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MATRIX CONCENTRATION INEQUALITIES

AND FREE PROBABILITY

AFONSO S. BANDEIRA, MARCH T. BOEDIHARDJO, AND RAMON VAN HANDEL

Abstract. A central tool in the study of nonhomogeneous random matrices,
the noncommutative Khintchine inequality of Lust-Piquard and Pisier, yields
a nonasymptotic bound on the spectral norm of general Gaussian random
matrices X =

∑
i giAi where gi are independent standard Gaussian variables

and Ai are matrix coefficients. This bound exhibits a logarithmic dependence
on dimension that is sharp when the matrices Ai commute, but often proves

to be suboptimal in the presence of noncommutativity.
In this paper, we develop nonasymptotic bounds on the spectrum of arbi-

trary Gaussian random matrices that can capture noncommutativity. These
bounds quantify the degree to which the deterministic matrices Ai behave
as though they are freely independent. This “intrinsic freeness” phenomenon
provides a powerful tool for the study of various questions that are outside
the reach of classical methods of random matrix theory. Our nonasymptotic
bounds are easily applicable in concrete situations, and yield sharp results
in examples where the noncommutative Khintchine inequality is suboptimal.
When combined with a linearization argument, our bounds imply strong as-
ymptotic freeness (in the sense of Haagerup-Thorbjørnsen) for a remarkably
general class of Gaussian random matrix models, including matrices that may
be very sparse and that lack any special symmetries.

Beyond the Gaussian setting, we develop matrix concentration inequali-
ties that capture noncommutativity for general sums of independent random
matrices, which arise in many problems of pure and applied mathematics.

1. Introduction

The study of the spectrum of random matrices arises as a central problem
in many areas of mathematics. Motivated by topics ranging from mathematical
physics to operator algebras, much of classical random matrix theory is concerned
with the study of highly homogeneous matrix ensembles, such as those with i.i.d.
entries or that are invariant under symmetry groups. Deep results obtained over
the past six decades by numerous mathematicians have resulted in a very detailed
understanding of the asymptotic properties of such models [2, 33].

In contrast, many problems in areas such as functional analysis [12, 28] and
in applied mathematics [35, 4] fall outside the scope of classical random matrix
theory. The random matrix models that arise in such problems possess two common
features. On the one hand, such models are often highly nonhomogeneous and lack
any natural symmetries. On the other hand, the type of questions that arise in
these areas are generally nonasymptotic in nature, as the study of nonhomogeneous
models often does not lend itself naturally to an asymptotic formulation.
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The above considerations motivate the need for nonasymptotic methods that can
capture the spectral properties of essentially arbitrarily structured nonhomogeneous
random matrices. It may appear hopeless at first sight that anything at all can be
said at this level of generality. Nonetheless, as we will recall below, there exists a
set of tools, known colloquially as “matrix concentration inequalities”, that makes
it possible to compute certain spectral statistics of very general nonhomogeneous
random matrices up to logarithmic factors in the dimension. The results of this
paper provide a powerful refinement of this theory that makes it possible to achieve
sharp results in many situations that are outside the reach of classical methods.

1.1. Matrix concentration inequalities. As a guiding motivation for this paper,
consider the problem of estimating the spectral norm (i.e., largest singular value)
of an arbitrary d × d self-adjoint random matrix with centered jointly Gaussian
entries. Any such matrix X can be represented as

X =

n∑

i=1

giAi, (1.1)

where Ai ∈ Md(C)sa are deterministic self-adjoint d × d matrices and gi are i.i.d.
standard real Gaussian variables. As was noted in [30], the noncommutative Khint-
chine inequality of Lust-Piquard and Pisier [28, §9.8] implies that1

σ(X) . E‖X‖ . σ(X)
√

log d, (1.2)

where we define

σ(X)2 = ‖EX2‖ =

∥
∥
∥
∥
∥

n∑

i=1

A2
i

∥
∥
∥
∥
∥
. (1.3)

Thus the expected spectral norm of any Gaussian random matrix can be explicitly
computed up to a logarithmic factor in the dimension.

It should be emphasized that (1.1) is an extremely general model: no assumption
is made on the covariance of the entries of X , so that the model can capture ar-
bitrary variance profiles and dependencies between the entries. Analogues of (1.2)
extend even further to the model X =

∑

iXi where Xi are arbitrary independent
random matrices. Due to their generality and ease of use, these “matrix concentra-
tion inequalities” [35] have had a major impact on numerous applications. On the
other hand, the utility of (1.2) is limited by the gap between the upper and lower
bounds, which becomes increasingly severe in high dimension.

To understand the origin of this gap, it is instructive to recall the basic principle
behind the proofs of almost all known matrix concentration inequalities: the norm
of a random matrix is largest when the coefficients Ai commute. This idea arises
clearly in proofs of these inequalities [35, 36, 39]: the key step is application of trace
inequalities that permute the order of the matrices Ai, which become equalities
when all Ai commute. In the latter case, the upper bound of (1.2) is typically of
the correct order. Indeed, by simultaneously diagonalizing Ai, we may assume X
is a diagonal matrix. Then σ(X)2 = ‖EX2‖ = maxiVar(Xii), while

E‖X‖ = Emax
i

|Xii| ≍ σ(X)
√

log d

under mild assumptions (as the maximum of d Gaussian variables is typically of
order

√
log d, see, e.g., [24, §3.3]). On the other hand, when the coefficients Ai do

1We write x . y if x ≤ Cy for a universal constant C, and x ≍ y if x . y and y . x.
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not commute, it is observed in many examples that it is the lower bound of (1.2)
that is of the correct order. This is already the case for the most basic model of
random matrix theory: when X has i.i.d. standard Gaussian entries Xij for i ≥ j,

it is classical that E‖X‖ ≍
√
d = σ(X) [33, §2.3].

Such examples raise the tantalizing question whether there exists a refinement
of (1.2) that can capture the correct behavior of nonhomogeneous random matrices
beyond the commutative case. To date, a satisfactory answer to this question has
been obtained only in the special case that X has independent entries Xij for i ≥ j
with arbitrary variances Var(Xij) = b2ij . In this case, [5] showed that

E‖X‖ . σ(X) + max
ij

|bij |
√

log d, σ(X)2 = max
i

∑

j

b2ij , (1.4)

which can be reversed under mild assumptions. The key feature of (1.4) is that
the dimensional factor enters here through a smaller parameter σ∗(X) = maxij |bij |
that controls which extreme case of (1.2) dominates: diagonal matrices satisfy
σ∗(X) = σ(X), in which case we recover the upper bound of (1.2); but as soon as

σ∗(X) . (log d)−
1
2 σ(X), the lower bound of (1.2) is of the correct order.

The existence of the bound (1.4) hints at the possibility that an analogous refine-
ment of (1.2) might hold even in the setting of general Gaussian random matrices
(1.1). In particular, one may conjecture the existence of a general bound

E‖X‖
?

. σ(X) + σ∗∗(X)(log d)β (1.5)

for some β > 0, where σ(X) is as in (1.3) and σ∗∗(X) is a parameter that is small
when the coefficients Ai are far from being commutative. This question was first
considered by Tropp [37], who introduced a number of important ideas that form the
basis for the present paper. Using these ideas, Tropp was able to prove a bound of
the form (1.5) for a special class of models that satisfy strong symmetry assumptions

(and for general models with a dimensional factor (log d)
1
4 in the leading term). To

date, however, a general bound of the form (1.5) has remained elusive.

1.2. Free probability. The challenge in proving an inequality of the form (1.5)
is to capture the intrinsic noncommutativity of the matrices Ai. There is however
an entirely different way to introduce noncommutativity into (1.1) that arises from
Voiculescu’s theory of free probability [40, 27]: one may modify the model by
replacing the scalar Gaussian coefficients gi by noncommuting random matrices
or operators. When noncommutativity is externally introduced into (1.1) in this
manner, the dimensional factor in (1.2) is unnecessary regardless of the properties
of the matrices Ai (see (1.10) below). However, on its face, this appears to shed
little light on the behavior of the original model (1.1).

Remarkably, this intuition proves to be incorrect. The central theme that will
be developed in this paper is described informally by the following principle:

When the coefficient matrices Ai are sufficiently noncommutative,
the spectral statistics of the random matrix model X =

∑

i giAi are
already accurately captured by free probability.

This “intrinsic freeness” phenomenon will prove to have far-reaching implications:
it will enable us to prove nonasymptotic bounds of the form (1.5) in complete
generality (both for Gaussian random matrices and for general sums of independent
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random matrices), and to develop new asymptotic results in free probability in far
more general situations than are accessible by previous methods.

Before we can formulate precise results along these lines, we must briefly recall
some relevant notions of free probability. We will use the following terminology.

Definition 1.1. A standard Wigner matrix of dimension N is an N×N self-adjoint
random matrix GN whose entries on and above the diagonal are independent real
Gaussian variables with mean zero and variance 1

N .

Free probability provides an asymptotic description of the behavior of Wigner
matrices as N → ∞. Let GN

1 , . . . , GN
n be independent standard Wigner matrices;

the associated limiting objects are certain infinite-dimensional self-adjoint operators
s1, . . . , sn that form a free semicircular family, together with a trace τ acting on
the algebra generated by these operators. We postpone the precise definitions of
these objects to Section 4.1; for our purposes, they may be viewed as an algebraic
tool that allows us to compute spectral properties of large random matrices. In
particular, a celebrated result of Voiculescu [40] states that

lim
N→∞

E[tr p(GN
1 , . . . , GN

n )] = τ(p(s1, . . . , sn)) (1.6)

for any noncommutative polynomial p, where tr(M) := 1
N Tr(M) denotes the nor-

malized trace of a matrix M ∈ MN (C). In an important paper, Haagerup and
Thorbjørnsen [19] showed that the weak asymptotic freeness property (1.6) may be
considerably strengthened to obtain convergence in norm

lim
N→∞

E[‖p(GN
1 , . . . , GN

n )‖] = ‖p(s1, . . . , sn)‖ (1.7)

for any noncommutative polynomial p. This strong asymptotic freeness property
has important applications in the theory of operator algebras [19, 17, 18].

A noncommutative analogue of the random matrix model (1.1) is obtained by
replacing the scalar Gaussian coefficients gi by standard Wigner matrices:

XN =

n∑

i=1

Ai ⊗GN
i . (1.8)

When N = 1, this model coincides with (1.1); however, as N increases, the ma-
trices GN

i become increasingly noncommutative. The weak and strong asymptotic
freeness properties (1.6) and (1.7) imply that the behavior of the spectrum of XN

as N → ∞ is captured by the infinite-dimensional operator

Xfree =

n∑

i=1

Ai ⊗ si (1.9)

in that limN→∞ E tr[(XN)p] = (tr⊗τ)(Xp
free) and limN→∞ E‖XN‖ = ‖Xfree‖. The

study of such models plays a fundamental role in [19].
While Xfree may be viewed abstractly as the limiting object associated to XN ,

its considerable utility (from the perspective of this paper) is that it enables explicit
computation of many spectral statistics of the random matrices XN . For example,
as we will recall in Section 2.1, the norm ‖Xfree‖ admits an explicit formula in terms
of the matrices Ai [25] and admits the simple estimates [28, p. 208]

σ(X) ≤ ‖Xfree‖ ≤ 2σ(X). (1.10)

Similarly, the limiting spectral distribution of XN may be computed by means of
a (matrix-valued) Dyson equation as in classical random matrix theory [19, 1].
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1.3. Main results. We now give an brief overview of the main results of this paper.
A detailed presentation of our main results will be given in Section 2, while various
examples that illustrate our results will be discussed in Section 3.

1.3.1. Gaussian random matrices. To illustrate the general principle described in
Section 1.2, let us begin by stating a special case of one of our main results. For
any centered d× d random matrix X as in (1.1), we denote by Cov(X) ∈ Md2(C)sa
the covariance matrix of its d2 scalar entries, that is,

Cov(X)ij,kl = E[XijXkl] =
n∑

s=1

(As)ij(As)kl

which we view as a d2 × d2 positive semidefinite matrix. We now define

v(X)2 = ‖Cov(X)‖ = sup
Tr|M|2≤1

n∑

s=1

|Tr[AsM ]|2.

It should be far from apparent at this point that the parameter v(X) captures
noncommutativity of the matrices Ai; this will be explained in Section 1.4. Note,
for example, that v(X) ≍ maxij |bij | in the setting of (1.4) (cf. section 3.1).

Theorem 1.2. For the model (1.1) we have

E‖X‖ ≤ ‖Xfree‖+ C v(X)
1
2σ(X)

1
2 (log d)

3
4 ,

where Xfree is defined in (1.9) and C is a universal constant.

Using (1.10) and Young’s inequality, Theorem 1.2 immediately implies a com-
pletely general bound of the form (1.5):

E‖X‖ . σ(X) + v(X)(log d)
3
2 . (1.11)

However, Theorem 1.2 is much sharper in that its leading term captures the exact
quantity predicted by free probability. In many cases, our results will make it pos-

sible to prove that E‖X‖ = (1+o(1))‖Xfree‖ as soon as v(X)/σ(X) = o((log d)−
3
2 ),

providing essentially optimal results in this setting.
Our main results for Gaussian random matrices (see Sections 2.1 and 2.2) are

considerably more general than Theorem 1.2. In particular:

• Our main results are formulated for arbitrary Gaussian random matrices, which
may have nonzero mean and may be non-self-adjoint.

• We bound the support of the full spectrum sp(X) ⊆ sp(Xfree)+ [−ε, ε] with high

probability, where ε ≍ v(X)
1
2σ(X)

1
2 (log d)

3
4 .

• We obtain nonasymptotic upper and lower bounds on the moments, resolvent,
and other spectral statistics of X in terms of Xfree.

The “intrinsic freeness” phenomenon that is captured by these results has strong
implications both for matrix concentation inequalities and in free probability.

1.3.2. Asymptotic freeness. While our main results are nonasymptotic in nature,
they give rise to remarkable new asymptotic results in free probability: when com-
bined with the linearization trick of [19], our results establish strong asymptotic
freeness (1.7) for a very large class of random matrix models. For example, we
will prove the following result, as well as an analogous strong law (which yields a.s.
convergence) that will be formulated in Section 2.3.
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Theorem 1.3. Let s1, . . . , sm be a free semicircular family. For each N ≥ 1, let
HN

1 , . . . , HN
m be independent self-adjoint random matrices of dimension d = d(N) ≥

N such that each HN
k has jointly Gaussian entries, E[HN

k ] = 0, and E[(HN
k )2] = 1.

a. If v(HN
k ) = o(1) as N → ∞ for all k, then for any polynomial p

lim
N→∞

E[tr p(HN
1 , . . . , HN

m )] = τ(p(s1, . . . , sm)).

b. If v(HN
k ) = o((log d)−

3
2 ) as N → ∞ for all k, then for any polynomial p

lim
N→∞

E[‖p(HN
1 , . . . , HN

m )‖] = ‖p(s1, . . . , sm)‖.

A striking consequence of Theorem 1.3 is the unexpected ubiquity of the strong
asymptotic freeness property. To date, strong asymptotic freeness has been proved
only for Wigner matrices and for certain highly symmetric ensembles; for a detailed
overview of prior results, see [10, 6] and the references cited therein. In contrast,
neither symmetry nor independent entries plays any role in Theorem 1.3, which
enables us to establish strong asymptotic freeness in models that appear to lie far
outside the reach of previous methods (for example, for sparse Wigner matrices

of dimension d with only O(d log4 d) nonzero entries, see Example 3.5). For many
such models, even weak asymptotic freeness (1.6) was not previously known.

1.3.3. Sums of independent random matrices. When viewed as matrix concentra-
tion inequalities, bounds such as (1.11) are easily applicable in concrete situations
and yield results of optimal order in many examples where classical matrix concen-
tration inequalities are suboptimal, as will be illustrated in Section 3.

While our sharpest results are obtained in the Gaussian setting, the Gaussian
assumption may be restrictive in applications (particularly in applied mathematics).
However, using routine arguments, we may extend our bounds to a much more
general setting at the expense of losing a universal constant. For example, we will
derive the following result for arbitrary sums of independent random matrices.

Theorem 1.4. Let Z1, . . . , Zn be arbitrary independent d× d self-adjoint centered
random matrices, and let X =

∑n
i=1 Zi. Then

E‖X‖ . ‖EX2‖ 1
2 + ‖Cov(X)‖ 1

2 (log d)
3
2 + (E[maxi‖Zi‖2HS])

1
2 (log d)2,

where ‖Z‖2HS := Tr[|Z|2] denotes the Hilbert-Schmidt norm.

Theorem 1.4 yields considerably stronger results than the widely used matrix
Bernstein inequality [35] in various situations. An extension of Theorem 1.4 to
non-symmetric matrices and a corresponding tail bound is given in Section 2.4.

1.4. Overview of the proofs.

1.4.1. Crossings. Before we describe the main technique used in our proofs, let us
briefly outline the origin of the key parameter v(X) that quantifies noncommuta-
tivity in our results, and its relation to free probability.

The simplest way to understand the difference between the random matrix X
and its free counterpart Xfree is in terms of their moments. Let us recall that these
moments may be expressed combinatorially as [27, pp. 128–129]

E[trX2p] =
∑

π∈P2([2p])

∑

(i1,...,i2p)∼π

tr[Ai1 . . . Ai2p ]
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and

(tr⊗ τ)(X2p
free) =

∑

π∈NC2([2p])

∑

(i1,...,i2p)∼π

tr[Ai1 . . . Ai2p ],

where P2([2p]) and NC2([2p]) denote the families of all pair partitions and non-
crossing pair partitions of [2p], respectively, and (i1, . . . , i2p) ∼ π signifies that
ik = il whenever {k, l} ∈ π. In other words, what distinguishes free probability
from classical probability is the absence of crossings, that is, of terms of the form
∑

ij · · ·Ai · · ·Aj · · ·Ai · · ·Aj · · · in the moment formulae.
In free probability, the vanishing of crossings arises from the noncommutativity

of the semicircular family si. Even in (1.1), however, crossings may be intrinsically
suppressed due to the noncommutativity of the coefficients Ai. It is a beautiful
idea of Tropp [37] to quantify the latter effect by the parameter

w(X) = sup
U,V,W

‖E[X1UX2V X1WX2]‖
1
4 = sup

U,V,W

∥
∥
∥
∥
∥

n∑

i,j=1

AiUAjV AiWAj

∥
∥
∥
∥
∥

1
4

,

where X1, X2 are i.i.d. copies of X and the supremum is taken over all (nonrandom)
unitary matrices U, V,W of the same dimension as X . Note that when all Ai

commute, w(X) ≥ ‖∑ij AiAjAiAj‖ 1
4 = ‖(∑iA

2
i )

2‖ 1
4 = σ(X); but if w(X) ≪

σ(X), the contribution of crossings will be suppressed.
Unfortunately, the quantity w(X) is very unwieldy and is difficult to compute

in practice. Moreover, as will be explained below, the quantity that will arise in
our proofs is not w(X), but rather w(X̃) for an auxiliary matrix X̃ of much higher
dimension. To control this parameter, we will show in Section 4.2 that

w(X) ≤ v(X)
1
2σ(X)

1
2 , (1.12)

which enables us to formulate our results in terms of the much simpler quantity
v(X) that is readily computable in concrete situations. In particular, it follows that
v(X) does indeed capture noncommutativity, as it controls w(X).

The notion that smallness of w(X) should lead to free behavior is implicit in the
work of Tropp [37]. However, the attempt in [37] to exploit this idea by means of
moment recursions appears to be insufficiently powerful to capture this phenomenon
without imposing strong symmetry assumptions on the coefficients Ai. A key new
idea of this paper enables us to capture this phenomenon in its full strength.

1.4.2. Interpolation. The central idea behind our proofs is the following construc-
tion. Let GN

1 , . . . , GN
n be independent standard Wigner matrices as in Section 1.2,

and let DN
1 , . . . , DN

n be independent N ×N diagonal matrices with i.i.d. standard
Gaussians on the diagonal. Define for q ∈ [0, 1] the random matrix

XN
q =

n∑

i=1

Ai ⊗ (
√
q DN

i +
√

1− q GN
i ).

The point of this construction is that the family (XN
q )q∈[0,1],N∈N enables us to

interpolate between X and Xfree. Indeed, XN
0 = XN is the model (1.8), whose

moments converge as N → ∞ to those of Xfree by (1.6) (this is the only property
that will be used in our proofs; strong asymptotic freeness will not be assumed).
On the other hand, it is readily verified that XN

1 has the same moments as X in
the sense E[trXp] = E tr[(XN

1 )p] for every p,N ∈ N.
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In order to bound the moments of X by those of Xfree, it suffices to bound the
rate at which the moments change along the above interpolation. Given that the
moments of X and Xfree differ only by terms involving crossings, it is natural to
expect that the rate of change along the interpolation will be controlled by the
contributions of the crossings. It will turn out that the construction of the matrices
XN

q has precisely the right form in order to capture this phenomenon in terms of the
parameters described in the previous section. More precisely, the explicit expression
for the derivative d

dqE tr[(XN
q )p], which can be computed using a standard Gaussian

interpolation lemma [32, §1.3], can be controlled in terms of the quantity

w̃(X) = sup
N

w(XN
1 ).

