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Abstract

High-dimensional multimodal data arises in many scientific fields. The inte-
gration of multimodal data becomes challenging when there is no known corre-
spondence between the samples and the features of different datasets. To tackle
this challenge, we introduce AVIDA, a framework for simultaneously performing
data alignment and dimension reduction. In the numerical experiments, Gromov-
Wasserstein optimal transport and t-distributed stochastic neighbor embedding are
used as the alignment and dimension reduction modules respectively. We show that
AVIDA correctly aligns high-dimensional datasets without common features with
four synthesized datasets and two real multimodal single-cell datasets. Compared
to several existing methods, we demonstrate that AVIDA better preserves struc-
tures of individual datasets, especially distinct local structures in the joint low-
dimensional visualization, while achieving comparable alignment performance.
Such a property is important in multimodal single-cell data analysis as some bi-
ological processes are uniquely captured by one of the datasets. In general ap-
plications, other methods can be used for the alignment and dimension reduction
modules.

1 Introduction
Databases are expanding not only in size but also with increasing complexity. In
many applications, multiple measurements of a system are taken across different
samples or in different feature spaces which produce multimodal data such as texts
attached to images [18]. Multimodality allows more comprehensive investigation
of a system. Establishing connections among the modalities is the foundation of
coherent analysis. Recently, the emerging multimodal single-cell omics has be-
come a powerful tool to analyze different aspects of a biological system at the
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same time [43]. Fusing multimodal single-cell data is especially challenging when
there are no direct correspondence between the measurements and the samples.

Single-cell RNA sequencing (scRNA-seq) is a recent technology that measures
RNA abundance at transcriptomics level with single-cell resolution [34]. The mat-
uration of the technology allows analysis with scRNA-seq assays across many
samples that, for example, represent different ages or healthy and diseased indi-
viduals [33, 39]. On the other hand, the emerging single-cell assays provide more
comprehensive examination of a system, such as single-cell ATAC-seq (scATAC-
seq) [4] that measures chromatin accessibility and single-cell Hi-C [25] that ex-
plores chromosome architecture.

Integrating the various single-cell assays across different samples provides a
comprehensive characterization of a biological system. Many computational meth-
ods have been developed to integrate the same single-cell assays of multiple sam-
ples [14,32,40] or different single-cell assays [12,13]. In the integration of multiple
single-cell omics assays, most current methods rely on the known correspondence
between features, for example by mapping chromatin loci to genes and assuming
the similarity between the samples. The multi-omics integration becomes a harder
problem when no prior correspondence is assumed, for example a gene actually
corresponds to multiple loci and accessible loci does not directly indicate gene ex-
pression. This leads to a general problem of integrating datasets without known
correspondence between features.

When no feature correspondence is given, the structures of the individual datasets
can be exploited and matched to integrate the datasets. For example, canonical
correlation analysis examines covariances between the datasets but is limited to
deriving linear correspondence between the features. When the datasets are rep-
resented as graphs with edges annotating pairs of similar data points within each
dataset, the integration problem can be addressed using various graph alignment
methods [27, 42]. Among the graph alignment methods, Gromov-Wasserstein op-
timal transport (GW-OT) can align graphs based only on the graph structures [23].
It finds a coupling of the distributions representing the graphs that best preserves
the intra-dataset distances between the nodes.

Optimal transport (OT) compares and finds connections between measures. It
seeks the coupling between distributions with the minimum total coupling cost
based on predefined costs between locations [17, 24, 38]. OT has been a ver-
satile tool widely used in practical problems, such as generative deep learning
models [3], domain adaptation [8], and image sciences [10]. It has been used to
find correspondence between data points in single-cell gene expression data with
common features [5, 26, 31]. The aforementioned GW-OT has been used in this
field to exploit the structural information within individual datasets. SpaOTsc [5]
uses fused Wasserstein-Gromov-Wasserstein optimal transport to improve the in-
tegration of spatial data and scRNA-seq data with few shared genes by matching
the spatial structure and the structure in scRNA-seq data based on gene expres-
sion similarity. SCOT [9] uses Gromov-Wasserstein optimal transport to align
scRNA-seq and scATAC-seq data by matching the structures represented by intra-
dataset similarity among cells. Pamona [6] uses partial Gromov-Wasserstein op-
timal transport to partially align scRNA-seq and scATAC-seq data to address the
partially overlapping cell populations among different samples.

