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Abstract

We study a bilevel economic system, which we

refer to as a Markov exchange economy (MEE),

from the point of view of multi-agent reinforce-

ment learning (MARL). An MEE involves a cen-

tral planner and a group of self-interested agents.

The goal of the agents is to form a Competitive

Equilibrium (CE), where each agent myopically

maximizes her own utility at each step. The goal

of the central planner is to steer the system so as to

maximize social welfare, which is defined as the

sum of the utilities of all agents. Working in a set-

ting in which the utility function and the system

dynamics are both unknown, we propose to find

the socially optimal policy and the CE from data

via both online and offline variants of MARL.

Concretely, we first devise a novel suboptimal-

ity metric specifically tailored to MEE, such that

minimizing such a metric certifies globally opti-

mal policies for both the planner and the agents.

Second, in the online setting, we propose an al-

gorithm, dubbed as MOLM, which combines the

optimism principle for exploration with subgame

CE seeking. Our algorithm can readily incorpo-

rate general function approximation tools for han-

dling large state spaces and achieves a sublinear

regret. Finally, we adapt the algorithm to an of-

fline setting based on the pessimism principle and

establish an upper bound on the suboptimality.
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1. Introduction

Many real-world economic systems involve interactions

between a central planner and a group of self-interested

agents, where the planner aims to find a policy that steers

the agents to some ideal equilibrium that maximizes social

welfare. One widely studied instance is optimal tax policy

design (Mirrlees, 1976; Mankiw et al., 2009), where the tax

policy-maker aims at balancing equality and productivity

for tax-payers in the society. Less studied in the previous

literature, the design of learning mechanisms for a bilevel

economic system remains challenging due to the instability

and co-adaptation between agents and the planner, espe-

cially for sequential decision-making problems. Despite the

progress shown by several works (Kutschinski et al., 2003;

Mannion et al., 2016; Zheng et al., 2020; 2021; Lussange

et al., 2021) that apply multi-agent reinforcement learning

(MARL) to instances of economic systems, it is still an

open theoretical challenge to design efficient mechanisms

for bilevel economic systems with provable guarantees.

Our approach brings MARL methods together with the clas-

sic model exchange economy (EE). The EE framework has

a wide range of applications, including ride-sharing, op-

erations management, crowdsourcing, wireless networks,

and compute clusters (Cohen & Cyert, 1965; Hussain et al.,

2013; Dissanayake et al., 2015; Rauch & Schleicher, 2015).

In an exchange economy, a set of rational agents with indi-

vidual initial endowments allocate and exchange a finite set

of valuable resources based on a common price system. The

target of EE is to achieve Competitive Equilibrium (CE),

where all agents maximize their own utility under their bud-

get constraint. Adapted from EE, our proposed framework,

the Markov exchange economy (MEE), comprises a central

planner, multiple agents, and contextual states which follow

a Markov Decision Process (MDP). In MEE, the agents

follow the same procedure as in EE conditioned on a contex-

tual state. The central planner’s action affects the evolution

of the endowments of the agents as well as the contextual

states. The goal of each agent is to myopically maximize

its own utility at each step, which leads to a Competitive

Equilibrium (CE) as the agents’ subproblem. The goal of

the central planner is to steer the system so as to achieve

social welfare maximization (SWM), where social welfare
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is defined as the sum of the utilities of all agents over the

entire episode. Instead of adding restrictive assumptions

that utility functions are known as in many prior works on

EE (Tiwari et al., 2009; Hindman et al., 2011; Dissanayake

et al., 2015), we aim to solve MEEs when learning both the

unknown utility functions and transitions. In reality, it is dif-

ficult to collect an exact utility function through automated

systems (Hindman et al., 2011; Delimitrou & Kozyrakis,

2013; Venkataraman et al., 2016; Rzadca et al., 2020; Guo

et al., 2021) and assuming the full knowledge of transition

probability is also unrealistic, which makes the problem still

more challenging.

Taking one specific example for illustration, we consider a

developer community. In this community, there are multiple

developers who wish to myopically maximize their utility

and an administrator who plans to maximize the sum of

these developers’ utilities. Each developer has her own en-

dowments, e.g., computing resources, memory, bandwidth,

and programmer time, for exchange within the community

that are available for a finite number of timesteps. At each

timestep, developers report their utilities based on their

current allocations and contextual states (electricity fee or

available time for device usage) to the administrator through

rating systems. Meanwhile, the administrator implements

a regulatory regime based on the collected utilities and cur-

rent contextual state. The transition probability of the next

contextual state is only determined by administrator’s con-

ducted regulation and current contextual state.

In this paper, we advocate MARL as a principled method

for solving MEE. When interaction with environment is ac-

cessible, we learn the policies of the agents and the planner

through online MARL methods. When only a historical

dataset is available, we turn to an offline MARL protocol.

To this end, we focus on the following question.

Can we design provably efficient online and offline

algorithms for learning the policies of the planner and

agents to achieve CE and SWM simultaneously in MEE?

Several challenges arise when addressing this question.

First, from a theoretical point of view, it remains unknown

how to mathematically characterize the jointly optimal pol-

icy of a planner and agents such that we can directly mea-

sure the performance of any planner-agent policy in terms

of SWM while achieving CE among agents. Secondly, in

the online and offline settings, where the MEE model is not

known a priori, it remains unknown how to find the optimal

policy for both planner and agents when this is coupled with

the problem of balancing the exploration-exploitation trade-

off in an online setting and the problem of distribution shift

in an offline setting. Finally, there are generally infinitely

many states since the endowments of agents can be continu-

ous, and it is unknown how to handle large state spaces in

such online and offline learning problems, especially when

the utilities and transitions are of general functional forms.

Our work addresses these challenges and provides an af-

firmative answer to the desired question. Specifically, by

characterizing the optimal policy of planner and agents via

a fixed-point formulation, we devise a novel suboptimality

metric such that the suboptimality being zero is equivalent

to the planner-agent policy being jointly optimal. Then,

for the online setting where we learn the optimal policy

by interacting with the MEE, we propose a model-based

MARL algorithm, dubbed as MOLM, which combines the

Optimism in Face of Uncertainty (OFU) principle (Auer

et al., 2002; 2009; Jin et al., 2018; 2019) with a subroutine

which solves the subgame CE for the agents at each timestep.

Our algorithm can readily incorporate general function ap-

proximators such as kernel functions and neural networks

in the estimation of the transition model and is shown to

achieve a sublinear regret with respect to the newly designed

suboptimality metric. Furthermore, for the offline setting

where we aim to learn the optimal policy solely from a given

dataset, we propose a similar algorithm that incorporates the

pessimism principle (Buckman et al., 2020; Jin et al., 2021b)

to overcome the distributional shift between trajectories in

the dataset and those induced by the optimal policy. This

algorithm is also able to employ general function approxi-

mators and is shown to find a policy whose suboptimality

decays sublinearly in the size of the dataset. Finally, as a

byproduct, we prove that our algorithms achieve approxi-

mately fair division among the agents (Varian, 1973; Budish

et al., 2017; Babaioff et al., 2019) in both the online and

offline settings.

Contributions. Our contributions are three-fold. First,

we propose a new economic system known as MEE in

attempt to understand the theoretical properties of solu-

tions to planner-agent economic systems via MARL ap-

proaches. We define a suboptimality function to charac-

terize the optimal policy for the planner and the agents in

an MEE, with another suboptimality proposed to charac-

terize the fair division property among the agents. Second,

we design a MARL-style algorithm MOLM to find the op-

timal policy for the planner and the agents from data in

online setting. For MOLM we establish an online regret

upper bound, Õ(
√
dH4N2K), where K is the number of

episodes, H is the time step, N is the number of agents, d
is the eluder dimension of the general function class used

by MOLM, and Õ(·) hides the logarithmic terms and con-

stants. Third, in addition to MOLM, we design MPLM for

offline MEE. For MPLM, we establish an offline subopti-

mality bound, Õ(
√
C⋆

ρH
4N2/K), where K is the size of

dataset and C⋆
ρ is the distribution shift coefficient in sense of

partial coverage. Theoretical results show that both MOLM

and MPLM provably find the optimal policy for planner and

agents in the two settings. In addition, they provably achieve
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fair division among agents as a byproduct.

1.1. Related Work

Our work adds to the line of research in applying machine

learning methods to economic problems such as EE (Guo

et al., 2021), mechanism design (Kandasamy et al., 2020),

and social planning problems (Blaug, 2007). Our analysis

of MEE is based on previous works on EE (Debreu, 1982;

Zhang, 2011). Motivated by the extensive literature on on-

line and offline RL, our works apply the optimism principle

(Auer et al., 2002; Jin et al., 2018) and pessimism principle

(Buckman et al., 2020; Jin et al., 2021b) in online and offline

settings, respectively. Our work is also related to literature

in MARL (Bucarey et al., 2019; Zhong et al., 2021) and RL

with general function approximations (Xie et al., 2021; Cai

et al., 2020b). However, none of the previous work analyzes

bilevel economic systems, as we do for MEE in this paper.

See Appendix B for full discussions of related work.

Notations We provide a table of notation in Appendix A.

2. Preliminaries

In this section, we introduce our economic model known as

Markovian Exchange Economy (MEE) which involves sev-

eral self-interested agents and a social planner. We specify

the goal for both planner and agents, and we characterize

their jointly optimal policy via a fixed-point formulation.

All the proofs for the theorems are referred to Appendix E.

2.1. Markovian Exchange Economy

We define a finite horizon Markovian exchange economy

as (S,A,B, N, L,H, {u(i)h }i∈[N ],h∈[H], {Ph}h∈[H]) which

consists of N agents, one social planner, L goods, and H
time steps. The state space is denoted by S = C × EN ,

where C is the context space and E ⊆ [0, 1]L is the space of

each agent’s endowments. A state at step h is denoted by

sh = (ch, e
(1)
h , · · · , e(N)

h ) ∈ S . The agents’ action space is

denoted by A = X (1)×· · ·×X (N)× [0, 1]L, where X (i) ∈
[0, 1]L is the allocation space of the ith agent and [0, 1]L is

the price space. We denote by ah = (x
(1)
h , · · · , x(N)

h , ph)
the agents’ action at step h. The planner’s action space is

denoted by B which is discrete, and the planner’s action at

step h is denoted by bh ∈ B. The utility function of the

ith agent at step h is denoted by u
(i)
h : S × X (i) 7→ [0, 1].

The transition kernel at step h is denoted by Ph(s
′|s, b) :

S × B 7→ ∆(S). We note that the transition kernel Ph does

not depend on the agents’ action, but only the planner’s.

Policy and Value Functions. Without loss of generality,

in the sequel we always focus on deterministic policies for

both planner and agents. A planner’s policy is denoted by

π = {πh}h∈[H] where πh : S 7→ B. An agents’ policy

is denoted by ν = {νh}h∈[H] where νh : S 7→ A, s 7→
(ν

(1)
h (s), · · · , ν(N)

h (s), νph (s)). That is, ν
(i)
h determines the

allocation of the ith agent and νph determines the price. We

assume that π and ν belong to classes Π and N respectively.

Given any pair of policy (π, ν), we define its action-value

function and state value function recursively as

Q
(π,ν),(i)
h (sh, x

(i)
h , bh) = u

(i)
h (sh, x

(i)
h )

+

∫

S

V
(π,ν),(i)
h+1 (s′)Ph(ds

′|sh, bh),

V
(π,ν),(i)
h (sh) = Q

(π,ν),(i)
h (sh, ν

(i)
h (sh), πh(sh)),

(1)

for any (sh, x
(i)
h , bh, h, i) ∈ S ×X (i) ×B× [H − 1]× [N ].

For step H , we define Q
(π,ν),(i)
H (sH , x

(i)
H ) = u

(i)
H (sH , x

(i)
H )

and V
(π,ν),(i)
H (sH) = Q

(π,ν),(i)
H (sH , ν

(i)
H (sH)). By the def-

inition, all these functions take value between 0 and H .

2.2. The Goal of MEE: Social Welfare Maximization

with Competitive Equilibrium

Now we specify the goal for both social planner and agents

in an MEE, that is, the agents aim to achieve competitive

equilibrium at each step and the planner aims to maximize

the social welfare which is the sum of utilities of all agents.

We first study the optimal policy for the agents and the

planner respectively, and after we define the joint optimality

for planner-agents policy pair (π, ν). The joint optimality

can be characterized by a fixed-point formulation, which

allows us to define the suboptimality for any policy pair.

One-Step Competitive Equilibrium. The agents’ optimal

policy ν⋆ is defined as the one giving competitive equilib-

rium with respect to the utility functions {u(i)}i∈[N ] at each

step h. To this end, we first define a competitive equilibrium

(Mas-Colell et al., 1995; Guo et al., 2021) as follows, which

is adapted to the Markovian exchange economy.

Definition 2.1 (Competitive Equilibrium). A competitive

equilibrium (CE) at state s = (c, e(1), · · · , e(N)) ∈ S is an

allocation and price-vector pair (x(1),⋆, · · · , x(N),⋆, p⋆) ∈
A such that (i) the allocation is feasible and (ii) all agents

maximize their utilities under the budget induced by price

p⋆. In other words, following two conditions hold,

∑

i∈[N ]

x
(i),⋆
j 6

∑

i∈[N ]

e
(i)
j , ∀j ∈ [L], (2)

x(i),⋆ ∈ arg max
(x(i))⊤p⋆≤(e(i))⊤p⋆

u(i)(s, x(i),⋆), ∀i ∈ [N ]. (3)

For simplicity, we denote any competitive equilibrium allo-

cation and price pair at state s with respect to {u(i)}i∈[N ]

as (x(1),⋆, · · · , x(N),⋆, p⋆) ∈ CE({u(i)(s, ·)}i∈[N ]). Based

on Definition 2.1, we define the agents’ optimal policy as

the one that outputs CE pairs at each time step.
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Definition 2.2 (Optimal Policy of Agent). The agents’ opti-

mal policy ν⋆ is the policy in Π such that for any (h, sh) ∈
[H]× S, ν⋆h(sh) = (ν

⋆,(1)
h (sh), · · · , ν⋆,(N)

h (sh), ν
⋆,p
h (sh))

satisfies ν⋆h(sh) ∈ CE({u(i)h (sh, ·)}i∈[N ]).

Under certain assumptions (Mas-Colell et al., 1995; Guo

et al., 2021) on the utility functions {u(i)h }i∈[N ],h∈[H], the

competitive equilibrium exists. To measure the suboptimal-

ity of a given policy ν, we further define the best responce

policy of ν that reallocates among agents given the price

system of ν to achieve competitive equilibrium.

Definition 2.3 (Best Responce of Agent Policy). Given

any agents’ policy ν ∈ Π, the best responce agents’ policy

ν⋆(ν) is the one in Π such that for any (h, sh) ∈ [H]× S,

ν⋆h(ν)(sh) = (ν
⋆,(1)
h (ν), · · · , ν⋆,(N)

h (ν), ν⋆,ph (ν))(sh) sat-

isfies ν⋆,ph (ν)(sh) = νph (sh) and ν
⋆,(i)
h (ν)(sh) ∈

arg max
x
(i)
h

∈X (i):(x
(i)
h

)⊤νp

h
(sh)≤(e

(i)
h

)⊤νp

h
(sh)

u
(i)
h (sh, x

(i)
h ). (4)

The existence of ν⋆(ν) is guaranteed by the theorem of the

maximum, see Theorem A.2.21 of (Jehle, 2001). With the

best responce agent policy ν⋆(ν), we can measure the sub-

optimality of ν by comparing the value functions induced

by ν and ν⋆(ν), which also gives a fixed-point formulation

of the agents’ optimal policy. We conclude this property in

the following theorem whose proof is in Appendix E.1.

Theorem 2.4. For any policy pair (π, ν) satisfying the re-

source constraints, i.e., for any (j, h, sh) ∈ [L]× [H]× S ,

N∑

i=1

(ν
(i)
h (sh))j ≤

N∑

i=1

(e
(i)
h )j ,

the following two conclusions hold. (i) For any step h ∈ [H]
and state sh ∈ S , we have that

V
(π,ν),(i)
h (sh) ≤ V

(π,ν⋆(ν)),(i)
h (sh). (5)

(ii) If the equality V
(π,ν⋆(ν)),(i)
1 (s1) = V

(π,ν),(i)
1 (s1) holds

for any s1 ∈ S , then for any h ∈ [H] and sh ∈ S , νh(sh) is

a competitive equilibrium with respect to {u(i)h (sh, ·)}i∈[N ].

Theorem 2.4 tells that we end up higher values when substi-

tuting ν by ν⋆(ν). Whenever the equality holds, the agent

policy ν is optimal. Motivated by this fixed-point character-

ization of ν⋆, we define the suboptimality of agents’ policy

to be SubOpt
(i)
A (π, ν, s1) for each agent i ∈ [N ] as

V
(π,ν⋆(ν)),(i)
1 (s1)− V

(π,ν),(i)
1 (s1). (6)

Social Welfare Maximization. For given agents’ policy ν,

we define the planner’s optimal π⋆(ν) to be the one in N

that maximizes the social walfare
∑N

i=1 V
(ν,π),(i)
1 (s1), i.e.,

the sum of utility functions over agents and time steps.