The resulting differential inequality may be integrated to bound the moments of X
in terms of the moments of Xfree and the parameter w̃(X). As the latter is nearly

impossible to compute, we finally obtain a practical bound w̃(X) ≤ v(X)
1
2 σ(X)

1
2

using (1.12) and v(XN
1 ) = v(X), σ(XN

1 ) = σ(X).
The above interpolation method proves to be a powerful tool for capturing “in-

trinsic freeness”. The same method can be used to control not just the moments,
but also various other spectral statistics. In particular, we will control the full spec-
trum of X by that of Xfree by applying the interpolation method to large moments
of the resolvent E[tr |z1−X |−2p]. Such control of the full spectrum is crucial for
the applications of our results to free probability described in Section 1.3.2.

Remark 1.5. After the results of this paper were completed, we learned that a dif-
ferent interpolation method was recently used by Collins, Guionnet, and Parraud
[10] to obtain a quantitative form of the strong asymptotic freeness of Wigner ma-
trices due to Haagerup-Thorbjørnsen. Rather than interpolating between scalar
Gaussians and Wigner matrices, [10] interpolate in the opposite direction, between
Wigner matrices and a semicircular family, using the free Ornstein-Uhlenbeck semi-
group. The latter does not capture any notion of “intrinsic freeness”. Nonetheless,
the results of [10] and of the present paper suggest that interpolation provides a
versatile method to obtain quantitative results in free probability.

1.5. Organization of this paper. The rest of this paper is organized as follows.
In Section 2, the main results of this paper will be presented in full detail. The
utility of our main results will then be illustrated in a number of concrete examples
in Section 3. Section 4 briefly reviews some basic notions of free probability, and
introduces various tools that are used throughout the rest of the paper. The proofs
of our main results are given in Sections 5–8.

The final Section 9 is devoted to a discussion of various broader questions arising
from our main results. In particular, we will show that there cannot exist a canonical
choice of the parameter σ∗∗(X) in the inequality (1.5), as any such parameter must
violate some natural property of the spectral norm. This disproves a conjecture,
formulated in [37, 39, 4], which suggests that the parameter v(X) in our main
results can be replaced by a certain smaller parameter σ∗(X) that will be defined
below. We conclude by discussing a number of open questions.

1.6. Notation. The following notations will be frequently used throughout this
paper. We write [n] := {1, . . . , n} for n ∈ N. For a bounded operator X on a Hilbert

space, we denote by ‖X‖ its operator (i.e., spectral) norm and by |X | := (X∗X)
1
2 .

The spectrum of X is denoted as sp(X). If X is self-adjoint and h : R → C is
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measurable, then the operator h(X) is defined by the usual functional calculus (in
particular, if X is a self-adjoint matrix, h is applied to the eigenvalues while keeping
the eigenvectors fixed). The algebra of d×d matrices with values in a *-algebra A is
denoted as Md(A), and its subspace of self-adjoint matrices is denoted as Md(A)sa.

For complex matrices M ∈ Md(C), we always denote by TrM :=
∑d

i=1 Mii the
unnormalized trace and by trM := 1

d TrM the normalized trace.

2. Main results

2.1. Concentration of the spectrum. The strongest results of this paper apply
to arbitrary random matrices with jointly Gaussian entries (this model is more
general than the one that was assumed for sake of illustration in the introduction).
To define this model, fix d ≥ 2 and n ∈ N, let A0, . . . , An ∈ Md(C), let g1, . . . , gn be
i.i.d. real Gaussian variables with zero mean and unit variance, and let s1, . . . , sn
be a free semicircular family (cf. Section 4.1). We now define

X := A0 +
n∑

i=1

giAi, Xfree := A0 ⊗ 1+
n∑

i=1

Ai ⊗ si. (2.1)

In formulating our results, it will sometimes be convenient to assume in addition
that the model is self-adjoint, that is, that A0, . . . , An ∈ Md(C)sa. In such cases this
assumption will be made merely for notational convenience and is not a restriction,
as will be explained in Remark 2.6 below.

The following parameters will play a fundamental role in the sequel:

σ(X)2 :=

∥
∥
∥
∥
∥

n∑

i=1

A∗
iAi

∥
∥
∥
∥
∥
∨
∥
∥
∥
∥
∥

n∑

i=1

AiA
∗
i

∥
∥
∥
∥
∥
= ‖EX̂∗X̂‖ ∨ ‖EX̂X̂∗‖,

σ∗(X)2 := sup
‖v‖=‖w‖=1

n∑

i=1

|〈v,Aiw〉|2 = sup
‖v‖=‖w‖=1

E[|〈v, X̂w〉|2],

v(X)2 := sup
Tr|M|2≤1

n∑

i=1

|Tr[AiM ]|2 = ‖Cov(X)‖,

where X̂ := X − EX . It follows readily from the definitions that σ∗(X) ≤ v(X)
and σ∗(X) ≤ σ(X). As the following combination will appear frequently, we let

ṽ(X)2 := v(X)σ(X).

Note that the definitions of these parameters do not involve A0.
We can now formulate our main result on concentration of the spectrum of X .

Here sp(M) denotes the spectrum of a self-adjoint operator M .

Theorem 2.1. For the model (2.1) with A0, . . . , An ∈ Md(C)sa, we have

P
[
sp(X) ⊆ sp(Xfree) + C{ṽ(X)(log d)

3
4 + σ∗(X)t}[−1, 1]

]
≥ 1− e−t2

for all t ≥ 0, where C is a universal constant.

The spectrum of Xfree always consists of a finite union of bounded intervals [1].

Theorem 2.1 implies that when v(X) ≪ (log d)−
3
2 σ(X), all eigenvalues of X are

close to the spectrum of Xfree. In particular, not only must the extreme eigenvalues
of X lie close to the edge of the spectrum of Xfree, but also the interior eigenvalues
cannot lie far inside the gaps in the spectrum of Xfree.
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When specialized to the extreme eigenvalues, Theorem 2.1 yields a bound on the
spectral norm of X . We formulate it here directly for non-self-adjoint matrices.

Corollary 2.2. For the model (2.1) with A0, . . . , An ∈ Md(C), we have

P
[
‖X‖ > ‖Xfree‖+ Cṽ(X)(log d)

3
4 + Cσ∗(X)t

]
≤ e−t2

for all t ≥ 0, where C is a universal constant. Moreover,

E‖X‖ ≤ ‖Xfree‖+ Cṽ(X)(log d)
3
4 .

Theorem 2.1 and Corollary 2.2 will be proved in Section 6.

Remark 2.3. In order to apply Corollary 2.2 in concrete situations, we must be
able to compute or estimate ‖Xfree‖. For ease of reference, we presently recall two
useful facts; further discussion and references may be found in Section 4.1. In the
following, λmax(M) denotes the maximal eigenvalue of a self-adjoint matrix M .

Lemma 2.4 (Lehner). For the model (2.1) with A0, . . . , An ∈ Md(C)sa, we have

‖Xfree‖ = max
ε=±1

inf
Z>0

λmax

(

Z−1 + εA0 +

n∑

i=1

AiZAi

)

,

where the infimum is over positive definite Z ∈ Md(C)sa. The infimum may be
further restricted to Z for which the matrix in λmax(· · · ) is a multiple of the identity.

Lemma 2.5 (Pisier). For the model (2.1) with A0, . . . , An ∈ Md(C), we have

‖A0‖ ∨ σ(X) ≤ ‖Xfree‖ ≤ ‖A0‖+
∥
∥
∥
∥
∥

n∑

i=1

A∗
iAi

∥
∥
∥
∥
∥

1
2

+

∥
∥
∥
∥
∥

n∑

i=1

AiA
∗
i

∥
∥
∥
∥
∥

1
2

.

Note that the combination of Corollary 2.2 and Lemma 2.5 immediately yields
a Gaussian matrix concentration inequality of the form (1.5).

Remark 2.6. For simplicity, we formulated results such as Theorem 2.1 and Lemma
2.4 for self-adjoint matrices. The following standard device makes it possible to
reduce the general case to the self-adjoint case. Given A0, . . . , An ∈ Md(C), define

the matrices Ă0, . . . , Ăn ∈ M2d(C)sa, X̆ , and X̆free as

Ăi =

[
0 Ai

A∗
i 0

]

, X̆ =

[
0 X
X∗ 0

]

, X̆free =

[
0 Xfree

X∗
free 0

]

.

Then it is not difficult to show (see Section 4.2.3) that

sp(X̆) ∪ {0} = sp(|X |) ∪ −sp(|X |) ∪ {0},
and analogously for Xfree; moreover, we have

σ(X̆) = σ(X), σ∗(X̆) = σ∗(X), v(X̆) ≤
√
2 v(X).

Applying Theorem 2.1 to X̆ therefore shows that in the non-self-adjoint case, the
singular values of X concentrate around those of Xfree. Similarly, we can apply
Lemma 2.4 to X̆free to obtain an explicit formula for ‖Xfree‖.

The above construction does not require the matrices Ai to be square. However,
if Ai are d1×d2 matrices with d1 < d2, the singular values of X are unchanged if we
add d2−d1 zero rows to the matrix. Thus there is no loss of generality in restricting
attention to square matrices, as we do for simplicity throughout this paper.
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2.2. Spectral statistics. The results of the previous section quantify concentra-
tion of the eigenvalues of X near the spectrum of Xfree. We now formulate several
complementary results that quantify the closeness of the spectral distributions of
X and Xfree. We begin by stating a bound on the moments.

Theorem 2.7. For the model (2.1) with A0, . . . , An ∈ Md(C), we have

|E[tr |X |2p] 1
2p − (tr⊗ τ)(|Xfree|2p)

1
2p | ≤ 2p

3
4 ṽ(X)

for all p ∈ N.

Let us emphasize that unlike the results of Section 2.1, Theorem 2.7 gives a
two-sided bound on X in terms of Xfree. This opens the door to obtaining sharp
asymptotics from our nonasymptotic bounds.

The same method of proof is readily applied to other spectral statistics. To
illustrate this, we will bound the matrix-valued Stieltjes transform, which plays an
important role in operator-valued free probability [26, Chapters 9–10]. A bound of
this kind is most naturally formulated for self-adjoint matrices.

Theorem 2.8. For the model (2.1) with A0, . . . , An ∈ Md(C)sa, define the matrix-
valued Stieltjes transforms G(Z), Gfree(Z) ∈ Md(C) as

G(Z) := E[(Z −X)−1], Gfree(Z) := (id⊗ τ)[(Z ⊗ 1−Xfree)
−1].

Then we have

‖G(Z)−Gfree(Z)‖ ≤ ṽ(X)4‖(ImZ)−5‖
for all Z ∈ Md(C) with ImZ := 1

2i(Z − Z∗) > 0.

Following [19, §6], Theorem 2.8 implies a bound on smooth spectral statistics.

Corollary 2.9. For the model (2.1) with A0, . . . , An ∈ Md(C)sa, we have

|E[tr f(X)]− (tr ⊗ τ)[f(Xfree)]| . ṽ(X)4‖f‖W 6,1(R)

for every f ∈ W 6,1(R).

Theorems 2.7–2.8 and Corollary 2.9 will be proved in Section 5.

2.3. Strong asymptotic freeness. By combining the bounds of Sections 2.1–2.2
with the linearization trick of [19], we will be able to establish strong asymptotic
freeness for a remarkably general class of random matrices. We presently give a
complete formulation of our main result in this direction.

Theorem 2.10. Let s1, . . . , sm be a free semicircular family. For each N ≥ 1, let
HN

1 , . . . , HN
m be independent self-adjoint random matrices of dimension d = d(N) ≥

N such that each HN
k has jointly Gaussian entries,

lim
N→∞

‖E[HN
k ]‖ = 0, lim

N→∞
‖E[(HN

k )2]− 1‖ = 0

for all k. Then the following hold.

a. If v(HN
k ) = o(1) as N → ∞ for all k, then

lim
N→∞

E[tr p(HN
1 , . . . , HN

m )] = τ(p(s1, . . . , sm))

for every noncommutative polynomial p.
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b. If v(HN
k ) = o((log d)−

3
2 ) as N → ∞ for all k, then

lim
N→∞

E[‖p(HN
1 , . . . , HN

m )‖] = ‖p(s1, . . . , sm)‖,

lim
N→∞

‖p(HN
1 , . . . , HN

m )‖ = ‖p(s1, . . . , sm)‖ a.s.,

lim
N→∞

tr p(HN
1 , . . . , HN

m ) = τ(p(s1, . . . , sm)) a.s.

for every noncommutative polynomial p.

Let us recall that the type of convergence in part b of Theorem 2.10, called
strong convergence in distribution, has even stronger implications: it implies that
both the spectral distribution and support of the spectrum of any polynomial
p(HN

1 , . . . , HN
m ) converges to that of p(s1, . . . , sm) as N → ∞ in the sense of weak

convergence and Hausdorff convergence, respectively; see [11, Proposition 2.1].
Surprisingly, the conclusion of Theorem 2.10 appears to be new at this level of

generality already for a single random matrix m = 1. In this case, we obtain the
following result in the spirit of classical random matrix theory.

Corollary 2.11. Let HN be a self-adjoint random matrix of dimension d = d(N)
with jointly Gaussian entries, and assume that

‖E[HN ]‖ = o(1), ‖E[(HN)2]− 1‖ = o(1), v(HN ) = o((log d)−
3
2 )

as N → ∞. Then the empirical distribution

µHN :=
1

d

d∑

i=1

δλi(HN )

of the eigenvalues λi(H
N ) of HN converges weakly a.s. to the semicircle law

µHN

w−→ µsc a.s., µsc(dx) =
1

2π

√

4− x2 1|x|≤2 dx,

and we have convergence of the norm ‖HN‖ → 2 a.s. as N → ∞.

Let us emphasize that Corollary 2.11 (and Theorem 2.10) makes no structural
assumptions on the variance or dependence pattern of HN beyond the minimal
isotropy conditions E[HN ] ≈ 0 and E[(HN )2] ≈ 1. Previous results on Gaussian
random matrices with dependent entries require restrictive structural assumptions
to obtain even the semicircle law, cf. [14] and the references therein.

Theorem 2.10 and Corollary 2.11 will be proved in Section 7.

2.4. Matrix concentration inequalities. All the results presented above apply
to Gaussian random matrices. However, using routine symmetrization arguments,
we can extend our bounds to a much more general class of random matrices at
the expense of the loss of a universal constant. Because of the latter, the resulting
bounds can no longer capture the exact free probability behavior that is a central
feature of our Gaussian results. Nonetheless, such bounds can be very useful in
many applications due to their generality and simplicity. We presently formulate a
concrete result along these lines, which will be proved in Section 8.

Theorem 2.12. Let Z1, . . . , Zn be arbitrary independent d × d random matrices
with E[Zi] = 0, and let X =

∑n
i=1 Zi. Define the matrix parameters

v2 = ‖Cov(X)‖, L2 = E[maxi‖Zi‖2HS], σ2
∗ = sup

‖v‖=‖w‖=1

E[|〈v,Xw〉|2],
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and

σ2
1 = ‖EX∗X‖, σ2

2 = ‖EXX∗‖.
Then

E‖X‖ ≤ 2{σ1 + σ2}+ C(log d)
3
2 v + C(log d)2L

for a universal constant C. Moreover, if ‖Zi‖ ≤ R a.s. for all i, then

P[‖X‖ ≥ 2{σ1 + σ2}+ C{(log d) 3
2 v + (log d)2L+ σ∗

√
t+Rt}] ≤ e−t

for all t ≥ 0.

Note that we have assumed in Theorem 2.12 that E[X ] = 0. For sums of
independent random matrices with nonzero mean, Theorem 2.12 may be applied to
the random matrix X − E[X ]; thus Theorem 2.12 may indeed be interpreted as a
“matrix concentration inequality,” in the sense that it bounds the deviation of a sum
of independent random matrices from its mean (in the spectral norm). The present
bound should be compared with the widely used matrix Bernstein inequality [35,
Theorem 6.1.1], which states that

E‖X‖ . (σ1 + σ2)
√

log d+R log d. (2.2)

Theorem 2.12 replaces the dimensional factor in the leading term of the matrix
Bernstein inequality by a constant factor 2 when v, L,R are sufficiently small, which
is the case in many examples (e.g., for random matrices with bounded i.i.d. entries).
Let us emphasize that while the leading term of Theorem 2.12 is dimension-free,
the constant 2 is not optimal; see section 9.2.2 for further discussion.

Remark 2.13. As ‖Cov(X)‖ = sup‖M‖HS≤1 E[|Tr[MX ]|2], we have σ∗ ≤ v in The-
orem 2.12. The parameter v is often easier to compute in practice.

Remark 2.14. Note that the parameters σ1, σ2, σ∗, v in Theorem 2.12 depend only
on the covariance of the entries of X , while the parameters L,R do not. One
may think of L,R as parameters that bound the deviation from Gaussianity. For
example, suppose Y1, . . . , Yn are i.i.d. uniformly bounded centered random matrices,

and let X = n− 1
2

∑n
i=1 Yi. By the central limit theorem, the distribution of X

becomes Gaussian as n → ∞. In this case σ1, σ2, σ∗, v do not depend on n, but

L,R = O(n− 1
2 ). Therefore, if we let n → ∞, Theorem 2.12 reproduces the Gaussian

bounds of Corollary 2.2 up to a universal constant (cf. Lemma 2.5).

3. Examples

The aim of this section is to illustrate our main results in concrete examples. In
Section 3.1 we consider Gaussian random matrices with independent entries, while
Section 3.2 discusses some simple examples of random matrix models with depen-
dent entries. Section 3.3 is concerned with Gaussian sample covariance matrices,
whose samples may be neither independent nor identically distributed.

3.1. Independent entries. In this section, we consider the case of real symmet-
ric Gaussian random matrices with independent entries (nonsymmetric or complex
matrices may be considered analogously, but we restrict attention to the real sym-
metric case for simplicity). More precisely, let X be the d × d symmetric random
matrix with entries Xij = bijgij , where {gij : i ≥ j} are i.i.d. standard real Gaussian
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random variables and {bij : i ≥ j} are given nonnegative scalars. We let bji := bij
and gji := gij . This model may be expressed in the form (2.1) as

X =
∑

i≥j

gijbijEij , (3.1)

where Eii := eie
∗
i and Eij := (eie

∗
j + eje

∗
i ) for i > j. Here and in the sequel,

e1, . . . , ed denotes the coordinate basis of Rd.
The independent entry setting is the only general model of nonhomogeneous

random matrices for which satisfactory norm bounds were obtained prior to this
work [5, 38, 22]. In particular, it was proved in [5, Theorem 1.1] that

E‖X‖ ≤ (2 + ε)max
i

√
∑

j

b2ij +
C√
ε
max
ij

bij
√

log d (3.2)

for any 0 < ε < 1, where C is a universal constant. The constant 2 in the leading
term is optimal, as E‖X‖ = 2 + o(1) as d → ∞ when X is a standard Wigner
matrix, that is, when bij = 1√

d
for all i, j. Moreover, (3.2) is nearly sharp in the

sense that the inequality can be reversed up to a universal constant under mild
assumptions [5, §3.5] (a completely sharp dimension-free bound, but without the
optimal constant in the leading term, was proved in [22]).

Nonetheless, even in the special case of independent entries, the general results
of this paper can yield a significant improvement over (3.2).

Lemma 3.1. For the model (3.1), we have

σ(X) = max
i

√
∑

j

b2ij , max
ij

bij ≤ σ∗(X) ≤ v(X) ≤
√
2max

ij
bij .

In particular,

E‖X‖ ≤ (1 + ε)‖Xfree‖+
C

ε
max
ij

bij (log d)
3
2 (3.3)

for any ε > 0, where C is a universal constant.

Proof. The expression for σ(X)2 = ‖EX2‖ follows readily as

EX2 =
∑

i

eie
∗
i

∑

j

b2ij (3.4)

is a diagonal matrix. Moreover, that v(X)2 ≥ σ∗(X)2 ≥ maxij E[|Xij |2] = maxij b
2
ij

follows immediately from the definitions in Section 2.1.
On the other hand, as the pairs of entries (Xij , Xji) are independent for distinct

indices i ≥ j, we have Cov(X) =
⊕

i≥j Cij where Cij is the covariance matrix of

(Xij , Xji). Thus v(X)2 = ‖Cov(X)‖ = maxi≥j ‖Cij‖ ≤ 2maxij b
2
ij .

To conclude, it remains to invoke Corollary 2.2 and to note that cṽ(X)(log d)
3
4 ≤

ε‖Xfree‖+ c2

4εv(X)(log d)
3
2 for any c, ε > 0 by Young’s inequality and Lemma 2.5. �

While the second term of (3.3) has a slightly suboptimal power on the logarithm
as compared to (3.2), this term is already negligible when

max
ij

b2ij = o

(

(log d)−3 max
i

∑

j

b2ij

)

. (3.5)
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As soon as this is the case, the bound (3.3) improves on (3.2) in that the leading
term 2σ(X) is replaced by the sharp free probability quantity ‖Xfree‖. We always
have ‖Xfree‖ ≤ 2σ(X) by Lemma 2.5, but this inequality often turns out to be
strict in nonhomogeneous situations. To understand this phenomenon better, it is
instructive to compute ‖Xfree‖ in the present setting.

Lemma 3.2. For the model (3.1), we have

‖Xfree‖ = inf
x∈Rd

++

max
i

{
1

xi
+
∑

j

b2ijxj

}

= 2 sup
w∈∆d−1

∑

i

√

wi

∑

j

b2ijwj ,

where Rd
++ is the positive orthant and ∆d−1 is the standard simplex in Rd. We

always have ‖Xfree‖ ≤ 2σ(X). If B = (b2ij) is an irreducible nonnegative matrix,

then equality ‖Xfree‖ = 2σ(X) holds if and only if maxi
∑

j b
2
ij = mini

∑

j b
2
ij.