In addition to studying shared structures revealed by the overlapping part of in-
tegrated data, it is equivalently important to examine the structures of non-overlapping
part which may depict a biological process uniquely captured by a certain as-

2



say [41]. Since most integration methods depend on similarities between sam-
ples, the dissimilar parts are often overlooked. Efforts have been made to keep the
variation among samples examined with the same single-cell assay [41].

In the analysis of high-dimensional multimodal datasets, another crucial step
is dimensionality reduction. Dimensionality reduction is the process of taking
high-dimensional data and finding a representation in lower dimensions that is
still meaningful. It has many important applications because dimensionality re-
duction helps address the curse of dimensionality and other challenges that come
with working with high-dimensional data [16]. Principal Component Analysis
(PCA) [28] is the most traditional linear technique used in dimensionality reduc-
tion but there are many popular non-linear techniques, such as Local Linear Em-
bedding [30], Isomap [35], UMAP [22], and t-SNE [36].

t-SNE is a popular dimensionality reduction and visualization technique that
was introduced in 2008 by van der Matten and Hinton [36]. It has been ap-
plied towards a variety of high-dimensional data, including deep learning [21],
physics [37], and medicine [1]. Given a high-dimensional dataset, t-SNE out-
puts a low-dimensional representation. t-SNE works by making pairwise affinities
between points in high-dimensions and pairwise affinities between points in low-
dimensions. It then uses gradient descent to find the set of points (in low dimen-
sions) that minimize the KL divergence between the two sets of joint probabilities.

In the analysis of multimodal single-cell data, the dimensionality reduction
and the integration steps are often performed separately or sequentially, includ-
ing the existing methods that integrate datasets without known feature correspon-
dences [6,9]. However, these two steps are closely related in that they both preserve
the structures from high dimension to low dimension or from the original spaces
to the joint space. The benefit of combining these two steps has been shown in
a recent work that uses shared features between datasets [15]. In this work, we
present a workflow called AVIDA (alternating method for visualizing and integrat-
ing data) that alternatively performs dimension reduction and data integration for
integrating datasets without common features such that they regulate each other.
To demonstrate this workflow, we use t-SNE for the dimension reduction mod-
ule and Gromov-Wasserstein optimal transport for the integration module. In four
synthetic datasets and two real biological datasets with ground truth, we show that
AVIDA better preserves the structures of the individual datasets while achieving
comparable integration quality compared to other methods.

2 Results
2.1 Overview of AVIDA
The proposed method is called the alternating method for visualizing and inte-
grating data, or AVIDA. AVIDA alternates between improving the low dimen-
sional representation through a dimensionality reduction technique and the align-
ment of data points in low dimensions across different datasets. The purpose of
alternating between dimensionality reduction and alignment is to find a balance
between a good representation while still accurately aligning the datasets. We
denote AVIDA as a function, taking as input the datasets X1, . . . ,Xk and is pa-
rameterized by the choice of dimensionality reduction and alignment techniques:
AVIDA(X1,X2, ...,Xk;DR,ALIGN). A simplified schematic of the method is shown
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Figure 1: A visual schematic of AVIDA.

in Figure 1. As shown in Figure 1, AVIDA can take as input two datasets and orga-
nizes the data as a pairwise distance matrix. Next, dimensionality reduction using
the given pairwise distance matrix is performed on both datasets independently. An
alignment method is used to “align” the datasets in the lower dimensional space
and using the aligned data points, a new pairwise distance matrix is formed for
each dataset and the process iterates. This framework is flexible in its choice of
dimensionality reduction technique (in fact, different dimension reduction algo-
rithms can be used on different datasets if one so chooses) and alignment method.

