
Conformal Prediction for the Design Problem

Clara Fannjianga, Stephen Batesa,b, Anastasios N. Angelopoulosa, Jennifer Listgartena,c,

and Michael I. Jordana,b

aDepartment of Electrical Engineering and Computer Sciences, University of California,

Berkeley, USA
bDepartment of Statistics, University of California, Berkeley, USA

cCenter for Computational Biology, University of California, Berkeley, USA

Abstract

Many applications of machine learning methods involve an iterative protocol in which data are col-

lected, a model is trained, and then outputs of that model are used to choose what data to consider next.

For example, one data-driven approach for designing proteins is to train a regression model to predict

the fitness of protein sequences, then use it to propose new sequences believed to exhibit greater fitness

than observed in the training data. Since validating designed sequences in the wet lab is typically costly,

it is important to quantify the uncertainty in the model’s predictions. This is challenging because of a

characteristic type of distribution shift between the training and test data in the design setting—one in

which the training and test data are statistically dependent, as the latter is chosen based on the former.

Consequently, the model’s error on the test data—that is, the designed sequences—has an unknown and

possibly complex relationship with its error on the training data. We introduce a method to quantify

predictive uncertainty in such settings. We do so by constructing confidence sets for predictions that

account for the dependence between the training and test data. The confidence sets we construct have

finite-sample guarantees that hold for any prediction algorithm, even when a trained model chooses the

test-time input distribution. As a motivating use case, we demonstrate how our method quantifies un-

certainty for the predicted fitness of designed proteins with several real data sets, and can therefore be

used to select design algorithms that achieve acceptable trade-offs between high predicted fitness and

low predictive uncertainty.

1 Uncertainty quantification under feedback loops

Consider a protein engineer who is interested in designing a protein with high fitness—some real-valued
measure of its desirability, such as fluorescence or therapeutic efficacy. The engineer has a data set of various
protein sequences, denoted Xi, labeled with experimental measurements of their fitnesses, denoted Yi, for
i = 1, . . . , n. The design problem is to propose a novel sequence, Xtest, that has higher fitness, Ytest, than any
of these. To this end, the engineer trains a regression model on the data set, then identifies a novel sequence
that the model predicts to be more fit than the training sequences. Can she trust the model’s prediction for
the designed sequence?

This is an important question to answer, not just for the protein design problem just described, but
for any deployment of machine learning where the test data depends on the training data. More broadly,
settings ranging from Bayesian optimization to active learning to strategic classification involve feedback loops
in which the learned model and data influence each other in turn. As feedback loops violate the standard
assumptions of machine learning algorithms, we must be able to diagnose when a model’s predictions can
and cannot be trusted in their presence.

In this work, we address the problem of uncertainty quantification when the training and test data exhibit
a type of dependence that we call feedback covariate shift (FCS). A joint distribution of training and test data
falls under FCS if it satisfies two conditions. First, the test input, Xtest, is selected based on independently
and identically distributed (i.i.d.) training data, (X1, Y1), . . . , (Xn, Yn). That is, the distribution of Xtest

is a function of the training data. Second, PY |X , the ground-truth distribution of the label, Y , given any

1

a
rX

iv
:2

2
0
2
.0

3
6
1
3
v
4

[c

s.
L

G
]

 1
 J

u
n
 2

0
2
2

all n+1 data points. That is, if one draws (Z1, . . . , Zn, Ztest) ∼ P and constructs the confidence set for Xtest

based on a regression model fit to (Z1, . . . , Zn), then the confidence set contains the true test label, Ytest, a
fraction of 1− α of the time. In this work, P can be any distribution captured by FCS, as we describe later
in more detail.

Second, note that Eq. (1) is a finite-sample statement: it holds for any number of training data points, n.
Finally, coverage is a marginal probability statement, which averages over all the randomness in the training
and test data; it is not a statement about conditional probabilities, such as P(Ytest ∈ C(Xtest) | Xtest = x) for
a particular value of interest, x ∈ X . We will call a family of confidence sets, Cα, indexed by the miscoverage
level, α ∈ (0, 1), valid if they provide coverage for all α ∈ (0, 1).

When the training and test data are exchangeable (e.g., independently and identically distributed),
conformal prediction provides valid confidence sets for any P and for any regression model class [63, 62, 33].
Though recent work has extended the methodology to certain forms of distribution shift [59, 14, 19, 42,
44], to our knowledge no existing approach can produce valid confidence sets when the test data depends
on the training data. Here, we generalize conformal prediction to the FCS setting, enabling uncertainty
quantification under this prevalent type of dependence between training and test data.

1.2 Our contributions

First, we formalize the concept of feedback covariate shift, which describes a type of distribution shift that
emerges under feedback loops between learned models and the data they operate on. Second, we introduce
a generalization of conformal prediction that produces valid confidence sets under feedback covariate shift
for arbitrary regression models. We also introduce randomized versions of these confidence sets that achieve
a stronger property called exact coverage. Finally, we demonstrate the use of our method to quantify
uncertainty for the predicted fitness of designed proteins, using several real data sets.

We recommend using our method for design algorithm selection, as it enables practitioners to identify
settings of algorithm hyperparameters that achieve acceptable trade-offs between high predictions and low
predictive uncertainty.

1.3 Prior work

Our study investigates uncertainty quantification in a setting that brings together the well-studied concept
of covariate shift [51, 57, 58, 48] with feedback between learned models and data distributions, a widespread
phenomenon in real-world deployments of machine learning [22, 43]. Indeed, beyond the design problem,
feedback covariate shift is one way of describing and generalizing the dependence between data at successive
iterations of active learning, adaptive experimental design, and Bayesian optimization.

Our work builds upon conformal prediction, a framework for constructing confidence sets that satisfy the
finite-sample coverage property in Eq. (1) for arbitrary model classes [18, 62, 3]. Though originally based
on the premise of exchangeable (e.g., independently and identically distributed) training and test data, the
framework has since been generalized to handle various forms of distribution shift, including covariate shift
[59, 42], label shift [44], arbitrary distribution shifts in an online setting [19], and test distributions that are
nearby the training distribution [14]. Conformal approaches have also been used to detect distribution shift
[61, 27, 37, 8, 4, 45, 29].

We call particular attention to the work of Tibshirani et al. [59] on conformal prediction in the context of
covariate shift, whose technical machinery we adapt to generalize conformal prediction to feedback covariate
shift. In covariate shift, the training and test input distributions differ, but, critically, the training and test
data are still independent; we henceforth refer to this setting as standard covariate shift to distinguish it from
our setting. The chief innovation of our work is to formalize and address a ubiquitous type of dependence
between training and test data that is absent from standard covariate shift, and, to the best of our knowledge,
absent from any other form of distribution shift to which conformal approaches have been generalized.

For the design problem, in which a regression model is used to propose new inputs—for example, a protein
with desired properties—it is important to consider the predictive uncertainty of the designed inputs, so that
we do not enter “pathological” regions of the input space where the model’s predictions are desirable but
untrustworthy [11, 16]. Gaussian process regression (GPR) models are popular tools for addressing this issue,
and algorithms that leverage their posterior predictive variance [6, 55] have been used to design enzymes with

3

enhanced thermostability and catalytic activity [49, 21], and to select chemical compounds with increased
binding affinity to a target [24]. Despite these successes, it is not clear how to obtain practically meaningful
theoretical guarantees for the posterior predictive variance, and consequently to understand in what sense
we can trust it. Similarly, ensembling strategies such as [32], which are increasingly being used to quantify
uncertainty for deep neural networks [11, 70, 16, 36], as well as uncertainty estimates that are explicitly
learned by deep models [56] do not come with formal guarantees. A major advantage of conformal prediction
is that it can be applied to any modelling strategy, and can be used to calibrate any existing uncertainty
quantification approach, including those aforementioned.

2 Conformal prediction under feedback covariate shift

2.1 Feedback covariate shift

We begin by formalizing feedback covariate shift (FCS), which describes a setting in which the test data
depends on the training data, but the relationship between inputs and labels remains fixed.

We first set up our notation. Recall that we let Zi = (Xi, Yi), i = 1, . . . , n, denote n independently and
identically distributed (i.i.d.) training data points comprising inputs, Xi ∈ X , and labels, Yi ∈ R. Similarly,
let Ztest = (Xtest, Ytest) denote the test data point. We use Z1:n = {Z1, . . . , Zn} to denote the multiset of
the training data, in which values are unordered but multiple instances of the same value appear according
to their multiplicity. We also use the shorthand Z−i = Z1:n \ {Zi}, which is a multiset of n− 1 values that
we refer to as the i-th leave-one-out training data set.

FCS describes a class of joint distributions over (Z1, . . . , Zn, Ztest) that have the dependency structure
described informally in the Introduction. Formally, we say that training and test data exhibit FCS when
they can be generated according to the following three steps.

1. The training data, (Z1, . . . , Zn), are drawn i.i.d. from some distribution:

Xi
i.i.d
∼ PX ,

Yi ∼ PY |Xi
, i = 1, . . . , n.

2. The realized training data induces a new input distribution over X , denoted P̃X;Z1:n to emphasize its
dependence on the training data, Z1:n.

3. The test input is drawn from this new input distribution, and its label is drawn from the unchanged
conditional distribution:

Xtest ∼ P̃X;Z1:n

Ytest ∼ PY |Xtest
.

The key object in this formulation is the test input distribution, P̃X;Z1:n . Prior to collecting the training
data, Z1:n, the specific test input distribution is not yet known. The observed training data induces a
distribution of test inputs, P̃X;Z1:n

, that the model encounters at test time (for example, through any of the
mechanisms summarized in the Introduction).

This is an expressive framework: the object P̃X;Z1:n
can be an arbitrarily complicated mapping from a

data set of size n to an input distribution, so long as it is invariant to the order of the data points. There
are no other constraints on this mapping; it need not exhibit any smoothness properties, for example. In
particular, FCS encapsulates any design problem where we deploy an algorithm that makes use of a regression
model fit to the training data, Z1:n, in order to propose designed inputs.

2.2 Conformal prediction for exchangeable data

To explain how to construct valid confidence sets under FCS, we first walk through the intuition behind
conformal prediction in the setting of exchangeable training and test data, then present the adaptation to
accommodate FCS.

4

Score function. First, we introduce the notion of a score function, S : (X × R) × (X × R)m → R,
which is an engineering choice that ideally quantifies how well a given data point “conforms” to a multiset
of m data points, in the sense of evaluating whether the data point comes from the same conditional
distribution, PY |X , as the data points in the multiset.2 A representative example is the residual score
function, S((X,Y), D) = |Y −µD(X)|, where D is a multiset of m data points and µD is a regression model
trained on D. A large residual signifies a data point that the model could not easily predict, which suggests
it was was atypical with respect to the input-label relationship present in the training data.

More generally, we can choose the score to be any notion of uncertainty of a trained model on the point
(X,Y), heuristic or otherwise, such as the posterior predictive variance of a Gaussian process regression model
[49, 24, 21], the variance of the predictions from an ensemble of neural networks [32, 70, 36, 3], uncertainty
estimates learned by deep models [2], or even the outputs of other calibration procedures [31]. Irrespective
of the choice of the score function, conformal prediction is guaranteed to construct valid confidence sets;
however, the particular choice of score function will determine the size, and therefore, informativeness, of
the resulting sets. Roughly speaking, a score function that better reflects the likelihood of observing the
given point, (X,Y), under the true conditional distribution that governs D, PY |X , results in smaller valid
confidence sets.

Imitating exchangeable scores. At a high level, conformal prediction in the exchangeable data setting
is based on the observation that when training and test data are exchangeable, their scores are also ex-
changeable. More concretely, assume we use the residual score function, S((X,Y), D) = |Y − µD(X)|, for
some regression model class. Now imagine that we know the label, Ytest, for the test input, Xtest. For each
of the n + 1 training and test data points, (Z1, . . . , Zn, Ztest), we can compute the score using a regression
model trained on the remaining n data points; the resulting n+ 1 scores are exchangeable.