Definition 2.5 (Optimal Policy of Planner). The planner’s

optimal policy π⋆(ν) given agents’ policy ν is the one in N

such that for any (h, sh) ∈ [H]× S , π⋆
h(sh) belongs to

arg max
bh∈B

∫

S

N∑

i=1

V
(π⋆(ν),ν),(i)
h+1 (s′)Ph(ds

′|sh, bh). (7)

We note that V
(π⋆(ν),ν),(i)
h+1 only depends on π⋆

j (ν) for j > h
and thus π⋆(ν) is well-defined. Given any policy pair (π, ν),
we can measure the suboptimality of π with respect to π⋆(ν)
by comparing the social walfare induced by π and π⋆(ν).
We show this result by the following theorem proven in

Appendix E.2.

Theorem 2.6. For any policy pair (π, ν), the following two

conclusions hold. (i) For any step h ∈ [H] and state sh ∈ S ,

N∑

i=1

V
(π,ν),(i)
h (sh) ≤

N∑

i=1

V
(π⋆(ν),ν),(i)
h (sh). (8)

(ii) Furthermore, if the equality
∑N

i=1 V
(π⋆(ν),ν),(i)
1 (s1) =∑N

i=1 V
(π,ν),(i)
1 (s1) holds for any s1 ∈ S, then for any

h ∈ [H] and sh ∈ S we have that

πh(sh) ∈ arg max
bh∈B

∫

S

N∑

i=1

V
(π⋆(ν),ν),(i)
h+1 (s′)Ph(ds

′|sh, bh).

Parallel to Theorem 2.4, Theorem 2.6 shows that we end up

higher values when substituting π by π⋆(ν). Whenever the

equality holds, the planner policy π is optimal given ν. Mo-

tivated by the fixed-point formulation of π⋆(ν), we define

the suboptimality of planner’s policy SubOptP(π, ν, s1) as

N∑

i=1

V
(π⋆(ν),ν),(i)
1 (s1)− V

(π,ν),(i)
1 (s1). (9)

Joint Optimality. Now we define the jointly optimal policy

for the planner and the agents as (π⋆(ν⋆), ν⋆), where ν⋆

and π⋆(ν⋆) satisfies Definition 2.2 and 2.5 repectively, i.e.,

the agents find one-step CE and the planner maximizes the

social walfare induced by the agents’ CE policy. Based on

the suboptimality (6) and (9) for agents and planner, we

further define the suboptimality SubOpt(π, ν, s1) for any

planner-agents policy pair (π, ν) as the following sum,

N∑

i=1

SubOpt
(i)
A (π, ν, s1) + SubOptP(π, ν

⋆(ν), s1). (10)

Plugging in the expression of suboptimalities (6) and (9), the

suboptimality (10) is equivalent to the following expression,

N∑

i=1

V
(π†(ν),ν⋆(ν)),(i)
1 (s1)− V

(π,ν),(i)
1 (s1), (11)
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where for simplicity, we denote π†(ν) := π⋆(ν⋆(ν)) the

optimal planner policy given the best responce agent policy

of ν. We keep to this notation in the sequel. The following

theorem, a corollary of Theorem 2.4 and 2.6, shows that the

joint optimality is equivalent to that (11) vanishes.

Theorem 2.7 (Fixed-Point Characterization of Joint Opti-

mality). A planner-agents policy pair (π, ν) is jointly opti-

mal if and only if SubOpt(π, ν, s1) (11) equals to zero.

2.3. Fair Division Property

Achieving competitive equilibrium among agents is also re-

lated to the notion of fair division mechanism which requires

sharing incentive (SI) and Pareto-efficiency (PE) (Varian,

1973; Budish et al., 2017; Babaioff et al., 2019; 2021; Guo

et al., 2021). An allocation xh ∈ X (1)×· · ·×X (n) satisfies

SI at step h and state sh = (ch, eh) if the utility the i-th
agent receives is at least as much as its utility when using

its endowment, i.e. u
(i)
h (sh, x

(i)
h ) ≥ u

(i)
h (sh, e

(i)
h ). This im-

plies that all agents have the incentive to participate in this

division mechanism. Besides, a feasible allocation xh is PE

at step h and state sh = (ch, eh) if the utility of one agent

can be increased only by decreasing the utility of others.

Formally, allocation xh is said to dominate another allo-

cation x̃h given state sh, if u
(i)
h (sh, x

(i)
h ) ≥ u

(j)
h (sh, x̃

(i)
h )

for all i ∈ [N ] and there exists some j ∈ [N ] such that

u
(i)
h (sh, x

(i)
h ) > u

(j)
h (sh, x̃

(i)
h ). An allocation xh is Pareto-

efficient given state sh if it is not dominated by any other

allocations. We denote the set of Pareto-efficient allocations

at step h and state sh by PE(sh, h).
To characterize the fair division property when finding the

optimal policy of agents, we further introduce corresponding

loss functions. We first define the SI loss ℓSIh for any agents’

policy ν at step h and state sh as the sum, over all agents, of

how much they are worse off than their endowment utilities,

i.e., we define ℓSIh (ν, sh) as

N∑

i=1

(u
(i)
h (sh, e

(i)
h )− u

(i)
h (sh, ν

(i)
h (sh)))

+. (12)

Then we define the PE loss ℓPE
h for ν at step h and state sh

as the minimal sum, over all agents, of how much they are

worse off than PE allocations, i.e., we define ℓPE
h (ν, sh) as

inf
x∈PE(sh,h)

N∑

i=1

(u
(i)
h (sh, x

(i))−u(i)h (sh, ν
(i)
h (sh)))

+. (13)

Finally, we define the FD loss ℓFDh for policy ν at step h as

the maximum of SI loss ℓSIh and PE loss ℓPE
h , i.e.,

ℓFDh (ν, sh) = max
{
ℓPE
h (ν, sh), ℓ

SI
h (ν, sh)

}
. (14)

2.4. General Function Approximation and CE Oracle

In this paper, we apply MARL-style approaches to solve

MEE in both online and offline settings with general func-

tion approximations. Specifically, we consider two func-

tion classes U and P to represent the utility functions

{u(i)h }(i,h)∈[N ]×[H] and the transition kernels {Ph}h∈[H] re-

spectively. We make the following realizability assumptions

(Uehara & Sun, 2021; Xie et al., 2021) on them.

Assumption 2.8 (Realizability). Without loss of generality,

we assume that X (i)’s are the same for all i ∈ [N ]. Then we

assume that utility function u
(i)
h ∈ U and transition Ph ∈ P

holds for any (i, h) ∈ [N ]× [H].

Besides, we assume that for each set of {u(i)}i∈[N ] in U ,

there exists a CE oracle CE({u(i)(s, ·)}i∈[N ]) for any s ∈
S that returns CE allocation-price vector pair. This can

be realized efficiently via methods introduced in Varian &

Varian (1992); Zhang (2011); Zahedi et al. (2018).

3. Online Learning Algorithm

3.1. Setup and Learning Objective

Online Learning Protocol. We study online episodic set-

ting where an online learning algorithm plays an MEE for

K episodes. At the beginning of the k-th episode, the al-

gorithm determines the planner’s and agents’ policy pair

(πk, νk), and an initial state sk1 is chosen by the environment.

At each time step h ∈ [H], the agents and the planner ob-

serve state skh ∈ S and pick their own actions akh = νkh(s
k
h)

and bkh = πk
h(s

k
h). Subsequently, the environment transits

to the next state skh+1 ∼ Ph(·|skh, bkh) and they observe the

utilities {uk,(i)h }i∈[N ] with u
k,(i)
h = u

(i)
h (skh, x

k,(i)
h ).

Learning Objective. Based on the definition of suboptimal-

ity (11) for any policy pair (π, ν), we define the following

online regret with respect to achieving joint optimality.

Definition 3.1 (Online Regret for Joint Optimality). Let

(πk, νk) be the policy pair executed by any online learning

algorithm in the k-th episode. After a total of K episodes,

the online regret for joint optimality is defined as

RegretCE,SWM(K) =
K∑

k=1

SubOpt(πk, νk, sk1). (15)

Moreover, we also define the online regret with respect to

achieving fair division based on the notion of FD loss (14).

Definition 3.2 (Online Regret for Fair Division Property).

Let (πk, νk) be the policy pair executed by any online algo-

rithm in the k-th episode. After a total of K episodes, the
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the online regret for fair division property is defined as

RegretFD(K) =

K∑

k=1

Eπk

[
H∑

h=1

ℓFDh (νk, sh)

]
. (16)

Each summand in (16) reflects the expected total FD loss

of νk along the trajectories induced by πk. We remark that

RegretFD(K) is an extension of the FD loss defined in (Guo

et al., 2021) to sequantial settings. Our goal in the online

setting is to design algorithms with both regrets sublinear in

K , and polynomial in d and H , where d is some dimension

of the function class used by the algorithm.

3.2. Algorithm: Model-based Optimistic Online

Learning for MEE

We propose Model-based Optimistic online Learning for

MEE (MOLM, Algorithm 1) to learn the joint optimal policy

for planner and agents in the online setting, which involves

a model estimation step and an optimistic planning step.

Model Estimation Step (Line 3). At the beginning of k-th

episode, we construct confidence sets for the utility u
(i)
h

and the transition Ph using data collected before the k-th

episode, inspired by Russo & Van Roy (2013); Ayoub et al.

(2020); Cai et al. (2020b). For utility u
(i)
h , we let u

k,(i)
h

minimize the empirical mean squared error in U and let con-

fidence set Uk,(i)
h consist of all the utility functions in U with

empirical mean squared discrepency from u
k,(i)
h less than

a given threshold β(1). For transition Ph, we similarly con-

struct the confidence set Pk
h via value-targeted regression

(Ayoub et al., 2020; Cai et al., 2020b). Given value function

estimators {V τ,(i)
h+1 }k−1

τ=1, we let P k
h minimize the empirical

mean squared error in predicting the value of future social

welfare
∑N

i=1 V
τ,(i)
h+1 given sτh, b

τ
h, and the confidence set Pk

h

constains all transitions in P that make similar predictions

to P k
h with empirical mean squared discrepency less than

another threshold β(2). Details of the model estimation step

are concluded in Algorithm 3 in Appendix C.

Optimistic Planning Step (Line 4 to Line 8). Then using

Uk,(i)
h and Pk

h , MOLM performs optimistic planning accord-

ing to (1), Definition 2.2 and 2.5 to obtain (πk, νk) which

is executed in the k-th episode. Intuitively, we first solve

the sub-problem of one-step CE for the agents by choosing

the optimal agents’ policy with respect to the estimated op-

timistic utilities. After, we cast the sub-problem of social

welfare maximization for the planner as finding the optimal

policy in an Markov decision process whose reward is in-

duced by the agents’ utilities. Specifically, given the value

function estimators V
k,(i)
h+1 at step h + 1 with V

k,(i)
H+1 being

zero functions, we first choose the most optimistic model

estimator at step h from Uk,(i)
h and Pk

h respectively as

û
k,(i)
h (s, x(i)) = arg max

u∈U
(i),k
h

u(s, x(i)), (17)

P̂ k
h (·|s, b) = arg max

P∈Pk
h

∫

S

N∑

i=1

V
k,(i)
h+1 (s′)P (ds′|s, b), (18)

for any (i, s, x(i), b) ∈ [N ]×S×X (i)×B. Then we choose

the agents’ policy νkh = (ν
k,(1)
h (s), · · · , νk,(N)

h (s), νk,ph (s))
so as to output CE pairs with respect to the estimated opti-

mistic utility function û
k,(i)
h by a CE oracle (Section 2.4),

νkh(s) = CE({ûk,(i)h (s, ·)}i∈[N ]). (19)

Meanwhile, we choose the planner policy πk
h so as to maxi-

mize the estimated optimistic future social welfare,

πk
h(s) = arg max

b∈B

N∑

i=1

∫

S

V
k,(i)
h+1 (s′)P̂ k

h (ds
′|s, b). (20)

We note that V
k,(i)
h+1 can be seen as the state-value function of

a finite-horizon MDP whose reward of state s and action b
is given by û

k,(i)
h (s, νkh(s), b). After that, the value function

estimators at step h are updated accordingly, i.e.,

Q
k,(i)
h (s, x

(i)
h , b) = û

k,(i)
h (s, x

(i)
h )+

Clip[0,H−h]

{∫

S

V
k,(i)
h+1 (s′)P̂ k

h (ds
′|s, b)

}
,

V
k,(i)
h (s) = Q

k,(i)
h

(
s, ν

k,(i)
h (s), πk

h(s)
)
,

(21)

for any (s, a, b) ∈ S × A × B, where we clip the second

term in Q
k,(i)
h between 0 and H − h due to the assumption

that utility functions fall in the range [0, 1]. Finally, MOLM

executes the joint policy (πk
h, ν

k
h) and collects the data for

the k-th episode according to the protocol in Section 3.1

3.3. Main Theoretical Results for Online Learning

Our main theoretical results are upper bounds on the two

online regrets (15) and (16) incurred by Algorithm 1. For

the analysis, we introduce the notion of eluder dimension

which is firstly proposed by (Russo & Van Roy, 2013).

Definition 3.3 (Eluder Dimension). Let Z be a set of real-

valued functions on X . For any ε > 0 and τ ∈ [K], we say

that xτ ∈ X is (Z, ε)-independent of x1, · · · , xτ−1 ∈ X
if there exists f1, f2 ∈ Z such that both

∑τ−1
j=1 |f1(xj) −

f2(xj)|2 ≤ ε2 and |f1(xτ )− f2(xτ )| > ε hold. The eluder

dimension of Z at scale ε, denoted by dimE(Z, ε), is then

defined as the length of the longest sequence {xj}τj=1 such

that xj is (Z, ε)-independent of {xi}j−1
i=1 for any j ∈ [τ ].

We refer to Russo & Van Roy (2013) for a detailed dis-

cussion of the eluder dimension. For simplicity, we define
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Algorithm 1 Model-based Optimistic Online Learning for Markov Exchange Economy (MOLM)

Input: Optimism parameters β(1) and β(2). Function classes U and P .

1: Initialize dataset D0
h = ∅ for all h ∈ [H]. Set V

k,(i)
H+1 (·) = 0 for all (i, k) ∈ [N ]× [K].

2: for k = 1 to K do

3: {Uk,(i)
h }(h,i)∈[H]×[N ], {Pk

h}h∈[H] = ME(U ,P, {Dk
h}h∈[H], β

(1), β(2)) // Model Estimation, Algorithm 3.

4: πk, νk, {V k,(i)
h }(h,i)∈[H]×[N ] = OPL({Uk,(i)

h }(h,i)∈[H]×[N ], {Pk
h}h∈[H]). // Optimistic Planning, Algorithm 4.

5: Observe initial state skh of episode k.

6: for h = 1 to H do

7: Take actions akh = νkh(s
k
h) and bkh = πk

h(s
k
h). Observe the next state skh+1 and the utilities u

k,(i)
h .

8: Update dataset Dk
h=Dk−1

h ∪ {skh, akh, bkh, {u
k,(i)
h }i∈[N ], {V k,(i)

h }i∈[N ]}.

9: end for

10: end for

ZP to be the class of mappings zP : S × B × {f : S 7→
[0, HN ]} 7→ [0, 1], (s, b, f(·)) 7→

∫
S f(s

′)P (ds′ | s, b), for

any P ∈ P . With these preparations, we define dimension

d = max{dimE(U , 1/K), dimE(ZP , 1/K)} to character-

ize the complexity of function classes U and P . The fol-

lowing theorem is the main theoretical results in the online

setting. All the omitted proofs are in Appendix C.1 and F.

Theorem 3.4 (Regret of Algorithm 1). By setting parame-

ters β(1) as C1 log(N (1/K,U , ‖ · ‖∞)NHK2/δ) and β(2)

asC2H
2N2 log(N (1/(NHK),P, ‖·‖∞,1)NHK

2/δ) for

some absolute constants C1 and C2 in Algorithm 1, it holds

with probability at least 1− δ that the regret for joint opti-

mality (15) and the regret for fair division property (16) of

Algorithm 1 satisfies that

RegretCE,SWM(K)≤O(
√
dH2(N2β(1)+β(2))K). (22)

RegretFD(K) ≤ O(
√
dH2N2β(1)K). (23)

We show the exact expression of β(1) and β(2) in the proof

of Theorem 3.4 in Appendix C.1. Theorem 3.4 indicates

that the regret for joint optimality of Algorithm 1 is of

order Õ(
√
dH4N2K), which shows that MOLM efficiently

finds the jointly optimal policy approximately. Besides joint

optimality, Algorithm 1 also achieves fair division among

agents approximately as a byproduct, i.e., it approximately

finds agents’ policy which simultaneously achieves SI and

PE in the online setting. We specialize Theorem 3.4 to

tabular, linear, and kernel cases in Appendix D.

4. Offline Learning Algorithm

4.1. Setup and Learning Objective

Offline Learning Protocol. Now we study the offline set-

ting where the learner only has access to an offline dataset

D = {(sτh, {x
τ,(i)
h }i∈[N ], b

τ
h, {u

τ,(i)
h }i∈[N ])}(τ,h)∈[K]×[H]

which is generated as a prior by an economist in the MEE.

We characterize the generation process of D by the follow-

ing definition.

Definition 4.1 (Offline Data Generation). The dataset D
consists of K i.i.d. trajectories {Dτ}τ∈[K], where each tra-

jectory Dτ = {(sτh, {x
τ,(i)
h }i∈[N ], b

τ
h, {u

τ,(i)
h }i∈[N ])}h∈[H]

is collected as a prior in the MEE. Specifically, for each

τ ∈ [K], it holds that sh+1 ∼ Ph(· | sτh, bτh), u
τ,(i)
h =

uh(s
τ
h, x

τ,(i)
h ).