Suppose one is given two datasets X (1) and X (2) and the goal is to create a
joint representation of the datasets in a common lower dimensional space. Us-
ing some technique DR for dimensionality reduction (e.g., PCA, t-SNE, Random
Forests, etc.) and GW-OT for alignment, we can formulate the objective function
for AVIDA as AVIDA(X1,X2;DR,GW). The GW-OT objective is defined with
respect to the low-dimensional representation of points:

GW(Y (1),Y (2)) = ∑
i, j,i′ , j′

Li, j,i′, j′Ti,i′T j, j′ − ε(H(T)), (1)

where H(T) = ∑i, j Ti j log(Ti j) is the Entropic regularization term and

Li, j,i′, j′ = ‖d(y
(1)
i ,y(1)j )−d(y(2)

i′
,y(2)

j′
)‖2 with a chosen distance metric d(·, ·). This

objecctive is minimized by using the projected gradient descent method with KL
metric based projections [29], T ← ProjKL

U(a,b)(T � e−τ(L⊗T+ε log(T ))) where

U(a,b) = {T ∈ Rn1×n2
+ : T1= a,T T

1= b} and τ is the step size. The implemen-
tation in Python Optimal Transport [11] package is used. The representation for
Y (1) will subsequently be mapped to Y (2) using the mapping found by minimizing
(1) with respect to T , i.e., by setting Y (1) = TY (2). Our combined loss function
can be represented as

AVIDA(X (1),X (2);DR,GW)= min
Y (1),Y (2)

DR(X (1),Y (1))+DR(X (2),Y (2))+GW(Y (1),Y (2)),

(2)
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where DR(X (i),Y (i)) represents the objective loss associate with the dimension-
ality reduction technique DR. For example, if t-SNE is uses for the DR step, the
objective can be represented as the KL loss between probability distributions on
the points in high and low dimensions. See 4 for more details.

2.2 AVIDA accurately reproduces the intra-dataset struc-
tures in integration of synthetic data
We compared AVIDA(X1,X2;TSNE,GW) to both Pamona and SCOT across four
simulated datasets and two real-world single-cell multi-omics datasets. We chose
Pamona and SCOT as a comparison because they are both advanced integration
methods. Table 1 contains the metrics for AVIDA(X1,X2;TSNE,GW), SCOT and
Pamona on both the simulated and real-life datasets. We used five different met-
rics to assess the performance of these methods: the fraction of samples closer
than the true match (FOSCTTM), alignment, integration, accuracy and represen-
tation loss. The accuracy metric is only included on the datasets where the ground
truth is known and an empty cell in the table implies the dataset did not meet that
requirement. Details on the metrics are included in Section 4.2.

Dataset Method FOSCTTM Integration Accuracy Alignment Representation Loss

Bifurcated Tree
AVIDA 0.1202 1.0820 4.3863 0.5157 0.3275
Pamona 0.1001 0.0004 0.008 0.9817 2.2340
SCOT 0.2103 1.0016 12.2095 0.75 2.1466

Circular Frustrum
AVIDA 0.1187 0.9699 2.9377 0.4267 0.3955
Pamona 0.0184 0.0003 0.0012 0.9433 2.2311
SCOT 0.0515 1.0032 4.3857 0.9727 1.7083

Dumbbell
AVIDA 0.5228 0.5568 25.1281 0.6385 0.1220
Pamona 0.5238 0.0010 0.0731 0.76 1.8240
SCOT 0.4754 2.565 11.2244 0.2070 3.6008

Distant Rings
AVIDA 0.3138 0.6847 5.3429 0.639 0.1916
Pamona 0.1770 6.8279e-17 2.0019e-15 1.0 1.8662
SCOT 0.0056 0.0791 0.2759 0.9125 0.9261

sc-GEM
AVIDA 0.2070 0.4700 2.4996 0.8994 0.4879
Pamona 0.2084 0.0005 0.0106 0.7164 1.6516
SCOT 0.1818 2.3164 6.9267 0.5616 0.8790

scNMT-seq
AVIDA 0.2745 0.3631 4.5787 0.6619 1.0489
Pamona 0.2908 5.337e-05 0.0060 0.9785 2.8408
SCOT 0.2675 2.4333 28.6287 0.7522 1.1979

Table 1: Metrics for AVIDA(X1,X2;TSNE,GW) (labeled as AVIDA above), Pamona
and SCOT experiments.