Remark 3.3. The irreducibility assumption entails no loss of generality. In the
general case, we may write B =

⊕

iBi in terms of its irreducible components Bi,
and Xfree =

⊕

iXfree,i decomposes accordingly. As ‖Xfree‖ = maxi ‖Xfree,i‖, the
characterization of when ‖Xfree‖ = 2σ(X) reduces to the irreducible case.

Proof of Lemma 3.2. Define

f(Z) := Z−1 +
∑

i≥j

b2ijEijZEij .

Fix any Z > 0 so that f(Z) is a multiple of the identity. Then f(Z) = diag(f(Z)),

where diag(M)ij := Miiδij . Using that (Z−1)ii ≥ (Zii)
−1 (as ‖Z 1

2 ei‖‖Z− 1
2 ei‖ ≥ 1),

it follows readily that f(Z) ≥ f(diag(Z)). Thus Lemma 2.4 implies

‖Xfree‖ = inf
Z>0

λmax(f(diag(Z))) = inf
x∈Rd

++

max
i

{
1

xi
+
∑

j

b2ijxj

}

.

We can further compute

‖Xfree‖ = inf
x∈Rd

++

sup
w∈∆d−1

∑

i

wi

{
1

xi
+
∑

j

b2ijxj

}

= 2 sup
w∈∆d−1

∑

i

√

wi

∑

j

b2ijwj ,

where we used the Sion minimax theorem to exchange the infimum and supremum.
If we apply Cauchy-Schwarz to the rightmost expression for ‖Xfree‖, we obtain

‖Xfree‖ ≤ 2maxi[
∑

j b
2
ij ]

1
2 = 2σ(X) directly. Therefore, when ‖Xfree‖ = 2σ(X),

the maximizing vector w ∈ ∆d−1 must yield equality in Cauchy-Schwarz. The
latter implies there exists ρ ≥ 0 such that Bw = ρw and ‖Xfree‖ = 2

√
ρ. In

particular, if B is irreducible, then ρ = ρ(B) is the largest eigenvalue of B by
the Perron-Frobenius theorem [16, p. 53]. It remains to recall that the inequality
ρ(B) ≤ maxi

∑

j b
2
ij is strict unless maxi

∑

j b
2
ij = mini

∑

j b
2
ij , cf. [16, p. 63]. �

In other words, under the mild assumption (3.5), the constant 2 in (3.2) is sub-
optimal and the results of the present paper yield strictly better bounds on E‖X‖
as soon as

∑

j b
2
ij 6= ∑

j b
2
kj for some i, k (and X does not decompose as a block-

diagonal matrix). In such cases, Lemma 3.2 can be used to explicitly compute or
estimate ‖Xfree‖. The latter quantity has also been studied by completely different
methods in [13], to which we refer for complementary results.

Even when maxi
∑

j b
2
ij = mini

∑

j b
2
ij , however, our main results yield far

stronger conclusions than just a bound on the spectral norm. Indeed, by (3.4),



16 AFONSO S. BANDEIRA, MARCH T. BOEDIHARDJO, AND RAMON VAN HANDEL

this corresponds precisely to the case where E[X2] = σ(X)21; thus any indepen-
dent family of such matrices is strongly asymptotically free by Theorem 2.10.

Corollary 3.4. Let s1, . . . , sm be a free semicircular family. For each N ≥ 1, let
HN

1 , . . . , HN
m be independent random matrices of dimension d = d(N) ≥ N of the

form (3.1), such that the variance pattern (b2ij) of HN
k satisfies

max
i

∑

j

b2ij = min
i

∑

j

b2ij = 1, max
ij

b2ij = o((log d)−3)

for every k,N . Then

lim
N→∞

‖p(HN
1 , . . . , HN

m )‖ = ‖p(s1, . . . , sm)‖ a.s.,

lim
N→∞

tr p(HN
1 , . . . , HN

m ) = τ(p(s1, . . . , sm)) a.s.

for every noncommutative polynomial p.

Corollary 3.4 provides a large class of new examples of strongly asymptotically
free random matrices. Let us highlight a particularly interesting case.

Example 3.5 (Sparse Wigner matrices). Let G = ([d], E) be a k-regular graph with
d vertices. A G-sparse Wigner matrix is a d× d real symmetric random matrix X

such that Xij = k−
1
2 gij1{i,j}∈E for i ≥ j, where {gij : i ≥ j} are i.i.d. standard

Gaussians. Note that X has only kd nonzero entries.
Now consider any sequence of kN -regular graphs GN with dN vertices, and let

HN
1 , . . . , HN

m be independent GN -sparse Wigner matrices. Then Corollary 3.4 shows
that HN

1 , . . . , HN
m are strongly asymptotically free as soon as kN ≫ (log dN )3.

This example is striking for at least two reasons. First, all but a vanishing frac-
tion of the entries of the matrices HN

i are zero (for example, d log4 d nonzero entries
already suffice), so that strong asymptotic freeness is achieved here with far less
randomness than is present in standard Wigner matrices. Second, no assumption
whatsoever made on the graphs GN except their regularity; in particular, the dis-
tributions of HN

i need not possess any special symmetries. Let us note that even
weak asymptotic freeness was previously known in the present setting only under
very strong restrictions on the variance pattern, cf. [31, 3].

Beyond norm bounds and asymptotic freeness, applying Theorems 2.1 or 2.8 to
the independent entry model (3.1) provides detailed information on the spectrum
of X for arbitrary variance patterns b2ij satisfying the mild assumption (3.5). In
the interest of brevity we do not spell out these conclusions further.

3.2. Dependent entries. The aim of this section is to discuss some simple ex-
amples of random matrices with dependent entries. Unlike the independent entry
model of the previous section, the only general nonasymptotic bound that was
previously available in the dependent setting is the noncommutative Khintchine
inequality (1.2) and analogous matrix concentration inequalities.

The following examples illustrate that, in many cases, our results are able to
remove the dimensional factor in (1.2) under mild assumptions. To this end, note
that for any random matrix X with centered jointly Gaussian entries, we have
E‖X‖ & σ(X) by (1.2) and Remark 2.6. On the other hand, Corollary 2.2 and

Lemma 2.5 imply that E‖X‖ . σ(X) as soon as v(X)(log d)
3
2 . σ(X). We aim to

understand when the latter condition holds in concrete examples.
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3.2.1. Patterned random matrices. Our first example is a model where independent
Gaussians are placed in a matrix according to a given pattern. More precisely, let
g1, . . . , gn be i.i.d. standard real Gaussian variables and let S1, . . . , Sn be a partition

of [d]× [d]. We define X such that Xjk = d−
1
2 gi for (j, k) ∈ Si; thus

X =

n∑

i=1

giAi, (Ai)jk =
1(j,k)∈Si√

d
. (3.6)

Many classical patterned random matrix models, such as random Toeplitz or Hankel
matrices, are special cases of this model; cf. [7].

Lemma 3.6. For the model (3.6), we have E‖X‖ ≍ σ(X) when maxi |Si| . d
(log d)3 .

Proof. As S1, . . . , Sn partition [d]× [d], we have

σ(X)2 ≥ tr

(
∑

i

A∗
iAi

)

=
1

d2

∑

i

|Si| = 1.

On the other hand, as (Xkl)(k,l)∈Si
are independent for distinct i, we have Cov(X) =

⊕

iCi where Ci is the covariance matrix of (Xkl)(k,l)∈Si
. Therefore

v(X)2 = ‖Cov(X)‖ = max
i

‖Ci‖ = max
i

|Si|
d

.

The assumption now immediately implies v(X)(log d)
3
2 . σ(X). �

Lemma 3.6 shows that when maxi |Si| . d
(log d)3 , the dimensional factor in the

noncommutative Khintchine inequality (1.2) is unnecessary. On the other hand,
Gaussian Toeplitz matrices provide an example with maxi |Si| = d for which the
dimensional factor in the noncommutative Khintchine inequality is necessary: in
this case σ(X) = 1 and E‖X‖ ≍ √

log d [35, §4.4]. Thus Lemma 3.6 is nearly the
best one can hope for. This kind of “phase transition” between regimes where the
noncommutative Khintchine inequality is and is not accurate is a common feature
that will be observed in several other examples.

For a general choice of pattern S1, . . . , Sn, the parameter σ(X) may be difficult
to compute explicitly. However, for special choices of patterns we can obtain much
stronger information. The following simple example provides a model where strong
asymptotic freeness arises for matrices that contain many dependent entries.

Example 3.7 (Special patterned matrices). Suppose S1, . . . , Sn satisfy the following:

1. Each Si is symmetric (that is, (k, l) ∈ Si ⇔ (l, k) ∈ Si).
2. Each Si has at most one entry in each row of [d]× [d].
3. maxi |Si| ≤ d

(log d)4 .

The first assumption implies that each Ai is a symmetric matrix. The second
assumption implies that A2

i is a diagonal matrix; moreover,

(E[X2])kk =
∑

i

(A2
i )kk =

1

d

∑

i

1Si has an entry in row k = 1

for all k as S1, . . . , Sn partition [d]× [d], so that E[X2] = 1. The third assumption
implies that v(X) ≤ (log d)−2. Matrices of this kind therefore satisfy the assump-
tions of Theorem 2.10. Thus if Hd

1 , . . . , H
d
m are independent matrices satisfying the

above assumptions, then they are strongly asymptotically free as d → ∞.
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3.2.2. Independent columns. Our second example is the model where the columns
X1, . . . , Xd of the random matrix X are independent centered Gaussian vectors
with arbitrary covariance matrices Σ1, . . . ,Σd. In this situation, all the relevant
matrix parameters can be easily computed in explicit form.

Lemma 3.8. For the independent columns model, we have

‖E[XX∗]‖ =

∥
∥
∥
∥
∥

d∑

i=1

Σi

∥
∥
∥
∥
∥
, ‖E[X∗X ]‖ = max

i
Tr[Σi], v(X)2 = max

i
‖Σi‖.

In particular,

E‖X‖ ≤ (1 + ε)

{∥
∥
∥
∥
∥

d∑

i=1

Σi

∥
∥
∥
∥
∥

1
2

+max
i

Tr[Σi]
1
2

}

+
C

ε
max

i
‖Σi‖

1
2 (log d)

3
2

for any ε > 0, where C is a universal constant.

Proof. It follows readily from the definition of X that E[XX∗] =
∑

iΣi, E[X∗X ] =
∑

i Tr[Σi] eie
∗
i , and Cov(X) =

⊕

iΣi, which yields the first equation display. It
remains to invoke Corollary 2.2, Lemma 2.5, and Young’s inequality. �

Lemma 3.8 shows that we have E‖X‖ ≍ σ(X) in the independent column model
as soon as the last term in the norm bound is dominated by either of the first two
terms. For example, this is the case if each Σi has sufficently large effective rank

rk(Σi) :=
Tr[Σi]

‖Σi‖
& (log d)3.

Conversely, when the effective rank is too small the dimensional factor in the non-
commutative Khintchine inequality may be necessary: for example, in the special
case Σi = eie

∗
i where X is a diagonal matrix with i.i.d. standard Gaussians on the

diagonal, it is readily seen that σ(X) = 1 and E‖X‖ ≍ √
log d.

On the other hand, we may have E‖X‖ ≍ σ(X) regardless of the effective rank
when the first term in the norm bound dominates. For example, when X has i.i.d.
columns, that is, when Σ1 = · · · = Σd = Σ, Lemma 3.8 implies

E‖X‖ ≍
√

d‖Σ‖+
√
TrΣ.

This special case is well known, see, e.g., [39, Lemma 5.4].

3.2.3. Independent blocks. Our third example is the model

X =






X1,1 · · · X1,m

...
. . .

...
Xm,1 · · · Xm,m




 (3.7)

where X i,j are independent r × r random matrices.

Lemma 3.9. Consider the model (3.7) where X i,j are independent centered Gauss-
ian random matrices. Then we have

E‖X‖ ≤ (1 + ε)

{

max
i

∥
∥
∥
∥
∥

∑

j

EX i,j(X i,j)∗

∥
∥
∥
∥
∥

1
2

+max
j

∥
∥
∥
∥
∥

∑

i

E(X i,j)∗X i,j

∥
∥
∥
∥
∥

1
2
}

+
C

ε
max
ij

v(X i,j) (log rm)
3
2

for any ε > 0, where C is a universal constant.
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Proof. A simple computation shows that ‖EXX∗‖ = maxi ‖
∑

j X
i,j(X i,j)∗‖ and

‖EX∗X‖ = maxj ‖
∑

i(X
i,j)∗X i,j‖. Moreover, as the blocks X i,j are independent,

Cov(X) =
⊕

i,j Cov(X
i,j) and thus v(X)2 = ‖Cov(X)‖ = maxi,j v(X

i,j)2. It
remains to invoke Corollary 2.2, Lemma 2.5, and Young’s inequality. �

The independent block model (3.7) may be viewed as intermediate between the
independent entry model (3.1) and fully dependent random matrices. As a partic-
ularly simple example, consider the case where X i,j are all i.i.d. copies of the same
centered Gaussian random matrix Z. Then Lemma 3.9 yields

E‖X‖ .
√
mσ(Z) + v(Z) (log rm)

3
2 ,

so that E‖X‖ ≍ σ(X) as soon as σ(Z)2 &
log(rm)3

m v(Z)2. On the other hand, the
case m = 1 encodes any centered Gaussian matrix, for which the dimensional factor
of the noncommutative Khintchine inequality cannot be removed.

When the blocks X i,j are arbitrary (non-Gaussian) centered random matrices,
we can still obtain nontrivial information from the matrix concentration inequality
of Theorem 2.12. Let us illustrate this by means of a simple example. By a slight
abuse of notation, we will still write σ(X)2 = ‖E[X∗X ]‖∨ ‖E[XX∗]‖, even though
the matrix X in the following example is non-Gaussian.

Example 3.10 (Non-Gaussian i.i.d. blocks). Consider the model (3.7) where X i,j

are i.i.d. copies of a centered r×r random matrix Z, and assume for simplicity that
‖Z‖HS = c a.s. (the constant c > 0 may depend on m, r). Then σ(X)2 = mσ(Z)2

and ‖Cov(X)‖ = ‖Cov(Z)‖ as in the proof of Lemma 3.9. Moreover,

‖Cov(X)‖ ≤ Tr[Cov(Z)] = c2 = Tr[EZZ∗] ≤ rσ(Z)2.

Thus Theorem 2.12 yields

E‖X‖ .

(

1 + (log rm)2
√

r

m

)

σ(X).

In particular, E‖X‖ . σ(X) as long as r . m
(logm)4 .

On the other hand, when r = m the conclusion may fail. For example, suppose
the random matrix Z is uniformly distributed on the set {±e1e

∗
1, . . . ,±ere

∗
r}. Then

σ(X) = 1, while E‖X‖ ≥ Emaxi ‖Xei‖ & ( logm
log logm )

1
2 [15, Theorem 3.4]. This

example illustrates that a dimensional factor may be necessary in the matrix Bern-
stein inequality (2.2) when r & m, while Theorem 2.12 shows that the dimensional
factor can be eliminated when r . m

(logm)4 .

3.2.4. Gaussian on a subspace. The examples discussed so far all feature a form
of “structured independence”, where certain subsets of entries are assumed to be
independent. This is by no means necessary for the validity of our bounds. Our
fourth example illustrates a simple situation that lacks any independence.

A matrix with i.i.d. real Gaussian entries may be viewed equivalently as the
model defined by the isotropic Gaussian distribution on Md(R). This model may
generalized as follows. Let M ⊆ Md(R) be any linear subspace of dimension
dimM = k of the space of d × d real matrices, and let X be the random ma-
trix defined by the isotropic Gaussian distribution on M. Equivalently,

X =

k∑

i=1

giAi
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where A1, . . . , Ak is any orthonormal basis of M (that is, Tr[A∗
iAj ] = δij) and

g1, . . . , gk are i.i.d. real standard Gaussian variables. Note that this model has fully
dependent entries when M is in general position.

Lemma 3.11. When X is an isotropic real Gaussian matrix on a linear subspace
M ⊆ Md(R), we have E‖X‖ ≍ σ(X) as soon as dimM & d log3 d.

Proof. Let dimM = k. Then σ(X)2 ≥ tr[
∑

i A
∗
iAi] =

k
d . On the other hand, note

that Cov(X) =
∑n

i=1 ι(Ai)ι(Ai)
∗, where ι : Md(R) → R

d2

maps a matrix to its
vector of entries. But here ι(Ai) were assumed to be orthonormal, so Cov(X) is a
projection matrix. Thus v(X)2 = ‖Cov(X)‖ = 1. As explained at the beginning of
Section 3.2, We therefore have E‖X‖ ≍ σ(X) as soon as (log d)3 . k

d . �

When M = span{eie∗j : |i− j| ≤ r}, we have dimM ≍ (r+1)d, σ(X) ≍
√
r + 1,

and E‖X‖ ≥ Emaxij |Xij | &
√
log d. Thus the conclusion of Lemma 3.11 may fail

when dimM ≪ d log d. While this particular example is rather special (as X has
independent entries), the beauty of Lemma 3.11 is that it applies to any M.

3.3. Generalized sample covariance matrices. Let X be any d × m random
matrix with centered jointly Gaussian entries. We will refer to XX∗ as a generalized
sample covariance matrix. Indeed, as 1

mXX∗ = 1
m

∑m
i=1 XiX

∗
i in terms of the

columns X1, . . . , Xm of X , we see that 1
mXX∗ is a sample covariance matrix in

the special case that the data X1, . . . , Xm are i.i.d. (see, e.g., [21]). In the general
setting, one may still think of 1

mXX∗ as a sample covariance matrix, but where
the samples need not be independent or identically distributed.

The main question of interest in this setting is to estimate the deviation of the
sample covariance matrix from the actual covariance matrix ‖XX∗ −EXX∗‖. We
presently show that an estimate of this kind can be derived from Theorem 2.1 us-
ing a simple variant of the linearization trick that is used in Theorem 2.10. While
linearization generally yields asymptotic results for any polynomial, the present ex-
ample illustrates that nonasymptotic bounds can be derived for specific polynomials
by a careful analysis of the linearization argument. Alternatively, the interpolation
method used in the proofs of our main results can be adapted directly to yield
quantitative bounds for polynomials (we do not pursue this here).

Theorem 3.12. Let A1, . . . , An be arbitrary d×m matrices with complex entries,
and define X and Xfree as in (2.1) with A0 = 0. Then we have

E‖XX∗ −EXX∗‖ ≤ ‖XfreeX
∗
free −EXX∗ ⊗ 1‖

+ C{σ(X)ṽ(X)(log dm)
3
4 + ṽ(X)2(log dm)

3
2 },

where C is a universal constant.

The proof of Theorem 3.12 will be given at the end of this section. To clarify
its meaning, it is instructive to note that EXX∗ = (id ⊗ τ)[XfreeX

∗
free]; therefore,

‖XfreeX
∗
free −EXX∗ ⊗ 1‖ is precisely the free analogue of ‖XX∗ −EXX∗‖.

To apply Theorem 3.12 in concrete situations, we must be able to compute or
bound its right-hand side. The following bound often suffices.

Proposition 3.13. In the setting of Theorem 3.12, we have

‖XfreeX
∗
free −EXX∗ ⊗ 1‖ ≤ 2‖EXX∗‖ 1

2 ‖EX∗X‖ 1
2 + ‖EX∗X‖.
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Proof. We use the standard construction of a free semicircular family on Fock space,
cf. [27, pp. 102–108] or [28, §9.9] (this construction will not be used elsewhere in this
paper). Let F(Cn) :=

⊕∞
k=0(C

n)⊗k be the free Fock space over Cn with creation
operator l(h)(x1 ⊗ · · · ⊗ xk) := h⊗ x1 ⊗ · · · ⊗ xk for h ∈ Cn. Then the self-adjoint
operators s1, . . . , sn defined by si = l(ei) + l(ei)

∗ form a free semicircular family
with respect to the vacuum state on B(F(Cn)).

As we assumed A0 = 0, we may represent Xfree = U +V with U :=
∑

iAi⊗ l(ei)
and V :=

∑

i Ai ⊗ l(ei)
∗. The property l(ei)

∗l(ej) = δij1 (which is readily verified
from the definition of l(h)) yields the identities

V V ∗ =
∑

i

AiA
∗
i ⊗ 1 = EXX∗ ⊗ 1, U∗U =

∑

i

A∗
iAi ⊗ 1 = EX∗X ⊗ 1.

We therefore obtain

‖XfreeX
∗
free −EXX∗ ⊗ 1‖ = ‖UV ∗ + V U∗ + UU∗‖ ≤ 2‖U‖‖V ‖+ ‖U‖2

= 2‖EX∗X‖ 1
2 ‖EXX∗‖ 1

2 + ‖EX∗X‖,
completing the proof. �

To illustrate these bounds, consider the case where the columns of X are i.i.d.
centered Gaussian vectors with covariance Σ (so that 1

mXX∗ is a classical sample
covariance matrix). Then Theorem 3.12 and Proposition 3.13 yield

E‖ 1
mXX∗ − Σ‖ ≤ ‖Σ‖

{

2

√

rk(Σ)

m
+

rk(Σ)

m

}

+

C‖Σ‖
{(

1 ∨ rk(Σ)

m

) 3
4 (log dm)

3
4

m
1
4

+

(

1 ∨ rk(Σ)

m

) 1
2 (log dm)

3
2

m
1
2

}

where rk(Σ) := Tr[Σ]/‖Σ‖, and we used Lemma 3.8 to compute σ(X) and v(X).
The leading term in this bound dominates when rk(Σ) is not too small. The latter
restriction is not optimal: it was shown in [21] that when X has i.i.d. columns,
E‖ 1

mXX∗ − Σ‖ always agrees with the leading term in the above inequality up to
a universal constant. On the other hand, our general bounds apply to arbitrary
nonhomogeneous random matrices X , which are out of reach of previous methods.
(In the special case that X has independent Gaussian entries, bounds similar to
those of the present section were obtained in [8].)