Learning Objective. In offline learning, the goal is to de-

sign algorithm that outputs policy pair (π̂, ν̂) which is joint

optimal and achieves fair division. For being joint optimal,

we measure the performance of (π̂, ν̂) by SubOpt(π̂, ν̂, s1)
defined in (11). For achieving fair division, we adapt the

FD loss defined in (14) to offline setting as follows.

LFD(π, ν) =

H∑

h=1

Eρh

[
ℓFDh (ν, sh)

]
, (24)

where ρh is the visitation measure at step h ∈ [H] that the

dataset D obeys, i.e., ρh(s, {x(i)}i∈[N ], b) is defined as

P(sτh = s, {xτ,(i)}i∈[N ] = {x(i)h }i∈[N ], b
τ
h = b), (25)

for any τ ∈ [K] in D. We hope to design an algorithm

that achieves suboptimality SubOpt(π̂, ν̂, s1) and offline

FD loss LFD(π̂, ν̂) decaying at a negative square root rate

with respect to K.

4.2. Algorithm: Model-based Pessimistic Offline

Learning for MEE

We propose Model-based Pessimistic offline Learning for

MEE (MPLM, Algorithm 2) to learn the desired planner-

agent policy pair, which involves a model estimation step

and a pessimistic policy optimization step. We use V̂
(π,ν̂),(i)

h,(P̂ ,û)

to denote the value function of policy pair (π̂, ν̂) induced by

the estimated utility function û = {û(i)h }(h,i)∈[H]×[N ] and

the estimated transition P̂ = {P̂h}h∈[H] according to (1).
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Algorithm 2 Model-based Pessimistic Online Learning for Markov Exchange Economy (MPLM)

Input: Pessimism Parameter ξ1, ξ2. Function classes U and P .

1: for h = 1 to H do

2: Construct confidence sets {U (i)
h,ξ1

}i∈[N ] and Ph,ξ2 according to (26), (27). // Model Estimation.

3: end for

4: for h = 1 to H do

5: Set û
(i)
h (s, x(i)) = arg min

u∈U
(i)
h,ξ1

u(s, x(i)) and ν̂h(s) = CE({û(i)h (s, ·)}i∈[N ]), for any (i, s, x(i)) ∈ [N ]×S×X (i).

6: end for

7: Set (π̂, P̂ ) = argmaxπ∈Π minP̂ :{P̂h∈Ph,ξ2
,∀h∈[H]} .

∑N
i=1 V̂

(π,ν̂),(i)

1,(P̂ ,û)
(s1). // Pessimistic Policy Optimization.

Output: Policy pair (π̂, ν̂).

Model Estimation (Line 1 to 3). We first construct confi-

dence sets for the utility u
(i)
h and the transition Ph respec-

tively. For u
(i)
h , we let the confidence set U (i)

h,ξ1
consist of

all functions in U whose empirical mean squared errors are

less than a given threshold ξ1, i.e., we set U (i)
h,ξ1

as

{
u ∈ U :

1

K

K∑

τ=1

(
u
τ,(i)
h − u(sτh, x

τ,(i)
h )

)2 ≤ ξ1

}
, (26)

For Ph, we first obtain the maximum likelihood estimator

P̂MLE
h that maximizes the empirical likelihood function, i.e.,

P̂MLE
h = arg maxP∈P

∑K
τ=1 logP (s

τ
h+1 | sτh, bτh). Then we

set the confidence set Ph,ξ2 to be transitions in P whose

empirical mean squared TV-distance to P̂MLE
h is less than a

given threshold ξ2, i.e., we set Ph,ξ2 as

{
P∈P :

1

K

K∑

τ=1

‖(P̂MLE
h − P )(· | sτh, bτh)‖21 ≤ ξ2

}
. (27)

Pessimistic Optimization (Line 4 to 8). With U (i)
h,ξ1

and

Ph,ξ2 , MPLM then performs pessimistic policy optimization

to find the policy pair (π̂, ν̂) as its output. Parallel to the

online setting, we first solve the sub-problem for agents via

choosing the optimal agents’ policy ν̂ with respect to the es-

timated pessimistic utilities. After, we cast the sub-problem

of social welfare maximization for the planner as an offline

policy optimization problem in MDP with reward induced

by the agents’ utilities. Inspired by Uehara & Sun (2021),

we solve this sub-problem by jointly optimizing over π and

P such that the pessimistic social welfare estimator is maxi-

mized, which can be formulated as a minimax optimization

problem. See Algorithm 2 for a detailed description.

4.3. Main Theoretical Results for Offline Learning

Our main theoretical results are upper bounds on the subop-

timality (11) and offline FD loss (24) incurred by Algorithm

2. To guarantee provably efficient learning, we make cer-

tain assumptions on the coverage property of the dataset D.

Recall that the visitation measure ρh at step h ∈ [H] the

dataset D obeys is defined in (25). In parallel, we define the

visitation measure d
(π,ν)
h (s, {x(i)}i∈[N ], b) at step h ∈ [H]

of any given joint policy (π, ν) as

P(sh = s, {x(i)}i∈[N ] = {x(i)h }i∈[N ], bh = b |π, ν
)
. (28)

Definition 4.2 (Distribution Shift). We define the distribu-

tion shift coefficient between a given joint policy (π, ν) and

the dataset visitation measure ρ = {ρh}h∈[H] as

C(π,ν)
ρ = sup

h∈[H]

Eρh

(
d
(π,ν)
h (s, {x(i)}i∈[N ], b)

ρh(s, {x(i)}i∈[N ], b)

)2

. (29)

Assumption 4.3 (Partial Coverage). We assume that the

distribution shift between all the possible jointly optimal

policy and the dataset visitation measure is finite, that is,

C⋆
ρ := sup

ν∈N⋆,π∈Π⋆

C(π,ν)
ρ <∞, (30)

where Π
⋆ := {π⋆(ν) : ν ∈ N},N⋆ := {ν⋆(ν) : ν ∈ N}.

Similar partial coverage assumptions are widely adopted in

offline RL literature (Kidambi et al., 2020; Jin et al., 2021b),

which is weaker than uniform coverage assumptions (Munos

& Szepesvári, 2008; Chen & Jiang, 2019). The following

two theorems are our main results in offline setting. All the

omitted proofs are in Appendix C.2 and G.

Theorem 4.4 (Suboptimality of Algorithm 2). By setting the

parameters ξ1 as C1 log(N (1/K,U , ‖ · ‖∞) · NH/δ)/K
and ξ2 as C2 log(N[](1/K,P, ‖ · ‖2,∞)H/δ)/K for some

absolute constants C1 and C2 in Algorithm 2, it holds with

probability at least 1 − δ that the suboptimality (11) and

offline FD loss (24) of Algorithm 2 satisfies

SubOpt(π̂, ν̂) ≤ O(
√
H4N2ιC⋆

ρ/K), (31)

LFD(π̂, ν̂) ≤ O(
√
H2N2ι′/K), (32)

where ι = logN[](1/K
2,P, ‖·‖1,∞)+logN (1/K2,U , ‖·

‖∞)+ log(HN/δ), ι′ = log(N (1/K2,U , ‖ · ‖∞) ·NH/δ)
and C⋆

ρ is defined in (30).
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A. Notations

Throughout this paper, we denote by [N ] = {1, ..., N}. We also denote by ∆(X ) the probability space on set X . We denote

by a = O(b) if there exists an absolute constant c such that a ≤ cb when a and b are both large enough. We use Õ(·) to hide

the constants term and logarithmic terms in O(·). We use Clip[a,b](c) to represent min{max{a, c}, b} for real numbers

a, b, and c. We use {a}+ to represent max{a, 0} for real number a. Given a function class F , we denote by N (ǫ,F , ‖ · ‖)
the ǫ-covering number of F by ‖ · ‖ norm, and we denote by N[](ǫ,F , ‖ · ‖) the ǫ-bracket number of F by ‖ · ‖ norm.

For function class P : S × B 7→ ∆(S), we denote by ‖P‖1,∞ = sups,b
∫
S |P (s′|s, b)|ds′ for any P ∈ P . We define that

δij = 1 if i = j and δij = 0 if i 6= j. For a distribution ρ, we use Eρ[·] and Vρ[·] to denote the expectation and the variance

taken with respect to ρ, respectively.

General Notation Explanation

sh = (ch, e
(1)
h , · · · , e(N)

h ) ∈ S state at step h, ch ∈ C is context, e
(i)
h ∈ E is endowments of the ith agent

ah = (x
(1)
h , · · · , x(N)

h , ph) ∈ A action of agents at step h, x
(i)
h ∈ X (i) is allocation of the ith agent, ph ∈ [0, 1]L is price

bh ∈ B action of planner at step h

u
(i)
h utility function of the ith agent at step h
Ph transition kernel at step h

ν = {νh}h∈[H] agents’ policy, νh = (ν
(1)
h , · · · , ν(N)

h , νph )

ν⋆ = {ν⋆h}h∈[H] optimal agents’ policy ν⋆h = (ν
⋆,(1)
h , · · · , ν⋆,(N)

h , ν⋆,ph )

ν⋆(ν) = {νh(ν)}h∈[H] best responce agents’ policy of ν ν⋆h(ν) = (ν
⋆,(1)
h (ν), · · · , ν⋆,(N)

h (ν), ν⋆,ph (ν))
π = {πh}h∈[H] planner’s policy

π⋆(ν) = {π⋆
h(ν)}h∈[H] optimal planner’s policy given agents’ policy ν (Definition 2.5)

π†(ν) = {π†
h(ν)}h∈[H] abbreviation of π⋆(ν⋆(ν))

V
(π,ν),(i)
h , Q

(π,ν),(i)
h value functions of policy pair (π, ν) for the ith agent at step h

Notations for Online Setting Explanation

skh = (ckh, e
k,(1)
h , · · · , ek,(N)

h ) ∈ S state at step h of episode k

akh = (x
k,(1)
h , · · · , xk,(N)

h , pkh) ∈ A action of agents at step h of episode k
bkh ∈ B action of planner at step h of episode k

u
k,(i)
h utility of the ith agent at step h of episode k

Uk,(i)
h confidence set of utility functions for the ith agent at step h of episode k
Pk
h confidence set of transition kernels at step h of episode k

û
k,(i)
h optimistic utility function estimator of the ith agent at step h of episode k

P̂ k
h optimistic transition estimator at step h of episode k

νk = {νkh}h∈[H] agents’ policy of episode k, νkh = (ν
k,(1)
h , · · · , νk,(N)

h , νk,ph )
πk = {πk

h}h∈[H] planner’s policy of episode k

V
k,(i)
h , Q

k,(i)
h value function estimators at step h of episode k
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Notation for Offline Setting Explanation

sτh = (cτh, e
τ,(1)
h , · · · , eτ,(N)

h ) ∈ S state at step h in dataset D
aτh = (x

τ,(1)
h , · · · , xτ,(N)

h , pτh) ∈ A action of agents at step h in dataset D
bτh ∈ B action of planner at step h in dataset D
u
τ,(i)
h utility of the ith agent in dataset D

U (i)
h,ξ1

confidence set of utility functions for the ith agent at step h

Ph,ξ2 confidence set of transition kernels at step h

û
(i)
h pessimistic utility function estimator of the ith agent at step h

P̂h pessimistic transition estimator at step h

ν̂ = {ν̂h}h∈[H] estimated optimal agents’ policy, ν̂h = (ν̂
(1)
h , · · · , ν̂(N)

h , ν̂ph )
π̂ = {π̂h}h∈[H] estimated optimal planner’s policy

V̂
(π,ν̂),(i)

h,(P̂ ,û)
value function of (π̂, ν̂) induced by û = {û(i)h }(h,i)∈[H]×[N ] and P̂ = {P̂h}h∈[H]

For the completeness of the paper, we provide the definitions of covering number and bracketing number as follows.

Definition A.1 (Covering Number by ‖ · ‖-norm). Let N (δ,G, ‖ · ‖) be the smallest value of M for which there exist a

subset {gCover
j }j∈[M ] ⊂ G such that for each g ∈ G, there is a j = j(g) ∈ [M ] such that

‖gCover
j − g‖ ≤ δ.

Definition A.2 (Bracketing Number by ‖ · ‖-norm (Geer et al., 2000)). Let N[](δ,G, ‖ · ‖) be the smallest value of M for

which there exist pairs of functions {[gLj , gUj ]}j∈[M ] such that ‖gUj − gLj ‖ ≤ δ for all j ∈ [M ], and for each g ∈ G, there is

a j = j(g) ∈ [M ] such that

gLj ≤ g ≤ gUj .

B. Related Work

We present detailed discussions on the related work in this section.

Machine learning for Economy. Our work adds to the vast body of existing literature on applying machine learning

methods to solving various economical issues, where the utility functions for agents are not given a priori but learnable. For

EE, Guo et al. (2021) propose the first online learning mechanism which adopts generalized linear function approximation

and achieves Õ(
√
K) online regret and online fair division loss. This theoretical result matches the the conclusion of our

proposed mechanism, when MEE is specialized to EE and the function class of utility is chosen as generalized linear function.

Aimed at analyzing the optimal allocation rules among agents, the automated mechanism design of revenue-maximizing

combinatorial auctions has been widely studied with online learning methods (Bergemann & Valimaki, 2006; Kakade et al.,

2010; Babaioff et al., 2013; Balcan et al., 2016; Dudı́k et al., 2017; Kandasamy et al., 2020). They analyze the online

regret of the proposed mechanism even under the dynamic setting, while they do not consider bilevel economic systems

and general function approximations for handling continuous state space as in this paper. Besides, several other works also

adopt deep RL in multi-agent economic simulations, achieving empirical success (Zheng et al., 2021). Among them, Zheng

et al. (2021) provide the first experimental MARL framework for the policy design of bilevel economic systems and obtain

satisfactory results on the simulation baseline. However, the theory behind MARL methods is less studied. More recently,

Min et al. (2022) apply MARL to study the problem of matching in a Markov matching market.

Exchange Economy. Our work is based on a rich line of aforementioned works in CE and fair division of EE (Cohen

& Cyert, 1965; Debreu, 1982; Georgiadis et al., 2006; Zhang, 2011; Dissanayake et al., 2015). Under certain regularity

conditions on utility functions, Debreu (1982) study the existence of CE of EE and Zhang (2011) propose a computationally

efficient algorithm to compute CE of EE, both of which lay the foundation of our work. Besides, fair division of EE has

been studied from both theoretical aspects (Varian, 1973; Budish et al., 2017; Babaioff et al., 2019; 2021) and practical

points of view (Wolski et al., 2001; Vavilapalli et al., 2013; Zahedi et al., 2018). However, most previous works on EE

assume the full knowledge of the utility functions of agents. As the initial attempt for learning unknown utility, some works

(Zahedi et al., 2018; Le et al., 2020) assert some explicit but also restrictive assumptions on utility.
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Moreover, Mehra (2006); Chatrapati et al. (2011); Cao (2020) study recursive CE (RCE) on dynamic EE, where agents

exchange resources for multiple timesteps but no planner is involved. Cao (2020) study the existance of RCE under several

restrictive assumptions on the transition kernel of dynamic EE. Different from MEE, dynamic EE neglects the co-adaptation

between the agents and the planner and hence is not our interested bilevel system.

Social Planning Problem. Our work is also related to the social planning problem (SPP), a classic topic in welfare

economics (Kahn, 1969; Salyer, 1996; Blaug, 2007). In SPP, a social planner who desires to maximize a predefined social

welfare function can make all decisions in the economy. Different from EE, there is no price system in SPP, while the

second social welfare theorem (Blaug, 2007) shows that any SPP can be decentralized to solving CE. Since SPP ignores the

co-adaptation between the social planner and the agents in the economy, previous works on SPP can not solve or decentralize

bilevel systems, such as MEE.

Multi-Agent Reinforcement Learning and Stackelberg Equilibrium. Our work is also related to a rich line of works in

MARL which extends RL to decision-making involving multiple interacting agents (Busoniu et al., 2008; Hernandez-Leal

et al., 2018; 2019; OroojlooyJadid & Hajinezhad, 2019; Zhang et al., 2021), We advocate MARL as a principled method for

solving economical issues. In MARL, agents might have asymmetric roles such leader-follower structure (Bucarey et al.,

2019; Bai et al., 2021; Zhong et al., 2021) which is related to our work, while previous works mainly focus on finding the

Stackelberg-Nash equilibrium (Başar & Olsder, 1998). Among these works, our MARL application in economics is most

related to Zhong et al. (2021) who also study a myopic follower setting. In contrast, in their work the followers aim to find

Nash equilibrium while we hope to find competitive equilibrium in EE. Also, we study general function approximations

which bears more generality when handling large state space.