Our four simulated datasets include a bifurcated tree, a circular frustrum (from
[20]), a dumbbell and distant rings. The dumbbell and distant rings datasets are
introduced in order to highlight the difference between AVIDA and SCOT and
Pamona. The dumbbell dataset consists of one dataset with two rings connected
by a line and the other containing just a line. The rings dataset consists of two
rings that are far apart from each other in high dimensions and the sizes of their
radii are much smaller compared with the distance between the two centers. The
specific parameters used to generated these datasets are given in Section 4. The
evaluations of these methods on the various metrics are given by Table 1.

By looking at Figures 2 and 3, it is clear why we want to introduce these
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datasets. In Figure 2, AVIDA clearly preserved the local structure of both datasets

Figure 2: Pamona, AVIDA, SCOT, and t-SNE representation of the dumbbell dataset.

while Pamona and SCOT highlight the linear structure found in both datasets.
AVIDA is the only method that is able to successfully integrate the two represen-
tations generated by t-SNE’s visualization. Figure 3 shows that Pamona’s method
collapses both rings to a single point, destroying the local structure of the data.
SCOT is able to integrate the datasets while still preserving some linear structure
but compared to t-SNE’s actual visualization, AVIDA has the best representation.
Since AVIDA allows t-SNE to construct the local structure of the line before map-
ping, that structure is preserved in the final visualization.

However, if we were to look at the FOSCTTM and accuracy scores in Table 1
for Figure 2 and Figure 3, Pamona scores best because all the points are correctly
mapped close together. The datasets illustrate our need for a representation met-
ric since the traditional metrics do not penalize for poor visualizations. We use
t-SNE’s loss function as our representation score since it is a popular visualiza-
tion method, however it could easily be replaced by a loss function from other
visualization methods (e.g. UMAP).

2.3 AVIDA achieves a balance between structure repre-
sentation and multimodal dataset alignment
We also compare the outputs from two real-world single-cell multi-omics datasets.
The first is sc-GEM, a dataset from [7] which contains both gene expression and
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Figure 3: t-SNE, AVIDA, SCOT and Pamona representation of the distant rings dataset.

DNA methylation at multiple loci on human somatic cell samples under coversion
to induced pluripotent stem cells. The second is scNMT-seq, a dataset of chro-
matin accessibility, DNA methylation, and gene expression on mouse gastrulation
samples collected at four different time states from [2]. The evaluations of AVIDA,
SCOT and Pamona on these datasets are also given in Table 1. In Figure 4, we can
see the different visualizations for sc-GEM. The left column of the figure shows
the integration between the two datasets and the right column has the datapoints
colored by cell. From the visualizations we can see that AVIDA is able to fully
integrate the two different datasets where there is some noticeable separation in
the SCOT representation. Since this dataset contains the conversion from somatic
cells to stem cells, we hope to see a gradient of colors from one end of the visu-
alization to the other which AVIDA is able to achieve. This is a good example of
a real-life dataset where AVIDA is able to comparably integrate the datasets while
achieving a desirable visualization.

We can also confirm this observation in Table 1. AVIDA is able to achieve
FOSCTTM and alignment scores that are comparable to SCOT and Pamona while
simultaneously having the best representation loss. The same holds true for scNMT-
seq as well. These examples illustrate that AVIDA is comparable to both Pa-
mona and SCOT on real-life datasets while also performing well on the adversarial
datasets: the dumbbell and distant rings datasets.