We now turn to the proof of Theorem 3.12. The key idea is the following lemma,
which provides an explicit linearization of the polynomial (X,X∗) 7→ XX∗ +A.

Lemma 3.14. Let Aε = (‖EXX∗‖+ 4ε2)1−EXX∗, and define

X̆ε =








0 0 X A
1
2
ε

0 0 0 0
X∗ 0 0 0

A
1
2
ε 0 0 0







, X̆free,ε =








0 0 Xfree A
1
2
ε ⊗ 1

0 0 0 0
X∗

free 0 0 0

A
1
2
ε ⊗ 1 0 0 0







.

Then we have

sp(X̆ε) ⊆ sp(X̆free,ε) + [−ε, ε] =⇒
{

λ+(XX∗ +Aε)
1
2 ≤ λ+(XfreeX

∗
free +Aε ⊗ 1)

1
2 + ε,

λ−(XX∗ +Aε)
1
2 ≥ λ−(XfreeX

∗
free +Aε ⊗ 1)

1
2 − ε
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for any ε > 0, where λ+(Z) := sup sp(Z) and λ−(Z) := inf sp(Z).

Proof. By Remark 2.6, we have

sp(X̆ε) ∪ {0} = sp((XX∗ +Aε)
1
2 ) ∪ −sp((XX∗ +Aε)

1
2 ) ∪ {0},

and analogously for X̆free,ε. If sp(X̆ε) ⊆ sp(X̆free,ε) + [−ε, ε], then clearly

λ+(XX∗ +Aε)
1
2 ≤ λ+(XfreeX

∗
free +Aε ⊗ 1)

1
2 + ε.

On the other hand, as X̆free,ε can have a zero eigenvalue, it follows that either

λ−(XX∗ +Aε)
1
2 ≥ λ−(XfreeX

∗
free +Aε ⊗ 1)

1
2 − ε

or λ−(XX∗+Aε)
1
2 ≤ ε. But the latter is impossible, as λ−(XX∗+Aε)

1
2 ≥ 2ε. �

We can now complete the proof of Theorem 3.12.

Proof of Theorem 3.12. We adopt throughout the proof the notation and conclu-
sions Lemma 3.14. By Remark 2.6, we have σ∗(X̆ε) = σ∗(X) and ṽ(X̆ε) ≤ 2

1
4 ṽ(X).

We may therefore apply Theorem 2.1 to X̆ε to obtain

P
[
λ+(XX∗ +Aε(t))

1
2 ≤ λ+(XfreeX

∗
free +Aε(t) ⊗ 1)

1
2 + ε(t),

λ−(XX∗ +Aε(t))
1
2 ≥ λ−(XfreeX

∗
free +Aε(t) ⊗ 1)

1
2 − ε(t)

]
≥ 1− e−t2

for all t ≥ 0, where ε(t) = c{ṽ(X)(log dm)
3
4 + σ∗(X)t} for a universal constant c.

Now note that

λ±(XX∗ +Aε) = λ±(XX∗ −EXX∗) + ‖EXX∗‖+ 4ε2,

and analogously for Xfree. Moreover, we have

λ−(XfreeX
∗
free +Aε ⊗ 1) ≤ λ+(XfreeX

∗
free +Aε ⊗ 1) ≤ 5σ(X)2 + 4ε2

by Lemma 2.5. Thus we obtain

λ+(XX∗ +Aε)
1
2 ≤ λ+(XfreeX

∗
free +Aε ⊗ 1)

1
2 + ε =⇒

λ+(XX∗ −EXX∗) ≤ λ+(XfreeX
∗
free −EXX∗ ⊗ 1) + 2ε

√

5σ(X)2 + 4ε2 + ε2

by squaring both sides of the first inequality and applying the previous two equation
displays. Analogously, using (y − ε)2+ ≥ y2 − 2εy − ε2 for y, ε ≥ 0 yields

λ−(XX∗ +Aε)
1
2 ≥ λ−(XfreeX

∗
free +Aε ⊗ 1)

1
2 − ε =⇒

λ−(XX∗ −EXX∗) ≥ λ−(XfreeX
∗
free −EXX∗ ⊗ 1)− 2ε

√

5σ(X)2 + 4ε2 − ε2.

But as ‖Z‖ = max(λ+(Z),−λ−(Z)), we have shown that

P
[
‖XX∗ −EXX∗‖ > ‖XfreeX

∗
free −EXX∗ ⊗ 1‖+ 5σ(X)ε(t) + 5ε(t)2

]
≤ e−t2 .

The conclusion follows by integrating this tail bound and using σ∗(X) ≤ ṽ(X). �

4. Preliminaries

The aim of this section is to recall some mathematical background and to intro-
duce a few basic estimates that will be used in the remainder of the paper.
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4.1. Free probability. We begin by recalling some basic notions of free probabil-
ity; the reader is referred to [27] for an introduction to this topic.

For our purposes, a unital C∗-algebra may be thought of concretely as an algebra
A of bounded operators on a complex Hilbert space which is self-adjoint (a ∈ A
implies a∗ ∈ A), is closed in the operator norm, and contains the identity 1 ∈ A.
A state is a linear functional τ : A → C that is positive τ(a∗a) ≥ 0 and unital
τ(1) = 1. A state is called faithful if τ(a∗a) = 0 implies a = 0.

Definition 4.1. A C∗-probability space is a pair (A, τ), where A is a unital C∗-
algebra and τ is a faithful state.

The simplest example of a C∗-probability space is (Md(C), tr). The introduc-
tion of general C∗-probability spaces enables us to extend computations involving
matrices and traces to infinite-dimensional operators. The assumption that τ is

faithful ensures that ‖a‖ = limp→∞ τ(|a|p) 1
p [27, Proposition 3.17].

The basic infinite-dimensional object of interest in this paper is a free semicircular
family. We will define this notion combinatorially as in [27, p. 128]. For any integer
p, denote by P2([p]) the collection of all pairings of [p] := {1, . . . , p}, that is, of
partitions of [p] each of whose blocks consists of exactly two elements. We denote
by NC2([p]) ⊆ P2([p]) the collection of those pairings π that are noncrossing, i.e.,
that do not contain {i, j}, {k, l} ∈ π so that i < k < j < l.

Definition 4.2. A family s1, . . . sn ∈ A of self-adjoint elements in a C∗-probability
space (A, τ) is called a free semicircular family if

τ(sk1 · · · skp
) =

∑

π∈NC2([p])

∏

{i,j}∈π

δkikj

for every p ≥ 1, k1, . . . , kp ∈ [n].

The elements si are “semicircular” in the sense that for p ∈ N,

τ(spi ) = |NC2([p])| =
∫ 2

−2

xp · 1
2π

√

4− x2 dx

are the moments of the standard semicircle distribution, cf. [27, p. 123 and p. 29].
The latter is precisely the limiting spectral distribution of large Wigner matrices.

In particular, note that ‖si‖ = limp→∞ τ(s2pi )
1
2p = 2.

More generally, the weak asymptotic freeness theorem of Voiculescu [40] states
that a free semicircular family arises as the limiting object associated to independent
Wigner matrices. A self-contained proof of this fact may be readily obtained as a
special case of the argument in Section 7.1 below.

Theorem 4.3 (Voiculescu). Let GN
1 , . . . , GN

n be independent standard Wigner ma-
trices in the sense of Definition 1.1. Then we have

lim
N→∞

E[tr(GN
k1

· · ·GN
kp
)] = τ(sk1 · · · skp

)

for every p ≥ 1, k1, . . . , kp ∈ [n].

We now turn our attention to the basic random matrix model (2.1) of this paper.
In the proofs of our main results, it will suffice to consider self-adjoint coefficient
matrices A0, . . . , An ∈ Md(C)sa due to Remark 2.6. In addition to X and Xfree
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defined in (2.1), we also introduce the intermediate model

XN := A0 ⊗ 1+

n∑

i=1

Ai ⊗GN
i , (4.1)

where GN
1 , . . . , GN

n are independent standard Wigner matrices of dimension N .
Theorem 4.3 enables us to compute the limiting spectral statistics of XN .

Corollary 4.4. Let A0, . . . , An ∈ Md(C)sa. Then

lim
N→∞

E[tr f(XN)] = (tr⊗ τ)(f(Xfree))

for any polynomial or bounded continuous function f : R → C.

Proof. For the function f(x) = xp with p ∈ N, we compute explicitly

E tr[(XN )p] =

n∑

i1,...,ip=1

tr(Ai1 · · ·Aip)E[trGi1 · · ·Gip ]
N→∞−−−−→ (tr ⊗ τ)(Xp

free)

by Theorem 4.3. The conclusion extends to any polynomial f by linearity. For
bounded continuous f , it remains to note that as ‖Xfree‖ ≤ 2

∑n
i=0 ‖Ai‖ < ∞,

moment convergence implies weak convergence [27, p. 116]. �

We finally discuss a number of methods to compute or estimate the spectral
statistics of Xfree. First, we note that the moments of Xfree are readily computed
using Definition 4.2: for every p ∈ N, we obtain

(tr ⊗ τ)(Xp
free) =

∑

π∈NC2([p])

∑

(i1,...,ip)∼π

tr(Ai1 · · ·Aip), (4.2)

where (i1, . . . , ip) ∼ π denotes that ik = il for every {k, l} ∈ π.
An explicit expression for the norm ‖Xfree‖ was given in Lemma 2.4 above. This

fundamental result was proved by Lehner [25, Corollary 1.5], where it is formu-
lated only in the case that A0 ≥ 0 is positive semidefinite. However, the general
formulation is readily derived from this special case.

Proof of Lemma 2.4. We first note that t := ‖Xfree‖ ≥ ‖(id ⊗ τ)(Xfree)‖ = ‖A0‖.
Thus Xfree + t1 ≥ 0 and A0 + t1 ≥ 0. Applying [25, Corollary 1.5] yields

‖Xfree + t1‖ = inf
Z>0

∥
∥
∥
∥
∥
Z−1 +A0 + t1+

n∑

i=1

AiZAi

∥
∥
∥
∥
∥
,

where the infimum may be further restricted to Z for which the matrix in the norm
on the right-hand side is a multiple of the identity. But as Xfree + t1 ≥ 0, we have
‖Xfree + t1‖ = λmax(Xfree) + t, and analogously for the norm on the right-hand
side. It remains to use that ‖Xfree‖ = λmax(Xfree) ∨ −λmax(−Xfree). �

Finally, the estimates on ‖Xfree‖ in Lemma 2.5 were proved by Pisier [28, p. 208]
in the case A0 = 0 (the proof is very similar to that of Proposition 3.13 above).
The extension to general A0 follows immediately, however, using ‖A0‖ ≤ ‖Xfree‖ ≤
‖Xfree − A0 ⊗ 1‖ + ‖A0‖ (the first inequality was explained above in the proof of
Lemma 2.4, and the second is the triangle inequality).

4.2. Matrix parameters. The aim of this section is to develop some basic prop-
erties of the parameters σ(X), σ∗(X), v(X) defined in Section 2.1, and of the matrix
alignment parameter w(X) that was defined in Section 1.4.
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4.2.1. The matrix alignment parameter. We will in fact need a somewhat more
general parameter than w(X) in our proofs, so we begin by defining the relevant
notion. Let A0, . . . , An, A

′
0, . . . , A

′
n ∈ Md(C)sa, and define the random matrices

X = A0 +
∑n

i=1 giAi and X ′ = A′
0 +

∑n
i=1 giA

′
i as in (2.1). We define

w(X,X ′) := sup
U,V,W

∥
∥
∥
∥
∥

n∑

i,j=1

AiUA′
jV AiWA′

j

∥
∥
∥
∥
∥

1
4

,

where the supremum is taken over all unitary matrices U, V,W ∈ Md(C). Note that
the definition of w(X,X ′) does not involve A0, A

′
0, and that w(X,X ′) = w(X ′, X)

(by taking the adjoint of inside the norm). Note also that we only defined w(X,X ′)
for self-adjoint coefficient matrices Ai, A

′
i; the definition may be generalized to non-

self-adjoint matrices, but this will not be needed in the sequel. In agreement with
the notation of Section 1.4, we let w(X) := w(X,X).

The matrix alignment parameter w(X) was introduced by Tropp in [37] to quan-
tify the contribution of crossings to the moments of X . A key idea of [37] is that
upper bounds in terms of w(X) may be obtained by complex interpolation. The
following variant of this idea suffices for our purposes.

Lemma 4.5. Let Y (1), . . . , Y (4) be arbitrary d× d complex random matrices, and

let p1, . . . , p4 ≥ 1 satisfy
∑4

k=1
1
pk

= 1. Then we have

∣
∣
∣
∣
∣

n∑

i,j=1

E[trAiY
(1)A′

jY
(2)AiY

(3)A′
jY

(4)]

∣
∣
∣
∣
∣
≤ w(X,X ′)4

4∏

k=1

E[tr |Y (k)|pk ]
1
pk .

Proof. We aim to show that F (Y1, . . . , Y4) :=
∑

i,j E[trAiY1A
′
jY2AiY3A

′
jY4] sat-

isfies |F (Y1, . . . , Y4)| ≤ w(X,X ′)4‖Y1‖p1 · · · ‖Y4‖p4 , where ‖Y ‖p := E[tr |Y |p] 1p de-
notes the Lp(Sp)-norm. Recall that the spaces Lp(Sp) form a complex interpolation

scale Lr(Sr) = (Lp(Sp), Lq(Sq))θ with 1
r = 1−θ

p + θ
q [29, §2]. By the classical com-

plex interpolation theorem for multilinear maps [9, §10.1], it suffices to prove the
conclusion in the case that pi = 1 for some i. By cyclic permutation of the trace,
we may assume p4 = 1 and p1, p2, p3 = ∞. But in this case

sup
‖Yk‖∞≤1
k=1,2,3

sup
‖Y4‖1≤1

|F (Y1, . . . , Y4)| = sup
‖Yk‖≤1
k=1,2,3

∥
∥
∥
∥
∥

n∑

i,j=1

AiY1A
′
jY2AiY3A

′
j

∥
∥
∥
∥
∥
= w(X,X ′)4

follows from the fact that every Y ∈ Md(C) with ‖Y ‖ ≤ 1 is a convex combination
of unitaries (by singular value decomposition and the fact that any vector x ∈ Rn

with ‖x‖∞ ≤ 1 is a convex combination of vectors in {−1,+1}d). �

4.2.2. Bounding the matrix alignment parameter. The aim of this section is to prove
the following bound on the matrix alignment parameter.

Proposition 4.6. We have w(X,X ′)4 ≤ v(X)σ(X)v(X ′)σ(X ′).

To this end, we will require two simple observations.

Lemma 4.7. In the proof of Proposition 4.6, there is no loss of generality in
assuming that Tr[AiAj ] = 0 and Tr[A′

iA
′
j ] = 0 for all i 6= j. In particular, this

assumption implies v(X) = maxi ‖Ai‖HS and v(X ′) = maxi ‖A′
i‖HS.
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Proof. It is evident from the definitions that the parameters σ(X), v(X), w(X,X ′)
only depend on the distributions of the random matrices X,X ′, and not on their
representations in terms of Ai, A

′
i. It therefore suffices to find random matrices

Y, Y ′ that are equidistributed with X,X ′ and satisfy the desired properties.
To this end, note first that Md(C)sa is a real vector space of dimension d2,

endowed with the Hilbert-Schmidt inner product. Moreover, the distribution of X
is a real Gaussian measure on this space. If we denote by C1, . . . , Cd2 ∈ Md(C)sa
the (unnormalized) orthogonal eigenvectors of the corresponding covariance matrix,
it follows that X has the same distribution as Y = A0 +

∑

i giCi, and Tr[CiCj ] = 0
for i 6= j by construction. Finally, note that Cov(Y ) =

∑

i ι(Ci)ι(Ci)
∗, where

ι : Md(C) → Cd2

maps a matrix to its vector of entries. As the vectors ι(Ci) are

orthogonal in Cd2

, they are also eigenvectors of Cov(Y ). It follows that v(Y )2 =
‖Cov(Y )‖ = maxi ‖Ci‖2HS. The analogous construction applies to X ′. �

Lemma 4.8. Let B1, . . . , Bd2 ∈ Md(C) satisfy Tr[B∗
i Bj ] = δij for all 1 ≤ i ≤ j ≤ n.

Then we have
∑d2

i=1 B
∗
i Y Bi = Tr[Y ]1 for every Y ∈ Md(C).

Proof. Note that
∑d2

i=1 B
∗
i Y Bi = EH∗Y H , where H =

∑d2

i=1 hiBi and h1, . . . , hd2

are i.i.d. standard complex Gaussians. Thus by unitary invariance of the complex
Gaussian distribution, we may replace B1, . . . , Bd2 by any other orthonormal basis

of Md(C). It follows that
∑d2

i=1 B
∗
i Y Bi =

∑d
k,l=1 eke

∗
l Y ele

∗
k = Tr[Y ]1. �

We now complete the proof of Proposition 4.6.

Proof of Proposition 4.6. By Lemma 4.7, we can assume that Tr[AiAj ] = 0 and
Tr[A′

iA
′
j ] = 0 for i 6= j. In particular, we may choose an orthonormal basis

B1, . . . , Bd2 of Md(C) so that Ai = ‖Ai‖HSBi for i = 1, . . . , n.
Now note that we can estimate by Cauchy-Schwarz

w(X,X ′)4 = sup
U,V,W

sup
‖x‖,‖y‖≤1

∣
∣
∣
∣
∣

n∑

i=1

〈

U∗Aix,

n∑

j=1

A′
jV AiWA′

jy

〉∣
∣
∣
∣
∣

≤
(

sup
‖x‖≤1

n∑

i=1

‖Aix‖2
) 1

2
(

sup
V,W

sup
‖y‖≤1

n∑

i=1

∥
∥
∥
∥
∥

n∑

j=1

A′
jV AiWA′

jy

∥
∥
∥
∥
∥

2) 1
2

.

Furthermore,

n∑

i=1

∥
∥
∥
∥
∥

n∑

j=1

A′
jV AiWA′

jy

∥
∥
∥
∥
∥

2

≤ max
i

‖Ai‖2HS

d2
∑

i=1

∥
∥
∥
∥
∥

n∑

j=1

A′
jV BiWA′

jy

∥
∥
∥
∥
∥

2

= max
i

‖Ai‖2HS

n∑

j,k=1

〈y,A′
jA

′
ky〉Tr[A′

jA
′
k]

≤ max
i

‖Ai‖2HSmax
i

‖A′
i‖2HS

n∑

j=1

‖A′
jy‖2,

where we used Lemma 4.8 in the equality and Tr[A′
iA

′
j ] = 0 for i 6= j in the

second inequality. It remains to note that sup‖x‖≤1

∑n
i=1 ‖Aix‖2 = σ(X)2 and

maxi ‖Ai‖HS = v(X) by Lemma 4.7, and analogously for X ′. �
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4.2.3. Self-adjoint dilation. While we defined w(X,X ′) only for self-adjoint X,X ′,
we may extend the resulting inequalities to the general case by self-adjoint dilation
as explained in Remark 2.6. For completeness, we presently provide proofs of the
claims made in Remark 2.6. We first prove the following.

Lemma 4.9. Let T be a bounded operator on a Hilbert space H, and denote by T̆
the self-adjoint operator on H ⊕H defined by

T̆ =

[
0 T
T ∗ 0

]

.

Then sp(T̆ ) ∪ {0} = sp(|T |) ∪ −sp(|T |) ∪ {0}.

Proof. Let T = V |T | be the polar decomposition of T , where V is a partial
isometry with initial space (kerT )⊥ and final space cl(ranT ) = (kerT ∗)⊥. As
TT ∗ = V |T |2V ∗ = V T ∗TV ∗, it follows that sp(T ∗T )∪ {0} = sp(TT ∗) ∪ {0}. Thus

T̆ 2 =

[
TT ∗ 0
0 T ∗T

]

(4.3)

implies that sp(|T̆ |) ∪ {0} = sp(|T |) ∪ {0}. On the other hand, as

U∗T̆U = −T̆ , U =

[
1 0
0 −1

]

and U is unitary, we have sp(T̆ ) = −sp(T̆ ). The conclusion follows. �

We now verify that σ(X), σ∗(X), v(X) are well behaved under dilation.

Lemma 4.10. In the setting of Remark 2.6, we have

σ(X̆) = σ(X), σ∗(X̆) = σ∗(X), v(X) ≤ v(X̆) ≤
√
2 v(X).

Proof. We begin by noting that by (4.3)

σ(X̆)2 = ‖EX̆2‖ =

∥
∥
∥
∥

[
EXX∗ 0

0 EX∗X

]∥
∥
∥
∥
= σ(X)2.

Next, note that

σ∗(X̆)2 = sup
‖v1‖2+‖v2‖2=1

sup
‖w1‖2+‖w2‖2=1

E[|〈v1, Xw2〉+ 〈v2, X∗w1〉|2].

Thus clearly σ∗(X̆) ≥ σ∗(X), while by the triangle inequality

σ∗(X̆) ≤ σ∗(X) sup
‖v1‖2+‖v2‖2=1

sup
‖w1‖2+‖w2‖2=1

(‖v1‖‖w2‖+ ‖v2‖‖w1‖) = σ∗(X).