Optimism and Online Reinforcement Learning. Our work is related to another flurry line of works studying online RL

cooperated with optimism. wFor tabular setting where state space is finite, how to propose online RL algorithms achieving

Õ(
√
K) online regret is thoroughly studied (Azar et al., 2017; Jin et al., 2018; Zhang et al., 2020). Adopting the principle of

Optimism in the face of Uncertainty (OFU) (Auer et al., 2002; 2009; Jin et al., 2018; 2019), they overestimate action-value

functions by adding a bonus to incentive exploration. When the state space is large or even continuous, the use of function

approximation is necessary. Also based on OFU, there are several researches (Jin et al., 2019; Wang et al., 2019; Cai

et al., 2020a) apply (generalized) linear function approximation on the transition kernel or action-value function and prove

Õ(
√
K) online regret. Beyond linear setting, a recent line of works study RL with general function approximation (Ayoub

et al., 2020; Cai et al., 2020b; Jin et al., 2021a). Based on the notion of eluder dimension introduced by Russo & Van Roy

(2014) that characterizes the complexity of function class, Ayoub et al. (2020); Cai et al. (2020b) combine non-linear value

target regression and OFU, proposing online RL algorithms with general function approximations achieving Õ(
√
K) online

regret. Jin et al. (2021a) also achieve such a goal by proposing a more generalized complexity measure: Bellman eluder

dimension. All works mentioned above study RL problem involving a single agent, which is different from our interested

bilevel systems.

Pessimism and Offline Reinforcement Learning. Our works are also related to many literature concerning pessimism

and offline RL in recent years (Liu et al., 2020; Rashidinejad et al., 2021; Jin et al., 2021b; Xie et al., 2021; Uehara &

Sun, 2021). Different from online RL, the introduction of offline dataset leads to a potential distribution shift. When the

dataset has no coverage guarantee, Buckman et al. (2020); Zanette (2021) find that the lower bound of offline RL could even

be exponential. Rather than assuming a well-explored dataset in many previous literature (Antos et al., 2007; Munos &

Szepesvári, 2008; Yang et al., 2020; Ross & Bagnell, 2012; Chen & Jiang, 2019), several works (Rajaraman et al., 2020;

Kidambi et al., 2020; Jin et al., 2021b) adopt pessimism in model estimation and prove Õ(K−1/2) suboptimality even under

a partial coverage dataset. Liu et al. (2020) propose a pessimistic variant of fitted Q-learning algorithm (Antos et al., 2007),

achieving the optimal policy within a restricted class of policies without assuming the dataset to be well-explored. Jin

et al. (2021b) propose a provably efficient algorithm with the spirit of pessimism to solve offline RL with linear function

approximations, under no coverage assumption on the dataset. Rashidinejad et al. (2021) study the offline RL in the tabular

case through lower confidence bound (LCB), only assuming the partial coverage assumption on the dataset. With general

function approximations on offline RL and partial coverage dataset, the suboptimality bound Õ(K−1/2) is achieved by both

model-based (Uehara & Sun, 2021) and model-free (Xie et al., 2021) algorithms. They both apply Berstein inequality to

sharpen the convergence rate to Õ(K−1/2). Besides, all works mentioned above analyze the optimization problem over a

single agent, different from a bilevel system.
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C. Omitted Algorithms and Proof Sketches

C.1. Online Setting

C.1.1. OMITTED ALGORITHMS

We present the omitted algorithm ME (Algorithm 3) for model estimation and OPL (Algorithm 4) for optimistic planning

respectively.

Algorithm 3 Model Estimation (ME)

Input: Feasible utility set U and transition set P . Historical data {(sτh, aτh, bτh, {u
τ,(i)
h }i∈[N ])}(τ,h)∈[k−1]×[H] and value

function estimators {V τ,(i)
h+1 }(τ,h,i)∈[k−1]×[H]×[N ]. Optimism parameter β(1), β(2).

1: for h = 1 to H do

2: u
k,(i)
h = argminu∈U

∑k−1
τ=1(u

τ,(i)
h − u(sτh, x

τ,(i)
h ))2, for all i ∈ [N ].

3: Uk,(i)
h = {u ∈ U :

∑k−1
τ=1(u

k,(i)
h (sτh, x

τ,(i)
h )− u(sτh, x

τ,(i)
h ))2 ≤ β(1)}, for all i ∈ [N ].

4: P k
h = argminP∈P

∑k−1
τ=1(

∑N
i=1 V

τ,(i)
h+1 (sτh+1)−

∫
S

∑N
i=1 V

τ,(i)
h+1 (s′)P (ds′|sτh, bτh))2.

5: Pk
h = {P ∈ P :

∑k−1
τ=1(

∫
S

∑N
i=1 V

τ,(i)
h+1 (s′)P k

h (s
′|sτh, bτh)ds′ −

∫
S

∑N
i=1 V

τ,(i)
h+1 (s′)P (s′|sτh, bτh))2 ≤ β(2)}.

6: end for

7: Return {Uk,(i)
h }(h,i)∈[H]×[N ] and {Pk

h}h∈[H].

Algorithm 4 Optimistic Planning (OPL)

Input: Utility confidence sets {Uk,(i)
h }(h,i)∈[H]×[N ] and transition confidence sets {Pk

h}h∈[H].

1: for h = H to 1 do

2: û
k,(i)
h (·, ·)= arg max

u∈U
k,(i)
h

u(·, ·), ∀i ∈ [N ].

3: P̂ k
h (·|·, ·)= arg maxP∈Pk

h

∫
S

∑N
i=1 V

k,(i)
h+1 (s′)P (ds′|·, ·).

4: νkh(·)=CE({û
k,(i)
h (·, ·)}i∈[N ]).

5: πk
h(·)= arg maxb∈B

∑N
i=1

∫
S V

k,(i)
h+1 (s′)P̂ k

h (ds
′|·, b).

6: Q
k,(i)
h (·, ·, ·)=ûk,(i)h (·, ·)+Clip[0,H−h]{

∫
S V

k,(i)
h+1 (s′)P̂ k

h (ds
′|·, ·)}, ∀i ∈ [N ].

7: V
k,(i)
h (·)=Qk,(i)

h (·, νk,(i)h (·), πk
h(·)), ∀i ∈ [N ].

8: end for

C.1.2. PROOF SKETCH OF THEOREM 3.4

In the sequel, we sketch the proof of the first conclusion of Theorem 3.4, i.e., the upper bound on the regret for joint

optimality. Missing details are left to Appendix F. The proof of the regret for fair division property is left to Appendix F.4.

We start from a decomposition of the online learning regret in the following lemma.

Lemma C.1 (Regret Decomposition). We can decompose the online regret defined in (15) as following,

Regret(K) =

K∑

k=1

H∑

h=1

N∑

i=1

Eπ†(νk),ν⋆(νk)

[
Q

k,(i)
h (skh, ν

⋆,(i)
h (νk)(skh), π

†
h(ν

k)(skh))−Q
k,(i)
h (skh, ν

k,(i)
h (skh), π

k
h(s

k
h))
]

+
K∑

k=1

H∑

h=1

Eπ†(νk),ν⋆(νk)

[
ιkh(s

k
h, a

k
h, b

k
h)
]
+

K∑

k=1

N∑

i=1

V
k,(i)
1 (sk1)− V

(πk,νk),(i)
1 (sk1),

(33)

where ιkh(·, ·, ·) is defined as for any (sh, ah, bh) ∈ S ×A× B,

ιkh(sh, ah, bh) =

N∑

i=1

u
(i)
h (sh, x

(i)
h ) +

∫

S

V
k,(i)
h+1 (s′)Ph(ds

′|sh, bh)−Q
k,(i)
h (sh, x

(i)
h , bh). (34)

Here the functions V
k,(i)
h , Q

k,(i)
h , and the policies (πk

h, ν
k
h) are selected by Algorithm 1.
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Proof of Lemma C.1. See Appendix F.1 for a detailed proof.

Therefore, it suffices to establish upper bounds for each term on the right-hand side of (33). The first term is characterized

by the following lemma, which is derived from the choice of (πk, νk) on each episode.

Lemma C.2 (One-Step Competitive Equilibrium and Social Welfare Maximization). According to Algorithm 1, for any

(k, h) ∈ [K]× [H] and any sh ∈ S , it holds that

N∑

i=1

Q
k,(i)
h (skh, ν

⋆,(i)
h (νk)(skh), π

†
h(ν

k)(skh))−Q
k,(i)
h (skh, ν

k,(i)
h (skh), π

k
h(s

k
h)) ≤ 0. (35)

Proof of Lemma C.2. See Appendix F.2 for a detailed proof.

Besides, the second and the third terms of the right-hand side of (33) are characterized by the next lemma.

Lemma C.3 (Optimism and Accuracy). By setting the optimism parameter β(1) and β(2) as

β(1) = 2 log (N (1/K,U , ‖ · ‖∞) · 2NH/δ) + 4
(
1 +

√
log(8K2H/δ)

)
, (36)

β(2) = 2H2N2 · log (N (1/(KHN),P, ‖ · ‖∞,1) · 2H/δ) + 4
(
HN +

√
H2N2/4 · log(8K2H/δ)

)
. (37)

in Algorithm 1, then with probability at least 1− δ, the following two things holds.

(1) (Optimism) For all (k, h) ∈ [K]× [H] and any (sh, ah, bh) ∈ S ×A× B, it holds that

N∑

i=1

u
(i)
h (sh, x

(i)
h ) +

∫

S

V
k,(i)
h+1 (s′)Ph(ds

′|sh, bh)−Q
k,(i)
h (sh, x

(i)
h , bh) ≤ 0. (38)

(2) (Accuracy) By denoting d = max{dimE(U , 1/K), dimE(ZP , 1/K)}, it holds that

K∑

k=1

N∑

i=1

V
k,(i)
1 (sk1)− V

(πk,νk),(i)
1 (sk1) ≤O(

√
KH3N2 log(4/δ)) +H

√
d(N2β(1) + β(2))K) + dH2N. (39)

Proof of Lemma C.3. See Appendix F.3 for a detailed proof.

Proof of Theorem 3.4. Combining Lemma C.1, Lemma C.2, and Lemma C.3, we can prove Theorem 3.4. According to

Lemma C.1, Lemma C.2, and Lemma C.3, with probability at least 1− δ, it holds that

Regret(K) ≤
√
8KH3N2 log(4/δ) + 4H

√
2d(N2β(1) + β(2))K + dH2N

≤ O(
√
dH2N2(β1 + β2)K),

which finishes the proof of Theorem 3.4.

C.2. Offline Setting

Our proof is based on the following two key lemmas.

Lemma C.4 (Upper Bound of Suboptimality). For the output (π̂, ν̂) of Algorithm 2, it holds that,

SubOpt(π̂, ν̂) ≤
√
C⋆

ρ ·
H∑

h=1

(√
ǫûh +HN ·

√
ǫP̂h

)

+

N∑

i=1

(
V̂

(π̂,ν̂),(i)

1,(P̂ ,û)
− V

(π̂,ν̂),(i)
1

)
(s1),

where error terms are defined as ǫûh := Eρh

∑N
i=1 |û

(i)
h (s, x(i))− uh(s, x

(i))|2 and ǫP̂h := Eρh
‖P̂h(· | s, b)− Ph(· | s, b)‖21.
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Proof of Lemma C.4. See Appendix G.1 for detailed proof.

In the sequel, we bound the two summations in the suboptimality upper bound in Theorem C.4 respectively. To this end, we

introduce the following results, concluded in Lemma C.5, Theorem C.6, and Theorem C.7.

Lemma C.5 (Pessimistic). Under event E := {u(i)h ∈ U (i)
h,ξ1

, Ph ∈ Ph,ξ2 , for all (i, h) ∈ [N ]× [H]}, it holds that,

N∑

i=1

V̂
(π̂,ν̂),(i)

1,(P̂ ,û)
(s1)− V

(π̂,ν̂),(i)
1 (s1) ≤ 0.

Proof of Lemma C.5. See Appendix G.2 for detailed proof.

Based on Lemma C.4 and Lemma C.5, what remains is to upper bound ǫûh and ǫP̂h in Lemma C.4 respectively and to show

that the event E holds with high probability. These are shown by the following two theorems.

Theorem C.6 (Analysis for Utility Function Estimation). For the output (π̂, ν̂) of Algorithm 2, the following statements

hold with probability at least 1− δ/2,

1. E0 := {u(i)h ∈ U (i)
h,ξ1

, for all (i, h) ∈ [N ]× [H]} holds.

2. ǫûh ≤ O(log(N (1/K2,U , ‖ · ‖∞) ·NH/δ)N/K), for all (i, h) ∈ [N ]× [H].

Proof of Theorem C.6. See Appendix G.3 for detailed proof.

Theorem C.7 (Analysis for Transition Kernel Estimation). For the output (π̂, ν̂) of Algorithm 2,the following statements

hold with probability at least 1− δ/2,

1. E1 := {Ph ∈ Ph,ξ2 , for all h ∈ [H]} holds.

2. ǫP̂h ≤ O(log(N[](1/K
2,P, ‖ · ‖2,∞)H/δ)/K) for all h ∈ [H].

Proof of Theorem C.7. See Appendix G.4 for detailed proof.

Now combining the result of Theorem C.7 and Theorem C.6 and noting thatE = E0∩E1, we can show that with probability

at least 1− δ, the event E holds, which implies that the conclusion of Lemma C.5 holds. Meanwhile, error terms defined in

Lemma C.4 are bounded as follows

ǫûh ≤ O(Nι/K), ǫP̂h ≤ O(ι/K),

where we define ι = logN[](1/K
2,P, ‖ · ‖1,∞) + logN (1/K2,U , ‖ · ‖∞) + log(HN/δ).

Finally, according to Lemma C.4, we have that

SubOpt(π̂, ν̂, s1) ≤
√
C⋆

ρ ·
H∑

h=1

(√
ǫûh +HN ·

√
ǫP̂h

)
≤ O(

√
H4N2ιC⋆

ρ/K),

which finishes the proof of Theorem 4.4.

D. Special Cases

D.1. Linear Function Approximation

On the first case, we parameterize P and U by a common parameter vector θ ∈ R
d. We assume there exist an absolute

constant d, known feature maps φ and {ψi}i∈[N ] , such that P = {P (s′ | s, b) = φ(s′, s, b)⊤θ) : θ ∈ Θ} and U =

{u(s, x(i)) = ψi(s, x
(i))⊤θ : θ ∈ Θ}. Following Russo & Van Roy (2013), we assert the following assumption.

Assumption D.1 (Regularity of Linear Function Approximation). We assume the following two regularity conditions. (1)

sup(s′,s,b)∈S×S×B ‖φ(s′, s, b)‖2 ≤ 1 and sup(s,x(i))∈S×X (i) ‖ψi(s, x
(i))‖2 ≤ 1. (2) Θ = {θ ∈ R

d : ‖θ‖2 ≤ 1}.
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Corollary D.2 (Theoretical Analysis of Algorithm 1 and Algorithm 2 with Linear Function Approximations). Under the

same conditions as in Theorem 3.4, it holds with probability at least 1− δ that the regret for joint optimality and for fair

division property of Algorithm 1 satisfy,

RegretCE,SWM(K) ≤ Õ(
√
d2H4N4K), RegretFD(K) ≤ Õ(

√
d2H2N2K).

For Algorithm 2, on the same condition as Theorem 4.4, it holds with probability at least 1− δ,

SubOpt(π̂, ν̂) ≤ Õ(
√
H4N2dC⋆

ρ/K), LFD(ν̂) ≤ Õ(
√
H2N2d/K).

Proof of Corollary D.2. It suffices to upper bound the covering number, bracketing number, and eluder dimension under

Assumption D.1 respectively. For the upper bound of covering number and bracketing number, we introduce the following

lemma.

Lemma D.3 (Specification of Covering Number and Bracketing Number ). Under Assumption D.1, it holds for all ǫ ∈ (0, 1)
that

logN (ǫ,U , ‖ · ‖∞) ≤ d log(3hU/ǫ) = Õ(d),

logN (ǫ,P, ‖ · ‖1,∞) ≤ logN[](2ǫ,P, ‖ · ‖1,∞) ≤ log(4hU|S|/ǫ) = Õ(d).

Proof of Lemma D.3. For the first inequality in Lemma D.3, we prove it by definition of covering number. By the second

point in Assumption D.1, Θ is a ball with radius 1 in d-dimension Euclidean space, which guarantees that (Lemma 5.2 of

Vershynin (2010))

logN (ǫ,Θ, ‖ · ‖∞) ≤ d log(3/ǫ). (40)

Taking the ǫ-covering of Θ as Θǫ = {θj}j∈[M ] and arbitrarily fixing i ∈ [N ], it implies for any uθ(·, ·) = h(ψi(·, ·)⊤θ) ∈ U ,

there exists j ∈ [M ] such that

|uθ(s, x(i))− uθj (s, x
(i))| = |ψi(s, x

(i))⊤(θ − θj)| ≤ ‖ψi(s, x
(i))‖2‖θ − θj‖2 ≤ ‖θ − θj‖2 ≤ ǫ, (41)

where the second last inequality relies on the first point in Assumption D.1 and the last inequality follows from the

definition of covering number. Taking supreme on the both side of (41) over (s, x(i)) ∈ S × X (i), we show that {uθj =
φ(·, ·)⊤θj}j∈[M ] is also a ǫ-covering of U under ∞-norm, implying that

logN (ǫ′,U .‖ · ‖∞) ≤ d log(3/ǫ′) = Õ(d).

Hence we complete the proof of the first part of Lemma D.3.

As for the second part, we introduce the following key lemma to connect bracketing number with covering number, which is

proved in Sen (2018).

Lemma D.4 (Theorem 2.14 in Sen (2018)). Let F = {mθ : θ ∈ Θ} be a class of functions satisfying the following condition

|mθ1(x)−mθ2(x)| ≤ d (θ1, θ2)F (x), ∀x ∈ X , ∀θ1, θ2 ∈ Θ,

for some fixed function F and metric d. Then, for any norm ‖ · ‖, it yields that

N[](2ǫ‖F‖,F , ‖ · ‖) ≤ N (ǫ,Θ, d).