In reality, of course, we do not know the true label of the test input. However, this key property—that
the scores of exchangeable data yield exchangeable scores—enables us to construct valid confidence sets by
including all “candidate” values of the test label, y ∈ R, that yield scores for the n + 1 data points (the
training data points along with the candidate test data point, (Xtest, y)) that appear to be exchangeable.
For a given candidate label, the conformal approach assesses whether or not this is true by comparing the
score of the candidate test data point to an appropriately chosen quantile of the training data scores.

2.3 Conformal prediction under FCS

When the training and test data exhibit FCS, their scores are no longer exchangeable, since the training
and test inputs are neither independent nor from the same distribution. Our solution to this problem will
be to weight each training and test data point to take into account these two factors. Thereafter, we can
proceed with the conformal approach of including all candidate labels such that the (weighted) candidate
test data point is sufficiently similar to the (weighted) training data points. Toward this end, we introduce
two quantities: (1) a likelihood ratio function, which will be used to define the weights, and (2) the quantile
of a distribution, which will be used to assess whether a candidate test data point conforms to the training
data.

The likelihood ratio function for an input, X, which depends on a multiset of data points, D, is given by

v(X;D) =
p̃X;D(X)

pX(X)
, (2)

where lowercase p̃X;D and pX denote the densities of the test and training input distributions, respectively,
where the test input distribution is the particular one indexed by the data set, D.

This quantity is the ratio of the likelihoods under these two distributions, and as such, is reminiscent of
weights used to adapt various statistical procedures to standard covariate shift [57, 58, 59]. What distin-
guishes its use here is that our particular likelihood ratio is indexed by a multiset and depends on which
data point is being evaluated as well as the candidate label, as will become clear shortly.

2Since the second argument is a multiset of data points, the score function must be invariant to the order of these data
points. For example, when using the residual as the score, the regression model must be trained in a way that is agnostic to
the order of the data points.

5

Consider a discrete distribution with probability masses p1, . . . , pn located at support points s1, . . . , sn,
respectively, where si ∈ R and pi ≥ 0,

∑

i pi = 1. We define the β-quantile of this distribution as

Quantileβ

(

n
∑

i=1

pi δsi

)

= inf







s :
∑

i:si≤s

pi ≥ β







,

where δsi is a unit point mass at si.
We now define a confidence set. For any score function, S, any miscoverage level, α ∈ (0, 1), and any

test input, Xtest ∈ X , define the full conformal confidence set as

Cα(Xtest) =

{

y ∈ R : Sn+1(Xtest, y) ≤ Quantile1−α

(n+1
∑

i=1

wy
i (Xtest) δSi(Xtest,y)

)

}

, (3)

where

Si(Xtest, y) = S(Zi, Z−i ∪ {(Xtest, y)}), i = 1, . . . , n,

Sn+1(Xtest, y) = S((Xtest, y), Z1:n),

which are the scores for each of the training and candidate test data points, when compared to the remaining
n data points, and the weights for these scores are given by

wy
i (Xtest) ∝ v(Xi;Z−i ∪ {(Xtest, y)}), i = 1, . . . , n,

wy
n+1(Xtest) ∝ v(Xtest;Z1:n),

(4)

which are normalized such that
∑n+1

i=1 wy
i (Xtest) = 1.

In words, the confidence set in Eq. (3) includes all real values, y ∈ R, such that the “candidate” test data
point, (Xtest, y), has a score that is sufficiently similar to the scores of the training data. Specifically, the
score of the candidate test data point needs to be smaller than the (1 − α)-quantile of the weighted scores
of all n+ 1 data points (the n training data points as well as the candidate test data point), where the i-th
data point is weighted by wy

i (Xtest).
Our main result is that this full conformal confidence set provides coverage under FCS (see Appendix

A1.1 for the proof).

Theorem 1. Suppose data are generated under feedback covariate shift and assume P̃X;D is absolutely
continuous with respect to PX for all possible values of D. Then, for any miscoverage level, α ∈ (0, 1), the
full conformal confidence set, Cα, in Eq. (3) satisfies the coverage property in Eq. (1), namely, P(Ytest ∈
Cα(Xtest)) ≥ 1− α.

Since we can supply any domain-specific notion of uncertainty as the score function, this result implies
we can interpret the condition in Eq. (3) as a calibration of the provided score function that guarantees
coverage. That is, our conformal approach can complement any existing uncertainty quantification method
by endowing it with finite-sample coverage under FCS.

We note that although Theorem 1 provides a lower bound on the probability P(Ytest ∈ Cα(Xtest)), one
cannot establish a corresponding upper bound without further assumptions on the training and test input
distributions. However, by introducing randomization to the β-quantile, we can construct a randomized ver-
sion of the confidence set, Crand

α (Xtest), that is not conservative and satisfies P(Ytest ∈ Crand
α (Xtest)) = 1− α,

a property called exact coverage. See Theorem 3 for details.

Estimating confidence sets in practice. In practice, it is not feasible to check all candidate labels,
y ∈ R, in order to construct a confidence set. Instead, as done in previous work on conformal prediction,
we estimate Cα(Xtest) by defining a finite grid of candidate labels, Y ⊂ R, and checking the condition in
Eq. (3) for all y ∈ Y. Algorithm 1 outlines a generic recipe for computing Cα(Xtest) for a given test input;
see Section 2.4 for important special cases in which Cα(Xtest) can be computed more efficiently.

6

Algorithm 1 Pseudocode for approximately computing Cα(Xtest)

Input: Training data, (Z1, . . . , Zn), where Zi = (Xi, Yi); test input, Xtest; finite grid of candidate labels,
Y ⊂ R; likelihood ratio function subroutine, v(· ; ·); and score function subroutine S(·, ·).
Output: Confidence set, Cα(Xtest) ⊂ Y.

1: Cα(Xtest)← ∅
2: Compute v(Xtest;Z1:n)
3: for y ∈ Y do

4: for i = 1, . . . , n do

5: Compute Si(Xtest, y) and v(Xi;Z−i ∪ {(Xtest, y)})
6: end for

7: Compute Sn+1(Xtest, y)
8: for i = 1, . . . , n+ 1 do

9: Compute wy
i (Xtest) according to Eq. (4)

10: end for

11: qy ← Quantile1−α

(

∑n+1
i=1 wy

i (Xtest) δSi(Xtest,y)

)

12: if Sn+1(Xtest, y) ≤ qy then

13: Cα(Xtest)← Cα(Xtest) ∪ {y}
14: end if

15: end for

Relationship with exchangeable and standard covariate shift settings. The weights assigned to
each score, wy

i (Xtest) in Eq. (4), are the distinguishing factor between the confidence sets constructed by
conformal approaches for the i.i.d, standard covariate shift, and FCS settings. When the training and
test data are exchangeable, these weights are simply 1/(n + 1). To accommodate standard covariate shift,
where the training and test data are independent, these weights are also normalized likelihood ratios—but,
importantly, the test input distribution in the numerator is fixed, rather than data-dependent as in the FCS
setting [59]. That is, the weights are defined using one fixed likelihood ratio function, v(·) = p̃X(·)/pX(·),
where p̃X is the density of the single test input distribution under consideration.

In contrast, under FCS, observe that the likelihood ratio that is evaluated in Eq. (4), v(·;D) from Eq. (2),
is different for each of the n+1 training and candidate test data points and for each candidate label, y ∈ R:
for Xi, we evaluate the likelihood ratio where the test input distribution is that induced by Z−i ∪ {(Xtest, y)},

v(Xi;Z−i ∪ {(Xtest, y)}) =
p̃X;Z−i∪{(Xtest,y)}(Xi)

pX(Xi)
.

That is, the weights under FCS take into account not just a single test input distribution, but every test
input distribution that can be induced when we treat a leave-one-out training data set combined with a
candidate test data point, Z−i ∪ {(Xtest, y)}, as the training data.

To further appreciate the relationship between the standard and feedback covariate shift settings, consider
the weights used in the standard covariate shift approach if we treat PX;Z1:n

as the test input distribution.
The extent to which PX;Z1:n

differs from PX;Z−i∪{(Xtest,y)}, for any i = 1, . . . , n and y ∈ R, determines the
extent to which the weights used under standard covariate shift deviate from those used under FCS. In
other words, since Z1:n and Z−i ∪ {(Xtest, y} differ in exactly one data point, the similarity between the
standard covariate shift and FCS weights depends on the “smoothness” of the mapping from D to P̃X;D.

For example, the more algorithmically stable the learning algorithm through which P̃X;D depends on D is,
the more similar these weights will be.

Input distributions are known in the design problem. The design problem is a unique setting in
which we have control over the data-dependent test input distribution, PX;D, since we choose the procedure
used to design an input. In the simplest case, some design procedures sample from a distribution whose form
is explicitly chosen, such as an energy-based model whose energy function is proportional to the predictions
from a trained regression model [10], or a model whose parameters are set by solving an optimization problem

7

(e.g., the training of a generative model) [47, 28, 11, 16, 50, 67, 23, 52, 71]. In either setting, we know the
exact form of the test input distribution, which also absolves the need for density estimation.

In other cases, the design procedure involves iteratively applying a gradient to, or otherwise locally
modifying, an initial input in order to produce a designed input [30, 20, 35, 54, 7, 13]. Due to randomness in
either the initial input or the local modification rule, such procedures implicitly result in some distribution
of test inputs. Though we do not have access to its explicit form, knowledge of the design procedure can
enable us to estimate it much more readily than in a naive density estimation setting. For example, we
can simulate the design procedure as many times as is needed to sufficiently estimate the resulting density,
whereas in density estimation in general, we cannot control how many test inputs we can access.

The training input distribution, PX , is also often known explicitly. In protein design problems, for ex-
ample, training sequences are often generated by introducing random substitutions to a single wild type
sequence [11, 10, 13], by recombining segments of several “parent” sequences [34, 49, 9, 21], or by indepen-
dently sampling the amino acid at each position from a known distribution [71, 64]. Conveniently, we can
then compute the weights in Eq. (4) exactly without introducing approximation error due to density ratio
estimation.

Finally, we note that, by construction, the design problem tends to result in test input distributions that
place considerable probability mass on regions where the training input distribution does not. The further
the test distribution is from the training distribution in this regard, the larger the resulting weights on
candidate test points, and the larger the confidence set in Eq. (3) will tend to be. This phenomenon agrees
with our intuition about epistemic uncertainty: we should have more uncertainty—that is, larger confidence
sets—in regions of input space where there is less training data.

2.4 Efficient computation of confidence sets under feedback covariate shift

Using Algorithm 1 to construct the full conformal confidence set, Cα(Xtest), requires computing the scores
and weights, Si(Xtest, y) and wy

i (Xtest), for all i = 1, . . . , n + 1 and all candidate labels, y ∈ Y. When
the dependence of P̃X;D on D arises from a model trained on D, then naively, we must train (n + 1) × |Y|
models in order to compute these quantities. We now describe two important, practical cases in which this
computational burden can be reduced to fitting n + 1 models, removing the dependence on the number
of candidate labels. In such cases, we can post-process the outputs of these n + 1 models to calculate all
(n + 1) × |Y| required scores and weights (see Alg. 3 in the Appendix for pseudocode); we refer to this as
computing the confidence set efficiently.

In the following two examples and in our experiments, we use the residual score function, S((X,Y), D) =
|Y −µD(X)|, where µD is a regression model trained on the multiset D. To understand at a high level when
efficient computation is possible, first let µy

−i denote the regression model trained on Zy
−i = Z−i∪{(Xtest, y)},

the i-th leave-one-out training data set combined with a candidate test data point. The scores and weights
can be computed efficiently when µy

−i(Xi) is a computationally simple function of the candidate label, y, for
all i—for example, a linear function of y. We discuss two such cases in detail.

Ridge regression. Suppose we fit a ridge regression model, with ridge regularization hyperparameter γ,
to the training data. Then, we draw the test input vector from a distribution which places more mass on
regions of X where the model predicts more desirable values, such as high fitness in protein design problems.
Recent studies have employed this relatively simple approach to successfully design novel enzymes with
greater catalytic efficiencies or thermostabilities than observed in the training data [10, 34, 17], using linear
models with one-hot encodings of the protein sequence [34, 17] or embeddings thereof [10].