While we did not visualize every dataset here, Figure 5 plots the different visu-
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Figure 4: AVIDA, SCOT and Pamona representation of sc-GEM.

alizations by their FOSCTTM and representation scores. The shapes represent the
dataset being visualized and the different colors represent the method used for the
visualization. We can see that across the different datasets, all three methods have
comparable FOSCTTM scores, indicating that the integration of the datasets are
similar. However, we can also see that AVIDA by far has the best representation
score, indicating a better visualization.

3 Discussion
Motivated by the similar fundamental assumptions in dimension reduction and data
integration that they both try to preserve the structures of datasets, we developed
an alternating method, AVIDA, which combines these two processes for joint vi-
sualization of datasets without shared features. Comparing with the methods that
perform integration first and then dimension reduction, AVIDA better preserves the
detailed structures of the datasets being integrated especially the structures present
only one of the datasets. This property allows the identification of mechanisms
that can only be revealed with one of the technologies.

In this work, we demonstrate the method using t-SNE for dimension reduc-
tion and Gromov-Wasserstein optimal transport for data integration. In general,
other dimension reduction methods and integration methods could be used. The
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Figure 5: A comparison of methods using integration and visualization.

representation loss used in the comparison can also be used as a control metric
about how well the structures of individual datasets are preserved in the joint rep-
resentation. This metric can be used to find a balance between integration and
representation when other methods are used for the dimension reduction and inte-
gration modules. The comparison indicates that a method could do a perfect job
in integration while missing structures presented in the individual datasets. It is
thus important to also evaluate the quality of structure representation of individual
datasets when developing joint dimension reduction methods for high-dimensional
multimodal datasets.

Despite the improvements on performing the two processes separately, the
quality of the joint visualization still heavily depends on the performance of the
specific dimension reduction method and integration method. While the quality
of dimension reduction can be checked by comparing to the structures present in
the original high-dimensional datasets, it is hard to evaluate the integration qual-
ity without ground truth. It is thus also important to further validate the result
with prior knowledge or assess the robustness of the integration with for example,
subsampling.

Upon the joint visualization of multimodal datasets, one major downstream
task is to find the correspondence between the non-overlapping features across
the datasets. A potential method for this is to track the contributions of original
features to the common low-dimensional representations and subsequently find
the correspondence between them.

4 Methods
AVIDA is a framework that takes input data sets {X (`)}N

i=1 where the data sets
X (`) ∈ Rn`×d` need not be in the same feature space. The output of AVIDA is a
low dimensional representation of all data sets simultaneously in a single feature
space. This is accomplished by alternating between dimensionality reduction and
alignment. The AVIDA framework is presented in Algorithm 1. The choice of
dimensionality reduction technique and alignment method is up to the user and
can be chosen based on the use case. In Section 4.1, we present a detailed im-
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plementation of AVIDA using t-SNE for dimensionality reduction and GW-OT for
alignment.

Algorithm 1 AVIDA

Input: N datasets X (`) = {x(`)i }
n`
i=1 ⊂ Rd` , target dimension d, Dimensionality Re-

duction Method DR(·), Alignment Method ALIGN(·).
Output: Low-dimensional representations Y (`) = {y(`)i }

n`
i=1 ⊂ Rd .

Initialize Y (`)
0 for ` ∈ [N] and set t = 0.

do
Dimensionality reduction step:

Ŷ (`)
t = DR(X (`),Y (`)

t ) for ` ∈ [N]. . Input dataset X (`) and initialization Y (`)
t

Alignment step:
[Y (1)

t+1, · · · ,Y
(N)

t+1 ] = ALIGN(Ŷ (1)
t , · · · ,Ŷ (N)

t ).
Increment iteration count: t = t +1.

while stopping criteria not satisfied
Return Y (`) = Y (`)

t for ` ∈ [N].