Under Assumption D.1, for any two kernels Pθ1 , Pθ2 ∈ P , it holds that

|Pθ1(s
′ | s, b)− Pθ2(s

′ | s, b)| = |φ(s′, s, b)⊤(θ1 − θ2)| ≤ hU‖φ(s′, s, b)‖2‖θ1 − θ2‖2
Applying Lemma D.4 with F (s′, s, b) = ‖φ(s′, s, b)‖2 and noticing that ‖F‖1,∞ ≤ |S|, we derive that

logN[](2|S|ǫ,P, ‖ · ‖1,∞) ≤ logN (ǫ,Θ, ‖ · ‖2) ≤ d log(1/ǫ) = Õ(d),

where the last inequality follows from (40). Taking ǫ′ = 2|S|ǫ, we have that

logN[](ǫ
′,P, ‖ · ‖1,∞) ≤ d log(2|S|/ǫ′).

Noting that for all normed space (X , ‖ · ‖), it holds that N (ǫ,X , ‖ · ‖) ≤ N[](2ǫ,X , ‖ · ‖), which concludes the proof of

Lemma D.3.
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As the second step in the proof of Corollary D.2, under Assumption D.1 we upper bound the eluder dimension defined in 3.3

by the following lemma.

Lemma D.5 (Specification of Eluder Dimension). Under Assumption D.1, it holds for all ǫ ∈ (0, 1) that

dimE(U , ǫ) ≤ Õ(d), dimE(ZP , ǫ) ≤ Õ(d),

where ZP is defined in Section 3.3.

Proof of Lemma D.5. The proof is a special case of the following lemma proved in Russo & Van Roy (2013).

Lemma D.6 (Proposition 12 of Russo & Van Roy (2013)). We define the function class on X as

F = {h(ϕ(·)⊤θ) : θ ∈ R
d} ⊂ {f : X 7→ R},

for a fixed differential function h(·) and a feature map ϕ(·). If we assume that 0 < hL ≤ h′(y) ≤ hU for all y ∈ R, then it

holds for all ǫ ∈ (0, 1) that

dimE(F , ǫ) ≤ O
(
dr2 log

(
r2 +

r2h2U · supθ∈Θ ‖θ‖2 · supx∈X ‖ϕ(x)‖2
ǫ2

))
,

where r := hU/hL and dimE(F , ǫ) is defined in Definition 3.3.

Now we are ready to specify dimE(U , ǫ) and dimE(ZP , ǫ) by taking h(·) as identity function. Under Assumption D.1, it

holds that ‖θ‖2 ≤ 1 for all θ ∈ Θ and ‖ψi(·, ·)‖2 ≤ 1, which implies that

dimE(U , ǫ) ≤ O
(
d log

(
1 +

1

ǫ2

))
= Õ(d). (42)

The analysis for dimE(ǫ,ZP) needs more elaborations. Recall that for each zP ∈ ZP , it holds that

zP ((s, b, f)) =

∫

S

f(s′)P (ds′ | s, b) =
∫

S

f(s′)φ(s′, s, b)⊤θds′ = θ⊤
∫

S

f(s′)φ(s′, s, b)ds′,

where f is a arbitrary function in f : S 7→ [0, HN ] and (s, b) ∈ S × B. If we take X = S × B × {f : S 7→ [0, HN ]} and

ϕ((s, b, f)) =
∫
S f(s

′)φ(s′, s, b)ds′ in Lemma D.6, we obtain that

dimE(ZP , ǫ) ≤ O
(
d log

(
1 +HN sup

(s,b)∈S×B

∫

S

|φ(s′, s, b)|
ǫ2

ds′

))
≤ O(d log(1 +HN |S|)) = Õ(d),

where the last inequality relies on the first point of Assumption D.1.

Then we are ready to prove corollary D.2. Based on Lemma D.3, we can upper bound the optimism parameters (36) in

Algorithm 1 as

β(1) = Õ(d), β(2) = Õ(H2N2d). (43)

We also upper bound the pessimism parameters defined in Theorem 4.4 of Algorithm 2 as

ξ1 = Õ(d/K), ξ2 = Õ(d/K). (44)

Combining Lemma D.5 and plugging them into Theorem 3.4, Theorem 4.4 respectively, we prove Corollary D.2.

Remark D.7 (Generalized Linear Kernel Case). We remark that based on Lemma D.6, our conclusion can also be extended

to the setting when utility functions are generalized linear (Guo et al., 2021).

Remark D.8 (Tabular Case). Let feature maps being the canonical basis on the factorized space, that is, φ(s′, s, b) =
e(s′,s,b), ψi(s, x

(i)) = e(s,x(i)), and d = max{|S|2|B|,maxi |S||X (i)|}, then Assumption D.1 is satisfied.
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D.2. Reproducing Kernel Hilbert Space

We consider the case when utility functions u
(i)
h and transition kernel Ph are parameterized by a subset of a reproducing

kernel Hilbert space (RKHS). Specifically, we consider two RKHS’s Hu and HP associated with two positive definite

kernels Ku : (S × X (i))× (S × X (i)) 7→ R+ and KP : (S × B × S)× (S × B × S) 7→ R+ respectively. We denote the

corresponding feature mappings by φu : S ×A(1) 7→ Hu and φP : S × B × S 7→ H. We assume that

U =
{
〈φu(·, ·), f〉Hu : f ∈ Hu, ‖f‖Hu ≤ Ru

}
=
{
〈φu(·, ·), f〉Hu : f ∈ Hu

Ru

}
,

P =
{
〈φP (·, ·, ·), f〉HP : f ∈ HP , ‖f‖HP ≤ RP

}
=
{
〈φP (·, ·, ·), f〉HP : f ∈ HP

RP

}
.

By Mercer’s theorem (Steinwart & Christmann, 2008), we denote the decomposition of Ku and KP as

K(x, y) =

+∞∑

j=1

λuj φ
u
j (x)φ

u
j (y), K(x, y) =

+∞∑

j=1

λPj φ
P
j (x)φ

P
j (y),

where x, y ∈ Y with Y = S × X (i) for U and Y = S × B × S for P . Following Cai et al. (2020b), we assume that both

Hu and HP satisfy the following regularity conditions. For simplicity, we omit the superscript u or P .

Assumption D.9 (Regularity of RKHS). We assume K satisfies the following two regularity conditions.

(1) It holds that |K(x, y)| ≤ 1, |φj(x)| ≤ 1, and λj ≤ 1 for any x, y ∈ Y and j ∈ N.

(2) There exist a threshold γ ∈ (0, 1/2) and constant C1, C2 > 0 such that λj ≤ C1 · exp (−C2j
γ) for any j ∈ N.

Corollary D.10 (Theoretical Analysis of Algorithm 1 and Algorithm 2 with Kernel Function Approximations). Under the

same conditions as in Theorem 3.4, it holds with probability at least 1− δ that the regret for joint optimality and for fair

division property of Algorithm 1 satisfy

RegretCE,SWM(K) . O
(
H2NK1/2 log2(1/γ)/γ · log1+1/γ(2|S|RHNK/δ)

)
,

RegretFD(K) . O
(
HNK1/2 log2(1/γ)/γ · log1+1/γ(RHNK/δ)

)
.

Besides, under the same conditions as in Theorem 4.4, it holds with probability at least 1− δ that the suboptimality and

offline FD loss of Algorithm 2 satisfy

SubOpt(π̂, ν̂, s1) . O
(
(C⋆

ρ )
1/2H2N ·K−1/2 log(1/γ)/γ · log1/2+1/2γ(2|S|RHNK2/δ)

)
,

LFD(ν̂) . O
(
HN ·K−1/2 log(1/γ)/γ · log1/2+1/2γ(RHNK2/δ)

)
.

Proof of Corollary D.10. When U and P are both parameterized by RKHS, the covering numbers and bracketing numbers

of U and P , together with the eluder dimension d, can be upper bounded explicitly, which are concluded in the following

two lemmas.

Lemma D.11 (Covering Number and Bracketing Number with RKHS). Under Assumption D.9, it holds for all ǫ ∈ (0, 1)
that

logN (ǫ,U , ‖ · ‖∞) ≤ C3 · log2(1/γ)/γ · log1+1/γ(R/ǫ),

logN (ǫ,P, ‖ · ‖1,∞) ≤ logN[](2ǫ,P, ‖ · ‖1,∞) ≤ C4 · log2(1/γ)/γ · log1+1/γ(2|S|R/ǫ).
where C3, C4 > 0 are absolute constants.

Proof of Lemma D.11. For notational simplicity, we omit all the superscripts u or P without making confusion. For function

class U , we invoke Lemma I.1 (Cai et al., 2020b) which shows that

logN (ǫ,U , ‖ · ‖∞) ≤ C3 · log2(1/γ)/γ · log1+1/γ(R/ǫ),

for some absolute constant C3 > 0. In the sequel, we deal with function class P and we start from bounding the

bracketing number N[](2ǫ,P, ‖ · ‖1,∞) since it upper bounds the covering number N (ǫ,P, ‖ · ‖1,∞). We first note that
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N[](2ǫ,P, ‖ · ‖1,∞) ≤ N[](2ǫ/|S|,P, ‖ · ‖∞). Now we apply a truncation argument. Let d0 be an integer which will be

specified later. Denote P̃ as

P̃ =

{
P =

d0∑

j=1

vj
√
λjφj : ‖v‖2 ≤ R

}
⊆ P,

which is in fact a linear function class over Y = S × B × S with finite dimension d0 <∞. Also, for any P ∈ P , we define

the truncation of P to finite dimensional space P̃ as

P̃ =

d0∑

j=1

〈P,
√
λjφj〉H

√
λjφj ∈ P̃.

The difference between P and P̃ under the ‖ · ‖∞-norm can be bounded as

‖P − P̃‖∞ = sup
y∈Y

∣∣∣∣
+∞∑

j=d0+1

〈P,
√
λjφj〉H

√
λjφj(y)

∣∣∣∣

≤
+∞∑

j=d0+1

√
λj‖P‖H‖

√
λjφj‖H sup

y∈Y
|φj(y)| ≤ R ·

+∞∑

j=d0+1

√
λj ,

from which we denote εd0
= R ·∑+∞

j=d0+1

√
λj which is bounded later. Now let Sd0

= {[g̃Lj , g̃Uj ]}j∈[N[](ǫ/|S|,P̃,‖·‖∞)] be

a smallest ǫ/|S|-bracket cover of P̃ under ‖ · ‖∞ norm. By the definition of bracketing in Section A, for any P ∈ P , there

exists a bracket [g̃Lj , g̃
U
j ] ∈ Sd0

such that l̃(y) ≤ P̃ (y) ≤ ũ(y) for any y ∈ Y . As a result,

g̃Lj − εd0 ≤ P (y) ≤ g̃Uj + εd0 , ∀y ∈ Y.

Define functions gLj = g̃Lj − εd0
and gUj = g̃Uj + εd0

respectively, and let S be the collect of the brackets [gLj , g
U
j ]. Then the

set S is an (ǫ/|S|+ 2εd0
)-bracket cover of P with |S| = |Sd0

| = N[](ǫ/|S|, P̃, ‖ · ‖∞). Thus we have that

N[](ǫ/|S|+ 2εd0
,P, ‖ · ‖1,∞) ≤ |S| = N[](ǫ/|S|, P̃, ‖ · ‖∞).

By Lemma D.3, we know that logN[](ǫ/|S|, P̃, ‖ · ‖∞) ≤ d0 log(4d0|S|/ǫ). Consequently, it then suffices to chooce a

proper integar d0 such that 2εd0 ≤ ǫ/|S|. According to Lemma I.3 (Cai et al., 2020b), by choosing

d0 =
⌈
C̃ · log(1/γ)/γ · log1/γ(2|SR/ǫ)

⌉
,

where γ is specified in Assumption D.9, it holds that εd0
≤ ǫ/2|S|. Therefore, we conclude that

N[](2ǫ/|S|,P, ‖ · ‖1,∞) ≤ d0 log(4d0|S|/ǫ)
≤ C4 · log2(1/γ)/γ · log1+1/γ(2|S|R/ǫ).

Finally, due to the fact that N (ǫ,P, ‖ · ‖1,∞) ≤ N[](2ǫ,P, ‖ · ‖1,∞), we can finish the proof of Lemma D.11.

Lemma D.12 (Eluder Dimemsion with RKHS). Under Assumption D.9, there exists an absolute constant C5 > 0 such that

d = max{dimE(U , 1/K), dimE(ZP , 1/K)} ≤ C5 · log2(1/γ)/γ · log1+1/γ(RHNK).

Proof of Lemma D.12. See Lemma C.1 in Cai et al. (2020b) for a detailed proof.

Combining Lemma D.11, D.12 with Theorem 3.4 and 4.4 finishes the proof of Corollary D.10.
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E. Proofs for Competitive Equilibrium and Social Welfare Maximization

E.1. Proof for Theorem 2.4

Proof of Theorem 2.4. We first show the inequality by induction. For h = H , it holds that for any sH ∈ S ,

V
(π,ν⋆(ν)),(i)
H (sH) = Q

(π,ν⋆(ν)),(i)
H (sH , ν

⋆,(i)
H (ν)(sH), πH(sH))

= max
x
(i)
H

∈X (i):(νp

H
(sH))⊤x

(i)
H

≤(νp

H
(sH))⊤eH

u
(i)
H (sH , x

(i)
H )

≥ u
(i)
H (sH , ν

(i)
H (sH)) = V

(π,ν),(i)
H (sH).

(45)

This shows step H . Suppose that the inequality holds for step h+ 1, i.e., V
(π,ν⋆(ν)),(i)
h+1 (sh+1) ≥ V

(π,ν),(i)
h+1 (sh+1) for any

sh+1 ∈ S . Then for step h, we first have that for any (sh, x
(i)
h , bh) ∈ S × X (i) × B,

Q
(π,ν⋆(ν)),(i)
h (sh, x

(i)
h , bh) = u

(i)
h (sh, x

(i)
h ) +

∫

S

V
(π,ν⋆(ν)),(i)
h+1 (s′)Ph(ds

′|sh, bh)

≥ u
(i)
h (sh, x

(i)
h ) +

∫

S

V
(π,ν),(i)
h+1 (s′)Ph(ds

′|sh, bh)

= Q(π,ν),(i)(sh, x
(i)
h , bh),

(46)

where the inequality follows by induction. Then we have that for any sh ∈ S ,

V
(π,ν⋆(ν)),(i)
h (sh) = Q

(π,ν⋆(ν)),(i)
h (sh, ν

⋆,(i)
h (ν)(sh), πh(sh))

≥ Q(π,ν),(i)(sh, ν
⋆,(i)
h (ν)(sh), πh(sh))

= u
(i)
h (ch, ν

⋆,(i)
h (ν)(sh)) +

∫

S

V
(π,ν),(i)
h+1 (s′)Ph(ds

′|sh, πh(sh))

= max
x
(i)
h

∈X (i):(νp

h
(sh))⊤x

(i)
h

≤(νp

h
(sh))⊤eH

u
(i)
h (sh, x

(i)
h ) +

∫

S

V
(π,ν),(i)
h+1 (s′)Ph(ds

′|sh, πh(sh))

≥ u
(i)
h (sh, ν

(i)
h (sh)) +

∫

S

V
(π,ν),(i)
h+1 (s′)Ph(ds

′|sh, πh(sh))

= V
(π,ν),(i)
h (sh),

(47)

where the first inequality follows from (46) and the second inequality follows from the definition of ν
⋆,(i)
h (ν) and the fact

that both ν and ν⋆(ν) satisfy the resource constraints. This proves the first conclusion of Theorem 2.4. When the inequality

holds for h = 1, from the previous proofs we know that all the inequalities become equalities, which further implies that

νh(sh) is a competitive equilibrium with respect to {u(i)h (sh, ·)}i∈[N ].

E.2. Proof for Theorem 2.6

Proof of Theorem 2.6. We show the inequality by induction. For h = H , it holds that for any sh ∈ S ,

N∑

i=1

V
(π⋆(ν),ν),(i)
H (sH) =

N∑

i=1

u
(i)
H (sH , ν

(i)
H (sH)) =

N∑

i=1

V
(π,ν),(i)
H (sH). (48)
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Now we suppose that the inequality holds for step h+ 1, i.e.,
∑N

i=1 V
(π⋆(ν),ν),(i)
h (sh+1) ≥

∑N
i=1 V

(π,ν),(i)
h (sh+1) for any

sh+1 ∈ S . Then for step h we have that for any sh ∈ S ,

N∑

i=1

V
(π⋆(ν),ν),(i)
h (sh) =

N∑

i=1

Q
(π⋆(ν),ν),(i)
h (sh, ν

(i)
h (sh), π

⋆
h(ν)(sh))

=

N∑

i=1

u
(i)
h (sh, ν

(i)
h (sh)) +

∫

S

N∑

i=1

V
(π⋆(ν),ν),(i)
h+1 (s′)Ph(ds

′|sh, π⋆
h(ν)(sh))

≥
N∑

i=1

u
(i)
h (sh, ν

(i)
h (sh)) +

∫

S

N∑

i=1

V
(π⋆(ν),ν),(i)
h+1 (s′)Ph(ds

′|sh, πh(sh))

≥
N∑

i=1

u
(i)
h (sh, ν

(i)
h (sh)) +

∫

S

N∑

i=1

V
(π,ν),(i)
h+1 (s′)Ph(ds

′|sh, πh(sh))

=

N∑

i=1

V
(π,ν),(i)
h (sh).

