., Y.
Since Hf/gHOO < A by above and || g, ||, < 1/m, we have H(f/g)gmHOO < A/m, so

A46

h < pointwise.

A combination of these two bounds on A implies that

2—5§(1—35)h+§§A_
m m

pointwise,

as long as A > 5/3. Since h € H, it follows that the affine subspace (1 — 36)H + 3du,,
has a nonempty intersection with [20/m, (A — §)/m|™. The minimality property of A in
the algorithm yields

A < 3. (12.2)

Recall that a marginal of a function f : {—1,1}» — R that corresponds to a subset
J C [p] of parameters and values 0; € {—1,1} for j € J, is defined as

P(f)= Y. [l
ze{-1,1}p

where v(7) = 1((j)=0, vjes}-
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Recall that the solution h* of the algorithm satisfies
e H=(1-MNH+ My,

and, by definition of H, all members of H have the same marginals up to dimension d as
fn- This and linearity implies that for any marginal up to dimension d,

P(h*) = (1 - )‘>P(fn) + /\P(um)
Hence
|P(h*) - P(fn)| < )\‘P(um) - P(fn)}

Since u,, and f,, are densities, all of their marginals must be within [0, 1], so| P(un) — P(f,)| <
1. Combining this with (12.2), we get

|P(h*) — P(fa)] <36, (12.3)

for all marginals up to dimension d, with probability at least 1 — 2.
Now we compare the marginals of the density 2* and its empirical counterpart hy;. We
can express

P(h;) — P(h*) = Z (v(Y;) — Ev(Y3))

| =

where Y; are i.i.d. random variables drawn according to the density h*. Thus, we have a

normalized and centered sum of i.i.d. Bernoulli random variables, so Bernstein’s inequality
(see e.g. [41, Theorem 2.8.4]) yields

P {|P(hi) — P(b)] > 0} < 2exp(—o%/4) < 7( ! d) R

if k> 46~2(log(2/7) + log (2,)). Thus, by a union bound, we have

| P(hi) — P(h")

S(S;

simultaneously for all marginals up to dimension d, with probability at least 1 — ~.
Combining this with (12.3) via the triangle inequality, we conclude that

| P(hi) = P(fa)] < 49,

for all marginals up to dimension d, with probability at least 1 — 37. Recalling that
we conditioned on an event with probability 1 — 1/,/p and applying the union bound
completes the proof. 0

Remark 12.5 (No shrinkage for regular densities). If the density f from which the true data
X is drawn is regular, specifically if 36/27 < f < (A —2§)/2P pointwise for some positive
numbers § and A, the algorithm does not apply any shrinkage. Indeed, in this case we
have 36/m < (f/9)gm < (A —26)m, so it follows from (12.1) that 25/m < h < (A —6)m,
and thus H has a nonempty intersection with [2§/m, (A — §)m]®, hence A = 0.
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