In the ridge regression setting, the quantity µy
−i(Xi)—the prediction for the i-th training input, using

the regression model fit to the remaining training data combined with the candidate test data point—can
be written in closed form as

µy
−i(Xi) =

[

(

XT
−iX−i + γI

)−1
XT

−iY
y
−i

]T

Xi (5)

=





n−1
∑

j=1

Y−i;jA−i;j





T

Xi + (AT
−i;nXi)y,

8

where the rows of the matrix X−i ∈ R
n×p are the input vectors in Zy

−i, Y
y
−i = (Y−i, y) ∈ R

n contains the

labels in Zy
−i, the matrix A−i ∈ R

n×p is defined as A−i =
(

XT
−iX−i + γI

)−1
XT

−i, A−i;j denotes the j-th
column of A−i, and Y−i;j denotes the j-th element of Y−i.

Note that the expression in Eq. (5) is a linear function of the candidate label, y. Consequently, as
formalized by Alg. 3 in the Appendix, we first compute and store the slopes and intercepts of these linear
functions for all i, which can be calculated as byproducts of fitting n + 1 ridge regression models. Using
these parameters, we can then compute µy

−i(Xi) for all candidate labels, y ∈ Y, by simply evaluating a
linear function of y instead of retraining a regression model on Zy

−i. Altogether, beyond fitting n + 1 ridge
regression models, Alg. 3 in the Appendix requires O(n · p · |Y|) additional floating point operations to
compute the scores and weights for all the candidate labels, the bulk of which can be implemented as one
outer product between an n-vector and a |Y|-vector, and one Kronecker product between an (n× p)-matrix
and a |Y|-vector.

Gaussian process regression. Similarly, suppose we fit a Gaussian process regression model to the
training data. We then select a test input vector according to a likelihood that is a function of the mean and
variance of the model’s prediction; such functions are referred to as acquisition functions in the Bayesian
optimization literature. Gaussian process regression has been used in this manner to design desirable proteins
[49, 9, 21] and small molecules [24].

For a linear kernel, the expression for the mean prediction, µy
−i(Xi), is the same as for ridge regression

(Eq. (5)). For arbitrary kernels, the expression can be generalized and remains a linear function of y (see
Appendix A2.2 for details). We can therefore mimic the computations described for the ridge regression case
to compute the scores and weights efficiently.

2.5 Data splitting

For settings with abundant training data, or model classes that do not afford efficient computations of the
scores and weights, one can turn to data splitting to construct valid confidence sets. To do so, we first
randomly partition the labeled data into disjoint training and calibration sets. Next, we use the training
data to fit a regression model, which induces a test input distribution. If we condition on the training data,
thereby treating the regression model as fixed, we have a setting in which (1) the calibration and test data
are drawn from different input distributions, but (2) are independent (even though the test and training
data are not). Thus, data splitting returns us to the setting of standard covariate shift, under which we
can use the data splitting approach in [59] to construct valid split conformal confidence intervals (defined in
Eq. (15) see Theorem 4).

We also introduce randomized data splitting approaches that yield confidence sets with exact coverage;
see Appendix A1.4 for details.

3 Experiments with protein design

To demonstrate practical applications of our theoretical results and accompanying algorithms, we turn to
examples of uncertainty quantification for designed proteins. Given a fitness function3 of interest, such as
fluorescence, a typical goal of protein design is to seek a protein with high fitness—in particular, higher
than we have observed in known proteins. Historically, this has been accomplished in the wet lab through
several iterations of expensive, time-consuming experiments. Recently, efforts have been made to augment
such approaches with machine learning-based strategies; see reviews by Yang et al. [69], Sinai & Kelsic [53],
Hie & Yang [25], and Wu et al. [68] and references therein. For example, one might train a regression model
on protein sequences with experimentally measured fitnesses, then use an optimization algorithm or fit a
generative model that leverages that regression model to propose promising new proteins [17, 11, 49, 9, 66,
5, 10, 35, 21, 65, 71]. Special attention has been given to the single-shot case, where the goal is to design
fitter proteins given just a single batch of training data, due to its obvious practical convenience.

3We use the term fitness function to refer to a particular function or property that can be exhibited by proteins, while the
fitness of a protein refers to the extent to which it exhibits that function or property.

9

a “red” wavelength and a “blue” wavelength, resulting in combinatorially complete data sets for two different
fitness functions. In particular, for both wavelengths, the label for each sequence was an enrichment score
based on the ratio of its counts before and after brightness-based selection through fluorescence-activated cell
sorting. The enrichment scores were then normalized so that the same score reflects comparable brightness
for both wavelengths.

Finally, each time we sampled from this data set to acquire training or designed data, as described below,
we added simulated measurement noise to each label by sampling from a noise distribution estimated from
the combinatorially complete data set (see A3 for details).This helps simulate the fact that sampling and
measuring the same sequence multiple times results in different label values.

3.1.1 Protocol for design experiments

Our training data sets consisted of n data points, Z1:n, sampled uniformly at random from the combinato-
rially complete data set. We used n ∈ {96, 192, 384} as is typical of realistic scenarios [49, 9, 66, 10, 65].
We represented each sequence as a feature vector containing all first- and second-order interaction terms
between the thirteen variable sites, and fit a ridge regression model, µZ1:n(x), to the training data, where the
regularization strength was set to 10 for n = 96 and 1 otherwise. Linear models of interaction terms between
sequence positions have been observed to be both theoretically justified and empirically useful as models of
protein fitness functions [46, 26, 12] and thus may be particularly useful for protein design, particularly with
small amounts of training data. Furthermore, ridge regularization endows linear models of interaction terms
with certain desirable properties when generalizing to amino acids not seen in the training data [26].

Sampling designed sequences. Following ideas in [10, 71], we designed a protein by sampling from a
sequence distribution whose log-likelihood is proportional to the prediction of the regression model:

p̃X;Z1:n(Xtest) ∝ exp(λ · µZ1:n(Xtest)), (6)

where λ > 0, the inverse temperature, is a hyperparameter that controls the entropy of the distribution.
Larger values of λ result in lower-entropy distributions of designed sequences that are more likely to have
high predicted fitnesses according to the model, but are also, for this same reason, more likely to be in
regions of sequence space that are further from the training data and over which the model is more uncertain.
Analogous hyperparameters have been used in recent protein design work to control this trade-off between
exploration and exploitation [10, 50, 38, 71]. We took λ ∈ {0, 2, 4, 6} to investigate how the behavior of our
confidence sets varies along this trade-off.

Constructing confidence sets for designed sequences. For each setting of n and λ, we generated n
training data points and one designed data point as just described T = 2000 times. For each of these T
trials, we used Alg. 3 in the Appendix to construct the full conformal confidence set, Cα(Xtest), using a
grid of real values between 0 and 2.2 spaced ∆ = 0.02 apart as the set of candidate labels, Y. This range
contained the ranges of fitnesses in both the blue and red combinatorially complete data sets, [0.091, 1.608]
and [0.025, 1.692], respectively.5

We used α = 0.1 as a representative miscoverage value, corresponding to coverage of 1 − α = 0.9. We
then computed the empirical coverage achieved by the confidence sets, defined as the fraction of the T trials
where the true fitness of the designed protein was within half a grid spacing from some value in the confidence
set, namely, min{|Ytest − y| : y ∈ Cα(Xtest)} ≤ ∆/2. Based on Theorem 1, assuming Y is both a large and
fine enough grid to encompass all possible fitness values, the expected empirical coverage is lower bounded
by 1 − α = 0.9. However, there is no corresponding upper bound, so it will be of interest to examine any
excess in the empirical coverage, which corresponds to the confidence sets being conservative (larger than

5In general, a reasonable approach for constructing a finite grid of candidate labels, Y, is to span an interval beyond which
one knows label values are impossible in practice, based on prior knowledge about the measurement technology. The presence
or absence of any such value in a confidence set would not be informative to a practitioner. The size of the grid spacing, ∆,
determines the resolution at which we evaluate coverage; that is, in terms of coverage, including a candidate label is equivalent
to including the ∆-width interval centered at that label value. Generally, one should therefore set ∆ as small as possible, or
small enough that the resolution of coverage is acceptable, subject to one’s computational budget.

11

necessary). Ideally, the empirical coverage is exactly 0.9, in which case the sizes of the confidence sets reflect
the minimal predictive uncertainty we can have about the designed proteins while achieving coverage.

In our experiments, the computed confidence sets tended to comprise grid-adjacent candidate labels,
suggestive of the intuitive notion of confidence intervals. As such, we hereafter refer to the width of confidence
intervals, defined as the grid spacing size times the number of values in the confidence set, ∆ · |Cα(Xtest)|.

3.1.2 Results

Here we discuss results for the blue fluorescence data set. Analogous results for the red fluorescence data set
are presented in Appendix A3.

Effect of inverse temperature. First we examined the effect of the inverse temperature, λ, on the
fitnesses of designed proteins (Fig. 3a). Note that λ = 0 corresponds to a uniform distribution over all
sequences in the combinatorially complete data set (i.e., the training distribution), which mostly yields label
values less than 0.5. Recall that our goal is to find a protein with higher fitness than observed in the training
data. For λ ≥ 4, we observe a considerable mass of designed proteins attaining fitnesses around 1.5, so
these values of λ represent settings where the designed proteins are more likely to be fitter than the training
proteins. This observation is consistent with the use of this and other analogous hyperparameters to tune
the outcomes of design procedures [50, 10, 38, 71], and is meant to provide an intuitive interpretation of the
hyperparameter to readers unfamiliar with its use in design problems.

Empirical coverage and confidence interval widths. Despite the lack of a theoretical upper bound,
the empirical coverage does not tend to exceed the theoretical lower bound of 1−α = 0.9 by much (Fig. 3b),
reaching at most 0.924 for n = 96, λ = 6. Loosely speaking, this observation suggests that the confidence
intervals are nearly as small, and therefore as informative, as they can be while achieving coverage.

As for the widths of the confidence intervals, we observe that for any value of λ, the intervals tend to
be smaller for larger amounts of training data (Fig. 3c). Also, for any value of n, the intervals tend to get
larger as λ increases. The first phenomenon arises from the fact that the more training data points that
inform the model, the fewer the candidate labels, y ∈ Y, that seem plausible for the designed protein; this
agrees with the intuition that training a model on more data should generally reduce predictive uncertainty.
The second phenomenon arises because greater values of λ lead to designed sequences with higher predicted
fitnesses, which the model is more uncertain about. Indeed, for λ = 4, n = 96 and λ = 6, n ∈ {96, 192},
many confidence intervals contain the entire range of fitnesses in the combinatorially complete data set. In
these regimes, the regression model cannot glean enough information from the training data to have much
certainty about the designed protein.

Comparison to standard covariate shift Deploying full conformal prediction as prescribed for standard
covariate shift (SCS) [59], a heuristic that has no formal guarantees in this setting, often results in more
conservative confidence sets than those produced by our method for feedback covariate shift (FCS; Fig. 3d-f).
To better understand when the outputs of these two methods will be more similar or different, note that
both methods introduce weights on the training and candidate test data points when considering a candidate
label. Comparing the forms of these weights therefore exposes when the confidence sets produced by the two
methods will differ.

First, observe that the weights assigned to the i-th training input, Xi, for FCS and SCS are both
normalized ratios of the likelihoods of Xi under a test input distribution and the training input distribution,
pX , namely:

v(Xi;Z−i ∪ {(Xtest, y)}) = p̃X;Z−i∪{(Xtest,y)}(Xi)/pX(Xi),

v(Xi) = p̃X;Z1:n
(Xi)/pX(Xi),

respectively. The difference is that for FCS, the test input distribution, p̃X;Z−i∪{(Xtest,y)}, is induced by a
regression model trained on Z−i ∪ {(Xtest, y)}, and therefore depends on the candidate label, y, and also
differs for each of the n training inputs. In contrast, the test input distribution for the SCS weight, pX;Z1:n ,

12

3.2 Design experiments using adeno-associated virus (AAV) capsid packaging
data

In contrast with Section 3.1, which represented a protein design problem with limited amounts of labeled
data (at most a few hundred sequences), here we focus on a setting in which there is abundant labeled
data. We can therefore employ data splitting as described in Section 2.5 to construct a confidence set, as an
alternative to computing the full conformal confidence set (Eq. (3)) as done in Section 3.1. Specifically, we
construct a randomized version of the split conformal confidence set (Section A1.4), which achieves exact
coverage.