(49)

where the first inequality follows from the choice of π⋆
h in (7) and the second inequality follows from induction, proving the

first part of Theorem 2.6. When the inequality holds for h = 1, all the inequalities become equalities, which further implies

that πh(sh) ∈ arg maxbh∈B

∑N
i=1 V

(π⋆(ν),ν),(i)
h+1 (s′)Ph(ds

′|sh, bh), finishing the proof.

F. Proofs for Online Learning Algorithm: Section 3

F.1. Proof for Lemma C.1

Proof of Lemma C.1. See Lemma 4.9 in Cai et al. (2020b) for a detailed proof.

F.2. Proof for Lemma C.2

Proof of Lemma C.2. We decompose the left-hand side of (35) into to two terms

N∑

i=1

Q
k,(i)
h (sh, ν

⋆,(i)
h (νk)(skh), π

†
h(ν

k)(skh))−Q
k,(i)
h (skh, ν

k,(i)
h (skh), π

k
h(s

k
h))

=

N∑

i=1

Q
k,(i)
h (skh, ν

⋆,(i)
h (νk)(skh), π

†
h(ν

k)(skh))−Q
k,(i)
h (skh, ν

k,(i)
h (skh), π

†
h(ν

k)(skh))

︸ ︷︷ ︸
(i)

+

N∑

i=1

Q
k,(i)
h (skh, ν

k,(i)
h (skh), π

†
h(ν

k)(skh))−Q
k,(i)
h (skh, ν

k,(i)
h (skh), π

k
h(s

k
h))

︸ ︷︷ ︸
(ii)

.

(50)

For term (i), consider that for any agent i ∈ [N ], it holds that

(i) = Q
k,(i)
h (sh, ν

⋆,(i)
h (νk)(sh), π

†
h(ν

k)(sh))−Q
k,(i)
h (sh, ν

k,(i)
h (sh), π

⋆
h(ν

k)(sh))

= û
k,(i)
h (sh, ν

⋆,(i)
h (νk)(sh))− û

k,(i)
h (sh, ν

k,(i)
h (νk)(sh)) ≤ 0,

(51)

where the inequality holds due to the fact that νkh is a competitive equilibrium policy against {ûk,(i)h }i∈[N ] and the definition

of the best responce policy ν⋆(νk) for the agent νk. For term (ii), consider we have that

(ii) =
N∑

i=1

Q
k,(i)
h (skh, ν

k,(i)
h (skh), π

†
h(ν

k)(skh))−Q
k,(i)
h (skh, ν

k,(i)
h (skh), π

k
h(s

k
h))

=

N∑

i=1

∫

S

V
k,(i)
h+1 (s′)P̂ k

h (ds
′|sh, π†

h(ν
k)(sh))−

N∑

i=1

∫

S

V
k,(i)
h+1 (s′)P̂ k

h (ds
′|sh, πk

h(sh)) ≤ 0,

(52)
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where the inequality holds due to the greedy choice of πk
h in Line 4 of Algorithm 1. This finished the proof.

F.3. Proof for Lemma C.3

Proof of Lemma C.3. First we introduce the following definition of filtration for the later analysis.

Definition F.1 (Filtration: Online Learning). We define the time index map t(·, ·) by t(k, h) = H · (j − 1) + h for any

(k, h) ∈ [K]× [H], which is a bijection from [K]× [H] to [KH]. Then, for any (k, h) ∈ [K]× [H], we define Ft(k,h) as

the σ-algebra generated by

(
s11, a

1
1, b

1
1, {u1,(i)h }i∈[N ], · · · , s1H , a1H , b1H , {u1,(i)H }i∈[N ], s

2
1, a

2
1, b

2
1, {u2,(i)h }i∈[N ], · · · , skh, akh, bkh, {uk,(i)h }i∈[N ]

)
,

which are the utility samples and state-action pairs determined before skh+1. The sequence {Ft}t≥1 is a filtration.

Also, we define E as the event when the true model is contained in the confidence set of Algorithm 1.

E :=
{
Ph ∈ Pk

h , u
(i)
h ∈ Uk,(i)

h , for all (k, h, i) ∈ [K]× [H]× [N ]
}
. (53)

Then we introduce the following lemma to show that event E happens with at least 1− p probability.

Lemma F.2. For any δ ∈ [0, 1], if we set

β(1) =2 log(N (1/K,U , ‖ · ‖∞) · 4HN/δ) + 4(1 +
√
log(16K2HN/δ)),

β(2) =2H2N2 log(N (1/(KHN),P, ‖ · ‖∞) · 4H/δ) + 4HN(1 +
√
log(16K2H/δ)/2))

in Algorithm 1, then with probability at least 1− δ/2, event E happens.

Proof of Lemma F.2. Let {(Xτ , Yτ )}τ≥1 be a sequence of random elements in X × R for some measurable set X . Let

Z be a set of [0, C]-valued measurable functions with domain X for some constant C > 0. Let F = {Fτ}τ≥1 be a

filtration such that for all τ ≥ 1, (X1, Y1, · · · , Xτ−1, Yτ−1, Xτ ) is Fτ−1-measurable and there exists z∗ ∈ Z such that

E [Yτ |Fτ−1] = z∗ (Xτ ) holds. The least-squares predictor given {(Xτ , Yτ )}tτ=1 is defined as

ẑt = argmin
z∈Z

t∑

τ=1

(z (Xτ )− Yτ )
2
.

We say that η is conditionally σ-sub-Gaussian given Fτ ∈ F for any τ ≥ 1 if for all λ ∈ R,

logE [exp(λη)|Fτ ] ≤ λ2σ2/2.

For any ε > 0, we denote by N (ε,Z, ‖ · ‖∞) the ε-covering number of Z with respect to the supremum norm distance

‖z1 − z2‖∞ = supx∈R
|z1(x)− z2(x)| . For any β > 0, we define

Zt(β) =
{
z ∈ Z :

t∑

τ=1

(z (Xτ )− ẑt (Xτ ))
2 ≤ β

}
.

To utilize the concept of Eluder dimension, we introduce the following lemma.

Lemma F.3. Assume that for any τ ≥ 1, Yτ − z∗ (Xτ ) is conditionally σ-sub-Gaussian given Fτ−1. Then, for any ε > 0
and δ ∈ [0, 1], with probability at least 1− δ, for all t ≥ 1, z∗ ∈ Zt (βt(δ, ε)), where

βt(δ, ε) = 8σ2 log (N (ε,Z, ‖ · ‖∞) /δ) + 4tε
(
C +

√
σ2 log(4t(t+ 1)/δ)

)
.

Proof of Lemma F.3. See Proposition 6 of Russo & Van Roy (2013) for a detailed proof.
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Then we are ready to prove Lemma F.2. It suffices to show u
(i)
h ∈ Uk,(i)

h and Ph ∈ Pk
h respectively.

Utility Function Estimation. We denote by U as the set of all the functions u : S×X (i) 7→ [0, 1] (note that X (i) = [0, 1]m).

For any (k, h, i) ∈ [K] × [H] × [N ], we set Y
(i)
k = u

k,(i)
h , X

(i)
k = (skh, x

k,(i)
h ), and u∗(·, ·) = u

(i)
h (·, ·). We have that

Y
(i)
τ − u∗(X

(i)
τ ) is conditionally 1/2-sub-Gaussian given Ft(k,h) defined in Definition F.1. By setting

β(1) = 2 log(N (1/K,U , ‖ · ‖∞) · 4HN/δ) + 4
(
1 +

√
log(16K2HN/δ)

)
,

in Algorithm 1, we can easily check that, using the notion in Lemma F.3, we have that

β(1) ≥ 2 log(N (1/K,U , ‖ · ‖∞) · 4HN/δ) + 4(k − 1)/K ·
(
1 +

√
log(16k(k − 1)HN/δ

)

= βk−1(δ/(4HN), 1/K),

for all k ∈ [K]. Thus by Lemma F.3, with probability at least 1− δ/(4HN), for any k ∈ [K] we have that

u
(i)
h = u⋆ ∈

{
u ∈ U :

k∑

τ=1

(
u
k,(i)
h (sτh, x

τ,(i)
h )− u(sτh, x

τ,(i)
h )

)2
≤ βk−1

}
⊆ Uk,(i)

h ,

which gives u
(i)
h ∈ Uk,(i)

h for all k ∈ [K]. Now using a union bound argument over h ∈ [H] and i ∈ [N ] we conclude that

with probability at least 1− δ/4, for all [K]× [H]× [N ], we have u
(i)
h ∈ Uk,(i)

h .

Transition Kernel Estimation. Following Cai et al. (2020b), for any P ∈ P , we define zP : S ×B× [0, HN ]S → [0, HN ]
by

zP (s, b, f(·)) =
∫

S

f(s′)P (ds′|s, b), ∀(s, b, f(·)) ∈ S × B × [0, HN ]S ,

and Z = {zP : P ∈ P}. For any (k, h) ∈ [K] × [H], we set Yk =
∑N

i=1 V
k,(i)
h+1 (skh+1), Xk = (skh, b

k
h,
∑N

i=1 V
k,(i)
h+1 (·)),

and z∗ = zPh
. We have that Yτ − z∗ (Xτ ) is conditionally HN/2-sub-Gaussian given Ft(k,h) defined in Definition F.1.

Also, by the definition of Pk
h , we have that Zk(β) =

{
zP : P ∈ Pk

h

}
. By setting

β(2) = 2H2N2 log(N (1/(KHN),P, ‖ · ‖∞) · 4H/δ) + 4HN
(
1 +

√
log(16K2H/δ)/2)

)
,

in Algorithm 1, we can check that, using the notion in Lemma F.3, we can show that

β(2) ≥ 2H2N2 log(N (1/K,Z, ‖ · ‖∞) · 4H/δ) + 4(k − 1)/K ·
(
HN +

√
H2N2/4 · log(16k(k − 1)H/δ)

)

= βk−1(δ/4H, 1/K)

for all k ∈ [K], where we leave the proof of N (ε,Z, ‖ · ‖∞) ≤ N (ε/HN,P, ‖ · ‖∞,1) in the end. Applying Lemma F.3,

with probability at least 1− δ/4H , for all k ∈ [K], we have that

z∗ ∈ Zk (βk−1(δ/4H, 1/K)) ⊂ Zk(β),

which implies that Ph ∈ Pk
h . Now applying a union bound over all h ∈ [H], with probability at least 1 − δ/4, for all

(k,H) ∈ [K] × [H], we have that Ph ∈ Pk
h . In the sequel, we show that N (ε,Z, ‖ · ‖∞) ≤ N (ε/HN,P, ‖ · ‖∞,1) for

any ε > 0. Indeed, this is proved by using the fact that for any zP , zP ′ ∈ Z with P, P ′ ∈ P , we have that

‖zP − zP ′‖∞ = sup
(s,b,f(·))∈S×B×[0,HN ]S

∣∣∣∣
∫

S

f(s′)P (ds′|s, b)ds′ −
∫

S

V (s′)P ′(s′|s, b)ds′
∣∣∣∣

≤ sup
(s,b,f(·))∈S×B×[0,HN ]S

HN ·
∫

S

|P (ds′|s, b)− P ′(ds′|s, b)| = HN · ‖P − P ′‖∞,1 .

Thus we have proved the results for both utility function and transition kernel. Now applying a union bound we can conclude

that with the choice of β(1), β(2) in Lemma F.2, with probability at least 1− δ/2, event E holds.
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Now based on event E, we present the proof of the two conclusions in Lemma C.3 respectively.

Conclusion 1: Optimism. The optimism result directly holds under event E. In fact, for any (k, h) ∈ [K]× [H], when

Ph ∈ Pk
h and u

(i)
h ∈ Uk,(i)

h , by the definition of Q
k,(i)
h it holds that

−ιkh(sh, ah, bh) =
N∑

i=1

max
u∈U

k,(i)
h

u(sh, x
(i)
h )− uh(sh, x

(i)
h )

+

N∑

i=1

Q
k,(i)
h (sh, x

(i)
h )− û

(i)
h (ch, x

(i)
h )−

∫

S

Ph(ds
′|sh, bh)V k,(i)

h+1 (s′)

≥
N∑

i=1

Q
k,(i)
h (sh, x

(i)
h )− û

(i)
h (ch, x

(i)
h )−

∫

S

Ph(ds
′|sh, bh)V k,(i)

h+1 (s′)

=

N∑

i=1

Clip[0,H−h]

(∫

S

P̂ k
h (ds

′|sh, bh)V k,(i)
h+1 (s′)

)
−
∫

S

Ph+1(ds
′|sh, bh)V k,(i)

h+1 (s′),

(54)

where the inequality follows from event E and the optimistic choice of û
k,(i)
h . Also, for h = H , the right-hand side of (54)

is zero since V
k,(i)
H+1 (·) = 0. For h < H , by the construction of Q

k,(i)
h+1 and the fact that û

k,(i)
h+1 (·, ·) ∈ [0, 1],

Q
k,(i)
h+1 (sh+1, x

(i)
h+1, bh+1) ∈ [0, H − h], V

k,(i)
h+1 (sh+1) ∈ [0, H − h],

∫

S

V
k,(i)
h+1 (s′)Ph (ds

′|sh, bh) ∈ [0, H − h].

For any sh, sh+1 ∈ S , ah+1 ∈ A, and bh, bh+1 ∈ B. Thus, it yields from (54) that

−ιkh(sh, ah, bh) =
N∑

i=1

∫

S

P̂ k
h (ds

′|sh, bh)V k,(i)
h+1 (s′)−

∫

S

Ph+1(ds
′|sh, bh)V k,(i)

h+1 (s′)

= max
P∈Pk

h

∫

S

N∑

i=1

V
k,(i)
h+1 (s′)P (ds′|sh, bh)−

∫

S

N∑

i=1

V
k,(i)
h+1 (s′)Ph(ds

′|sh, bh) ≥ 0,

(55)

where the last step follows from the definition of event E and the optimistic choice of P̂ k
h . Therefore,

ιkh(sh, ah, bh) =

N∑

i=1

u
k,(i)
h (sh, x

(i)
h ) +

∫

S

Ph(ds
′|sh, bh)V k,(i)

h+1 (s′)−Q
k,(i)
h (sh, x

(i)
h , bh) ≤ 0,

for all (sh, x
(i)
h , bh) ∈ S × X (i) × B. This proves the first conclusion of Lemma C.3.

Conclusion 2: Accuracy. First we introduce the following lemma to decompose the martingale.

Lemma F.4 (Martingale Decomposition). For any k ∈ [K], we have the following decomposition,

N∑

i=1

V
k,(i)
1

(
sk1
)
− V

(πk,νk),(i)
1

(
sk1
)
=

H∑

h=1

Dk
h +

H∑

h=1

−ιkh(skh, akh, bkh),

where ιkh is defined in (38) and the term Dk
h takes the form

Dk
h =

∫

S

N∑

i=1

(
V

k,(i)
h+1 (s′)− V

(πk,νk),(i)
h+1 (s′)

)
Ph(ds

′|skh, akh)−
N∑

i=1

V
k,(i)
h+1 (skh+1)− V

(πk,νk),(i)
h+1 (skh+1)

Moreover, we have Dk
H = 0 for all k ∈ [K], and D1

1, D
1
2, D

1
3, · · · , D1

H−1, D
2
1, D

2
2, · · · , is a martingale difference sequence

with respect to the filtration {Ft}t≥1 defined in Definition F.1, where each term is bounded by 2HN .
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Proof of Lemma F.4. See Lemma F.1 of Cai et al. (2020b) for a detailed proof.

Upon applying Lemma F.4, we have the following decomposition:

K∑

k=1

N∑

i=1

V
k,(i)
1 (sk1)− V

(πk,νk),(i)
1 (sk1) =

K∑

k=1

H∑

h=1

Dk
h

︸ ︷︷ ︸
(i)

+
K∑

k=1

H∑

h=1

N∑

i=1

(
−u(i)h (skh, x

k,(i)
h ) + û

k,(i)
h (skh, x

k,(i)
h )

)

︸ ︷︷ ︸
(ii)

+

K∑

k=1

H∑

h=1

N∑

i=1

(
Q

k,(i)
h (skh, x

k,(i)
h , bkh)− û

k,(i)
h (skh, x

k,(i)
h )−

∫

S

Ph(ds
′|skh, bkh)V k,(i)

h+1 (s′)

)

︸ ︷︷ ︸
(iii)

.

(56)

For term (i) in (56), note that |Dk
h| ≤ 2NH,Dk

H = 0 for all (k, h) ∈ [K]× [H], and

D1
1, D

1
2, D

1
3, · · · , D1

H−1, D
2
1, D

2
2, · · ·

is a martingale difference sequence. Using the Azuma-Hoeffding inequality, we obtain that, with probability at least 1− δ/2,

it holds that

(i) ≤
√
8KH3N2 log(2/δ). (57)

To deal with the remaining two terms, we introduce the following lemma.

Lemma F.5 (Telescoping Sum). For any α > 0, and β > 0, we have

K∑

k=1

sup
z,z′∈Zk(β)

|z (xk)− z′ (xk)| ≤ 1 + C · d+ 4 ·
√
dβK.

where d = dimE(Z, 1/K).

Proof of Lemma F.5. See Lemma 5 of Russo & Van Roy (2013) for a detailed proof.