Finally, note that

v(X̆)2 = sup
‖M‖2

HS+‖N‖2
HS=1

E[|Tr[XM ] + Tr[X∗N ]|2],

so that v(X) ≤ v(X̆) ≤
√
2 v(X) follows in the same manner as for σ∗(X). �
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4.3. Gaussian analysis. We now recall some Gaussian tools that will be used in
the sequel. The following is classical [32, Lemma 1.3.1].

Lemma 4.11 (Gaussian interpolation). Let Y and Z be independent centered
Gaussian vectors in Rn with covariance matrices ΣY and ΣZ , respectively. Let

Yt =
√
t Y +

√
1− t Z

for t ∈ [0, 1]. Then we have

d

dt
E[f(Yt)] =

1

2

n∑

i,j=1

(ΣY
ij − ΣZ

ij)E

[
∂2f

∂xi∂xj
(Yt)

]

for any smooth f : Rn → C with derivatives of polynomial growth.

A special case is the following (see, e.g., [23, §5.5]).

Corollary 4.12 (Gaussian covariance identity). Let Y, Z be independent centered
Gaussian vectors in Rn with covariance matrix Σ, and let

Y ′
t = t Y +

√

1− t2 Z

for t ∈ [0, 1]. Then we have

E[f(Y )g(Y )]−E[f(Y )]E[g(Y )] =

∫ 1

0

E[〈∇f(Y ),Σ∇g(Y ′
t )〉] dt

for any smooth f, g : Rn → C with derivatives of polynomial growth.

Proof. Let Y, Z, Z ′ be independent centered Gaussian vectors with covariance ma-
trix Σ, and let G = (Y, Y ), G′ = (Z,Z ′), and Gt =

√
tG+

√
1− tG′. Then

E[f(Y )g(Y )]−E[f(Y )]E[g(Y )] =

∫ 1

0

d

dt
E[H(Gt)] dt,

where H(x, y) = f(x)g(y). The conclusion follows from Lemma 4.11 and the fact
that (

√
t Y +

√
1− t Z,

√
t Y +

√
1− t Z ′) is equidistributed with (Y, Y ′

t ). �

We finally recall the following [23, p. 41].

Lemma 4.13 (Gaussian concentration). Let Y be a standard Gaussian vector in
Rn, and let f : Rn → R be an L-Lipschitz function. Then

P[f(Y ) ≥ Ef(Y ) + t] ≤ e−t2/2L2

for all t ≥ 0.

It is instructive to spell out the application of Gaussian concentration to (2.1),
which explains the significance of the parameter σ∗(X).

Corollary 4.14. Consider the model (2.1) with A0, . . . , An ∈ Md(C), and let F :
Md(C) → R be L-Lipschitz with respect to the operator norm. Then

P[F (X) ≥ EF (X) + t] ≤ e−t2/2L2σ∗(X)2 for all t ≥ 0.

If A0, . . . , An ∈ Md(C)sa, it suffices to assume F is L-Lipschitz on Md(C)sa.

Proof. We may write F (X) = f(g1, . . . , gn) := F (A0 +
∑

i giAi). Thus

|f(x)− f(y)| ≤ L

∥
∥
∥
∥

∑

i

(xi − yi)Ai

∥
∥
∥
∥
= L sup

‖v‖=‖w‖=1

∣
∣
∣
∣

∑

i

(xi − yi)〈v,Aiw〉
∣
∣
∣
∣

≤ Lσ∗(X)‖x− y‖
by Cauchy-Schwarz and the definition of σ∗(X) (cf. Section 2.1). The conclusion
follows by applying Lemma 4.13 to f(g1, . . . , gn). �
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5. Spectral statistics

The next four sections are devoted to the proofs of the main results of this paper.
In the present section, we begin by proving our bounds on the spectral statistics that
were formulated in Section 2.2. These results illustrate the main proof technique of
this paper in its simplest form. The support of the spectrum will be investigated
in the next section using a more involved variant of the same method.

5.1. The basic construction. Throughout the proofs of our main results in Sec-
tions 2.1 and 2.2, we will fix A0, . . . , An ∈ Md(C)sa and let X and Xfree be defined
as in (2.1). (Where relevant, the extension to the non-self-adjoint case will be done
at the end of the proof using Remark 2.6.)

Let GN
1 , . . . , GN

n be independent standard Wigner matrices as in Definition 1.1,
and let DN

1 , . . . , DN
n be independent N ×N diagonal matrices with i.i.d. standard

Gaussians on the diagonal. We define for q ∈ [0, 1] the random matrix

XN
q := A0 ⊗ 1+

n∑

i=1

Ai ⊗ (
√
q DN

i +
√

1− q GN
i ). (5.1)

Note that XN
0 = XN as defined in (4.1). On the other hand, XN

1 is a block-diagonal
matrix with i.i.d. copies of X on the diagonal. In particular, we have

E[tr h(XN
1 )] = E[tr h(X)],

E[tr h(XN
0 )] = E[tr h(XN)]

(5.2)

for any function h : R → C. The basic idea behind our proofs is to interpolate
between E[tr h(XN

1 )] and E[tr h(XN
0 )] using Lemma 4.11.

To simplify the expressions that will arise in the analysis, it will be convenient
to define for y = (yirs)1≤i≤n,1≤s≤r≤N the notation

XN(y) := A0 ⊗ 1+

n∑

i=1

∑

1≤s≤r≤N

yirs Airs, Airs := Ai ⊗ Ers,

where Ers are as defined in Section 3.1. Moreover, let Y, Z be centered Gaussian
vectors all of whose entries Yirs = (DN

i )rs and Zirs = (GN
i )rs are independent with

variances δrs and 1
N , respectively. Then XN

q = XN(
√
q Y +

√
1− q Z).

5.2. Proof of Theorem 2.7. In order to prove Theorem 2.7, we apply the above
program to the moments. We begin with a simple computation.

Lemma 5.1. For any p ∈ N, we have

d

dq
E[tr(XN

q )2p] = p

2p−2
∑

k=0

∑

i

∑

r≥s

(

δrs −
1

N

)

E[trAirs(X
N
q )kAirs(X

N
q )2p−2−k].

Proof. Let Y = (Yirs)i∈[n],r≥s and Z = (Zirs)i∈[n],r≥s be the Gaussian vectors
defined above. As both these vectors have independent entries, their covariance
matrices ΣY and ΣZ are diagonal with Var(Yirs) = δrs and Var(Zirs) =

1
N . Ap-

plying Lemma 4.11 to the function f(y) = trXN(y)2p therefore yields

d

dq
E[tr(XN

q )2p] =
1

2

∑

i

∑

r≥s

(

δrs −
1

N

)

E

[
∂2f

∂y2irs
(
√
q Y +

√

1− q Z)

]

.

The conclusion follows by a straightforward computation. �
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As was explained in Section 1.4, we expect that the interpolation between X
and Xfree will be controlled only by the crossings in the moment formulae. This is
however not immediately obvious from the expression in Lemma 5.1. To make this
phenomenon visible, we need a simple lemma.

Lemma 5.2. E[h(XN
q )] = E[(id⊗ tr)(h(XN

q ))]⊗ 1 for every h : R → C.

Proof. The distributions of DN
i and GN

i are invariant under conjugation by any
signed permutation matrix. Therefore, if we let Π be an N×N signed permutation
matrix chosen uniformly at random (independently of XN

q ), then

E[h(XN
q )] = E[h((1⊗Π)∗XN

q (1⊗Π))] = E[(1⊗Π)∗h(XN
q )(1⊗Π)].

It remains to note that E[(1⊗Π)∗M(1⊗Π)] = (id⊗ tr)(M)⊗ 1 for any matrix M
(this is elementary when M = A⊗B, and extends to general M by linearity). �

The key observation is now the following.

Corollary 5.3. For any p ∈ N, we have

p

2p−2
∑

k=0

∑

i

∑

r≥s

(

δrs −
1

N

)

trAirsE[(XN
q )k]AirsE[(XN

q )2p−2−k] = 0.

Proof. Note first that E2
rs = E2

rr + E2
ss for r 6= s. Thus

(Ai ⊗ Ers)E[(XN
q )k](Ai ⊗ Ers) =

(Ai ⊗ Err)E[(XN
q )k](Ai ⊗ Err) + (Ai ⊗ Ess)E[(XN

q )k](Ai ⊗ Ess)

for r 6= s by Lemma 5.2. Summing over r > s yields

1

N

∑

r>s

AirsE[(XN
q )k]Airs =

1

N

∑

r>s

(AirrE[(XN
q )k]Airr +AissE[(XN

q )k]Aiss)

=

(

1− 1

N

)
∑

r

AirrE[(XN
q )k]Airr.

The conclusion follows readily. �

By combining Lemma 5.1 and Corollary 5.3, we can apply Corollary 4.12 to
make crossings appear (the latter idea is already present in [37]). Recall that the
parameters w(X) and w(X,X ′) were defined in Section 4.2.

Lemma 5.4. For any p ∈ N, we have
∣
∣
∣
∣

d

dq
E[tr(XN

q )2p]

∣
∣
∣
∣
≤ 4

3
p4{qw(XN

1 )4+w(XN
0 , XN

1 )4+(1−q)w(XN
0 )4}E[tr(XN

q )2p−4].

Proof. Recall that the random vectors Y, Z with Yirs = (DN
i )rs and Zirs = (GN

i )rs
were defined in section 5.1. Let Y ′, Z ′ be independent copies of Y, Z, and define

XN
qt = XN

(
t
{√

q Y +
√

1− q Z
}
+
√

1− t2
{√

q Y ′ +
√

1− q Z ′}).

Note that the random vector
√
q Y +

√
1− q Z has independent entries, so its co-

variance matrix Σ is diagonal with Var(
√
q Yirs +

√
1− q Zirs) = qδrs +

1−q
N . We
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can therefore apply Corollary 4.12 to compute

E[(XN
q )kab (X

N
q )2p−2−k

cd ]−E[(XN
q )kab]E[(XN

q )2p−2−k
cd ] =

k−1∑

l=0

2p−3−k
∑

m=0

∑

i

∑

r≥s

(

qδrs +
1− q

N

)

·

∫ 1

0

E
[(
(XN

q )lAirs(X
N
q )k−1−l

)

ab

(
(XN

qt )
mAirs(X

N
qt )

2p−3−k−m
)

cd

]
dt.

Combining this identity with Lemma 5.1 and Corollary 5.3 yields

d

dq
E[tr(XN

q )2p]

= p

2p−2
∑

k=0

∑

i′

∑

r′≥s′

(

δr′s′ −
1

N

)

E[trAi′r′s′(X
N
q )kAi′r′s′(X

N
q )2p−2−k]

− p

2p−2
∑

k=0

∑

i′

∑

r′≥s′

(

δr′s′ −
1

N

)

trAi′r′s′E[(XN
q )k]Ai′r′s′E[(XN

q )2p−2−k]

= p

2p−2
∑

k=0

k−1∑

l=0

2p−3−k
∑

m=0

∫ 1

0

∑

i,i′

∑

r≥s

∑

r′≥s′

(

qδrsδr′s′ +
1− q

N
δr′s′ −

q

N
δrs −

1− q

N2

)

·

E[trAi′r′s′(X
N
q )lAirs(X

N
q )k−1−lAi′r′s′(X

N
qt )

mAirs(X
N
qt )

2p−3−k−m] dt.

We can now apply Lemma 4.5 with

p1 =
2p− 4

l
, p2 =

2p− 4

k − 1− l
, p3 =

2p− 4

m
, p4 =

2p− 4

2p− 3− k −m
,

to bound, for example,
∣
∣
∣
∣

∑

i,i′

∑

r≥s

∑

r′≥s′

q

N
δrs E[trAi′r′s′(X

N
q )lAirs(X

N
q )k−1−lAi′r′s′(X

N
qt )

m ·

Airs(X
N
qt )

2p−3−k−m]

∣
∣
∣
∣
≤ qw(XN

0 , XN
1 )4E[tr(XN

q )2p−4],

where we used that Var(Yirs) = δrs, Var(Zirs) = 1
N , and that XN

q and XN
qt are

equidistributed. The remaining three terms in the integral can be bounded analo-
gously. To conclude, it remains to note that

∑2p−2
k=0 k(2p−2−k) =

(
2p−1

3

)
≤ 4

3p
3. �

Before we can complete the proof of Theorem 2.7, we must compute the matrix
parameters associated to XN

q .

Lemma 5.5. For every q,N , we have

σ(XN
q ) = σ(X), v(XN

1 ) = v(X), v(XN
0 ) =

v(X)√
N

.

Proof. As E[(DN
i )2] = E[(GN

i )2] = 1, we have E[(XN
q −EXN

q )2] =
∑

iA
2
i ⊗ 1 and

thus σ(XN
q )2 = ‖E[(XN

q −EXN
q )2]‖ = σ(X)2.

Next, note that XN
1 is a block-diagonal matrix with i.i.d. copies of X on the

diagonal, so v(XN
1 )2 = ‖Cov(XN

1 )‖ = ‖Cov(X)‖ = v(X)2. On the other hand,
XN

0 is a symmetric block matrix whose blocks on and above the diagonal are i.i.d.

copies of N− 1
2X , so v(XN

0 )2 = ‖Cov(XN
0 )‖ = N−1‖Cov(X)‖ = N−1v(X)2. �



32 AFONSO S. BANDEIRA, MARCH T. BOEDIHARDJO, AND RAMON VAN HANDEL

We can now conclude the proof.

Proof of Theorem 2.7. Assume first that A0, . . . , An ∈ Md(C)sa are self-adjoint.
Applying Lemma 5.4, the chain rule, and Proposition 4.6 yields

∣
∣
∣
∣

d

dq
E[tr(XN

q )2p]
2
p

∣
∣
∣
∣
=

2

p
E[tr(XN

q )2p]
2
p
−1

∣
∣
∣
∣

d

dq
E[tr(XN

q )2p]

∣
∣
∣
∣

≤ 8

3
p3{qw(XN

1 )4 + w(XN
0 , XN

1 )4 + (1 − q)w(XN
0 )4}

≤ 8

3
p3{qṽ(XN

1 )4 + ṽ(XN
0 )2ṽ(XN

1 )2 + (1− q)ṽ(XN
0 )4},

where we used that E[tr(XN
q )2p−4] ≤ E[tr(XN

q )2p]1−
2
p by Hölder’s inequality. Thus

|E[trX2p]
1
2p −E[tr(XN )2p]

1
2p | ≤ |E[trX2p]

2
p −E[tr(XN )2p]

2
p | 14

=

∣
∣
∣
∣

∫ 1

0

d

dq
E[tr(XN

q )2p]
2
p dq

∣
∣
∣
∣

1
4

≤
(
4

3

) 1
4

p
3
4 {ṽ(XN

1 )2 + ṽ(XN
0 )2} 1

2 ,

where we used x − y = (x4 − y4 + y4)
1
4 − y ≤ (x4 − y4)

1
4 for x ≥ y ≥ 0 and (5.2).

But note that Lemma 5.5 implies ṽ(XN
1 ) = ṽ(X) and ṽ(XN

0 ) = N− 1
4 ṽ(X). We

may therefore let N → ∞ in the above inequality and use Corollary 4.4 to obtain

|E[trX2p]
1
2p − (tr⊗ τ)(X2p

free)
1
2p | ≤

(
4

3

) 1
4

p
3
4 ṽ(X).

Finally, we extend the conclusion to non-self-adjoint A0, . . . , An ∈ Md(C) by ap-

plying the above inequality to the self-adjoint model X̆ defined in Remark 2.6. As
E[tr X̆2p] = E[tr |X |2p] and (tr ⊗ τ)(X̆2p

free) = (tr ⊗ τ)(|Xfree|2p) by (4.3), and as

ṽ(X̆) ≤ 2
1
4 ṽ(X), the conclusion follows readily (using (83 )

1
4 ≤ 2). �

Remark 5.6. When A0, . . . , An ∈ Md(C)sa are self-adjoint, we may obtain a slightly
better bound in the proof of Theorem 2.7 by neglecting to apply Proposition 4.6
to w(XN

1 ). In this case, the parameter ṽ(X) in the final bound is replaced by
supN w(XN

1 ). The analogous improvement is possible for most results of this paper.
However, as supN w(XN

1 ) is very difficult to compute in any concrete situation, we
have formulated our main results in terms of the computable quantity ṽ(X).

5.3. Proof of Theorem 2.8. Once the basic method of proof has been understood,
it may be readily adapted to control spectral statistics other than the moments. We
presently adapt the method of the previous section to the matrix-valued Stieltjes
transform. Note that Theorem 2.8 assumes A0, . . . , An ∈ Md(C)sa.

Lemma 5.7. For any Z ∈ Md(C), ImZ > 0 and M ∈ Md(C)⊗MN (C), we have

d

dq
E[trM(Z̃ −XN

q )−1] =

∑

i

∑

r≥s

(

δrs −
1

N

)

E[trAirs(Z̃ −XN
q )−1Airs(Z̃ −XN

q )−1M(Z̃ −XN
q )−1]

and
∑

i

∑

r≥s

(

δrs −
1

N

)

trAirsE[(Z̃ −XN
q )−1]AirsE[(Z̃ −XN

q )−1M(Z̃ −XN
q )−1] = 0,
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where we defined Z̃ = Z ⊗ 1 ∈ Md(C)⊗MN (C).

Proof. The first identity follows from Lemma 4.11 with f(y) = trM(Z̃−XN(y))−1.

The second identity follows as E[(Z̃ −XN
q )−1] = E[(id⊗ tr)(Z̃ −XN

q )−1]⊗ 1 holds
by precisely the same proof as that of Lemma 5.2. �

We can now proceed as in Lemma 5.4.

Lemma 5.8. For any Z ∈ Md(C), ImZ > 0 we have
∥
∥
∥
∥

d

dq
E[(Z⊗1−XN

q )−1]

∥
∥
∥
∥
≤ 2‖(ImZ)−5‖{qw(XN

1 )4+w(XN
0 , XN

1 )4+(1−q)w(XN
0 )4}.

Proof. Define XN
qt as in the proof of Lemma 5.4, and denote R := (Z ⊗ 1−XN

q )−1

and Rt := (Z ⊗ 1−XN
qt )

−1 for simplicity. Corollary 4.12 and Lemma 5.7 yield

d

dq
E[trM(Z ⊗ 1−XN

q )−1] =

∫ 1

0

∑

i,i′

∑

r≥s

∑

r′≥s′

(

qδrsδr′s′ +
1− q

N
δr′s′ −

q

N
δrs −

1− q

N2

)

·
{
E[trAi′r′s′RAirsRAi′r′s′RtAirsRtMRt]

+E[trAi′r′s′RAirsRAi′r′s′RtMRtAirsRt]
}
dt.

Now apply Lemma 4.5 with p1 = p2 = p3 = ∞ and p4 = 1 to the first expectation
in the integral, and with p1 = p2 = p4 = ∞ and p3 = 1 to the second expectation.
This yields, in the same manner as in the proof of Lemma 5.4, that

∣
∣
∣
∣

d

dq
E[trM(Z ⊗ 1−XN

q )−1]

∣
∣
∣
∣

≤ 2{qw(XN
1 )4 + w(XN

0 , XN
1 )4 + (1 − q)w(XN

0 )4}‖‖R‖‖3∞E[tr |RMR|].
But as ‖R‖ ≤ ‖(ImZ)−1‖ (see, e.g., [19, Lemma 3.1]), we obtain
∣
∣
∣
∣
trM

d

dq
E[(Z ⊗ 1−XN

q )−1]

∣
∣
∣
∣

≤ 2‖(ImZ)−5‖{qw(XN
1 )4 + w(XN

0 , XN
1 )4 + (1 − q)w(XN

0 )4} tr |M |.
The conclusion follows by taking the supremum over all M with tr |M | ≤ 1. �

Integrating the above differential inequality yields the following.

Lemma 5.9. For any Z ∈ Md(C), ImZ > 0 we have

‖E[(Z −X)−1]−E[(id⊗ tr)(Z ⊗ 1−XN )−1]‖ ≤ (1 +N− 1
2 )2ṽ(X)4‖(ImZ)−5‖.

Proof. Integrating Lemma 5.8 and using Proposition 4.6 yields

‖E[(Z ⊗ 1−XN
1 )−1]− E[(Z ⊗ 1−XN

0 )−1]‖ ≤ {ṽ(XN
1 )2 + ṽ(XN

0 )2}2‖(ImZ)−5‖.
As XN

0 = XN , we have E[(Z ⊗ 1−XN
0 )−1] = E[(id ⊗ tr)(Z ⊗ 1−XN)−1] ⊗ 1 as

in Lemma 5.2. Similarly, as XN
1 is block-diagonal with i.i.d. copies of X on the

diagonal, we have E[(Z ⊗ 1−XN
1 )−1] = E[(Z −X)−1]⊗ 1 as in Lemma 5.2. The

conclusion follows readily from these observations and Lemma 5.5. �

It remains to take the limit N → ∞ in Lemma 5.9. While Corollary 4.4 does
not apply directly here, its proof may be readily extended to the present setting.
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Lemma 5.10. For any Z ∈ Md(C), ImZ > 0 we have

lim
N→∞

‖E[(id⊗ tr)(Z ⊗ 1−XN )−1]− (id⊗ τ)(Z ⊗ 1−Xfree)
−1‖ = 0.