This subsection, together with the previous subsection, demonstrate that in both regimes—limited and
abundant labeled data—our proposed methods provide confidence sets that give coverage, are not overly
conservative, and can be used to visualize the trade-off between predicted fitness and predictive uncertainty
inherent to a design algorithm.

3.2.1 Protein design problem: AAV capsid proteins with improved packaging ability

Adeno-associated viruses (AAVs) are a class of viruses whose capsid, the protein shell that encapsulates
the viral genome, holds great promise as a delivery vehicle for gene therapy. As such, the proteins that
constitute the capsid have been modified to enhance various fitness functions, such as the ability to enter
specific cell types and evade the immune system [39, 15, 60]. Such efforts usually start by sampling millions
of proteins from some sequence distribution, then performing an experiment that selects out the fittest
sequences. Sequence distributions commonly used today have relatively high entropy, and the resulting
sequence diversity can lead to successful outcomes for a myriad of downstream selection experiments [13, 71].
However, most of these sequences also fail to assemble into a capsid that packages the genetic payload
[1, 60, 40]—a fitness function called packaging, which is the minimum requirement of a gene therapy delivery
mechanism, and therefore a prerequisite to any other desiderata.

If sequence distributions could be developed with higher packaging ability, without compromising se-
quence diversity, then the success rate of downstream selection experiments should improve. To this end,
Zhu & Brookes et al. [71] use neural networks trained on sequence-packaging data to specify the parameters
of sequence distributions that simultaneously have high entropy and yield sequences with high predicted
packaging ability. The sequences in this data varied at seven promising contiguous positions identified in
previous work [15], and elsewhere matched a wild type. To accommodate commonly used DNA synthesis
protocols, Zhu & Brookes et al. parameterized their sequence distributions as independent categorical dis-
tributions over the four nucleotides at each of twenty-one contiguous sites, corresponding to codons at each
of the seven sites of interest.

3.2.2 Protocol for design experiments

We followed the methodology of Zhu & Brookes et al. [71] to find sequence distributions with high mean
predicted fitness—in particular, higher than that of the common “NNK” sequence distribution [15]. Specifi-
cally, we used the high-throughput data collected in [71], which sampled millions of sequences from the NNK
distribution and labeled each with an enrichment score quantifying its packaging fitness, based on its count
before and after a packaging-based selection experiment. We introduced additional simulated measurement
noise to these labels, where the parameters of the noise distribution were also estimated from the pre- and
post-selection counts, resulting in labels ranging from −7.53 to 8.80 for 8, 552, 729 sequences (see Section A4
for details).

We then randomly selected and held out one million of these data points, for calibration and test purposes
described shortly, then trained a neural network on the remaining data to predict fitness from sequence.
Finally, following [71], we approximately solved an optimization problem that leveraged this regression model
in order to specify the parameters of sequence distributions with high mean predicted fitness. Specifically, let
{pφ : φ ∈ Φ} denote the class of sequence distributions parameterized as independent categorical distributions
over the four nucleotides at each of twenty-one contiguous sequence positions. We set the parameters of the
designed sequence distribution by using stochastic gradient descent to approximately solve the following

15

problem:

φλ = argmin
φ∈Φ

DKL(p
⋆
λ||pφ) (7)

where p⋆λ(X) ∝ exp(λ ·µ(X)), µ is the neural network fit to the training data, and λ ≥ 0 is the same inverse
temperature hyperparameter as in Section 3.1. After solving for φλ for a range of inverse temperature values,
λ ∈ {1, 2, 3, 4, 5, 6, 7}, we sampled designed sequences from pφλ

as described below, then used data splitting
as detailed in Section A1.4 to construct confidence sets that achieve exact coverage.

Sampling designed sequences. In Section 3.1, we used a combinatorially comprehensive data set so that
we always had the true fitnesses of designed sequences. Here, we do not have a label for every sequence in
the input space—that is, all sequences that vary at the seven positions of interest, and that elsewhere match
a wild type. As an alternative, we used rejection sampling to sample from pφλ

. Specifically, recall that we
held out a million of the labeled sequences. The input space was sampled uniformly and densely enough by
the high-throughput data set that we treated 990, 000 of these held-out labeled sequences as samples from a
proposal distribution (that is, the NNK distribution) and were able to perform rejection sampling to sample
designed sequences for which we have labels.

Constructing confidence sets for designed sequences. Note that rejection sampling results in some
random number, at most 990, 000, of designed sequences; in practice, this number ranged from single digits
to several thousand for λ = 7 to λ = 1, respectively. To account for this variability, for each value of the
inverse temperature, we performed T = 500 trials of the following steps. We randomly split the one million
held-out labeled sequences into 990, 000 proposal distribution sequences and 10, 000 sequences to be used as
calibration data. We used the former to sample some number of designed sequences, then used the latter to
construct randomized staircase confidence sets (Alg. 2)for each of the designed sequences. The results we
report next concern properties of these sets averaged over all T = 500 trials.

3.2.3 Results

Effect of inverse temperature. The inverse temperature hyperparameter, λ, in Eq. (7) plays a similar
role as in Section 3.1: larger values result in designed sequences with higher mean true fitness (Fig. 5a).
Note that the mean true fitness for all considered values of the inverse temperature is higher than that of
the training distribution (the dashed black line, Fig. 5a).

Empirical coverage and confidence set sizes. For all considered values of the inverse temperature,
the empirical coverage resulting from the confidence sets is very close to the expected value of 1 − α = 0.9
(Fig. 5b, top). Note that some designed sequences, which the neural network is particularly uncertain about,
are given a confidence set with infinite size (Fig. 5b, bottom). The fraction of sets with infinite size, as well
as the mean size of non-infinite sets, both increase with the inverse temperature (Fig. 5b, bottom), which
is consistent with our intuition that the neural network should be less confident about predictions that are
much higher than fitnesses seen in the training data.

Using uncertainty quantification to set design procedure hyperparameters. As in Section 3.1.2,
the confidence sets we construct expose a trade-off between predicted fitness and predictive uncertainty as we
vary the inverse temperature. Generally, the higher the mean predicted fitness of the sequence distributions,
the greater the mean confidence set size as well (Fig. 5c).6 One can inspect this trade-off to decide on an
acceptable setting of the inverse temperature. For example, observe that the mean set size does not grow
appreciably between λ = 1 and λ = 4, even though the mean predicted fitness monotonically increases (Fig.
5b, bottom and c); similarly, the fraction of sets with infinite size also remains near zero for these values of λ
(Fig. 5b, bottom). However, both of these quantities start to increase for λ ≥ 5. By λ = 7, for instance, more

6The exception is the sequence distribution corresponding to λ = 2, which has a higher mean predicted fitness but on
average smaller sets than λ = 1. One likely explanation is that experimental measurement noise is particularly high for very
low fitnesses, making low-fitness sequences inherently difficult to predict.

16

References

[1] Kei Adachi, Tatsuji Enoki, Yasuhiro Kawano, Michael Veraz, and Hiroyuki Nakai. Drawing a high-
resolution functional map of adeno-associated virus capsid by massively parallel sequencing. Nat. Com-
mun., 5:3075, 2014.

[2] Alexander Amini, Wilko Schwarting, Ava Soleimany, and Daniela Rus. Deep evidential regression. In
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Informa-
tion Processing Systems, volume 33, pages 14927–14937. Curran Associates, Inc., 2020. URL https:

//proceedings.neurips.cc/paper/2020/file/aab085461de182608ee9f607f3f7d18f-Paper.pdf.

[3] Anastasios N Angelopoulos and Stephen Bates. A gentle introduction to conformal prediction and
distribution-free uncertainty quantification. arXiv preprint 2107.07511, 2021.

[4] Anastasios N Angelopoulos, Stephen Bates, Emmanuel J Candès, Michael I Jordan, and Lihua Lei.
Learn then test: Calibrating predictive algorithms to achieve risk control. arXiv preprint 2110.01052,
2021.

[5] Christof Angermueller, David Dohan, David Belanger, Ramya Deshpande, Kevin Murphy, and Lucy
Colwell. Model-based reinforcement learning for biological sequence design. In Proc. of the International
Conference on Learning Representations (ICLR), 2019.

[6] P Auer. Using confidence bounds for exploitation-exploration trade-offs. J. Mach. Learn. Res., 3, 2002.

[7] Ali Bashir, Qin Yang, Jinpeng Wang, Stephan Hoyer, Wenchuan Chou, Cory McLean, Geoff Davis,
Qiang Gong, Zan Armstrong, Junghoon Jang, Hui Kang, Annalisa Pawlosky, Alexander Scott, George E
Dahl, Marc Berndl, Michelle Dimon, and B Scott Ferguson. Machine learning guided aptamer refinement
and discovery. Nat. Commun., 12(1):2366, April 2021.

[8] Stephen Bates, Emmanuel Candès, Lihua Lei, Yaniv Romano, and Matteo Sesia. Testing for outliers
with conformal p-values. arXiv preprint 2104.08279, 2021.

[9] Claire N Bedbrook, Kevin K Yang, J Elliott Robinson, Elisha D Mackey, Viviana Gradinaru, and
Frances H Arnold. Machine learning-guided channelrhodopsin engineering enables minimally invasive
optogenetics. Nat. Methods, 16(11):1176–1184, 2019.

[10] Surojit Biswas, Grigory Khimulya, Ethan C Alley, Kevin M Esvelt, and George M Church. Low-N
protein engineering with data-efficient deep learning. Nature Methods, 18(4):389–396, 2021.

[11] David H. Brookes, Hahnbeom Park, and Jennifer Listgarten. Conditioning by adaptive sampling for
robust design. In Proc. of the International Conference on Machine Learning (ICML), 2019.

[12] David H Brookes, Amirali Aghazadeh, and Jennifer Listgarten. On the sparsity of fitness functions and
implications for learning. Proc. Natl. Acad. Sci. U. S. A., 119(1), January 2022.

[13] Drew H Bryant, Ali Bashir, Sam Sinai, Nina K Jain, Pierce J Ogden, Patrick F Riley, George M Church,
Lucy J Colwell, and Eric D Kelsic. Deep diversification of an AAV capsid protein by machine learning.
Nat. Biotechnol., 39, February 2021.

[14] Maxime Cauchois, Suyash Gupta, Alnur Ali, and John C Duchi. Robust validation: Confident predic-
tions even when distributions shift. arXiv preprint 2008.04267, 2020.

[15] Deniz Dalkara, Leah C Byrne, Ryan R Klimczak, Meike Visel, Lu Yin, William H Merigan, John G Flan-
nery, and David V Schaffer. In vivo-directed evolution of a new adeno-associated virus for therapeutic
outer retinal gene delivery from the vitreous. Sci. Transl. Med., 5(189):189ra76, June 2013.

[16] Clara Fannjiang and Jennifer Listgarten. Autofocused oracles for model-based design. In Advances in
Neural Information Processing Systems 33, 2020.

18

[17] Richard J Fox, S Christopher Davis, Emily C Mundorff, Lisa M Newman, Vesna Gavrilovic, Steven K
Ma, Loleta M Chung, Charlene Ching, Sarena Tam, Sheela Muley, John Grate, John Gruber, John C
Whitman, Roger A Sheldon, and Gjalt W Huisman. Improving catalytic function by ProSAR-driven
enzyme evolution. Nat. Biotechnol., 25(3):338–344, March 2007.

[18] Alex Gammerman, Volodya Vovk, and Vladimir Vapnik. Learning by transduction. Proceedings of the
Fourteenth Conference on Uncertainty in Artificial Intelligence, 14:148–155, 1998.

[19] Isaac Gibbs and Emmanuel Candès. Adaptive conformal inference under distribution shift. In Advances
in Neural Information Processing Systems, volume 34, 2021.

[20] Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato, Benjamı́n
Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel, Ryan P Adams,
and Alán Aspuru-Guzik. Automatic chemical design using a data-driven continuous representation of
molecules. ACS Cent Sci, 4(2):268–276, February 2018.

[21] Jonathan C Greenhalgh, Sarah A Fahlberg, Brian F Pfleger, and fPhilip A Romero. Machine learning-
guided acyl-ACP reductase engineering for improved in vivo fatty alcohol production. Nat. Commun.,
12(1):5825, October 2021.