For term (ii) in (56), under event E and applying Lemma F.5, it holds that, with d1 := dimE(U , 1/K),

(ii) ≤ HN

K∑

k=1

max
u∈U

k,(i)
h

u(skh, x
k,(i)
h )− min

u∈U
k,(i)
h

u(skh, x
k,(i)
h ) ≤ HN(1 + d1 + 4

√
d1β(1)K), (58)

For term (iii) in (56), under event E and applying Lemma F.5, it holds that, with d2 := dimE(ZP , 1/K),

(iii) ≤ H

K∑

k=1

max
P∈Pk

h

∫

S

N∑

i=1

V
k,(i)
h+1 (s′)P (ds′|skh, bkh)−

∫

S

N∑

i=1

V
k,(i)
h+1 (s′)Ph(ds

′|skh, bkh)

≤ H

K∑

k=1

max
P∈Pk

h

∫

S

N∑

i=1

V
k,(i)
h+1 (s′)P (ds′|skh, bkh)− min

P∈Pk
h

∫

S

N∑

i=1

V
k,(i)
h+1 (s′)P (ds′|skh, bkh)

≤ H(1 + d1HN + 4
√
d2β(2)K),

(59)

Finally, combining bounds (57), (58), and (59), we conclude that with probability at least 1− δ,

K∑

k=1

N∑

i=1

V
k,(i)
1 (sk1)− V

(πk,νk),(i)
1 (sk1)

≤
√
8KH3N2 log(2/δ) +HN(1 + d1 + 4

√
d1β(1)K) +H(1 + d1HN + 4

√
d2β(2)K)

≤
√
8KH3N2 log(2/δ) + (1 + d)H(H +N) + 4HN

√
dβ(1)K + 4

√
dβ(2)K

≤
√
8KH3N2 log(2/δ) + (1 + d)H(H +N) + 4H

√
2d(N2β(1) + β(2))K,

(60)

where d = max{d1, d2} and the last inequality follows from the fact that the inequality
√
x +

√
y ≤

√
2(x+ y). This

proves the second conclusion in Lemma C.3 and finishes the proof of Lemma C.3.
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F.4. Proof for Theorem 3.4: Regret for Fair Division Property

Proof. Recalling the definition of FD loss in (14), note that

ℓPE
h (νk, sh) = inf

x∈SI(sh,h)

N∑

i=1

(u
(i)
h (sh, x

(i))− u
(i)
h (sh, ν

k,(i)
h (sh)))

≤
N∑

i=1

(u
(i)
h (sh, ν

⋆,(i)
h (νk)(sh))− u

(i)
h (sh, ν

k,(i)
h (sh))).

Also, observe that

ℓSIh (νk, sh) =

N∑

i=1

(u
(i)
h (sh, e

(i))− u
(i)
h (sh, ν

k,(i)
h (sh)))

≤
N∑

i=1

(u
(i)
h (sh, ν

⋆,(i)
h (νk)(sh))− u

(i)
h (sh, ν

k,(i)
h (sh))),

where the inequality originates from the definition of ν⋆h in Definition 2.2. Under the event E defined in (53), following the

same procedure as in dealing with term (ii) in (56), it holds for all h ∈ [H] that,

K∑

k=1

EπkℓFDh (νk, sh) ≤
N∑

i=1

K∑

k=1

Eπk

[
e
(
u
(i)
h (sh, ν

⋆,(i)
h (νk)(sh)− û

(i)
h (sh, ν

⋆,(i)
h (νk)(sh))

)

+
(
û
(i)
h (sh, ν

⋆,(i)
h (νk)(sh))− û

(i)
h (sh, ν

k,(i)
h (sh))

)]

+
(
û
(i)
h (sh, ν

k,(i)
h (sh))− u

(i)
h (sh, ν

k,(i)
h (sh))

)

≤
N∑

i=1

K∑

k=1

Eπk

[
max

u∈U
k,(i)
h

u(sh, x
(i)
h )− min

u∈U
k,(i)
h

u(sh, x
(i)
h )

]

≤ N((1 + d1)N +N
√
dβ(1)K),

where we remark that the first two terms in the first line are non-positive because of the definition of event E and νk.

Applying the definition of regret for fair division property RegretFD(K), we have that

RegretFD(K) ≤
H∑

h=1

K∑

k=1

EπkℓFD
h (νk, skh) ≤ H((1 + d1)N +N

√
dβ(1)K) ≤ O(

√
dH2N2β(1)K).

This finishes the proof of Theorem 3.4 on the regret for fair division.

G. Proofs of Offline Learning Algorithm: Section 4

G.1. Proof of Lemma C.4

Proof of Lemma C.4. By the definition of suboptimality in (11) and Lemma C.2, it holds that

SubOpt(π̂, ν̂) =

N∑

i=1

[
V

(π†(ν̂),ν⋆(ν̂)),(i)

1,û,P̂
− V̂

(π†(ν̂),ν⋆(ν̂)),(i)

1,û,P̂
+ V̂

(π†(ν̂),ν⋆(ν̂)),(i)

1,û,P̂
− V

(π̂,ν̂),(i)
1

]
(s1)

≤
N∑

i=1

[
V

(π†(ν̂),ν⋆(ν̂)),(i)
1 − V̂

(π†(ν̂),ν⋆(ν̂)),(i)

1,û,P̂
+ V̂

(π̂,ν̂),(i)

1,û,P̂
− V

(π̂,ν̂),(i)
1

]
(s1).

(61)

For notational simplicity, we define ∆h(s) :=
∑N

i=1

[
V

(π†(ν̂),ν⋆(ν̂)),(i)
1 − V̂ (π†(ν̂),ν⋆(ν̂)),(i)

1,û,P̂

]
(s) and abbreviate d

(π†(ν̂),ν⋆(ν̂))
h

as dh (Recall the definition of d
(π†(ν̂),ν⋆(ν̂))
h in (28)). To proceed further, we define that

µû
h := Edh

N∑

i=1

|û(i)h (s, x(i))− uh(s, x
(i))| and µP̂

h := Edh
‖P̂h(· | s, b)− Ph(· | s, b)‖1. (62)



Welfare Maximization in Competitive Equilibrium: Reinforcement Learning for Markov Exchange Economy

By the definition of V̂
(π,ν),(i)

h,û,P̂
, µû

h and µP̂
h , it yields that

Edh
∆h(sh) = Edh

N∑

i=1

[
(PhV

(π†(ν̂),ν⋆(ν̂))
h+1 − PhV̂

(π†(ν̂),ν⋆(ν̂))
h+1 + PhV̂

(π†(ν̂),ν⋆(ν̂))
h+1 − P̂hV̂

(π†(ν̂),ν⋆(ν̂))

h+1,(û,P̂ )
)(sh, bh)

+ (u
(i)
h − û

(i)
h )(sh, x

(i)
h )
]

≤ Edh

N∑

i=1

[ ∫

S

(V
(π†(ν̂),ν⋆(ν̂))
h+1 − V̂

(π†(ν̂),ν⋆(ν̂))

h+1,(û,P̂ )
)Ph(dsh+1 | sh, bh)

]
+HNµP̂

h + µû
h

= Edh+1
∆h+1(sh+1) +HNµP̂

h + µû
h

(63)

where the inequality is based on the fact that both the true and estimated value functions are bounded by [0, H]. Hence, by

telescoping index h over [H], it holds that

∆1(s1) =

H∑

h=1

HNµP̂
h + µû

h ≤
H∑

h=1

√

Eρh

(
dh
ρh

)2(
HN

√
ǫP̂h +

√
ǫûh
)

≤
√
C⋆

ρ

( H∑

h=1

HN

√
ǫP̂h +

√
ǫûh
)
,

where the first inequality relies on Cauchy-Schwarz inequality and the definition of ǫP̂h and ǫûh in Lemma C.4, and the second

inequality relies on the definition of C⋆
ρ in (30). Plugging ∆1(s1) into (61), we conclude the proof of Lemma C.4.

G.2. Proof of Lemma C.5

Proof of Lemma C.5. According to the choice of P̂ in Algorithm 1, we first have that

N∑

i=1

V̂
(π̂,ν̂),(i)

1,(P̂ ,û)
(s1)− V

(π̂,ν̂),(i)
1 (s1) ≤

N∑

i=1

V̂
(π̂,ν̂),(i)
1,(P,û) (s1)−

N∑

i=1

V
(π̂,ν̂),(i)
1 (s1), (64)

since P̂ = {P̂h}h∈[H] is the global pessimistic estimator in Ph,ξ2 and Ph ∈ Ph,ξ2 . Next, we show by induction that the

right-hand side of (64) is non-positive. For step h = H , we have that

N∑

i=1

V̂
(π̂,ν̂),(i)
H,(P,û) (sH)−

N∑

i=1

V
(π̂,ν̂),(i)
H (sH) =

N∑

i=1

û
(i)
H (sH , ν̂

(i)
H (sH))−

N∑

i=1

u
(i)
H (sH , ν̂

(i)
H (sH)) ≤ 0, ∀sH ∈ S,

since u
(i)
H ∈ U (i)

H,ξ1
and û

(i)
H is pessimistic estimator for each i ∈ [N ]. Now suppose that inequality

N∑

i=1

V̂
(π̂,ν̂),(i)
h+1,(P,û)(sh+1)−

N∑

i=1

V
(π̂,ν̂),(i)
h+1 (sh+1) ≤ 0, ∀sh+1 ∈ S,

holds for step h+ 1. Then for step h, we have that

N∑

i=1

V̂
(π̂,ν̂),(i)
h,(P,û) (sh)−

N∑

i=1

V
(π̂,ν̂),(i)
h (sh) =

N∑

i=1

û
(i)
h (sh, ν̂

(i)
h (sh))−

N∑

i=1

u
(i)
h (sh, ν̂

(i)
h (sh))

︸ ︷︷ ︸
(i)

+

∫

S

(
N∑

i=1

V̂
(π̂,ν̂),(i)
h+1,(P,û)(s

′)−
N∑

i=1

V
(π̂,ν̂),(i)
h+1 (s′)

)
Ph(ds

′|sh, π̂h(sh))
︸ ︷︷ ︸

(ii)

, ∀sh ∈ S,

where (i) ≤ 0 relies on the fact that u
(i)
h ∈ U (i)

h,ξ1
and û

(i)
h is pessimistic estimator for each i ∈ [N ]. By induction, we prove

that (ii) ≤ 0. Thus we conclude that the right-hand side of (64) is non-positive.
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G.3. Missing Proofs of Theorem C.6

Before we start the proof of Theorem C.6, we introduce the following lemma, which plays the key role in sharpening the

convergence rate in the analysis for both estimated kernels and utility functions.

Lemma G.1 (Uniform Bernstein Inequality with Covering Number). For any given functional class F ⊂ {f : X 7→ R},

where X is a probability space. If we assume that the ǫ-covering number of F under infinity-norm is finite, that is,

M := N (ǫ,F , ‖ · ‖∞) <∞ and we also assume that there exists an absolute constant such that |f(X)| ≤ R a.s., then the

following inequality holds for all f ∈ F with probability at least 1− δ,

∣∣∣∣∣
1

n

n∑

i=1

f(Xi)− E[f(X)]

∣∣∣∣∣ ≤ 2ǫ+

√
2V[f(X)] log(M/δ)

n
+ 4

√
Rǫ log(M/δ)

n
+

2R log(M/δ)

3n
,

where X,X1, ..., Xn are all i.i.d. samples on the probability space X .

Proof of Lemma G.1. To obtain this lemma, we adapted Bernstein inequality with the technique dealing with covering

number. See Appendix H.1 for detailed proof.

Proof of Theorem C.6. We prove the theorem by the following lemmas, which are adapted from Xie et al. (2021) are based

on Lemma G.1. For notational simplicity, we define ‖f‖2,ρ as
√

Eρ[|f |2].

Lemma G.2. For any (i, h) ∈ [N ]× [H], it holds with probability at least 1− δ/NH that any û ∈ U (i)
h,ξ1

satisfies

∣∣∣∣
∥∥∥u(s, x(i))− u

(i)
h (s, x(i))

∥∥∥
2,ρh

−
∥∥∥u(s, x(i))− u

(i)
h (s, x(i))

∥∥∥
2,Dh

∣∣∣∣ ≤
√

82 log(N (1/K,U , ‖ · ‖∞)NH/δ)

K
.

Proof of Lemma G.2. See Appendix H.2 for a detailed proof.

Lemma G.3. For any (i, h) ∈ [N ]× [H], it holds with probability at least 1− δ/NH that any û, ũ ∈ U (i)
h,ξ1

satisfy

∣∣∣∣
∥∥∥û(s, x(i))− u

(i)
h (s, x(i))

∥∥∥
2

2,ρh

−
∥∥∥ũ(s, x(i))− u

(i)
h (s, x(i))

∥∥∥
2

2,ρh

−
∥∥∥û(s, x(i))− u

(i)
h (s, x(i))

∥∥∥
2

2,Dh

+
∥∥∥ũ(s, x(i))− u

(i)
h (s, x(i))

∥∥∥
2

2,Dh

∣∣∣∣

≤
∥∥∥û(s, x(i))− ũ(s, x(i))

∥∥∥
2,ρh

·
√

64 log(N (1/K,U , ‖ · ‖∞)NH/δ)

K
+

262 log(N (1/K,U , ‖ · ‖∞)NH/δ)

3K
.

Proof of Lemma G.3. See Appendix H.3 for a detailed proof.

Lemma G.4 (Concentration). By setting

ξ1 =
log(N (1/K,U , ‖ · ‖∞) ·NH/δ)

K
,

it holds with probability at least 1− δ/4 that for any (i, h) ∈ [N ]× [H], u
(i)
h ∈ U (i)

h,ξ1
.

Proof of Lemma G.4. This is a trivial conclusion since we note that u
(i)
h (sτh, x

τ,(i)
h ) = u

τ,(i)
h .

Lemma G.5 (Accuracy). It holds with probability at least 1− δ/4 that, for any (i, h) ∈ [N ]× [H] and u ∈ U (i)
h,ξ1

,

∥∥∥u(s, x(i))− u
(i)
h (s, x(i))

∥∥∥
2

2,ρh

≤ 225 log(N (1/K,U , ‖ · ‖∞) ·NH/δ)
K

.
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Proof of Lemma G.5. By Lemma G.3 with û = u and ũ = u
(i)
h , it holds that with probability at least 1− δ/4NH , for any

u ∈ U , ∥∥∥u(s, x(i))− u
(i)
h (s, x(i))

∥∥∥
2

2,ρh

≤ 1

K

K∑

τ=1

(
u(sτh, x

τ,(i)
h )− u

(i)
h (sτh, x

τ,(i)
h )

)2
+

262 log(N (1/K,U , ‖ · ‖∞)4NH/δ)

3K

+
∥∥∥û(s, x(i))− u

(i)
h (s, x(i))

∥∥∥
2,ρh

·
√

64 log(N (1/K,U , ‖ · ‖∞)4NH/δ)

K
.

Now for any (i, h) ∈ [N ]× [H], we restrict u ∈ U (i)
h,ξ1

to obtain that

∥∥∥u(s, x(i))− u
(i)
h (s, x(i))

∥∥∥
2

2,ρh

≤ ξ1 +
∥∥∥û(s, x(i))− u

(i)
h (s, x(i))

∥∥∥
2,ρh

·
√

64 log(N (1/K,U , ‖ · ‖∞)4NH/δ)

K

+
262 log(N (1/K,U , ‖ · ‖∞)4NH/δ)

3K

≤
∥∥∥û(s, x(i))− u

(i)
h (s, x(i))

∥∥∥
2,ρh

·
√

64 log(N (1/K,U , ‖ · ‖∞)4NH/δ)

K

+
90 log(N (1/K,U , ‖ · ‖∞)4NH/δ)

K
.

(65)

Solving the quadratic inequality in (65), we have that

∥∥∥u(s, x(i))− u
(i)
h (s, x(i))

∥∥∥
2,ρh

≤
√

225 log(N (1/K,U , ‖ · ‖∞)4NH/δ)

K
.

Finally, applying a union bound argument over (i, h) ∈ [N ]× [H], we finish the proof of Lemma G.5.

This proves that with probability at least 1− δ/4, we have ǫûh ≤ 225 log(N (1/K,U , ‖ · ‖∞) · 4NH/δ)/K. Combining this

result with Lemma G.4, we finishes the proof of Theorem C.6.

G.4. Missing Proofs of Theorem C.7

Proof of Theorem C.7. As the first part of Theorem C.7, we introduce the the following key lemma to show that the event

E1 :=
{
EDh

‖P̂MLE
h (· | s, b)− Ph(· | s, b)‖21 ≤ C ′log(N[](1/K,P, ‖ · ‖1,∞)H/δ)/K, for all h ∈ [H]

}

happens with probability at least 1− δ/4, where C ′ is an absolute constant.

Lemma G.6. According to Algorithm 2 , then event E1 happens with probability at least 1− δ/4.

Proof of Lemma G.6. For the simiplicity of notation, we denote by gh(P̂ )(s, b) := ‖P̂ (· | s, b) − Ph(· | s, b)‖21. By the

following lemma, we show that MLE estimation in Algorithm 2) can converge at a negative square root rate.

Lemma G.7 (MLE Estimation Guarantee). According to Algorithm 2 , then event

E2 :=
{
Eρh

gh(P̂
MLE
h ) ≤ c′log(N[](1/K,P, ‖ · ‖1,∞)H/δ)/K, for all h ∈ [H]

}

happens with probability at least 1− δ/8, where c′ is an absolute constant.