Proof. As we aim to establish convergence as N → ∞ in Md(C) with a fixed finite
dimension d, it suffices to show that

lim
N→∞

〈v, {E[(id⊗ tr)(Z ⊗ 1−XN )−1]− (id⊗ τ)(Z ⊗ 1−Xfree)
−1} v〉 = 0

for all v ∈ Cd with ‖v‖ = 1. Moreover, if we define

X̃N := (ImZ ⊗ 1)−1/2{XN − ReZ ⊗ 1}(ImZ ⊗ 1)−1/2,

X̃free := (ImZ ⊗ 1)−1/2{Xfree − ReZ ⊗ 1}(ImZ ⊗ 1)−1/2

where ReZ := 1
2 (Z + Z∗), it clearly suffices to show that

lim
N→∞

〈v, {E[(id⊗ tr)(i1− X̃N )−1]− (id⊗ τ)(i1− X̃free)
−1} v〉 = 0

for all v ∈ Cd with ‖v‖ = 1. By the spectral theorem, there are probability measures
µN , µ (which depend on the choice of v) so that

∫

h dµN = 〈v,E[(id⊗ tr)(h(X̃N ))] v〉,
∫

h dµ = 〈v, (id ⊗ τ)(h(X̃free)) v〉

for h : R → C. Theorem 4.3 yields
∫
xp dµN →

∫
xp dµ for p ∈ N as in the proof of

Corollary 4.4. As ‖X̃free‖ < ∞, the measure µ has bounded support. Thus moment
convergence implies weak convergence [27, p. 116], concluding the proof. �

Proof of Theorem 2.8. The conclusion follows immediately by taking N → ∞ in
Lemma 5.9 and using Lemma 5.10. �

5.4. Proof of Corollary 2.9. The deduction of Corollary 2.9 from Theorem 2.8
follows by applying general facts about Stieltjes transforms that may be found in
[19, §6]. For convenience, we formulate a general statement.

Lemma 5.11. Let µ, ν be probability measures on R with Stieltjes transforms

sµ(z) :=

∫
1

z − x
µ(dx), sν(z) :=

∫
1

z − x
ν(dx).

Suppose that

|sµ(z)− sν(z)| ≤
K

(Im z)p

for some K ≥ 0, p ∈ N, and all z ∈ C with Im z > 0. Then
∣
∣
∣
∣

∫

h dµ−
∫

h dν

∣
∣
∣
∣
≤ (

√
2)p+1K

p!π

∫ ∞

∞

∣
∣
∣
∣

(

1 +
d

dx

)p+1

h(x)

∣
∣
∣
∣
dx . K‖h‖Wp+1,1(R)

for every h ∈ W p+1,1(R).

Proof. Let h ∈ C∞
c (R). Following verbatim the proof of [19, Theorem 6.2] yields

∣
∣
∣
∣

∫

h dµ−
∫

h dν

∣
∣
∣
∣
≤ 1

π
lim sup

y↓0

∫ ∞

∞

∣
∣
∣
∣

(

1 +
d

dx

)p+1

h(x)

∣
∣
∣
∣
|Ip+1(x+ iy)| dx

with

|Ip+1(z)| ≤
1

p!

∫ ∞

0

K

(Im z + t)p
(
√
2t)pe−t

√
2 dt ≤ (

√
2)p+1K

p!
.
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That the integral may be bounded up to a universal constant by the Sobolev norm

‖h‖Wp+1,1(R) follows as
(
p+1
k

) (
√
2)p+1

p! . 1 for all 0 ≤ k ≤ p + 1. The conclusion

finally extends to general h ∈ W p+1,1(R) by routine approximation arguments. �

We can now conclude the proof.

Proof of Corollary 2.9. Theorem 2.8 implies

|E[tr(z1−X)−1]− (tr⊗ τ)(z1−Xfree)
−1| ≤ ṽ(X)4

(Im z)5

for all z ∈ C with Im z > 0. Applying Lemma 5.11 with p = 5 to the spectral
distributions of X and Xfree immediately yields the conclusion. �

6. Concentration of the spectrum

The aim of this section is to prove our main results on the support of the spectrum
that were formulated in Section 2.1. The general scheme of proof is the same as in
the previous section, but some new ingredients are needed here.

6.1. Moments of the resolvent. The proof of Theorem 2.1 is based on an analysis
of large moments of the resolvent E[tr |z1−X |−2p]. In the present section, we will
prove an analogue of Theorem 2.8 for these higher moments.

Theorem 6.1. Let A0, . . . , An ∈ Md(C)sa. Then we have

|E[tr |z1−X |−2p]
1
2p − (tr ⊗ τ)(|z1−Xfree|−2p)

1
2p | ≤ (p+ 2)3

3

ṽ(X)4

(Im z)5

for every p ∈ N and z ∈ C, Im z > 0.

The proof of Theorem 6.1 is similar to that of Theorems 2.7 and 2.8. Throughout
this section, we adopt without further comment the constructions and notation of
Section 5.1. In particular, XN

q is defined as in (5.1).

Lemma 6.2. For any p ∈ N and z ∈ C, Im z > 0, we have

d

dq
E[tr |z1−XN

q |−2p] = p
∑

i

∑

r≥s

(

δrs −
1

N

)

·
{

p
∑

k=0

ReE[trAirs(z1−XN
q )−k−1Airs(z1−XN

q )−p−1+k(z1−XN
q )−p]

+

p−1
∑

k=0

ReE[trAirs(z1−XN
q )−p−1(z1−XN

q )−k−1Airs(z1−XN
q )−p+k]

}

and

0 = p
∑

i

∑

r≥s

(

δrs −
1

N

)

·
{

p
∑

k=0

Re trAirsE[(z1−XN
q )−k−1]AirsE[(z1−XN

q )−p−1+k(z1−XN
q )−p]

+

p−1
∑

k=0

Re trAirsE[(z1−XN
q )−p−1(z1−XN

q )−k−1]AirsE[(z1−XN
q )−p+k]

}

.



36 AFONSO S. BANDEIRA, MARCH T. BOEDIHARDJO, AND RAMON VAN HANDEL

Proof. The first identity follows by applying Lemma 4.11 to the function

f(y) = tr |z1−XN(y)|−2p = tr[(z1−XN (y))−p(z1−XN (y))−p].

The second identity follows by applying Lemma 5.2. �

We can now proceed as in Lemma 5.4.

Lemma 6.3. For any p ∈ N and z ∈ C, Im z > 0, we have
∣
∣
∣
∣

d

dq
E[tr |z1−XN

q |−2p]

∣
∣
∣
∣

≤ 4

3
p(p+ 2)3{qw(XN

1 )4 + w(XN
0 , XN

1 )4 + (1− q)w(XN
0 )4}E[tr |z1−XN

q |−2p−4].

Proof. Define XN
qt as in the proof of Lemma 5.4, and denote R := (z1 − XN

q )−1

and Rt := (z1−XN
qt )

−1. Applying Corollary 4.12 and Lemma 6.2 yields

d

dq
E[tr |z1−XN

q |−2p] =

pRe

∫ 1

0

∑

i,i′

∑

r≥s

∑

r′≥s′

(

qδrsδr′s′ +
1− q

N
δrs −

q

N
δr′s′ −

1− q

N2

)

·

{
p−1
∑

k=0

p
∑

l=0

p−k−1
∑

m=0

E[trAirsR
l+1Ai′r′s′R

p−l+1R∗(k+1)AirsR
∗(m+1)
t Ai′r′s′R

∗(p−k−m)
t ] +

p−1
∑

k=0

k∑

l=0

p−k−1
∑

m=0

E[trAirsR
p+1R∗(l+1)Ai′r′s′R

∗(k−l+1)AirsR
∗(m+1)
t Ai′r′s′R

∗(p−k−m)
t ] +

p
∑

k=0

k∑

l=0

p−k
∑

m=0

E[trAirsR
l+1Ai′r′s′R

k−l+1AirsR
m+1
t Ai′r′s′R

p−k−m+1
t R∗p

t ] +

p
∑

k=0

k∑

l=0

p−1
∑

m=0

E[trAirsR
l+1Ai′r′s′R

k−l+1AirsR
p+1−k
t R

∗(m+1)
t Ai′r′s′R

∗(p−m)
t ]

}

dt.

We can now apply Lemma 4.5 as in the proof of Lemma 5.4 to bound
∣
∣
∣
∣

d

dq
E[tr |z1−XN

q |−2p]

∣
∣
∣
∣

≤ p

(
2p+ 3

3

)

{qw(XN
1 )4 + w(XN

0 , XN
1 )4 + (1 − q)w(XN

0 )4}E[tr |z1−XN
q |−2p−4].

The conclusion follows using
(
2p+3

3

)
≤ 4

3 (p+ 2)3. �

We can now complete the proof.

Proof of Theorem 6.1. Lemma 6.3, the chain rule, and Proposition 4.6 yield
∣
∣
∣
∣

d

dq
E[tr |z1−XN

q |−2p]
1
2p

∣
∣
∣
∣
≤ 2

3

(p+ 2)3

(Im z)5
{qṽ(XN

1 )4+ṽ(XN
0 )2ṽ(XN

1 )2+(1−q)ṽ(XN
0 )4},

where we used that

E[tr |z1−XN
q |−2p−4] ≤ E[tr |z1−XN

q |−2p+1]

(Im z)5
≤ E[tr |z1−XN

q |−2p]1−
1
2p

(Im z)5
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using ‖|z1−XN
q |−1‖ ≤ (Im z)−1 and Hölder’s inequality. Integrating yields

|E[tr |z1−X |−2p]
1
2p −E[tr |z1−XN |−2p]

1
2p | ≤ (1 +N−1)2

3

(p+ 2)3ṽ(X)4

(Im z)5

using (5.2) and Lemma 5.5. It remains to let N → ∞ using Corollary 4.4. �

6.2. Proof of Theorem 2.1. The basic observation behind the proof is the fol-
lowing. For any D ⊆ C and z ∈ C, denote d(z,D) := infz′∈D |z − z′|. Then

‖(z1−X)−1‖ =
1

d(z, sp(X))
, (6.1)

and analogously for Xfree. The following device will enable us to deduce concentra-
tion of the spectrum from resolvent inequalities.

Lemma 6.4. Let K,L ≥ 0, and let A,B be self-adjoint operators such that

‖(z1−A)−1‖ ≤ C‖(z1−B)−1‖+ K

(Im z)5
+

L

(Im z)2

for all z = λ+ iε with λ ∈ sp(A) and ε = (4K)
1
4 ∨ 4L. Then

sp(A) ⊆ sp(B) + 2Cε[−1, 1].

Proof. By (6.1), the assumption states that

1

ε
≤ C

√

ε2 + d(λ, sp(B))2
+

K

ε5
+

L

ε2
for all λ ∈ sp(A).

If d(λ, sp(B)) > 2Cε, we would have 1
2 < K

ε4 +
L
ε ≤ 1

2 , which entails a contradiction.
Thus we have shown that d(λ, sp(B)) ≤ 2Cε for all λ ∈ sp(A). �

Our aim is now to show that the condition of Lemma 6.4 holds with high proba-
bility for A = X and B = Xfree. To this end, we begin by showing that the relevant
condition holds with high probability for a given z ∈ C.

Lemma 6.5. Fix z ∈ C with Im z > 0. Then

P

[

‖(z1−X)−1‖ ≥ √
e‖(z1−Xfree)

−1‖+√
e
(log d+ 3)3

3

ṽ(X)4

(Im z)5
+

σ∗(X)

(Im z)2
t

]

≤ e−
t2

2

for all t ≥ 0.

Proof. Using that tr |M | ≥ 1
d‖M‖ for every M ∈ Md(C), Theorem 6.1 yields

d−
1
2pE‖(z1−X)−1‖ ≤ ‖(z1−Xfree)

−1‖+ (p+ 2)3

3

ṽ(X)4

(Im z)5

for every p ∈ N. Choosing p = ⌈log d⌉ yields

E‖(z1−X)−1‖ ≤ √
e‖(z1−Xfree)

−1‖+√
e
(log d+ 3)3

3

ṽ(X)4

(Im z)5
.

It remains to note that F (X) = ‖(z1−X)−1‖ satisfies

|F (X)− F (Y )| ≤ ‖(z1−X)−1(X − Y )(z1− Y )−1‖ ≤ ‖X − Y ‖
(Im z)2

(6.2)

for X,Y ∈ Md(C)sa, so that the conclusion follows from Corollary 4.14. �
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We must now show that ‖(z1−X)−1‖ is small with high probability simultane-
ously for all z = λ+ iε with λ ∈ sp(X). To create the requisite uniformity in z, we
first need a crude a priori bound on the spectrum of X .

Lemma 6.6. For any t ≥ 0, we have

P[sp(X) ⊆ sp(A0) + σ∗(X){d+ t}[−1, 1]] ≥ 1− e−
t2

2 .

Proof. By Weyl’s inequality, we have |λi(X) − λi(A0)| ≤ ‖X − A0‖ for every i,
where λi(X) denotes the ith largest eigenvalue of X . Thus

sp(X) ⊆ sp(A0) + ‖X −A0‖[−1, 1].

By Cauchy-Schwarz, we can crudely bound

‖X −A0‖ = sup
‖v‖=‖w‖=1

∣
∣
∣
∣
∣

n∑

i=1

gi〈v,Aiw〉
∣
∣
∣
∣
∣
≤ σ∗(X)‖g‖.

Thus we have shown

P[sp(X) ⊆ sp(A0) + σ∗(X){d+ t}[−1, 1]] ≥ P[‖g‖ ≤ d+ t].

But note that the argument in the proof of Lemma 4.7 shows that we may assume
n ≤ d2 without loss of generality. Thus E‖g‖ ≤ √

n ≤ d. It remains to note that

P[‖g‖ ≥ d+ t] ≤ P[‖g‖ ≥ E‖g‖+ t] ≤ e−
t2

2

by Lemma 4.13. �

We are now ready to prove a uniform analogue of Lemma 6.5.

Lemma 6.7. Fix ε > 0. Then

P

[

‖(z1−X)−1‖ ≤ √
e‖(z1−Xfree)

−1‖+√
e
(log d+ 3)3

3

ṽ(X)4

(Im z)5

+ (
√
e+ 2)

σ∗(X)

(Im z)2
(4
√

log d+ t) for all z ∈ sp(X) + iε

]

≥ 1− e−
t2

2

for all t ≥ 0.

Proof. Define the (nonrandom) set

Ωt := sp(A0) + σ∗(X){d+ t}[−1, 1] ⊂ R.

As A0 has at most d distinct eigenvalues, Ωt is the union of at most d intervals of

length 2σ∗(X){d+ t}. We can therefore find Nt ⊂ Ωt of cardinality |Nt| ≤ 2d(d+t)
t

such that each λ ∈ Ωt satisfies d(λ,Nt) ≤ σ∗(X)t.
Now note that we can estimate as in (6.2)

|‖(z1−X)−1‖ − ‖(z′1−X)−1‖| ≤ |z − z′|
Im z · Im z′

,
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and similarly for Xfree. We therefore obtain

P

[

‖(z1−X)−1‖ ≤ √
e‖(z1−Xfree)

−1‖+√
e
(log d+ 3)3

3

ṽ(X)4

(Im z)5

+ (
√
e+ 2)

σ∗(X)

(Im z)2
t for all z ∈ Ωt + iε

]

≥

P

[

‖(z1−X)−1‖ ≤ √
e‖(z1−Xfree)

−1‖+√
e
(log d+ 3)3

3

ṽ(X)4

(Im z)5

+
σ∗(X)

(Im z)2
t for all z ∈ Nt + iε

]

≥ 1− |Nt|e−
t2

2 ,

where we used that Im z = Im z′ = ε for z, z′ ∈ Ωt + iε in the first inequality, and
we used the union bound and Lemma 6.5 in the second inequality. In particular,

P

[

‖(z1−X)−1‖ ≤ √
e‖(z1−Xfree)

−1‖+√
e
(log d+ 3)3

3

ṽ(X)4

(Im z)5

+ (
√
e+ 2)

σ∗(X)

(Im z)2
t for all z ∈ sp(X) + iε

]

≥ 1− (|Nt|+ 1)e−
t2

2

by Lemma 6.6. It remains to note that (|Nt+a| + 1)e−
(t+a)2

2 ≤ e−
t2

2 if we choose
a = 4

√
log d (recalling the standing assumption d ≥ 2). �

The proof of Theorem 2.1 now follows readily.

Proof of Theorem 2.1. Combining Lemmas 6.4 and 6.7 yields

P
[
sp(X) ⊆ sp(Xfree) + C{ṽ(X)(log d)

3
4 + σ∗(X)(

√

log d+ t)}[−1, 1]
]
≥ 1− e−t2

for all t ≥ 0, where C is a universal constant. It remains to note that we can
estimate σ∗(X)

√
log d . ṽ(X)(log d)

3
4 as σ∗(X) ≤ ṽ(X). �

6.3. Proof of Corollary 2.2. The deduction of Corollary 2.2 from Theorem 2.1
is nearly immediate; we spell out the details for completeness.

Proof of Corollary 2.2. When A0, . . . , An ∈ Md(C)sa are self-adjoint, the probabil-
ity bound follows immediately from Theorem 2.1. This bound extends directly to
general A0, . . . , An ∈ Md(C) by Remark 2.6. The bound on the expectation is now
obtained by integrating the probability bound. More precisely, we have

E[(‖X‖ − ‖Xfree‖ − Cṽ(X)(log d)
3
4 )+]

=

∫ ∞

0

P[‖X‖ ≥ ‖Xfree‖+ Cṽ(X)(log d)
3
4 + s] ds

≤
∫ ∞

0

e−s2/C2σ∗(X)2 ds = C′σ∗(X)

for a universal constant C′. It follows that

E‖X‖ ≤ ‖Xfree‖+ Cṽ(X)(log d)
3
4 + C′σ∗(X).

It remains to note that as σ∗(X) ≤ ṽ(X), the last term may be eliminated at the
expense of choosing a slightly larger universal constant C. �
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7. Strong asymptotic freeness

The aim of this section is to prove our results on asymptotic freeness that were
formulated in Section 2.3. The proof of Theorem 2.10 is divided into two parts. In
Section 7.1 we will prove weak asymptotic freeness (part a). This part of the proof
is elementary and uses only the basic estimates of Section 4.2; when specialized to
Wigner matrices, it yields a self-contained proof of Voiculescu’s Theorem 4.3. In
Section 7.2, we will prove strong asymptotic freeness (part b) by combining The-
orem 2.1 with the linearization trick of [19] and concentration estimates. Finally,
Corollary 2.11 will be deduced from Theorem 2.10 in Section 7.3.

7.1. Weak asymptotic freeness. The aim of this section is to prove part a of
Theorem 2.10. By linearity of the trace, it evidently suffices to assume

p(H1, . . . , Hm) = Hk1 · · ·Hkq

is a monomial of degree q for some q ∈ N and 1 ≤ k1, . . . , kq ≤ m. This assumption
will be made throughout the proof of part a of Theorem 2.10.

Throughout this section, we let HN
1 , . . . , HN

m be defined as in Theorem 2.10. We
begin with some preliminary observations. First, we note the following.

Lemma 7.1. We have supN,k E[tr |HN
k −E[HN

k ]|q] 1q < ∞ for every q ∈ N.

Proof. By assumption, σ(HN
k )2 = ‖E(HN

k )2‖ = 1 + o(1). The conclusion follows
from the noncommutative Khintchine inequality, cf. [28, §9.8] or [39, §3.1]. �

Before we proceed to the main part of the proof, we perform a simple reduction:
we show that it suffices to assume E[HN

k ] = 0. This elementary observation will
avoid unnecessary notational complications.

Lemma 7.2. Denote H̄N
k := HN

k −E[HN
k ]. Then we have

lim
N→∞

E tr |HN
k1

· · ·HN
kq

− H̄N
k1

· · · H̄N
kq
| = 0.

Proof. Note that

HN
k1

· · ·HN
kq

− H̄N
k1

· · · H̄N
kq

=

q
∑

l=1

H̄N
k1

· · · H̄N
kl−1

E[HN
kl
]HN

kl+1
· · ·HN

kq
.

Thus

E tr |HN
k1

· · ·HN
kq

− H̄N
k1

· · · H̄N
kq
| ≤ qmax

k,l
‖E[HN

k ]‖{(E tr |H̄N
l |q) 1

q + ‖E[HN
l ]‖}q−1

by Hölder’s inequality. As ‖E[HN
k ]‖ = o(1), it remains to note that E tr |H̄N

k |q is
uniformly bounded as N → ∞ by Lemma 7.1. �

By Lemma 7.2, we can assume without loss of generality in the remainder of the
proof of part a of Theorem 2.10 that E[HN

k ] = 0 for all k.
We now turn the the main part of the proof. The basic tool we will use is the

classical Wick formula for Gaussian moments [27, Theorem 22.3], which should be
compared with its free counterpart in Definition 4.2.

Lemma 7.3 (Wick formula). Let g1, . . . , gn be i.i.d. standard Gaussians. Then

E[gk1 · · · gkq
] =

∑

π∈P2([q])

∏

{i,j}∈π

δkikj

for every q ≥ 1 and k1, . . . , kq ∈ [n].
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From the Wick formula, we deduce the following.

Corollary 7.4. Suppose E[HN
k ] = 0 for all k ∈ [m], and let k = (k1, . . . , kq). Then

E[trHN
k1

· · ·HN
kq
] =

∑

π∈P2([q])

E[trHN
1|π,k · · ·HN

q|π,k]
∏

{r,s}∈π

δkrks
,

where HN
1|π,k, . . . , H

N
q|π,k are jointly Gaussian random matrices defined as follows:

1. HN
r|π,k has the same distribution as HN

kr
.