[22] Moritz Hardt, Nimrod Megiddo, Christos Papadimitriou, and Mary Wootters. Strategic classification.
In Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science, 2016.

[23] Alex Hawkins-Hooker, Florence Depardieu, Sebastien Baur, Guillaume Couairon, Arthur Chen, and
David Bikard. Generating functional protein variants with variational autoencoders. PLoS Comput.
Biol., 17(2):e1008736, February 2021.

[24] Brian Hie, Bryan D Bryson, and Bonnie Berger. Leveraging uncertainty in machine learning accelerates
biological discovery and design. Cell Syst, 11(5):461–477.e9, November 2020.

[25] Brian L Hie and Kevin K Yang. Adaptive machine learning for protein engineering. Curr. Opin. Struct.
Biol., 72:145–152, December 2021.

[26] Chloe Hsu, Hunter Nisonoff, Clara Fannjiang, and Jennifer Listgarten. Learning protein fitness models
from evolutionary and assay-labeled data. Nat. Biotechnol., pages 1–9, January 2022.

[27] Xiaoyu Hu and Jing Lei. A distribution-free test of covariate shift using conformal prediction. arXiv
preprint 2010.07147, 2020.

[28] Seokho Kang and Kyunghyun Cho. Conditional molecular design with deep generative models. J.
Chem. Inf. Model., 59(1):43–52, January 2019.

[29] Ramneet Kaur, Susmit Jha, Anirban Roy, Sangdon Park, Edgar Dobriban, Oleg Sokolsky, and Insup
Lee. iDECODe: In-distribution equivariance for conformal out-of-distribution detection. In Proc. of the
36th AAAI Conference on Artificial Intelligence, 2022.

[30] Nathan Killoran, Leo J Lee, Andrew Delong, David Duvenaud, and Brendan J Frey. Generating and
designing DNA with deep generative models. In Neural Information Processing Systems (NeurIPS)
Computational Biology Workshop, 2017.

[31] Volodymyr Kuleshov, Nathan Fenner, and Stefano Ermon. Accurate uncertainties for deep learning
using calibrated regression. In Proc. of the 35th International Conference on Machine Learning, 2018.

[32] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In Advances in Neural Information Processing Systems,
pages 6402–6413, 2017.

[33] Jing Lei, Max G’Sell, Alessandro Rinaldo, Ryan J. Tibshirani, and Larry Wasserman. Distribution-free
predictive inference for regression. Journal of the American Statistical Association, 113(523):1094–1111,
2018.

19

[34] Yougen Li, D Allan Drummond, Andrew M Sawayama, Christopher D Snow, Jesse D Bloom, and
Frances H Arnold. A diverse family of thermostable cytochrome p450s created by recombination of
stabilizing fragments. Nature Biotechnology, 25(9):1051–1056, 2007.

[35] Johannes Linder, Nicholas Bogard, Alexander B Rosenberg, and Georg Seelig. A generative neural
network for maximizing fitness and diversity of synthetic DNA and protein sequences. Cell Syst, 11(1):
49–62.e16, July 2020.

[36] Ge Liu, Haoyang Zeng, Jonas Mueller, Brandon Carter, Ziheng Wang, Jonas Schilz, Geraldine Horny,
Michael E Birnbaum, Stefan Ewert, and David K Gifford. Antibody complementarity determining
region design using high-capacity machine learning. Bioinformatics, 36(7):2126–2133, April 2020.

[37] R. Luo, S. Zhao, J. Kuck, B. Ivanovic, S. Savarese, E. Schmerling, and M. Pavone. Sample-efficient
safety assurances using conformal prediction. In Proc. IEEE Conf. on Robotics and Automation, May
2022. URL https://arxiv.org/abs/2109.14082.

[38] Ali Madani, Ben Krause, Eric R Greene, Subu Subramanian, Benjamin P Mohr, James M Holton,
Jose Luis Olmos, Caiming Xiong, Zachary Z Sun, Richard Socher, James S Fraser, and Nikhil Naik.
Deep neural language modeling enables functional protein generation across families. bioRxiv preprint
2021.07.18.452833, July 2021.

[39] Narendra Maheshri, James T Koerber, Brian K Kaspar, and David V Schaffer. Directed evolution of
adeno-associated virus yields enhanced gene delivery vectors. Nat. Biotechnol., 24(2):198–204, February
2006.

[40] Pierce J Ogden, Eric D Kelsic, Sam Sinai, and George M Church. Comprehensive AAV capsid fit-
ness landscape reveals a viral gene and enables machine-guided design. Science, 366(6469):1139–1143,
November 2019.

[41] Harris Papadopoulos, Kostas Proedrou, Vladimir Vovk, and Alex Gammerman. Inductive confidence
machines for regression. In Machine Learning: European Conference on Machine Learning, pages 345–
356, 2002. doi: https://doi.org/10.1007/3-540-36755-1 29.

[42] Sangdon Park, Shuo Li, Osbert Bastani, and Insup Lee. PAC confidence predictions for deep neural
network classifiers. In Proc. of the Ninth International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=Qk-Wq5AIjpq.

[43] Juan Perdomo, Tijana Zrnic, Celestine Mendler-Dünner, and Moritz Hardt. Performative prediction. In
Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pages 7599–7609. PMLR, 13–18 Jul
2020. URL https://proceedings.mlr.press/v119/perdomo20a.html.

[44] Aleksandr Podkopaev and Aaditya Ramdas. Distribution-free uncertainty quantification for classifica-
tion under label shift. In Proc. of the 37th Uncertainty in Artificial Intelligence, pages 844–853. PMLR,
2021.

[45] Aleksandr Podkopaev and Aaditya Ramdas. Tracking the risk of a deployed model and detecting harmful
distribution shifts. In Proc. of the Tenth International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=Ro_zAjZppv.

[46] Frank J Poelwijk, Michael Socolich, and Rama Ranganathan. Learning the pattern of epistasis linking
genotype and phenotype in a protein. Nat. Commun., 10(1):4213, 2019.

[47] Mariya Popova, Olexandr Isayev, and Alexander Tropsha. Deep reinforcement learning for de novo drug
design. Sci Adv, 4(7):eaap7885, July 2018.

[48] Joaquin Quiñonero Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D. Lawrence. Dataset
Shift in Machine Learning. The MIT Press, 2009. ISBN 0262170051.

20

[49] Philip A Romero, Andreas Krause, and Frances H Arnold. Navigating the protein fitness landscape
with gaussian processes. Proc. Natl. Acad. Sci. U. S. A., 110(3):E193–201, 2013.

[50] William P Russ, Matteo Figliuzzi, Christian Stocker, Pierre Barrat-Charlaix, Michael Socolich, Peter
Kast, Donald Hilvert, Remi Monasson, Simona Cocco, Martin Weigt, and Rama Ranganathan. An
evolution-based model for designing chorismate mutase enzymes. Science, 369(6502):440–445, July
2020.

[51] Hidetoshi Shimodaira. Improving predictive inference under covariate shift by weighting the log-
likelihood function. J. Stat. Plan. Inference, 90(2):227–244, October 2000.

[52] Jung-Eun Shin, Adam J Riesselman, Aaron W Kollasch, Conor McMahon, Elana Simon, Chris Sander,
Aashish Manglik, Andrew C Kruse, and Debora S Marks. Protein design and variant prediction using
autoregressive generative models. Nat. Commun., 12(1):2403, April 2021.

[53] Sam Sinai and Eric D Kelsic. A primer on model-guided exploration of fitness landscapes for biological
sequence design. arXiv preprint 2010.10614, October 2020.

[54] Sam Sinai, Richard Wang, Alexander Whatley, Stewart Slocum, Elina Locane, and Eric D Kelsic.
AdaLead: A simple and robust adaptive greedy search algorithm for sequence design. arXiv preprint
2010.02141, October 2020.

[55] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine learning
algorithms. In F Pereira, C J C Burges, L Bottou, and K Q Weinberger, editors, Advances in Neural
Information Processing Systems, volume 25. Curran Associates, Inc., 2012.

[56] Ava P Soleimany, Alexander Amini, Samuel Goldman, Daniela Rus, Sangeeta N Bhatia, and Connor W
Coley. Evidential deep learning for guided molecular property prediction and discovery. ACS Cent Sci,
7(8):1356–1367, August 2021.

[57] Masashi Sugiyama and Klaus-Robert Müller. Input-dependent estimation of generalization error under
covariate shift. Statistics & Decisions, 23:249–279, 01 2005. doi: 10.1524/stnd.2005.23.4.249.

[58] Masashi Sugiyama, Matthias Krauledat, and Klaus-Robert Müller. Covariate shift adaptation by im-
portance weighted cross validation. Journal of Machine Learning Research, 8(35):985–1005, 2007. URL
http://jmlr.org/papers/v8/sugiyama07a.html.

[59] Ryan J Tibshirani, Rina Foygel Barber, Emmanuel Candes, and Aaditya Ramdas. Confor-
mal prediction under covariate shift. In Advances in Neural Information Processing Systems,
volume 32, pages 2530–2540. 2019. URL https://proceedings.neurips.cc/paper/2019/file/

8fb21ee7a2207526da55a679f0332de2-Paper.pdf.

[60] Longping Victor Tse, Kelli A Klinc, Victoria J Madigan, Ruth M Castellanos Rivera, Lindsey F Wells,
L Patrick Havlik, J Kennon Smith, Mavis Agbandje-McKenna, and Aravind Asokan. Structure-guided
evolution of antigenically distinct adeno-associated virus variants for immune evasion. Proc. Natl. Acad.
Sci. U. S. A., 114(24):E4812–E4821, June 2017.

[61] Vladimir Vovk. Testing for concept shift online. arXiv preprint 2012.14246, 2020.

[62] Vladimir Vovk, Alex Gammerman, and Glenn Shafer. Algorithmic Learning in a Random World.
Springer, New York, NY, USA, 2005.

[63] Volodya Vovk, Alexander Gammerman, and Craig Saunders. Machine-learning applications of algorith-
mic randomness. In Proceedings of the Sixteenth International Conference on Machine Learning, ICML
’99, page 444–453, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc. ISBN 1558606122.

[64] Eli N Weinstein, Alan N Amin, Will Grathwohl, Daniel Kassler, Jean Disset, and Debora S Marks.
Optimal design of stochastic DNA synthesis protocols based on generative sequence models. In Proc.
of the 25th International Conference on Artificial Intelligence and Statistics, 2022.

21

[65] Bruce J Wittmann, Yisong Yue, and Frances H Arnold. Informed training set design enables efficient
machine learning-assisted directed protein evolution. Cell Syst, 12(11):1026–1045.e7, 2021.

[66] Zachary Wu, S B Jennifer Kan, Russell D Lewis, Bruce J Wittmann, and Frances H Arnold. Machine
learning-assisted directed protein evolution with combinatorial libraries. Proc. Natl. Acad. Sci. U. S.
A., 116(18):8852–8858, 2019.

[67] Zachary Wu, Kevin K Yang, Michael J Liszka, Alycia Lee, Alina Batzilla, David Wernick, David P
Weiner, and Frances H Arnold. Signal peptides generated by Attention-Based neural networks. ACS
Synth. Biol., 9(8):2154–2161, August 2020.

[68] Zachary Wu, Kadina E Johnston, Frances H Arnold, and Kevin K Yang. Protein sequence design with
deep generative models. Curr. Opin. Chem. Biol., 65:18–27, December 2021.

[69] Kevin K Yang, Zachary Wu, and Frances H Arnold. Machine-learning-guided directed evolution for
protein engineering. Nat. Methods, 16(8):687–694, August 2019.

[70] Haoyang Zeng and David K Gifford. Quantification of uncertainty in Peptide-MHC binding prediction
improves High-Affinity peptide selection for therapeutic design. Cell Syst, 9(2):159–166.e3, August 2019.

[71] Danqing Zhu, David H Brookes, Akosua Busia, Ana Carneiro, Clara Fannjiang, Galina Popova, David
Shin, Edward F Chang, Tomasz J Nowakowski, Jennifer Listgarten, and David V Schaffer. Machine
learning-based library design improves packaging and diversity of adeno-associated virus (AAV) libraries.
bioRxiv preprint 2021.11.02.467003, 2021.