4.1 AVIDA with t-SNE and GW-OT
In this section, we present our implementation of the AVIDA framework using t-
SNE for dimensionality reduction and GW-OT for alignment, i.e., AVIDA(X1,X2;TSNE,GW).
For simplicity, we assume there are two input data sets X (1) = {x(1)i }

n1
i=1 ⊂Rd1 and

X (2) = {x(2)i }
n2
i=1 ⊂ Rd2 and that the low-dimensional output feature space has di-

mension d = 2, i.e., Y (1) = {y(1)i }
n1
i=1 ⊂ R2 and Y (2) = {y(2)i }

n2
i=1 ⊂ R2.

In the dimensionality reduction step, t-SNE generates pairwise affinity values
{p(`)i j } for each of the dataset X (`), as given by

p(`)j|i =
exp(−‖x(`)i − x(`)j ‖

2/2σ
(`)
i )

∑k 6=i exp(−‖x(`)k − x(`)i ‖2/2σ
(`)
i )

(3)

p(`)i j =
p(`)j|i + p(`)i| j

2n`
, (4)

where the σ
(`)
i ’s satisfy

ρ = 2−∑ j 6=i p(`)j|i log(p(`)j|i ), (5)

for a perplexity value ρ chosen by the user. The target probabilities q(`)i j for the
representation are defined as:

q(`)i j =
(1+‖y(`)i − y(`)j ‖

2)−1

∑i′ , j′ (1+‖y
(`)

i′
− y(`)

j′
‖2)−1

. (6)
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To obtain y(`)i , t-SNE minimizes the Kullback-Leibler divergence between {p(`)i j } j 6=i

and {q(`)i j } j 6=i using gradient descent:

KL(P̀ ||Q`) =
n`

∑
i, j=1

p(`)i j log

 p(`)i j

q(`)i j

 , (7)

The t-SNE method utilizes a “early exaggeration” phase to artificially highlights
the attractions between points in similar neighborhoods, promoting clusters. This
period is a very important tool that allows t-SNE to develop local structures in its
visualization. The early exaggeration phase occurs in the first 200 iterations of
gradient decent in which p(`)i j values scaled by a factor of 4. It has been show that
the early exaggeration in t-SNE promotes clustering of similar points [19]. After
the first 200 iterations, the p(`)i j values are returned to their original value and t-SNE
continues to perform gradient descent.

In the alignment step of AVIDA, GW-OT is used to align data points across data
sets. Given the current low dimensional representations outputs from t-SNE, Y (1)

and Y (2), the following optimization problem is solved to compute the transport
matrix T:

GW(Y (1),Y (2)) = min
T ∑

i, j,i′ , j′
‖d(y(1)i ,y(1)j )−d(y(2)

i′
,y(2)

j′
)‖2Ti,i′T j, j′ − ε(H(T)),

(8)
where H(T) = ∑i, j Ti j log(Ti j) is an Entropic regularization term and d(·, ·) is
a chosen distance metric. The representation for Y (1) is mapped to Y (2) using the
mapping found by minimizing (8), or by computing Y (1)=TY (2). AVIDA(X (1),X (2);TSNE,GW)
continues alternating between minimizing the KL loss in t-SNE and using optimal
transport to align points until a stopping criteria is reached. In this implementa-
tion, we choose to limit the number of iterations to 1000 and perform alignment
every 100 iterations after the early exaggeration phase (i.e., after the first 200 iter-
ations) of t-SNE. The pseudo-code for AVIDA(X (1),X (2);TSNE,GW) is provided
in Algorithm 2.

4.2 Metrics, parameters, hardware
The metrics used in Section 2 are described in detail in this section. For repro-
ducibility, we also include the hardware settings under which these experiments
were run and the user selected parameters employed to obtain our numerical re-
sults.