2. HN
r|π,k = HN

s|π,k if {r, s} ∈ π.

3. HN
r|π,k and HN

s|π,k are independent if r 6= s, {r, s} 6∈ π.

Proof. As E[HN
k ] = 0, we may write

HN
k =

n∑

i=1

gki Aki,

where gki are i.i.d. standard Gaussians and Aki ∈ Md(C)sa. Then

E[trHN
1|π,k · · ·HN

q|π,k]
∏

{r,s}∈π

δkrks
=

∑

i1,...,iq

trAk1i1 · · ·Akqiq

∏

{r,s}∈π

δkrks
δiris

by construction. On the other hand

E[trHN
k1

· · ·HN
kq
] =

∑

i1,...,iq

trAk1i1 · · ·Akqiq

∑

π∈P2([q])

∏

{r,s}∈π

δkrks
δiris

by Lemma 7.3, completing the proof. �

The main idea that gives rise to weak asymptotic freeness is that the terms in
Corollary 7.4 that correspond to crossing pairings are asymptotically negligible.
This will follow readily from the following lemma.

Lemma 7.5. In the setting of Corollary 7.4, we have

|E[trHN
1|π,k · · ·HN

q|π,k]| ≤ max
k,l

w(HN
k , HN

l )4 max
k

E[tr |HN
k |q−4]

for any crossing pairing π ∈ P2([q])\NC2([q]) such that kr = ks for all {r, s} ∈ π.

Proof. By assumption, the exist {r1, s1}, {r2, s2} ∈ π such that r1 < r2 < s1 < s2.
Computing the expectation with respect to these indices only yields

E[trHN
1|π,k · · ·HN

q|π,k] =
∑

i,j

E[trHN
1|π,k · · ·HN

r1−1|π,kAkr1 i
HN

r1+1|π,k · · ·HN
r2−1|π,kAkr2 j

HN
r2+1|π,k · · ·

HN
s1−1|π,kAkr1 i

HN
s1+1|π,k · · ·HN

s2−1|π,kAkr2 j
HN

s2+1|π,k · · ·HN
q|π,k],

where we used the notation in the proof of Corollary 7.4. Cyclically permuting the
trace, applying Lemma 4.5, and using Hölder’s inequality yields

|E[trHN
1|π,k · · ·HN

q|π,k]| ≤ w(HN
kr1

, HN
kr2

)4
∏

l∈[q]\{r1,r2,s1,s2}
E[tr |HN

kl
|q−4]

1
q−4 .

The conclusion follows readily. �

On the other hand, the assumption ‖E[(HN
k )2]− 1‖ → 0 implies the following.



42 AFONSO S. BANDEIRA, MARCH T. BOEDIHARDJO, AND RAMON VAN HANDEL

Lemma 7.6. In the setting of Corollary 7.4, we have

lim
N→∞

E[trHN
1|π,k · · ·HN

q|π,k] = 1

for any noncrossing pairing π ∈ NC2([q]) such that kr = ks for all {r, s} ∈ π.

Proof. Any noncrossing pairing π ∈ NC2([q]) must contain at least one adjacent
pair {r, r+1} ∈ π. By cyclic permutation of the trace, we may assume {q−1, q} ∈ π.
Computing the expectation with respect to this pair yields

E[trHN
1|π,k · · ·HN

q|π,k] = E[trHN
1|π,k · · ·HN

q−2|π,kE[(HN
kq
)2]].

In particular, we obtain using Hölder’s inequality

|E[trHN
1|π,k · · ·HN

q|π,k]−E[trHN
1|π,k · · ·HN

q−2|π,k]|

≤ ‖E[(HN
kq
)2]− 1‖

q−2
∏

k=1

E[tr |HN
k |q−2]

1
q−2 .

As π\{{q − 1, q}} ∈ NC2([q − 2]), we may iterate this procedure to obtain

|E[trHN
1|π,k · · ·HN

q|π,k]− 1| ≤ q

2
max

k
‖E[(HN

k )2]− 1‖max
k

max
l≤q

E[tr |HN
k |l].

The conclusion follows as ‖E[(HN
k )2] − 1‖ → 0 as N → ∞ by assumption, while

E[tr |HN
k |l] is uniformly bounded for all l ≤ q and N ≥ 1 by Lemma 7.1. �

The proof of weak asymptotic freeness is now readily completed.

Proof of Theorem 2.10: part a. By Lemma 7.2, we may assume without loss of gen-
erality that E[HN

k ] = 0 for all k,N . By Lemma 7.6 and Definition 4.2, we have

lim
N→∞

∑

π∈NC2([q])

E[trHN
1|π,k · · ·HN

q|π,k]
∏

{r,s}∈π

δkrks
= τ(sk1 · · · skq

).

On the other hand, Lemma 7.5 and Proposition 4.6 yield
∣
∣
∣
∣
∣

∑

π∈P2([q])\NC2([q])

E[trHN
1|π,k · · ·HN

q|π,k]
∏

{r,s}∈π

δkrks

∣
∣
∣
∣
∣

≤ |P2([q])|max
k

v(HN
k )2σ(HN

k )2 max
k

E[tr |HN
k |q−4].

As σ(HN
k ) and E[tr |HN

k |q−4] are uniformly bounded as N → ∞ by Lemma 7.1, the
assumption v(HN

k ) = o(1) implies the right-hand side vanishes as N → ∞. Thus

lim
N→∞

E[trHN
k1

· · ·HN
kq
] = τ(sk1 · · · skq

)

for all q ∈ N and 1 ≤ k1, . . . , kq ≤ m by Corollary 7.4. The conclusion extends
immediately to any noncommutative polynomial p(HN

1 , . . .HN
m ) by linearity. �

7.2. Strong asymptotic freeness. The main idea behind the proof of part b
of Theorem 2.10 is that the behavior of polynomials can be controlled by that
of associated random matrices of the form (2.1). We have already encountered a
very simple form of such a linearization argument in Lemma 3.14, where it was
used to obtain nonasymptotic bounds for sample covariance matrices. As we are
presently interested in asymptotics, we can directly invoke the abstract linearization
argument of Haagerup and Thorbjørnsen [19, Lemma 1 and pp. 758–760].
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Theorem 7.7 (Haagerup-Thorbjørnsen). Suppose that for every ε > 0, d′ ∈ N,
and A0, . . . , Am ∈ Md′(C)sa, the following holds almost surely:

sp(A0 ⊗ 1+
∑m

k=1Ak ⊗HN
k ) ⊆ sp(A0 ⊗ 1+

∑m
k=1Ak ⊗ sk) + [−ε, ε]

eventually as N → ∞. Then

lim sup
N→∞

‖p(HN
1 , . . . , HN

m )‖ ≤ ‖p(s1, . . . , sm)‖ a.s.

for every noncommutative polynomial p.

Let again HN
1 , . . . , HN

m be defined as in Theorem 2.10. Then we may write

HN
k = BN

k0 +

nN
k∑

i=1

gNkiB
N
ki ,

where nN
k ∈ N, BN

ki ∈ Md(N)(C)sa, and (gNki)k∈[m],i∈[nN
k
] are i.i.d. standard Gaussians

for each N (we need not specify the joint distribution for different N , but we assume
all random matrices have been placed on a single probability space). Let us fix in
the following any d′ ∈ N and A0, . . . , Am ∈ Md′(C)sa, and define

ΞN := A0 ⊗ 1+

m∑

k=1

Ak ⊗HN
k = A0 ⊗ 1+

m∑

k=1

Ak ⊗BN
k0 +

m∑

k=1

nN
k∑

i=1

(Ak ⊗BN
ki) g

N
ki

and its free analogue

ΞN
free := A0 ⊗ 1+

m∑

k=1

Ak ⊗BN
k0 +

m∑

k=1

nN
k∑

i=1

Ak ⊗BN
ki ⊗ ski,

where (ski)k,i is a free semicircular family. Then we have the following.

Lemma 7.8. If v(HN
k ) = o((log d(N))−

3
2 ) as N → ∞ for all k, then

sp(A0 ⊗ 1+
∑m

k=1Ak ⊗HN
k ) ⊆ sp(ΞN

free) + [−ε, ε]

eventually as N → ∞ a.s. for every ε > 0.

Proof. As HN
1 , . . . , HN

m are independent, we have

Cov(ΞN ) =

m∑

k=1

Cov(Ak ⊗HN
k ) =

m∑

k=1

‖Ak‖2HSCov(H
N
k ).

As A1, . . . , Am are fixed, it follows that v(ΞN ) = ‖Cov(ΞN )‖ 1
2 = o((log d(N))−

3
2 ).

On the other hand, we readily compute

σ(ΞN )2 =

∥
∥
∥
∥
∥

m∑

k=1

A2
k ⊗E[(HN

k )2]

∥
∥
∥
∥
∥
,

so ‖E[(HN
k )2]− 1‖ = o(1) implies that σ(ΞN ) = O(1). Therefore

P
[
sp(ΞN ) ⊆ sp(ΞN

free) + εN [−1, 1]
]
≥ 1− e−(logN)3

by Theorem 2.1 and d(N) ≥ N , where

εN := C{ṽ(ΞN )(log d′d(N))
3
4 + σ∗(Ξ

N )(log d(N))
3
2 } = o(1)

as σ∗(ΞN ) ≤ v(ΞN ). It remains to note that as
∑

N e−(logN)3 < ∞, the conclusion
follows from the Borel-Cantelli lemma. �
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On the other hand, ‖E[(HN
k )2] − 1‖ = o(1) ensures that the spectrum of ΞN

free

concentrates around that of A0 ⊗ 1 +
∑m

k=1 Ak ⊗ sk. This is the analogue in the
present setting of Lemma 7.6 in the previous section. We first prove a special case.

Lemma 7.9. In the special case that E[HN
k ] = 0 and E[(HN

k )2] = 1 for all k,

sp(ΞN
free) = sp(A0 ⊗ 1+

∑m
k=1Ak ⊗ sk).

Proof. In the present setting, we may write

ΞN
free = A0 ⊗ 1+

m∑

k=1

Ak ⊗HN
k,free,

where

HN
k,free =

nN
k∑

i=1

BN
ki ⊗ ski

satisfies (tr ⊗ τ)((HN
k,free)

2) =
∑

i(B
N
ki)

2 = 1. By Definition 4.2, we may compute

(tr ⊗ τ)(HN
k1,free · · ·HN

kq,free) =
∑

π∈NC2([q])

∑

i1,...,iq

tr(BN
k1i1 · · ·BN

kqiq )
∏

{r,s}∈π

δkrks
δiris .

It follows exactly as in the proof of Lemma 7.6 that

(tr⊗ τ)(HN
k1,free · · ·HN

kq ,free) = τ(sk1 · · · skq
)

for all q ∈ N, 1 ≤ k1, . . . , kq ≤ m, and N ≥ 1. In particular, it follows that

(tr ⊗ τ)((ΞN
free)

q) = (tr ⊗ τ)((A0 ⊗ 1+
∑m

k=1Ak ⊗ sk)
q)

for all q ∈ N. As ΞN
free is a bounded operator, the equality of all moments implies

that the spectral distributions of ΞN
free and A0⊗1+

∑m
k=1Ak⊗sk coincide. Therefore,

as tr⊗ τ is a faithful state, their spectra coincide as well. �

The general case now follows by a perturbation argument.

Lemma 7.10. When ‖E[HN
k ]‖ = o(1) and ‖E[(HN

k )2]− 1‖ = o(1) for all k,

sp(ΞN
free) ⊆ sp(A0 ⊗ 1+

∑m
k=1Ak ⊗ sk) + [−ε, ε]

eventually as N → ∞ for every ε > 0.

Proof. Define

Ξ̃N
free := A0 ⊗ 1+

m∑

k=1

Ak ⊗ H̃N
k,free,

where

H̃N
k,free =

∑nN
k

i=1 B
N
ki ⊗ ski +

(
‖E[(HN

k )2]‖1−E[(HN
k )2]

) 1
2 ⊗ s̃k

‖E[(HN
k )2]‖ 1

2

and (ski, s̃k)k,i is a free semicircular family. As by construction (id⊗τ)(H̃N
k,free) = 0

and (id⊗ τ)((H̃N
k,free)

2) = 1, Lemma 7.9 implies that

sp(Ξ̃N
free) = sp(A0 ⊗ 1+

∑m
k=1Ak ⊗ sk).

Next, we estimate

‖ΞN
free − Ξ̃N

free‖ ≤
m∑

k=1

‖Ak‖{‖E[HN
k ]‖+ ‖HN

k,free − H̃N
k,free‖},
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where HN
k,free is defined in the proof of Lemma 7.9. Moreover, we have

‖HN
k,free− H̃N

k,free‖ ≤
∣
∣
∣
∣
∣
1− 1

‖E[(HN
k )2]‖ 1

2

∣
∣
∣
∣
∣
‖HN

k,free‖+
2
∥
∥‖E[(HN

k )2]‖1−E[(HN
k )2]

∥
∥

1
2

‖E[(HN
k )2]‖ 1

2

using ‖s̃k‖ = 2. Now note that ‖E[HN
k ]‖ = o(1) and ‖E[(HN

k )2]− 1‖ = o(1) imply
‖HN

k,free‖ = O(1) by Lemma 2.5. Thus the above expressions yield

lim
N→∞

‖ΞN
free − Ξ̃N

free‖ = 0.

In particular, this implies by (6.2) that

‖(z1− ΞN
free)

−1‖ ≤ ‖(z1− Ξ̃N
free)

−1‖+ ε

(Im z)2

for all z ∈ C, Im z > 0 holds eventually as N → ∞ for every ε > 0. The conclusion
now follows by invoking Lemma 6.4. �

Before we can conclude the proof, we require a concentration argument.

Lemma 7.11. If v(HN
k ) = o((log d(N))−

3
2 ) as N → ∞ for all k, then

lim
N→∞

|‖p(HN
1 , . . . , HN

m )‖ −E[‖p(HN
1 , . . . , HN

m )‖]| = 0 a.s.,

lim
N→∞

| tr p(HN
1 , . . . , HN

m )− E[tr p(HN
1 , . . . , HN

m )]| = 0 a.s.

for every noncommutative polynomial p.

Proof. Fix a noncommutative polynomial p of degree q. Define a function f either as
f(g) = ‖p(HN

1 , . . . , HN
m )‖ or f(g) = tr p(HN

1 , . . . , HN
m ), where g = (gNki)k∈[m],i∈[nN

k
].

We may assume without loss of generality that nN
k ≤ d(N)2 as in the proof of

Lemma 4.7, so the random vector g has dimension at most md(N)2.
We begin by estimating as in the proofs of Lemma 7.2 and Corollary 4.14 that

|f(g)− f(g′)| ≤ L‖g − g′‖, L = C(p)4q−1 max
k

σ∗(H
N
k )

for all g, g′ ∈ Ω, where

Ω := {g : ‖HN
k ‖ ≤ 4 for all k}

and C(p) is a constant that depends only on the polynomial p.
By Corollary 2.2 and a union bound, we can estimate

P[Ωc] ≤
m∑

k=1

P[‖HN
k ‖ > 4] ≤ me−(log d(N))3

eventually as N → ∞, where we used that σ∗(HN
k ) ≤ v(HN

k ) = o((log d(N))−
3
2 )

and ‖HN
k,free‖ ≤ ‖E[HN

k ]‖+ 2σ(HN
k ) = 2 + o(1) by Lemma 2.5.

As f is L-Lipschitz on Ω, the classical Lipschitz extension theorem of Kirszbraun
ensures the existence of a globally L-Lipschitz function f̃ such that f̃(g) = f(g) for
g ∈ Ω. We can therefore estimate for sufficiently large N

|E[f(g)]−E[f̃(g)]| = |E[(f(g)− f̃(g))1Ωc ]|
≤ P[Ωc]

1
2 {(E|f(g)|2) 1

2 + (E|f̃(g)|2) 1
2 }.

≤ P[Ωc]
1
2 {(E|f(g)|2) 1

2 + |f(0)|+ L
√
md(N)},
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where we used Cauchy-Schwarz and that 0 ∈ Ω for sufficiently large N . Now

note that (E|f(g)|2) 1
2 . 1 + maxk(E‖HN

k ‖2q) 1
2q by Hölder’s inequality, with a

universal constant depending on p only. It therefore follows from Corollary 2.2 that

(E|f(g)|2) 1
2 is uniformly bounded as N → ∞. As |f(0)| is clearly also uniformly

bounded, the estimate P[Ωc] ≤ me−(log d(N))3 implies that

|E[f(g)]−E[f̃(g)]| = o(1)

as N → ∞. On the other hand, we can compute

P[|f(g)−E[f̃(g)]| ≥ L logN ] ≤ P[Ωc] +P[|f̃(g)−E[f̃(g)]| ≥ L logN ]

≤ me−(logN)3 + 2e−
(log N)2

2

by Lemma 4.13 and d(N) ≥ N . Thus

|f(g)−E[f(g)]| ≤ L logN + o(1)

eventually as N → ∞ a.s. by the Borel-Cantelli lemma. But as σ∗(HN
k ) ≤ v(HN

k ) =

o((logN)−
3
2 ), we have L logN = o(1) as N → ∞, and the proof is complete. �

We can now complete the proof of Theorem 2.10.

Proof of Theorem 2.10: part b. Theorem 7.7 and Lemmas 7.8 and 7.10 yield

lim sup
N→∞

‖p(HN
1 , . . . , HN

m )‖ ≤ ‖p(s1, . . . , sm)‖ a.s.

for every noncommutative polynomial p. On the other hand, combining part a of
Theorem 2.10 with Lemma 7.11 yields that

lim
N→∞

tr p(HN
1 , . . . , HN

m ) = τ(p(s1, . . . , sm)) a.s.

The latter implies

lim inf
N→∞

‖p(HN
1 , . . . , HN

m )‖ ≥ lim inf
N→∞

tr(|p(HN
1 , . . . , HN

m )|r) 1
r = τ(|p(s1, . . . , sm)|r) 1

r

a.s. for every r ∈ N, where we used that |p(HN
1 , . . . , HN

m )|r is again a noncommu-
tative polynomial. Letting r → ∞ shows that

lim
N→∞

‖p(HN
1 , . . . , HN

m )‖ = ‖p(s1, . . . , sm)‖ a.s.

It remains to note that

lim
N→∞

E‖p(HN
1 , . . . , HN

m )‖ = ‖p(s1, . . . , sm)‖

now follows from Lemma 7.11. �

7.3. Proof of Corollary 2.11. We finally deduce Corollary 2.11.

Proof of Corollary 2.11. Applying Theorem 2.10 to p(HN ) = (HN )r yields

lim
N→∞

‖HN‖ = ‖s‖ and lim
N→∞

tr[(HN )r] = τ(sr) a.s.

for every r ∈ N, where s is a semicircular variable. As

tr[(HN )r] =

∫

xr µHN (dx), τ(sr) =

∫

xr µsc(dx),

and as µsc has bounded support, the first conclusion follows as moment convergence
implies weak convergence [27, p. 116]. The second conclusion follows as ‖s‖ = 2. �
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8. Matrix concentration inequalities

The aim of this section is to prove Theorem 2.12. Throughout this section, we
will fix the random matrix model X and define σ1, σ2, v, L, σ∗, R as in the statement
of Theorem 2.12. We begin with a routine symmetrization argument.

Lemma 8.1. Let g1, . . . , gn be i.i.d. standard Gaussians independent of X, let
Z ′
1, . . . , Z

′
n be independent copies of Z1, . . . , Zn, and define Z̃i := Zi − Z ′

i. Then

E‖X‖ ≤
√

π

2
E

∥
∥
∥
∥
∥

n∑

i=1

giZ̃i

∥
∥
∥
∥
∥
.

Proof. Note first that

E‖X‖ = E

∥
∥
∥
∥
∥

n∑

i=1

(Zi −E[Z ′
i])

∥
∥
∥
∥
∥
≤ E

∥
∥
∥
∥
∥

n∑

i=1

(Zi − Z ′
i)

∥
∥
∥
∥
∥

by Jensen’s inequality. As (Zi, Z
′
i) are exchangeable, the variables Zi − Z ′

i and
sign(gi)(Zi − Z ′

i) have the same distribution. We therefore have

E‖X‖ ≤ E

∥
∥
∥
∥
∥

n∑

i=1

sign(gi)Z̃i

∥
∥
∥
∥
∥
≤

√
π

2
E

∥
∥
∥
∥
∥

n∑

i=1

giZ̃i

∥
∥
∥
∥
∥
,

where the last step follows by Jensen’s inequality and the fact that
√

2
π sign(gi) =

sign(gi)E|gi| and that |gi| is independent of sign(gi). �

The idea is now that if we condition on Z̃1, . . . , Z̃n, what is left on the right-hand
side of Lemma 8.1 is a Gaussian random matrix. This yields the following.

Corollary 8.2. We have

E‖X‖ ≤ (1 + ε)

√
π

2

(

E

∥
∥
∥
∥
∥

n∑

i=1

Z̃∗
i Z̃i

∥
∥
∥
∥
∥

1
2

+E

∥
∥
∥
∥
∥

n∑

i=1

Z̃iZ̃
∗
i

∥
∥
∥
∥
∥

1
2
)

+
C

ε
E

(

sup
‖M‖HS≤1

n∑

i=1

|Tr[Z̃iM ]|2
) 1

2

(log d)
3
2

for any ε > 0, where C is a universal constant.