22

A1 Proofs

A1.1 Proof of Theorem 1

Data from feedback covariate shift (FCS) are a special case of what we call pseudo-exchangeable7 random
variables.

Definition 2. Random variables V1, . . . , Vn+1 are pseudo-exchangeable with factor functions g1, . . . , gn+1

and core function h if the density, f , of their joint distribution can be factorized as

f(v1, . . . , vn+1) =

n+1
∏

i=1

gi(vi; v−i) · h(v1, . . . , vn+1),

where v−i = v1:(n+1) \ vi,
8 each gi(·; v−i) is a function that depends on the multiset v−i (that is, on the

values in v−i but not on their ordering), and h is a function that does not depend on the ordering of its n+1
inputs.

The following lemma characterizes the distribution of the scores of pseudo-exchangeable random variables,
which allows for a pseudo-exchangeable generalization of conformal prediction in Theorem 2. We then show
that data generated under FCS are pseudo-exchangeable, and a straightforward application of Theorem 2
yields Theorem 1 as a corollary. Our technical development here builds upon the work of Tibshirani et al.
[59], who generalized conformal prediction to handle “weighted exchangeable” random variables, including
data under standard covariate shift.

The key insight is that if we condition on the values, but not the ordering, of the scores, we can exactly
describe their distribution. The following proposition is a generalization of arguments found in the proof of
Lemma 3 in [59]; the subsequent result in Lemma 1 is a generalization of that lemma.

Proposition 1. Let Z1, . . . , Zn+1 be pseudo-exchangeable random variables with a joint density function, f ,
that can be written with factor functions g1, . . . , gn+1 and core function h. Let S be any score function and
denote Si = S(Zi, Z−i) where Z−i = Z1:(n+1) \ {Zi} for i = 1, . . . , n+ 1. Define

wi(z1, . . . , zn+1) ≡

∑

σ:σ(n+1)=i

∏n+1
j=1 gj(zσ(j); z−σ(j))

∑

σ

∏n+1
j=1 gj(zσ(j); z−σ(j))

, i = 1, . . . , n+ 1, (8)

where the summations are taken over permutations, σ, of the integers 1, . . . , n + 1. For values z =
(z1, . . . , zn+1), let si = S(zi, z−i) and let Ez be the event that {Z1, . . . , Zn+1} = {z1, . . . , zn+1} (that is,
the multiset of values taken on by Z1, . . . , Zn+1 equals the multiset of the values taken on in z). Then

Sn+1 | Ez ∼
n+1
∑

i=1

wi(z1, . . . , zn+1) δsi .

Proof. For simplicity, we treat the case where S1, . . . , Sn+1 are distinct almost surely; the result also holds in

7The name pseudo-exchangeable hearkens to the similarity of the factorized form to the pseudo-likelihood approximation of
a joint density. Note, however, that each factor, gi(vi; v−i), can only depend on the values and not the ordering of the other
variables, v1, . . . , vi−1, vi+1, . . . , vn, whereas each factor in the pseudo-likelihood approximation also depends on the identities
(i.e., the ordering) of the other variables.

8With some abuse of notation, we denote z−i = z1:(n+1) \ zi whenever possible, as done here, but use z−i = z1:n \ zi
whenever we need to append a candidate test point, as done in the main text and in Theorem 2 below. In either case, we will
clarify.

23

the general case, but the notation that accommodates duplicate values is cumbersome. For i = 1, . . . , n+ 1,

P(Sn+1 = si | Ez) = P(Zn+1 = zi | Ez) =

∑

σ:σ(n+1)=i f(zσ(1), . . . , zσ(n+1))
∑

σ f(zσ(1), . . . , zσ(n+1))

=

∑

σ:σ(n+1)=i

∏n+1
j=1 gj(zσ(j); z−σ(j)) · h(zσ(1), . . . , zσ(n+1))

∑

σ

∏n+1
j=1 gj(zσ(j); z−σ(j)) · h(zσ(1), . . . , zσ(n+1))

=

∑

σ:σ(n+1)=i

∏n+1
j=1 gj(zσ(j); z−σ(j)) · h(z1, . . . , zn+1)

∑

σ

∏n+1
j=1 gj(zσ(j); z−σ(j)) · h(z1, . . . , zn+1)

=

∑

σ:σ(n+1)=i

∏n+1
j=1 gj(zσ(j); z−σ(j))

∑

σ

∏n+1
j=1 gj(zσ(j); z−σ(j))

= wi(z1, . . . , zn+1).

Lemma 1. Let Z1, . . . , Zn+1 be pseudo-exchangeable random variables with a joint density function, f , that
can be written with factor functions g1, . . . , gn+1 and core function h. Let S be any score function and denote
Si = S(Zi, Z−i) where Z−i = Z1:(n+1) \ {Zi} for i = 1, . . . , n+ 1. For any β ∈ (0, 1),

P

{

Sn+1 ≤ Quantileβ

(

n+1
∑

i=1

wi(Z1, . . . , Zn+1) δSi

)}

≥ β,

where wi(z1, . . . , zn+1) is defined in Eq. (8).

Proof. Assume for simplicity of notation that S1, . . . , Sn+1 are distinct almost surely (but the result holds
generally). For data point values z = (z1, . . . , zn+1), let si = S(zi, z−i) and let Ez be the event that
{Z1, . . . , Zn+1} = {z1, . . . , zn+1}. By Proposition 1,

Sn+1 | Ez ∼
n+1
∑

i=1

wi(z1, . . . , zn+1) δsi ,

and consequently

P

(

Sn+1 ≤ Quantileβ

(

n+1
∑

i=1

wi(z1, . . . , zn+1) δsi

)∣

∣

∣

∣

∣

Ez

)

≥ β,

by definition of the β-quantile; equivalently, since we condition on Ez,

P

(

Sn+1 ≤ Quantileβ

(

n+1
∑

i=1

wi(Z1, . . . , Zn+1) δSi

)∣

∣

∣

∣

∣

Ez

)

≥ β.

Since this inequality holds for all events Ez, where z is a vector of n+ 1 data point values, smoothing gives

P

(

Sn+1 ≤ Quantileβ

(

n+1
∑

i=1

wi(Z1, . . . , Zn+1) δSi

))

≥ β.

Lemma 1 yields the following theorem, which enables a generalization of conformal prediction to pseudo-
exchangeable random variables.

24

Theorem 2. Suppose Z1, . . . , Zn+1 where Zi = (Xi, Yi) ∈ X ×R are pseudo-exchangeable random variables
with factor functions g1, . . . , gn+1. For any score function, S, and any miscoverage level, α ∈ (0, 1), define
for any point x ∈ X :

Cα(x) =

{

y ∈ R : Sn+1(x, y) ≤ Quantile1−α

(

n+1
∑

i=1

wi(Z1, . . . , Zn, (x, y)) δSi(x,y)

)}

, (9)

where Si(x, y) = S(Zi, Z−i ∪ {(x, y)}) and Z−i = Z1:n \Zi for i = 1, . . . , n, Sn+1(x, y) = S((x, y), Z1:n), and
the weight functions wi are as defined in Eq. (8). Then Cα satisfies

P (Yn+1 ∈ Cα(Xn+1)) ≥ 1− α,

where the probability is over all n+ 1 data points, Z1, . . . , Zn+1.

Proof. By construction, we have

Yn+1 ∈ Cα(Xn+1) ⇐⇒ Sn+1((Xn+1, Yn+1)) ≤ Quantile1−α

(

n+1
∑

i=1

wi(Z1, . . . , Zn+1) δSi(Xn+1,Yn+1)

)

.

Applying Lemma 1 gives the result.

Finally, Theorem 1 follows as a corollary of Theorem 2. Denoting Zn+1 = Ztest and Z−i = Z1:(n+1) \Zi,
observe that data, (Z1, . . . , Zn+1), under FCS are pseudo-exchangeable with the core function

h(z1, . . . , zn+1) =

n+1
∏

i=1

pX(xi) pY |X(yi | xi),

and factor functions gi(zi; z−i) = 1 for i = 1, . . . , n and

gn+1(zn+1; z1:n) =
p̃X;z1:n(xn+1) pY |X(yn+1 | xn+1)

pX(xn+1) pY |X(yn+1 | xn+1)
=

p̃X;z1:n(xn+1)

pX(xn+1)
= v(xn+1; z1:n)

which is the likelihood ratio function, v(·; ·), defined in Eq. (2). The weights, wi(z1, . . . , zn+1), in Eq. (8)
then simplify as

wi(z1, . . . , zn+1) =

∑

σ:σ(n+1)=i

∏n+1
j=1 gj(zσ(j); z−σ(j))

∑

σ

∏n+1
j=1 gj(zσ(j); z−σ(j))

=

∑

σ:σ(n+1)=i

∏n+1
j=1 gj(zσ(j); z−σ(j))

∑n+1
k=1

∑

σ:σ(n+1)=k

∏n+1
j=1 gj(zσ(j); z−σ(j))

=

∑

σ:σ(n+1)=i gn+1(zσ(n+1); z−σ(n+1))
∑n+1

k=1

∑

σ:σ(n+1)=k gn+1(zσ(n+1); z−σ(n+1))

=

∑

σ:σ(n+1)=i gn+1(zi; z−i)
∑n+1

k=1

∑

σ:σ(n+1)=k gn+1(zk; z−k)

=
n! · gn+1(zi; z−i)

∑n+1
k=1 n! · gn+1(zk; z−k)

=
v(xi; z−i)

∑n+1
k=1 v(xk; z−k)

.

These quantities are exactly the weight functions, wy
i , used to define the full conformal confidence set in

Eq. (3): wy
i (x) = wi(Z1, . . . , Zn, (x, y)) for i = 1, . . . , n+ 1. That is, Eq. (3) gives the confidence set defined

in Eq. (9) for data under FCS. Applying Theorem 2 then yields Theorem 1.

25

A1.2 A randomized confidence set achieves exact coverage

Here, we introduce the randomized β-quantile and a corresponding randomized confidence set that
achieves exact coverage. To lighten notation, for a discrete distribution with probability masses w =
(w1, . . . , wn+1) on points s = (s1, . . . , sn+1), where si ∈ R and wi ≥ 0,

∑n+1
i=1 wi = 1, we will write

Quantileβ(s, w) = Quantileβ(
∑n

i=1 wiδsi). Observe that Quantileβ(s, w) is always one of the support
points, si. Now define the β-quantile lower bound :

QuantileLBβ (s, w) = inf







s :
∑

i:si≤s

wi < β,
∑

i:si≤s

wi +
∑

j:sj=Quantileβ(s,w)

wj ≥ β







,

which is either a support point strictly less than the β-quantile, or negative infinity. Finally, letting Fs,w

denote the CDF of the discrete distribution supported on s with probability masses w, and using the short-
hand QFβ(s, w) = Fs,w(Quantileβ(s, w)) and LFβ(s, w) = Fs,w(QuantileLBβ(s, w)), the randomized
β-quantile is a random variable that takes on the value of either the β-quantile or the β-quantile lower
bound:

RandomizedQuantileβ(s, w) =







QuantileLBβ(s, w) w. p.
QFβ(s,w)−β

QFβ(s,w)−LFβ(s,w) ,

Quantileβ(s, w) w. p. 1−
QFβ(s,w)−β

QFβ(s,w)−LFβ(s,w) .
(10)

We use this quantity to define the randomized full conformal confidence set, which, for any miscoverage
level, α ∈ (0, 1), and x ∈ X is the following random variable:

Crand
α (x) =

{

y ∈ R : S((x, y), Z1:n) ≤ RandomizedQuantile1−α(s(Z1, . . . , Zn, (x, y)), w(Z1, . . . , Zn, (x, y))
}

,
(11)

where s(Z1, . . . , Zn, (x, y)) = (S1, . . . , Sn, S((x, y), Z1:n) and Si = S(Zi, Z−i ∪ {(x, y)}) for i = 1, . . . , n, and
w(Z1, . . . , Zn, (x, y)) = (wy

1(x), . . . , w
y
n+1(x)) where w

y
i (x) is defined in Eq. (4). Note that for each candidate

label, y ∈ R, an independent randomized β-quantile is instantiated; some values will use the β-quantile as
the threshold on the score, while the others will use the β-quantile lower bound. Randomizing the confidence
set in this way yields the following result.