4.2.1 Metrics

To compare AVIDA(X1,X2;TSNE,GW), Pamona, and SCOT five different met-
rics are employed: faction of samples closer than the true match (FOSCTTM),
alignment, integration, accuracy, and representation score. The FOSCTTM and
alignment are metrics proposed in previous works. FOSCTTM was originally pro-
posed by Liu et al. [20] and was used to validate the performance of SCOT. The
alignment score was used in [6] to compare Pamona and SCOT. In addition to the
metrics used in previous works, we also introduce a few others to capture vari-
ous aspects of the output representation. The additional metrics we measure are:
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Algorithm 2 AVIDA(X1,X2;TSNE,GW)

Input: datasets X (1) = {x(1)1 , . . . ,x(1)n1 }, X (2) = {x(2)1 , . . . ,x(2)n2 }, perplexity ρ , and reg-
ularization parameter ε

Output: low-dimensional representations: Y (1)
0 = {y(1)1 , . . . ,y(1)n1 }, Y (2)

0 =

{y(2)1 , . . . ,y(2)n2 }
Compute pairwise affinities p(1)i j , p(2)i j with perplexity ρ (using Eq. (3) and Eq. (4))

Initialize solutions Y (1)
0 ,Y (2)

0 with points drawn i.i.d. from N (0,10−4I)
while t < 1000 do

if mod (t,100) 6= 0 then
for `= 1,2 do

Compute pairwise affinities q(`)i j (using Eq. 6)

Compute gradients ∆
(`)
t = δ

δY (`)
t

TSNE(X (`),Y (`)
t ) (using Eq. 7)

Set Y (`)
t = Y (`)

t +∆
(`)
t

end for
else

Compute the GW-OT mapping, T, between Y (1)
t and Y (2)

t (using Eq. 1)
Set Y (`)

t+1 = TY (`)
t

end if
t← t +1

end while

integration, accuracy, and objective loss. In this section, we define each and the
conditions under which these metrics are meaningful. For notational simplicity,
D ∈ Rn1×n2 such that Di j = d(y(1)i ,y(2)j ) denote the pairwise distance matrix be-

tween points in Y (1) and points in Y (2).
The FOSCTTM captures roughly the accuracy of the representation. FOS-

CTTM operates under the assumption that every point has a “true match” and that
the “true matches” should be close together in the lower-dimensional representa-
tion. This is formalized as follows. Assume, for simplicity, and n1 = n2 = n and
without loss of generality that the true match of x(1)i is x(2)i for all i ∈ [n]. The
FOSCTTM is defined as:

FOSCTTM =
n

∑
i=1

|{ j : Di j < Dii}|
n−1

+
n

∑
j=1

|{i : Di j < D j j}|
n−1

. (9)

In other words, for each point Y (1), determine the fraction of the points y(2)i that

are closer to y(1)i than y(2)i . Then, repeat the process for points in Y (2). Smaller
values of FOSCTTM indicate better performance.

Under these same assumptions (that every point has a true match), we can
also define an accuracy score. The idea is that points that are true matches should
appear close together in the lower dimensional representation. This is measured
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by taking a simple trace of the matrix D:

Accuracy =
n

∑
i=1

Dii = tr(D)

The Alignment score used in this work was also used in [6]. The alignment
score measures how well aligned the two datasets being integrated are in low di-
mensions. For the alignment score, we assume that each data set has class labels
and that those class labels can be shared across data sets. The points in each data set
is split into “shared” and “dataset specific”. “Shared” data points have representa-
tion in both Y (1) and Y (2) whereas “dataset specific” data points only appear in one
of the datasets. The alignment score is computed as follows. Let S(1)∪P(1) =Y (1)

and S(2)∪V (2) = Y (2) where sets S(`) denote the set of all points corresponding to
“shared” data points and V (`) denote the set indices of all dataset specific points in
Y (`). The alignment score is defined as:

Alignment = 1− |x̄s− k/(`+1)|
k− k/(`+1)

,

where x̄s is the average number of nearest neighbors that are shared points from
the same dataset.

The aforementioned metrics have been utilized in previous works. We also
propose to use the following for evaluating the representation of the low dimen-
sional data. First, we employ a symmetrized Kullback-Leibler loss with a student
t-distribution kernel to evaluate how well the visualization represents the high-
dimensional data in an integrated fashion. We refer to this as the Representation
Loss:

Representation Loss =
1
2

(
KL(X (1),Y (1))+KL(Y (1),X (1))

)
+

1
2

(
KL(X (2),Y (2))+KL(Y (2),X (2))

)
.