Proof. It suffices to estimate the conditional expectation E[‖∑n
i=1 giZ̃i‖|Z̃1, . . . , Z̃n]

using Corollary 2.2, Lemma 2.5, and Young’s inequality. �

To bound each of the terms that appear in Corollary 8.2, we will use the following
variant of the noncommutative Khintchine inequality [36, Theorem 5.1].

Lemma 8.3. Let V1, . . . , Vn be arbitrary independent positive semidefinite d × d
random matrices. Then we have

E

∥
∥
∥
∥
∥

n∑

i=1

Vi

∥
∥
∥
∥
∥

1
2

≤
∥
∥
∥
∥
∥

n∑

i=1

E[Vi]

∥
∥
∥
∥
∥

1
2

+ C

(

Emax
i≤n

‖Vi‖
) 1

2√

log d,

where C is a universal constant.

We are now ready to complete the proof of Theorem 2.12.
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Proof of Theorem 2.12. An immediate application of Lemma 8.3 yields

E

∥
∥
∥
∥
∥

n∑

i=1

Z̃∗
i Z̃i

∥
∥
∥
∥
∥

1
2

≤
√
2σ1 + CL

√

log d,

where we used
∑n

i=1 E[Z̃∗
i Z̃i] = 2E[X∗X ] and ‖Z̃i‖ ≤ ‖Zi‖HS + ‖Z ′

i‖HS. The
analogous bound holds for the second term on the right-hand side of Corollary 8.2

if we replace σ1 by σ2. On the other hand, let ι : Md(C) → Cd2

map a matrix to
its vector of entries. Then we may estimate using Lemma 8.3

E

(

sup
‖M‖HS≤1

n∑

i=1

|Tr[Z̃iM ]|2
) 1

2

= E

∥
∥
∥
∥
∥

n∑

i=1

ι(Z̃i)ι(Z̃i)
∗

∥
∥
∥
∥
∥

1
2

≤
√
2 v + CL

√

log d,

where we used
∑n

i=1 E[ι(Z̃i)ι(Z̃i)
∗] = 2Cov(X) and ‖ι(Z̃i)‖ ≤ ‖Zi‖HS + ‖Z ′

i‖HS.
Combining the above two bounds with Corollary 8.2 yields

E‖X‖ ≤ (1 + ε)
√
π{σ1 + σ2}+ C(1 + ε)L

√

log d+
C

ε
(log d)

3
2 v +

C

ε
(log d)2L

for a universal constant C and any ε > 0. As
√
π < 2, the first statement of

Theorem 2.12 follows by choosing ε sufficiently small.
To deduce the tail bound, we apply Talagrand’s concentration inequality for the

suprema of empirical processes [23, Corollary 7.9] to the quantity

‖X‖ = sup
‖v‖=‖w‖=1

∣
∣
∣
∣

n∑

i=1

〈v, Ziw〉
∣
∣
∣
∣

= sup
‖v‖=‖w‖=1

sup
s∈[0,1]

n∑

i=1

{sRe〈v, Ziw〉+
√

1− s2 Im〈v, Ziw〉}.

As sup‖v‖=‖w‖=1

∑n
i=1 E[|〈v, Ziw〉|2] = σ2

∗ , Talagrand’s inequality yields

P[‖X‖ ≥ (1 + ε)E‖X‖+ Cσ∗
√
t+ C(1 + ε−1)Rt}] ≤ e−t

for all t, ε ≥ 0, where C is a universal constant. Inserting the bound on E‖X‖
obtained above yields the second statement of Theorem 2.12. �

9. Discussion and open questions

The aim of this final section is to discuss a number of broader questions that
arise from our main results. We first discuss in some detail to what extent the
parameter v(X) that quantifies noncommutativity in our bounds is natural, and
whether one might hope to improve fundamentally on this parameter. We then
proceed to highlight a number of open questions that arise from our results.

9.1. A canonical parameter σ∗∗(X) cannot exist.

9.1.1. Is v(X) a natural parameter? In all the results of this paper, the presence of
noncommutativity and of “intrinsic freeness” was quantified by the parameter v(X).
The utility of this parameter is amply demonstrated by the various examples in
Section 3: for example, in the independent entry model, v(X) ≍ maxij bij recovers
precisely the small parameter that controls the previously known behavior (1.4)
in this setting, while various models in Section 3.2 illustrate the significance and
near-optimality of our bounds in dependent situations.
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Nonetheless, it is not difficult to find examples where both v(X), and the slightly
improved parameter supN w(XN

1 ) discussed in Remark 5.6, fail to capture the cor-
rect behavior of Gaussian random matrices. A particularly disconcerting aspect of
these parameters is the following. Let X be any random matrix of the form (2.1);
then X⊗1 is again a model of this form, where we tensor on any finite-dimensional
identity matrix. Tensoring on an identity clearly has no effect on the spectrum of
the matrix: in particular, sp(X⊗1) = sp(X) and σ(X⊗1) = σ(X). This invariance
fails dramatically, however, for the parameters v(X) and w(X).

Lemma 9.1. Let 1N be the identity in MN (C). Then for any self-adjoint d × d
random matrix X of the form (2.1), we have

v(X ⊗ 1N ) =
√
Nv(X) for N ≥ 1,

w(X ⊗ 1N) = σ(X) for N ≥ d.

Proof. We have Cov(X⊗A) = Cov(X)⊗ ι(A)ι(A)∗ for any deterministic matrix A,

where ι : Md(C) → Cd2

maps a matrix to its vector of entries. Thus v(X ⊗ A)2 =

v(X)2‖A‖2HS, and the first claim follows as ‖1N‖HS =
√
N .

To prove the second claim, let N ≥ d, and define U ∈ Md(C) ⊗ MN (C) by
U(ei ⊗ ej) = ej ⊗ ei for i, j ∈ [d] and U(ei ⊗ ej) = 0 otherwise. Then ‖U‖ = 1 and

∑

i,j

(Ai ⊗ 1)U(Aj ⊗ 1)U(Ai ⊗ 1)U(Aj ⊗ 1)U =
∑

i

A2
i ⊗ P

(
∑

i

A2
i

)

P ∗,

where P : Cd → CN denotes the canoncial embedding Pei = ei. Thus w(X ⊗ 1) ≥
σ(X) by the last equation display in the proof of Lemma 4.5. On the other hand,
w(X ⊗ 1) ≤ σ(X ⊗ 1) = σ(X) by [37, Proposition 3.2]. �

Lemma 9.1 shows that no matter how well our bounds capture the behavior of the
random matrix X , applying our results to X⊗1d can never yield any improvement
over the noncommutative Khintchine inequlity (1.2)—despite that tensoring an
identity has no effect on the spectrum of the matrix. This observation may lead one
to conjecture that the theory of this paper should admit a far-reaching improvement,
in which v(X) is replaced by a “natural” parameter that captures correctly the
behavior of the spectrum. For example, it was conjectured in [37, 39, 4] that there
exist bounds of the kind that are studied in this paper, where the parameter v(X)
is replaced by the “natural” parameter σ∗(X).

Somewhat surprisingly, such conjectures turn out to be ill-founded. We will
presently show that the kind of behavior that is captured by Lemma 9.1 is a fun-
damental feature of any bound of the form (1.5).

9.1.2. An impossibility theorem. Suppose we are given a matrix parameter σ∗∗(X)
such that the inequality for d× d centered Gaussian random matrices

E‖X‖ ≤ Cσ(X) + Cσ∗∗(X)(log d)β (9.1)

is valid for universal constants C, β > 0. In view of the above discussion, we may aim
to find an inequality (9.1) that respects the simplest properties of the spectral norm:
the triangle inequlity ‖X + Y ‖ ≤ ‖X‖+ ‖Y ‖; unitary invariance ‖U∗XU‖ = ‖X‖;
and tensor invariance ‖X ⊗ 1‖ = ‖X‖. Note that all three properties are satisfied
also by the parameter σ(X). In order for (9.1) to respect these properties, one
would have to assume that the parameter σ∗∗(X) satisfies these properties up to a
universal constant. Let us formalize these requirements as follows:
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(1) σ∗∗(X1 +X2) ≤ C′{σ∗∗(X1) + σ∗∗(X2)}.

(2) σ∗∗(U∗XU) ≤ C′σ∗∗(X) for any non-random unitary matrix U .

(3) σ∗∗(X ⊗ 1N ) ≤ C′σ∗∗(X) for any N ∈ N.

Here C′ always denotes a universal constant.
The noncommutative Khintchine inequality (1.2), which corresponds to the case

σ∗∗(X) = σ(X), satisfies all the above requirements but does not capture any
noncommutativity. We therefore introduce as a further assumption that the second
term of (9.1) becomes negligible at least in the simplest model of random matrix
theory, the standard Wigner matrices GN of Definition 1.1.

(4) σ∗∗(GN ) = o((logN)−β) as N → ∞.

Remarkably, the above very natural properties prove to be mutually contradictory.

Proposition 9.2. Suppose that (9.1) is valid for some universal constants C, β.
Then at least one of the properties (1)–(4) must fail for any choice of C′.

Proof. Let GN
1 , . . . , GN

n be i.i.d. standard Wigner matrices of dimension N , and
consider the Nn-dimensional Gaussian random matrix

Xn,N =

n∑

k=1

1N ⊗ · · · ⊗ 1N
︸ ︷︷ ︸

k−1

⊗GN
k ⊗ 1N ⊗ · · · ⊗ 1N

︸ ︷︷ ︸

n−k

.

We will show that if properties (1)–(4) hold for some universal constant C′ ≥ 1,
this entails a contradiction. Indeed, properties (1)–(3) yield

σ∗∗(Xn,N )
(1)

≤
n∑

k=1

(C′)k σ∗∗(1Nk−1 ⊗GN
k ⊗ 1Nn−k)

(2)

≤
n∑

k=1

(C′)k+1 σ∗∗(G
N
k ⊗ 1Nn−1)

(3)

≤
n∑

k=1

(C′)k+2 σ∗∗(G
N
k ).

while we may readily compute σ(Xn,N ) =
√
n. Thus we obtain

lim sup
N→∞

E‖Xn,N‖ ≤ C
√
n

by (9.1) and property (4). As (E|‖Xn,N‖−E‖Xn,N‖|p) 1
p . σ∗(Xn,N )

√
p = o(1) as

N → ∞ by a routine application of Corollary 4.14, we further obtain

lim sup
N→∞

(E‖Xn,N‖p) 1
p ≤ C

√
n

for any p ∈ N.
On the other hand, denote by ZN

k the random variable obtained by drawing one
of the eigenvalues of GN

k uniformly at random. Then we may write

E[trXp
n,N ] = E

[(
n∑

k=1

ZN
k

)p]

.
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Note that ZN
1 , . . . , ZN

n are i.i.d. random variables, whose distributions converge
weakly to the standard semicircle distribution as N → ∞ by Theorem 4.3. Thus

lim sup
N→∞

(E‖Xn,N‖2p) 1
2p ≥ lim sup

N→∞
E[trX2p

n,N ]
1
2p = E

[(
n∑

k=1

Zk

)2p] 1
2p

,

where Z1, . . . , Zn are i.i.d. random variables with the standard semicircle distribu-
tion. The classical central limit theorem now implies

E[g2p]
1
2p ≤ lim sup

n→∞
lim sup
N→∞

(E‖Xn,N‖2p) 1
2p

√
n

≤ C

for any p ∈ N, where g is a standard Gaussian variable. But this yields the desired

contradiction, as E[g2p]
1
2p → ∞ as p → ∞. �

A special case of Proposition 9.2 disproves the conjecture made in [37, 39, 4]:
the parameter σ∗(X) satisfies all four properties (1)–(4), and thus an inequality of
the form (9.1) with σ∗∗(X) = σ∗(X) cannot hold.

More generally, Proposition 9.2 shows that no parameter σ∗∗(X) can be expected
to avoid the kind of “unnatural” behavior that was identified in Lemma 9.1. In fact,
the proof of Proposition 9.2 suggests a clear explanation of why this must be the
case. The operation of tensoring identities makes it possible to create limiting
objects that obey the classical (commutative) notion of independence, as opposed
to free independence. However, if properties (1)–(4) hold, then such commutative
models can give rise to a small parameter σ∗∗(X), so that (9.1) would imply that
they behave as their free counterparts up to a universal constant (by Lemma 2.5).
These two phenomena stand in contradiction.

9.1.3. The dimension threshold. The second identity of Lemma 9.1 shows that our
results fail to capture any noncommutative behavior when we tensor a random
matrix X by an identity of the same dimension. On the other hand, for standard
Wigner matrices GN , we have σ(GN ⊗ 1D(N)) = 1 and

v(GN ⊗ 1D(N)) ≍
√

D(N)

N
≪ σ(GN ⊗ 1D(N))

as soon as D(N) ≪ N . Thus the case where a random matrix is tensored by an
identity of proportional dimension appears as the threshold at which our ability to
capture “intrinsic freeness” breaks down.

This phenomenon has an unexpected connection to certain questions in the the-
ory of operator algebras. In the rest of this section, let GN

1 , . . . , GN
m, HN

1 , . . . , HN
m

be independent GUE matrices (that is, self-adjoint N ×N matrices with i.i.d. cen-
tered complex Gaussian variables of variance 1

N on and above the diagonal). In the
recent work [20], it was shown that if strong convergence

lim
N→∞

‖p(GN
1 ⊗ 1N , . . . , GN

m ⊗ 1N ,1N ⊗HN
1 , . . . ,1N ⊗HN

m )‖ =

‖p(s1 ⊗ 1, . . . , sm ⊗ 1,1⊗ s1, . . . ,1⊗ sm)‖ a.s.

were to hold for all polynomials p,2 this would settle a conjecture of Peterson and
Thom in the theory of Von Neumann algebras. Using the results of this paper,

2Throughout this section ⊗ always denotes the minimal tensor product of C∗-algebras.
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a slightly weaker fact can be proved. As the following result is only tangentially
related to the rest of this paper, we will sketch its proof.

Proposition 9.3. We have

lim
N→∞

‖p(GN
1 ⊗ 1D(N), . . . , G

N
m ⊗ 1D(N),1N ⊗H

D(N)
1 , . . . ,1N ⊗HD(N)

m )‖ =

‖p(s1 ⊗ 1, . . . , sm ⊗ 1,1⊗ s1, . . . ,1⊗ sm)‖ a.s.

for every noncommutative polynomial p, provided D(N) = o
(

N
(logN)3

)
.

While this does not suffice for the purpose of [20], which requires D(N) = N ,

the result was previously known only for D(N) = o(N
1
3 ) [10, Theorem 1.2].

Sketch of proof of Proposition 9.3. Fix a dimension d′ ∈ N and self-adjoint matrices
A0, . . . , Am, B1, . . . , Bm ∈ Md′(C)sa. Define the random matrix

XN = A0 ⊗ 1N ⊗ 1D(N) +
m∑

k=1

Ak ⊗GN
k ⊗ 1D(N) +

m∑

k=1

Bk ⊗ 1N ⊗H
D(N)
k .

The assumption on D(N) implies that v(
∑m

k=1 Ak ⊗GN
k ⊗ 1D(N)) = o((logN)−

3
2 ).

As (GN
k )k≤m and (H

D(N)
k )k≤m are independent, we can apply Theorem 2.1 condi-

tionally on (H
D(N)
k )k≤m, Lemma 7.9, and the Borel-Cantelli lemma to show that

sp(XN ) ⊆ sp(A0⊗1⊗1D(N)+
∑m

k=1Ak⊗sk⊗1D(N)+
∑m

k=1Bk⊗1⊗H
D(N)
k )+[−ε, ε]

eventually as N → ∞ a.s. for every ε > 0.
On the other hand, let A be the unital C∗-algebra generated by {s1, . . . , sm}.

Then Md′(C)⊗A is an exact C∗-algebra, cf. [20, p. 27] and the references therein.
Therefore, [19, Theorem 9.1] and [11, Proposition 2.1] imply that

sp(A0 ⊗ 1⊗ 1D(N) +
∑m

k=1Ak ⊗ sk ⊗ 1D(N) +
∑m

k=1Bk ⊗ 1⊗H
D(N)
k ) ⊆

sp(A0 ⊗ 1⊗ 1+
∑m

k=1Ak ⊗ sk ⊗ 1+
∑m

k=1Bk ⊗ 1⊗ sk) + [−ε, ε]

eventually as N → ∞ a.s. for every ε > 0. Linearization as in Theorem 7.7 yields

lim sup
N→∞

‖p(GN
1 ⊗ 1D(N), . . . , G

N
m ⊗ 1D(N),1N ⊗H

D(N)
1 , . . . ,1N ⊗HD(N)

m )‖

≤ ‖p(s1 ⊗ 1, . . . , sm ⊗ 1,1⊗ s1, . . . ,1⊗ sm)‖ a.s.

for every noncommutative polynomial p. The reverse inequality follows from weak

asymptotic freeness of (GN
k )k≤m and (H

D(N)
k )k≤m and concentration of measure as

in the analogous part of the proof of Theorem 2.10. �

9.2. Open questions. We conclude this paper by highlighting some basic open
questions that arise from our main results.

9.2.1. Sharp inequalities. As was explained in the previous section, there cannot
exist a canonical inequality of the form (1.5) that captures correctly the structure of
all Gaussian random matrices. However, even if we restrict attention to parameters
such as v(X), the main results of this paper are slightly suboptimal in the second-
order term. For example, Corollary 2.2 does not fully subsume the known sharp

results for the independent entry model, as the logarithmic term (log d)
3
2 in (3.3)

is slightly worse than the term
√
log d in (3.2).
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The suboptimal power on the logarithm is relevant only for models that are right
at the threshold where “intrinsic freeness” breaks down, and is insignificant in most
applications. It is nonetheless an interesting question whether the results of this
paper can be refined so that they recover the sharp result for the independent entry
model. This would be the case, for example, if one could prove that

E‖X‖
?
≤ ‖Xfree‖+ Cv(X)

√

log d.

Corollary 2.2 falls short of such a bound in two ways: it has a suboptimal power

on the logarithm (log d)
3
4 , and it involves the parameter ṽ(X) rather than v(X).

(Replacing ṽ(X) by supN w(XN
1 ), as in Remark 5.6, would not suffice to recover

the sharp behavior of the independent entry model, cf. [37, §3.8].)

9.2.2. Universality. The strongest results of this paper apply to Gaussian random
matrices, and we made heavy use of Gaussian analysis in our proofs. While we
were able to deduce a much more general matrix concentration inequality by sym-
metrization in Theorem 2.12, this came at the expense of the loss of a universal
constant. Such an approach can therefore not be used, for example, to establish
strong asymptotic freeness of non-Gaussian random matrices.

It is a question of considerable interest whether the main results of this paper can
be extended to non-Gaussian situations with a sharp leading term. For example,
in the setting of Theorem 2.12 with ‖Zi‖HS ≤ M a.s. and σ = σ1 ∨ σ2, one might
conjecture a sharp matrix concentration inequality of the form

E‖X‖
?
≤ ‖Xfree‖+ C(log d)

3
4 σ

1
2 v

1
2 + C(log d)2M,

where Xfree ∈ Md(A) is now defined such that the real and imaginary parts of its
entries form a semicircular family in the sense of [27, Definition 8.15] with the same
covariance as the real and imaginary parts of the entries of X .

An analogous extension of Theorem 2.1 would give rise to strong asymptotic
freeness of a very large family of non-Gaussian random matrix models. Such results
are of interest already in special cases: for example, an analogue of Theorem 2.1 in
the setting where the Gaussian variables gi in (2.1) are replaced by i.i.d. random
signs εi would establish strong asymptotic freeness of sparse random sign matrices
as in Example 3.5. Such an example would show that O(d log4 d) random bits in
dimension d already suffice to generate strong asymptotic freeness.

The phenomenon that large random matrices behave as their Gaussian coun-
terparts, known as universality, has been deeply investigated in classical random
matrix theory in the past decade [34]. The above considerations motivate the im-
portance of such questions to the study of nonhomogeneous random matrices.

9.2.3. Reverse bounds on the spectrum. The results of Section 2.2 yield two-sided
bounds on the spectral statistics of X in terms of Xfree. In contrast, Section 2.1 only
yields one-sided bounds on the support of the spectrum: we show that sp(X) ⊆
sp(Xfree) + [−ε, ε] with high probability. When one is interested in asymptotics,
the latter is usually the difficult direction, while the reverse inclusion follows rather
easily from weak bounds on the spectral statistics. It is not clear, however, how to
obtain nonasymptotic bounds of the form sp(Xfree) ⊆ sp(X) + [−ε, ε].

To illustrate where the difficulty lies, let us derive a two-sided bound on the
spectral norm ‖X‖ from Theorem 2.7. As X is a d× d matrix, we have

d−
1
2p ‖X‖ ≤ (tr |X |2p) 1

2p ≤ ‖X‖
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pointwise. Thus Theorem 2.7 and Corollary 4.14 yield

E‖X‖ = (1 + o(1)) (tr ⊗ τ)(|Xfree|2p)
1
2p when v(X) ≪ p−

3
2 ≪ (log d)−

3
2 .

However, while (tr⊗ τ)(|Xfree|2p)
1
2p ≤ ‖Xfree‖ exactly as for X , it is not clear how

to obtain an analogous lower bound. Resolving this issue would require a quantita-
tive understanding of the concentration of the mass of the spectral distribution of
Xfree near the maximum of its support. The results of [1] provide a detailed qual-
itative picture of the spectral distribution of Xfree near the edges of its support,
but nonasymptotic estimates do not appear to be known. Precisely the same issue
arises in the proof of Theorem 2.1: obtaining a reverse bound would require a lower
bound on the moments of the resolvent of Xfree (cf. Lemma 6.5).
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