Theorem 3. Suppose data, Z1, . . . , Zn, Ztest, are generated under feedback covariate shift and assume P̃X;D

is absolutely continuous with respect to PX for all possible values of D. Then, for any miscoverage level,
α ∈ (0, 1), the randomized full confidence set, Crand

α , in Eq. (11) satisfies the exact coverage property:

P(Ytest ∈ Crand
α (Xtest)) = 1− α, (12)

where the probability is over Z1, . . . , Zn, Ztest and the randomness in Crand
α .

Proof. Denote Zn+1 = Ztest and Z = (Z1, . . . , Zn+1). For a vector of n + 1 data point values, z =
(z1, . . . , zn+1), use the following shorthand:

Qβ(z) = Quantileβ(s(z), w(z)),

Lβ(z) = QuantileLBβ(s(z), w(z)),

Rβ(z) = RandomizedQuantileβ(s(z), w(z)),

QFβ(z) = QFβ(s(z), w(z)),

LFβ(z) = LFβ(s(z), w(z)),

where s(z1, . . . , zn+1) = (S(z1, z−1), . . . , S(zn+1, z−(n+1))). As in the proof of Lemma 1, consider the event,
Ez, that {Z1, . . . , Zn+1} = {z1, . . . , zn+1}. Assuming for simplicity that the scores are distinct almost surely,
by Proposition 1

S(Zn+1, Z1:n) | Ez ∼
n+1
∑

i=1

wi(z1, . . . , zn+1) δS(zi,z−i),

26

and consequently

P(S(Zn+1, Z1:n) ≤ R1−α(z) | Ez)

= P(S(Zn+1, Z1:n) ≤ R1−α(z) | Ez,R1−α(z) = Q1−α(z)) · P(R1−α(z) = Q1−α(z) | Ez)+

P(S(Zn+1, Z1:n) ≤ R1−α(z) | Ez,R1−α(z) = L1−α(z)) · P(R1−α(z) = L1−α(z) | Ez)

= P(S(Zn+1, Z1:n) ≤ Q1−α(z) | Ez) ·

(

1−
QF1−α(z)− (1− α)

QF1−α(z)− LF1−α(z)

)

+

P(S(Zn+1, Z1:n) ≤ L1−α(z) | Ez) ·
QF1−α(z)− (1− α)

QF1−α(z)− LF1−α(z)

= QF1−α(z) ·

(

1−
QF1−α(z)− (1− α)

QF1−α(z)− LF1−α(z)

)

+ LF1−α(z) ·
QF1−α(z)− (1− α)

QF1−α(z)− LF1−α(z)

= −
(

QF1−α(z)− LF1−α(z)
)

·
QF1−α(z)− (1− α)

QF1−α(z)− LF1−α(z)
+QF1−α(z)

= −QF1−α(z) + (1− α) +QF1−α(z)

= 1− α.

Since we condition on Ez, we equivalently have

P(S(Zn+1, Z1:n) ≤ R1−α(Z) | Ez) = 1− α,

and since this equality holds for all events Ez, where z is a vector of n + 1 data point values, taking an
expectation over Ez yields

P(S(Zn+1, Z1:n) ≤ R1−α(Z)) = 1− α.

Finally, since

Yn+1 ∈ Crand
α (Xn+1) ⇐⇒ S(Zn+1, Z1:n) ≤ R1−α(Z),

the result follows.

Note that standard covariate shift is subsumed by feedback covariate shift, so Theorem 3 can be used to
construct a randomized confidence set with exact coverage under standard covariate shift as well.

A1.3 Data splitting

In general, computing the full conformal confidence set, Cα(x), using Alg. 1 requires fitting (n + 1) × |Y|
regression models. A much more computationally attractive alternative is called a data splitting or split
conformal approach [41, 33], in which we (i) randomly partition the labeled data into disjoint training and
calibration data sets, (ii) fit a regression model to the training data, and (iii) use the scores that it provides
for the calibration data (but not the training data) to construct confidence sets for test data points. Though
this approach only requires fitting a single model, the trade-off is that it does not use the labeled data as
efficiently: only some fraction of our labeled data can be used to train the regression model. This limitation
may be inconsequential for settings with abundant data, but can be a nonstarter when labeled data is limited,
such as in many protein design problems.

Here, we show how data splitting simplifies feedback covariate shift (FCS) to standard covariate shift.
We then use the data splitting method from Tibshirani et al. [59] to produce confidence sets with coverage;
the subsequent subsection shows how to introduce randomization to achieve exact coverage.

To begin, we recall the standard covariate shift model [51, 57, 58]. The training data, Z1, . . . , Zn where
Zi = (Xi, Yi), are drawn independently and identically from some distribution: Xi ∼ PX , Yi ∼ PY |Xi

for
i = 1, . . . , n. A test data point, Ztest = (Xtest, Ytest), is drawn from a different input distribution but
the same conditional distribution, Xtest ∼ P̃X , Ytest ∼ PY |Xtest

, independently from the training data. In
contrast to FCS, here the test input cannot be chosen in a way that depends on the training data.

27

Returning to FCS, suppose we randomly partition all our labeled data into disjoint training and calibra-
tion data sets. Let µ denote the regression model fit to the training data; we henceforth consider µ as fixed
and make no further use of the training data. As such, without loss of generality we will use Z1, . . . , Zm to
refer to the calibration data. Now suppose the test input distribution is induced by the trained regression
model, µ; we write this as P̃X;µ. Observe that, conditioned on the training data, we now have a setting
where the calibration and test data are drawn from different input distributions but the same conditional
distribution, PY |X , and are independent of each other. That is, data splitting has returned us to standard
covariate shift.

To construct valid confidence sets under standard covariate shift, define the following likelihood ratio
function:

v(x) =
p̃X;µ(x)

pX(x)
, (13)

where pX and p̃X;µ refer to the densities of the training and test input distributions, respectively. We restrict
our attention to score functions of the following form [3]:

S(x, y) =
|y − µ(x)|

u(x)
. (14)

where u is any heuristic, nonnegative notion of uncertainty; one can also set u(x) = 1 to recover the residual
score function. Note that, since we condition on the training data and treat the regression model as fixed,
the score of a point, (x, y), is no longer also a function of other data points. Finally, for any miscoverage
level, α ∈ (0, 1), and any x ∈ X , define the split conformal confidence set as

Csplit
α (x) = µ(x)± q · u(x),

q = Quantile1−α

(

m
∑

i=1

wi(x) δSi
+ wn+1(x) δ∞

)

,
(15)

where Si = S(Xi, Yi) for i = 1, . . . ,m and

wi(x) =
v(Xi)

∑m
j=1 v(Xj) + v(x)

, i = 1, . . . ,m, (16)

wm+1(x) =
v(x)

∑m
j=1 v(Xj) + v(x)

.

For data under standard covariate shift, the split conformal confidence set achieves coverage, as first shown
in [59].

Theorem 4 (Corollary 1 in [59]). Suppose calibration and test data, Z1, . . . , Zm, Ztest, are under standard
covariate shift, and assume P̃X;µ is absolutely continuous with respect to PX . For score functions of the form
in Eq. (14), and any miscoverage level, α ∈ (0, 1), the split conformal confidence set, Csplit

α (x), in Eq. (15)
satisfies the coverage property in Eq. (1).

To achieve exact coverage, we can introduce randomization, as we discuss next.

A1.4 Data splitting with randomization achieves exact coverage

Here, we stay in the setting and notation of the previous subsection and demonstrate how randomizing the
β-quantile enables a data splitting approach to achieve exact coverage. For any score function of the form
in Eq. (14), any miscoverage level, α ∈ (0, 1), the randomized split conformal confidence set is the following
random variable for x ∈ X :

Crand,split
α (x) =

{

y ∈ R : S(x, y) ≤ RandomizedQuantile1−α ((S1, . . . , Sm, S(x, y)), (w1(x), . . . , wm+1(x)))
}

,
(17)

28

where the randomized β-quantile, RandomizedQuantileβ is defined in Eq. (10), Si = S(Xi, Yi) for i =
1, . . . ,m, and wi(·) for i = 1, . . . ,m+ 1 is defined in Eq. (16). Observe that for each candidate label, y ∈ R,
an independent randomized β-quantile is drawn, such that the scores of some values are compared to the
β-quantile while the others are compared to the β-quantile lower bound. The exact coverage property of
this confidence set is a consequence of Theorem 3.

Corollary 1. Suppose calibration and test data, Z1, . . . , Zm, Ztest, are under standard covariate shift, and
assume P̃X;µ is absolutely continuous with respect to PX . For score functions of the form in Eq. (14), and
any miscoverage level, α ∈ (0, 1), the randomized split conformal confidence set, Crand,split

α (x), in Eq. (17)
satisfies the exact coverage property in Eq. (12).

Proof. Since standard covariate shift is a special case of FCS, the calibration and test data can be described
by FCS where P̃X;Z1:m = P̃X;µ for all Z1:m. The randomized split conformal confidence set, Crand,split

α , is
simply the randomized full conformal confidence set, Crand

α , defined in Eq. (11), instantiated with the scores
S((x, y), Z1:m) = S(x, y) and S(Zi, Z−i ∪ {(x, y)}) = S(Zi) for i = 1, . . . ,m, and weights resulting from
P̃X;Z1:m

= P̃X;µ for all Z1:m. The result then follows from Theorem 3.

While we only need to fit a single regression model, µ, to compute the scores, naively it might seem that in
practice, we can only approximate Crand,split

α (x) by introducing a discrete grid of candidate labels, Y ⊂ R, and
computing a randomized β-quantile for |Y| different discrete distributions. Fortunately, we can construct
an alternative confidence set that also achieves exact coverage, the randomized staircase confidence set,
Cstaircase

α , which only requires sorting m scores and an additional O(m) floating point operations to compute
(see Alg. 2).

At a high level, its construction is based on the observation that for any x ∈ X and y ∈ R, the quantity
P(y ∈ Crand,split

α (x)), where the probability is over the randomness in Crand,split
α (x), is a piecewise constant

function of y. Instead of testing each value of y ∈ R, we can then construct this piecewise constant function,
and randomly include entire intervals of y values that have the same value of P(y ∈ Crand,split

α (x)).
Fig. A1 illustrates this observation, which we now explain. First, the discrete distribution in Eq. (17)

has probability masses w1(x), . . . , wm+1(x) at the points S1, . . . , Sm, S(x, y), respectively. Given the values
of the m calibration data points and the test input, x, all of these quantities are fixed—except for the score
of the candidate test data point, S(x, y). That is, the only quantity that depends on the value of y is
S(x, y), which is the location of the probability mass wm+1(x); the remaining m support points and their
corresponding probability masses do not not change with y.

Now consider the calibration scores, S1, . . . , Sm, in sorted order. Observe that for any pair of successive
sorted scores, S(i) and S(i+1), the entire interval of y values such that S(x, y) ∈ (S(i), S(i+1) belongs to one
of three categories: S(x, y) ≤ β-quantile lower bound (of the discrete distribution with probability masses
w1, . . . , wm+1 at support points S1, . . . , Sm, S(x, y)), S(x, y) = β-quantile, or S(x, y) > β-quantile. An
interval of y values that belongs to the first category is deterministically included in Crand,split

α (x), regardless
of the randomness in the randomized β-quantile (color-coded green in Fig. A1), while an interval that
belongs to the last category is deterministically excluded (color-coded purple in Fig. A1). The only y values
whose inclusion is not deterministic are those in the second category (color-coded teal and blue), which
are randomly included with the probability, given in Eq. (10), that the randomized β-quantile equals the
β-quantile. Consequently, we can identify the intervals of y values belonging to each of these categories, and
for those in the second category, compute the probability that the randomized β-quantile is instantiated as
the β-quantile, which is P(y ∈ Crand,split

α (x)).
This probability turns out to be a piecewise constant function of y. Note that it is computed from

two quantities: the c.d.f. at the β-quantile and the c.d.f at the β-quantile lower bound (see Eq. (10)). As
depicted in Fig. A1 (third panel from top), for any two successive sorted calibration scores, S(i) and S(i+1),
both of these quantities are constant over S(x, y) ∈ (S(i), S(i+1). That is, both the c.d.f. at the β-quantile
and the c.d.f. at β-quantile lower bound are piecewise constant functions of y, which only change values
at the calibration scores, S1, . . . , Sm (and can take on different values exactly at the calibration scores).
Consequently, the probability P(y ∈ Crand,split

α (x)) is also a piecewise constant function of y, which only
changes values at the calibration scores. It attains its highest value at µ(x) and decreases as y moves further
away from it, resembling a staircase, as depicted in Fig. A1 (fourth panel from the top).