Lastly, we want to evaluate how well integrated the two data sets are in low
dimensions. We say that integration is the average, minimum distance between a
data point in Y1 and any data point in Y2. The integration is defined as:

Integration =
1
n1

n1

∑
i=1

min
j

Di j +
1
n2

n2

∑
j=1

min
i

Di j.

4.2.2 Parameters

The default perplexity value in most standard implementations of t-SNE is 30.
However, depending on the dataset, the perplexity value may need to be adjusted.
Table 2 shows the perplexity value choices for each experiment presented in Sec-
tion 2. In addition to perplexity, another important parameter is ε in Equation 1.

Dataset Bifurcated Tree Circular Frustrum Dumbbell Distant Rings sc-GEM scNMT-seq
Perplexity Value 30 60 30 30 50 100

Table 2: Perplexity choices for each dataset.

For all of our experiments, ε was set to be 5×10−3 but depending on the dataset
could be adjusted.
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4.2.3 Hardware

We ran the experiments on an Intel i7-10750H CPU (base frequency 2.60GHz)
with 8GB memory.

4.3 Datasets
For our analysis, we introduced two synthetic datasets: the dumbbell dataset and
distant rings dataset. The dumbbell dataset consists of two subdatasets, X (d,1),X (d,2)⊂
R2 with 200 datapoints each. For all 0≤ i≤ 200,

X (d,1)
i,1 ∼ 50U(0,1)

X (d,1)
i,2 ∼ N(0,1)

where U(0,1) is the uniform distribution and N(0,1) is the normal distribution.
This essentially constructs X (d,1) as a line in 2D with a little bit of noise. To
construct the two rings in X (d,2), we consider θ ∼ U(0,2π) and r ∼ N(3,0.5),
then use it in our construction.

X (d,2)
i,1 ∼ r cos(θ), 1≤ i≤ 50

X (d,2)
i,2 ∼ r sin(θ), 1≤ i≤ 50

X (d,2)
i,1 ∼ r cos(θ)+14, 50 < i≤ 100

X (d,2)
i,2 ∼ r sin(θ), 50 < i≤ 100

The first 50 points in X (2) are a slightly noisy circle centered at 0, where the next
50 points in the dataset are the same slightly noisy circle centered instead at 14.
These two rings are then connected by a line.

X (d,2)
i,1 ∼U(3,10), 100 < i≤ 200

X (d,2)
i,2 ∼ N(0,0.2), 100 < i≤ 200

This line is the last 100 points and also has small noise across one dimension.
The distant rings dataset also contains two subdatasets, X (c,1),X (c,2)⊂R. Again,

we let θ ∼U(0,2π) and now we define r1 ∼ N(5,1) and r2 ∼ N(5,0.1) and define
two different rings.

X (c,1)
:,1 ∼ r1 cos(θ)

X (c,1)
:,2 ∼ r1 sin(θ)

X (c,2)
:,1 ∼ r2 cos(θ)+100

X (c,2)
:,2 ∼ r2 sin(θ)+100

Essentially for each dataset, we construct two rings where the distance between
them dwarfs the radius of each ring. To make these two rings distinct, we con-
structed one ring to have much less noise than the other.
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5 Data Availability
The synthetic data distant rings and dumbbell dataset are available at https://
github.com/kat-dover/AVIDA/tree/main/data and the bifurcated tree and
circular frustrum were downloaded from the SCOT repository https://rsinghlab.
github.io/SCOT/data/. The sc-GEM data from [7] was downloaded from the
SCOT repository given at https://rsinghlab.github.io/SCOT/data/. The
scNMT-seq data from [2] were downloaded from the Pamona repository given at
https://github.com/caokai1073/Pamona.

6 Code Availability
The AVIDA implementation with t-SNE as the dimension reduction module and
Gromov-Wasserstein optimal transport as the alignment module is available at
https://github.com/kat-dover/AVIDA which will be made publically avail-
able on Github upon publication.
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