29

Algorithm 2 Randomized staircase confidence set
Input: Miscoverage level, α ∈ (0, 1); calibration data, Z1, . . . , Zm, where Zi = (Xi, Yi); test input, Xtest; subroutine for
likelihood ratio function, v(·), defined in Eq. (13); subroutine for uncertainty heuristic, u(·); subroutine for regression model
prediction, µ(·).
Output: Randomized staircase confidence set, C = Cstaircase

α (Xtest).

1: for i = 1, . . . ,m do ⊲ Compute calibration scores
2: Si ← |Yi − µ(Xi)|/u(Xi)
3: vi ← v(Xi)
4: end for

5: vm+1 ← v(Xtest)
6: for i = 1, . . . ,m+ 1 do ⊲ Compute calibration and test weights
7: wi ← vi/

∑m+1
j=1 vj

8: end for

9: C ← ∅
10: LowerBoundIsSet← False

11: S(0) = 0, w0 = 0 ⊲ Dummy values so for-loop will include [0, S(1)]
12: for i = 0, . . . ,m− 1 do

13: if
∑

j:Sj≤S(i)
wj + wm+1 < 1− α then ⊲ S(x, y) ≤ β-quantile lower bound, so include deterministically

14: C = C∪
[

µ(Xtest) + S(i) · u(Xtest), µ(Xtest) + S(i+1) · u(Xtest)
]

∪
[

µ(Xtest)− S(i+1) · u(Xtest), µ(Xtest)− S(i) · u(Xtest)
]

15: else if
∑

j:Sj≤S(i)
wj +wm+1 ≥ 1−α and

∑

j:Sj≤S(i)
wj < 1−α then ⊲ S(x, y) = β-quantile, so randomize inclusion

16: if LowerBoundIsSet = False then

17: LowerBoundIsSet← True ⊲ Set β-quantile lower bound
18: LF =

∑

j:Sj≤S(i)
wj

19: end if

20: F ←

∑
j:Sj≤S(i)

wj+wm+1−(1−α)
∑

j:Sj≤S(i)
wj+wm+1−LF

21: b ∼ Bernoulli(1− F)
22: if b then

23: C = C∪
[

µ(Xtest) + S(i) · u(Xtest), µ(Xtest) + S(i+1) · u(Xtest)
]

∪
[

µ(Xtest)− S(i+1) · u(Xtest), µ(Xtest)− S(i) · u(Xtest)
]

24: end if

25: end if

26: end for

27: if
∑m

i=1 wi < 1− α then ⊲ For S(x, y) > S(m), either S(x, y) = β-quantile or S(x, y) > β-quantile
28: if LowerBoundIsSet = False then

29: LF =
∑m

i=1 wi

30: end if

31: F ← 1−(1−α)
1−LF

32: b ∼ Bernoulli(1− F)
33: if b then

34: C = C ∪
[

µ(Xtest) + S(m) · u(Xtest),∞
]

∪
[

−∞, µ(Xtest)− S(m) · u(Xtest)
]

35: end if

36: end if

Therefore, instead of computing a randomized β-quantile for all y ∈ R, we can simply compute
the value of this probability on the m + 1 intervals between neighboring sorted calibration scores:
[0, S(1)), (S(1), S(2)), . . . , (S(m−1), S(m)), (S(m),∞], as well as its value exactly at the m calibration scores.
These probabilities may equal 1 or 0, which correspond to the two cases earlier described wherein y
is deterministically included or excluded, respectively. If the probability is not 1 or 0, then we can
randomly include the entire set of values of y such that S(x, y) falls in the interval. Due to the
form of the score in Eq. (14), this set comprises two equal-length intervals on both sides of µ(x):
(µ(x)− S(i+1), µ(x)− S(i)) ∪ (µ(x) + S(i+1), µ(x) + S(i)).

Finally, if we assume that scores are distinct almost surely, then our treatment of values of y such that
S(x, y) = Si for i = 1, . . . ,m, does not affect the exact coverage property. For simplicity, Alg. 2 therefore
includes or excludes closed intervals that contain these y values as endpoints, rather than treating them
separately.

More general score functions. In the reasoning above, we use the assumption that the score func-
tion takes the form in Eq. (14) only at the end of the argument, two paragraphs ago. We can relax
this assumption as follows. For any continuous score function, consider the preimage of the intervals

30

[0, S(1)), (S(1), S(2)), . . . , (S(m−1), S(m)), (S(m),∞] under the function S(x, ·) (a function of the second ar-
gument with x held fixed), rather than the intervals given explicitly in Lines 14, 23, and 34 of Alg. 2. This
algorithm then gives exact coverage for any continuous score function, although it will only be computation-
ally feasible when these preimages can be computed efficiently.

A2 Efficient computation for ridge regression and Gaussian pro-
cess regression

A2.1 Ridge regression

When the likelihood of the test input is a function of the prediction from a ridge regression model, it is
possible to compute the scores and weights for the full conformal confidence set by fitting n+ 1 models and
O(n ·p · |Y|) additional floating point operations, instead of naively fitting (n+1)×Y models. A construction
that achieves this is presented in Alg. 3.

For the fluorescent protein design experiments, the TestInputLikelihood subroutine in Alg. 3 com-
puted Eq. (6), that is,

v(Xi;Z−i,y)←
exp(λ · (ai + biy))

pX(Xi) ·
∑

x∈X exp(λ · (Ci + yA−i,n)Tx)
,

v(Xn+1;Z1:n)←
exp(λ · an+1)

pX(Xn+1) ·
∑

x∈X exp(λ · βTx)
,

(18)

where the input space X was the combinatorially complete set of 8, 192 sequences, and pX was the likelihood
under the training input distribution (equal to 1/8192, since training sequences were sampled uniformly from
the combinatorially complete data set).

Computing the test input likelihoods was dominated by the (n + 1) × |Y| normalizing constants, which
can be computed efficiently using a single tensor product between an (n+1)× p× |Y| tensor containing the
model parameters, Ci + yA−i,n and β, and an |X | × p data matrix containing all inputs in X . For domains,
X , that are too large for the normalizing constants to be computed exactly, one can turn to tractable Monte
Carlo approximations.

Algorithm 3 Efficient computation of scores and weights for ridge regression-based feedback covariate shift
Input: training data, Z1, . . . , Zn, where Zi = (Xi, Yi); test input, Xn+1; grid of candidate labels, Y ⊂ R; subroutine for test
input likelihood, TestInputLikelihood(·), that takes an input’s predicted fitness and outputs its likelihood under the test
input distribution; subroutine for training input likelihood, TrainInputLikelihood(·).
Output: scores Si(Xn+1, y) and likelihood ratios v(Xi, Z

y
−i) for i = 1, . . . , n+ 1, y ∈ Y.

1: for i = 1, . . . , n do

2: Ci ←
∑n−1

j=1 Y−i;jA−i;j

3: ai ← CT
i Xi

4: bi ← AT
−i;nXi

5: end for

6: β ← (XTX+ γI)−1XTY
7: an+1 ← βTXn+1

8: for i = 1, . . . , n do

9: for y ∈ Y do

10: Si(Xn+1, y)← |Yi − (ai + biy)| ⊲ Can vectorize via outer product between (b1, . . . , bn) and vector of all y ∈ Y.
11: v(Xi;Z−i,y)← TestInputLikelihood(ai + biy)/TrainInputLikelihood(Xi) ⊲ Can vectorize (see commentary on

Eq. (18)).
12: end for

13: end for

14: Sn+1(Xn+1, y)← |y − an+1|
15: v(Xn+1;Z1:n)← TestCovariateLikelihood(an+1)/TrainInputLikelihood(Xn+1)

A2.2 Gaussian process regression

Here we describe how the scores and weights for constructing the confidence set in Eq. (3) can be computed
efficiently, when the likelihood of the test input distribution is a function of the predictive mean and variance

31

of a Gaussian process regression model.
For an arbitrary kernel and two data matrices, V ∈ R

n1×p and V′ ∈ R
n2×p, let K(V,V′) denote the

n1 × n2 matrix where the (i, j)-th entry is the covariance between the i-th row of V and j-th row of V′.
The mean prediction for Xi of a Gaussian process regression model fit to the i-th augmented LOO data set,
µy
−i(Xi), is then given by

µy
−i(Xi) = K(Xi,X−i)[K(X−i,X−i) + σ2I]−1Y y

−i,

and the model’s predictive variance at Xi is

K(Xi, Xi)−K(Xi,X−i)[K(X−i,X−i) + σ2I]−1K(X−i, Xi),

where the rows of the matrix X−i ∈ R
n×p are the inputs in Zy

−i, Y
y
−i = (Y−i, y) ∈ R

n is the vector of labels
in Zy

−i, and σ2 is the (unknown) variance of the label noise, whose value is set as a hyperparameter. Note
that the mean prediction is a linear function of the candidate value, y, which is of the same form as the
ridge regression prediction in Eq. (5); furthermore, the predictive variance is constant in y. Therefore, we
can mimic Alg. 3 to efficiently compute scores and weights by training just n+ 1 rather than (n+ 1)× |Y|
models.

A3 Additional details and results on designing fluorescent pro-
teins

Features Each sequence was first represented as a length-thirteen vector of signed bits (−1 or 1), each
denoting which of the two wild-type parents the amino acid at a site matches. The features for the sequence
consisted of these thirteen signed bits, as well as all

(

13
2

)

products between pairs of these thirteen bits, called
the second-order interaction terms.

Additional simulated measurement noise. Each time the i-th sequence in the combinatorially com-
plete data set was sampled, for either training or designed data, we introduced additional simulated measure-
ment noise using the following procedure. Poelwijk et al. [46] found that the Walsh-Hadamard transform of
the brightness fitness landscape included up to seventh-order statistically significant terms. Accordingly, we
fit a linear model of up to seventh-order terms for each of the combinatorially complete data sets, then esti-
mated the standard deviation of the i-th sequence’s measurement noise, σi, as the residual between its label
and this model’s prediction. Each time the i-th sequence was sampled, for either training or designed data,
we also sampled zero-mean Gaussian noise with standard deviation σi and added it to the i-th sequence’s
label.

A4 Additional details on AAV experiments

NNK sequence distribution. The NNK sequence distribution is parameterized by independent categor-
ical distributions over the four nucleotides, where the probabilities of the nucleotides are intended to result
in a high diversity of amino acids while avoiding stop codons. Specifically, for three contiguous nucleotides
corresponding to a codon, the first two nucleotides are sampled uniformly at random from {A, C, T, G}, while
the last nucleotide is sampled uniformly at random from only {T, G}.

Additional simulated measurement noise. Following Zhu & Brookes et al. [71], the fitness assigned
to the i-th sequence was an enrichment score based on its counts before and after a selection experiment,
ni,pre and ni,post, respectively. The variance of this enrichment score for the i-th sequence was estimated as

σ2
i =

1

ni,post

(

1−
ni,post

Npost

)

+
1

ni,pre

(

1−
ni,pre

Npre

)

where Npre and Npost denote the total counts of all the sequences before and after the selection experiment,
respectively. Using this estimate, we introduced additional simulated measurement noise to the label of the
i-th sequence by adding zero-mean Gaussian noise with a variance of 0.1 · σ2

i .

32

Neural network details. As in [71], the neural network took one-hot-encoded sequences as inputs and
had an architecture consisting of two fully connected hidden layers, with 100 units each and tanh activation
functions. It was fit to the 7, 552, 729 training data points with the built-in implementation of the Adam
algorithm in Tensorflow, using the default hyperparameters and a batch size of 64 for 10 epochs, where each
training data point was weighted according to its estimated variance as in [71].

33