Proof of Lemma G.7. See Appendix H.3 for detailed proof.

Notice that the gap between Lemma G.6 and Lemma G.7 can be bridged by concentration analysis which relies on the

adapted Bernstein inequality in Lemma G.1. We introduce the following lemma.
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Lemma G.8 (Bernstein Inequality with Union Bound I). According to Algorithm 2, if we define the event

E3 :=
{∣∣[EDh

− Eρh
]gh(P̂

MLE
h )

∣∣ ≤ c′′log(N[](1/K,P, ‖ · ‖1,∞)H/δ)/K, for all h ∈ [H]
}
,

then E2 ∩ E3 happens with probability at least 1− δ/8, where c′′ is an absolute constant.

Proof of Lemma G.8. See Appendix H.3 for detailed proof.

Since it holds that

Eρh
gh(P̂

MLE
h ) ≤ EDh

gh(P̂
MLE
h ) + [EDh

− Eρh
]gh(P̂

MLE
h ),

Lemma G.6 is the direct consequence of Lemma G.7 and Lemma G.8.

With Lemma G.6, the last part of the proof of Theorem C.7 is to upper bound sup∈[H] ǫ
P̂
h . Recall that we denote by

gh(P̂ )(s, b) := ‖P̂ (· | s, b)− Ph(· | s, b)‖21. On the event E1, we decompose ǫP̂h as follows.

ǫP̂h = EDh
gh(P̂

MLE
h ) + [Eρh

− EDh
]gh(P̂h) + EDh

(gh(P̂ )− gh(P̂
MLE
h ))

≤ 2EDh
gh(P̂

MLE
h ) + [Eρh

− EDh
]gh(P̂h) + 2EDh

‖P̂h(· | s, b)− P̂MLE
h (· | , s, b)‖21

≤ 2EDh
gh(P̂

MLE
h ) + [Eρh

− EDh
]gh(P̂h) + 2ξ2

≤ 4ξ2 + [Eρh
− EDh

]gh(P̂h),

(66)

where the first inequality relies on the fact that (a+ b)2 ≤ 2(a2 + b2) and the last inequality relies on the definition of E1.

Hence it suffices to upper bound the second term in (66). Motivated by Uehara & Sun (2021) and the proof of Lemma G.2,

we prove the following lemma based on the adapted Bernstein inequality in Lemma G.1.

Lemma G.9 (Bernstein Inequality with Union Bound II). According to Algorithm 2 and selecting

ξ2 = C ′log(N[](1/K,P, ‖ · ‖1,∞)/δ)/K, if we define the event

E4 :=
{∣∣[EDh

− Eρh
]gh(P̂h)

∣∣ ≤ C ′′log(N[](1/K,P, ‖ · ‖1,∞)H/δ)/K, for all h ∈ [H]
}
,

then E1 ∩ E4 happens with probability at least 1− δ/8, where C ′′ is an absolute constant.

Proof. See Appendix H.3 for detailed proof.

Apply Lemma H.3 and Lemma G.6. Based on E1 ∩ E2 ∩ E3 and the selection of ξ2, then

sup
h∈[H]

ǫP̂h ≤ (c′ + c′′ + C ′′)log(N[](1/K,P, ‖ · ‖1,∞)H/δ)/K,

which concludes the proof for Theorem C.7.

G.5. Proof for Theorem 4.4: Offline Fair Division Loss

Proof. Similar to the proof for Theorem 3.4, the following two inequalities originate from the definition of ν⋆h in (4).

ℓPE
h (ν̂, sh) = inf

x∈PE(sh,h)

N∑

i=1

(
u
(i)
h (sh, x

(i))− u
(i)
h (sh, ν̂

(i)
h (sh))

)

≤
N∑

i=1

(
u
(i)
h (sh, ν

⋆,(i)
h (ν̂)(sh))− u

(i)
h (sh, ν̂

(i)
h (sh))

)
.

Also, observe that

ℓSIh (ν̂, sh) =
N∑

i=1

(
u
(i)
h (sh, e

(i))− u
(i)
h (sh, ν̂

(i)
h (sh))

)

≤
N∑

i=1

(
u
(i)
h (sh, ν

⋆,(i)
h (ν̂)(sh))− u

(i)
h (sh, ν̂

(i)
h (sh))

)
,
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By the definition of offline FD loss defined in (24), it holds that

LFD ≤
N∑

i=1

H∑

h=1

Eρh

(
u
(i)
h (sh, ν

⋆,(i)
h (ν̂)(sh))− û

(i)
h (sh, ν

⋆,(i)
h (ν̂)(sh))

)

+
(
û
(i)
h (sh, ν

⋆,(i)
h (ν̂)(sh))− û

(i)
h (sh, ν̂

(i)
h (sh))

)

+
(
û
(i)
h (sh, ν̂

(i)
h (sh))− u

(i)
h (sh, ν̂

(i)
h (sh))

)

By the definition of ν̂ and the event E0 defined in and (C.6) defined in Theorem C.6, it further holds with at probability at

least 1− δ that

LFD ≤
N∑

i=1

H∑

h=1

Eρh
|û(i)h (sh, ν̂

(i)
h (sh))− u

(i)
h (sh, ν̂

(i)(sh))|

≤
N∑

i=1

H∑

h=1

Eρh

√
|û(i)h (sh, ν̂

(i)
h (sh))− u

(i)
h (sh, ν̂(i)(sh))|2

≤ O(HN
√
log(N (1/K2,U , ‖ · ‖∞) ·NH/δ)/K),

where the second inequality relies on the Cauchy-Schwarz inequality and the last inequality originates from Theorem C.6.

Hence we conclude the proof for Theorem 4.4.

H. Missing Proofs of Auxillary Lemmas

H.1. Proofs for Lemma G.1

Proof of Lemma G.1. Denote one of the ǫ-covering of F as Fǫ = {fi}i∈[M ] ⊂ F , where M = N (ǫ,F , ‖ · ‖∞). Then

applying Bernstein inequality with union bound on the Fǫ, it holds with probability at least 1− δ,

∣∣∣∣∣
1

n

n∑

i=1

g(Xi)− E[g(X)]

∣∣∣∣∣ ≤
√

2V[g(X)] log(M/δ)

n
+

2R log(M/δ)

3n
, (67)

for all g ∈ Fǫ. By the definition of covering number, for any f ∈ F , there exists g ∈ Fǫ such that ‖f − g‖∞ ≤ ǫ. It then

yields that

∣∣∣∣∣
1

n

n∑

i=1

f(Xi)− E[f(X)]

∣∣∣∣∣ ≤
∣∣∣∣∣
1

n

n∑

i=1

(f(Xi)− g(Xi))

∣∣∣∣∣+
∣∣∣∣∣
1

n

n∑

i=1

g(Xi)− E[g(X)]

∣∣∣∣∣+ |E[g(X)]− E[f(X)]|

≤ 2ǫ+

√
2V[g(X)] log(M/δ)

n
+

2R log(M/δ)

3n
.

(68)

Notice that

∣∣∣∣∣

√
2V[f(X)] log(M/δ)

n
−
√

2V[g(X)] log(M/δ)

n

∣∣∣∣∣ ≤
√∣∣∣∣

2V[f(X)] log(M/δ)

n
− 2V[g(X)] log(M/δ)

n

∣∣∣∣

=

√
2 log(M/δ)

n
·
√

|V[f(X)]− V[g(X)]|,

(69)

where the first inequality is based on the basic inequality |√x −√
y| ≤

√
|x− y| for two absolute variables x, y. What

remains is to upper bound the difference of variance in (69).

|V[f(X)]− V[g(X)]| =
∣∣(E[(f(X))2]− (E[f(X)])2

)
−
(
E[(g(X))2]− (E[g(X)])2

)∣∣

=
∣∣E
[
(f(X)− E[g(X)])2 − (g(X)− E[f(X)])2

]∣∣
≤ E[|f(X)− E[g(X)]− g(X) + E[f(X)]| · |f(X)− E[g(X)] + g(X)− E[f(X)]|]
≤ 2ǫ · 4R = 8Rǫ.

(70)
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Plugging (69) and (69) into (68), it holds that for all f ∈ F with probability at least 1− δ,

∣∣∣∣∣
1

n

n∑

i=1

f(Xi)− E[f(X)]

∣∣∣∣∣ ≤ 2ǫ+

√
2V[f(X)] log(M/δ)

n
+

√
2 log(M/δ)

n
·
√
8Rǫ+

2R log(M/δ)

3n

= 2ǫ+

√
2V[f(X)] log(M/δ)

n
+ 4

√
Rǫ log(M/δ)

n
+

2R log(M/δ)

3n
,

which concludes the proof of Lemma G.1.

H.2. Proofs for Lemma G.2

Proof of Lemma G.2. The proof is adapted from Lemma A.3 in Xie et al. (2021). We first apply Lemma G.1 with ǫ = 1/K

over function class U (i)
h = {(u− u

(i)
h )2 : u ∈ U} to obtain that

∣∣∣∣
∥∥∥u(s, x(i))− u

(i)
h (s, x(i))

∥∥∥
2

2,ρh

−
∥∥∥u(s, x(i))− u

(i)
h (s, x(i))

∥∥∥
2

2,Dh

∣∣∣∣

=

∣∣∣∣∣Eρh
|u(s, x(i))− u

(i)
h (s, x(i))|2 − 1

K

K∑

τ=1

(u(sτh, x
τ,(i)
h )− u

(i)
h (sτh, x

τ,(i)
h ))2

∣∣∣∣∣

≤

√√√√√4Vρh

[(
u(s, x(i))− u

(i)
h (s, x(i))

)2]
log(N (1/K,U (i)

h , ‖ · ‖∞)NH/δ)

K
+

8 log(N (1/K,U (i)
h , ‖ · ‖∞)NH/δ)

3K

+
8 log(N (1/K,U (i)

h , ‖ · ‖∞)NH/δ)

K
+

2

K

≤
∥∥∥u(s, x(i))− u

(i)
h (s, x(i))

∥∥∥
2,ρh

·

√
16 log(N (1/K,U (i)

h , ‖ · ‖∞)NH/δ)

K
+

38 log(N (1/K,U (i)
h , ‖ · ‖∞)NH/δ)

3K

≤
∥∥∥u(s, x(i))− u

(i)
h (s, x(i))

∥∥∥
2,ρh

√
32 log(N (1/K,U , ‖ · ‖∞)NH/δ)

K
+

76 log(N (1/K,U , ‖ · ‖∞)NH/δ)

3K
,

(71)

where in the first and second inequality we use the fact that u ≤ 1 for all u ∈ U and in the last inequality we use the fact that

N (1/K,U (i)
h , ‖ · ‖∞) ≤ [N (1/K,U , ‖ · ‖∞)]2. Here we mark U (i)

h and U in red to highlight their difference. Now on the

one hand, by basic inequality |a− b|2 ≤ |a2 − b2|, we know from inequality (71) that

∣∣∣∣
∥∥∥u(s, x(i))− u

(i)
h (s, x(i))

∥∥∥
2,ρh

−
∥∥∥u(s, x(i))− u

(i)
h (s, x(i))

∥∥∥
2,Dh

∣∣∣∣

≤
√∥∥∥u(c, x(i))− u

(i)
h (c, x(i))

∥∥∥
2,ρh

· 4

√
32 log(N (1/K,U , ‖ · ‖∞)NH/δ)

K
+

√
76 log(N (1/K,U , ‖ · ‖∞)NH/δ)

3K
.

(72)

On the other hand, by another basic inequality |a− b| ≤ |a− b2/a|, we know from inequality (71) that

∣∣∣∣
∥∥∥u(s, x(i))− u

(i)
h (s, x(i))

∥∥∥
2,ρh

−
∥∥∥u(s, x(i))− u

(i)
h (s, x(i))

∥∥∥
2,Dh

∣∣∣∣

≤
√

32 log(N (1/K,U , ‖ · ‖∞)NH/δ)

K
+

76 log(N (1/K,U , ‖ · ‖∞)NH/δ)

3K ·
∥∥∥u(c, x(i))− u

(i)
h (c, x(i))

∥∥∥
2,ρh

.
(73)
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Thus combining (72) and (73) we obtain that

∣∣∣∣
∥∥∥u(s, x(i))− u

(i)
h (s, x(i))

∥∥∥
2,ρh

−
∥∥∥u(s, x(i))− u

(i)
h (s, x(i))

∥∥∥
2,Dh

∣∣∣∣

≤min

{√∥∥∥u(s, x(i))− u
(i)
h (s, x(i))

∥∥∥
2,ρh

· 4

√
32 log(N (1/K,U , ‖ · ‖∞)NH/δ)

K
+

√
76 log(N (1/K,U , ‖ · ‖∞)NH/δ)

3K
,

√
32 log(N (1/K,U , ‖ · ‖∞)NH/δ)

K
+

76 log(N (1/K,U , ‖ · ‖∞)NH/δ)

3K ·
∥∥∥u(s, x(i))− u

(i)
h (s, x(i))

∥∥∥
2,ρh

}
.

(74)

Denote η = ‖u(s, x(i))− u
(i)
h (s, x(i))‖2,ρh

and optimize over η > 0 in (74), we obtain that

∣∣∣∣
∥∥∥u(s, x(i))− u

(i)
h (s, x(i))

∥∥∥
2,ρh

−
∥∥∥u(s, x(i))− u

(i)
h (s, x(i))

∥∥∥
2,Dh

∣∣∣∣

≤ max
η>0

min

{
√
η · 4

√
32 log(N (1/K,U , ‖ · ‖∞)NH/δ)

K
+

√
76 log(N (1/K,U , ‖ · ‖∞)NH/δ)

3K
,

√
32 log(N (1/K,U , ‖ · ‖∞)NH/δ)

K
+

76 log(N (1/K,U , ‖ · ‖∞)NH/δ)

3K · η

}

≤ min
η>0

max

{
√
η · 4

√
32 log(N (1/K,U , ‖ · ‖∞)NH/δ)

K
+

√
76 log(N (1/K,U , ‖ · ‖∞)NH/δ)

3K
,

√
32 log(N (1/K,U , ‖ · ‖∞)NH/δ)

K
+

76 log(N (1/K,U , ‖ · ‖∞)NH/δ)

3K · η

}

≤
√

82 log(N (1/K,U , ‖ · ‖∞)NH/δ)

K
,

where we choose η =
√
log(N (1/K,U , ‖ · ‖∞)NH/δ)/K. Here we mark maxη>0 min and ≤ minη>0 max in red

to highlight their difference. This finishes the proof of Lemma G.2.

H.3. Proofs for Lemma G.3

Proof of Lemma G.3. The proof is adapted from Lemma A.4 in Xie et al. (2021). We first note that we can rewrite

∥∥∥û(s, x(i))− u
(i)
h (s, x(i))

∥∥∥
2

2,Dh

−
∥∥∥ũ(s, x(i))− u

(i)
h (s, x(i))

∥∥∥
2

2,Dh

=
1

K

K∑

τ=1

(
û(sτh, x

τ,(i)
h )− ũ(sτh, x

τ,(i)
h )

)(
û(sτh, x

τ,(i)
h ) + ũ(sτh, x

τ,(i)
h )− 2u

(i)
h (sτh, x

τ,(i)
h )

)
.

(75)
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By (75), we apply Lemma G.1 with ǫ = 1/K and function class U†,(i)
h = {(û− ũ)(û+ ũ− 2u

(i)
h ) : û, ũ ∈ U} to obtain that

∣∣∣∣
∥∥∥û(s, x(i))− u

(i)
h (s, x(i))

∥∥∥
2

2,ρh

−
∥∥∥ũ(s, x(i))− u

(i)
h (s, x(i))

∥∥∥
2

2,ρh

−
∥∥∥û(s, x(i))− u

(i)
h (s, x(i))

∥∥∥
2

2,Dh

+
∥∥∥ũ(s, x(i))− u

(i)
h (s, x(i))

∥∥∥
2

2,Dh

∣∣∣∣

≤

√√√√4Vρh

[(
û(s, x(i))− ũ(s, x(i))

) (
û(s, x(i)) + ũ(s, x(i))− 2u

(i)
h (s, x(i))

)]
log(N (1/K,U†,(i)

h , ‖ · ‖∞)NH/δ)

K

+
16 log(N (1/K,U†,(i)

h , ‖ · ‖∞)NH/δ)

3K
+

16 log(N (1/K,U†,(i)
h , ‖ · ‖∞)NH/δ)

K
+

2

K
,

≤

√√√√16Vρh

[(
û(s, x(i))− ũ(s, x(i))

) (
û(s, x(i)) + ũ(s, x(i))− 2u

(i)
h (s, x(i))

)]
log(N (1/K,U , ‖ · ‖∞)NH/δ)

K

+
64 log(N (1/K,U , ‖ · ‖∞)NH/δ)

3K
+

64 log(N (1/K,U , ‖ · ‖∞)NH/δ)

K
+

2

K
,

≤
∥∥∥û(s, x(i))− ũ(s, x(i))

∥∥∥
2,ρh

·
√

64 log(N (1/K,U , ‖ · ‖∞)NH/δ)

K
+

262 log(N (1/K,U , ‖ · ‖∞)NH/δ)

3K
,

where in the first and second inequality we use the fact that u ≤ 1 for all u ∈ U and the fact that N (1/K,U†,(i)
h , ‖ ·

‖∞) ≤ [N (1/K,U , ‖ · ‖∞)]4. Here we mark U†,(i)
h and U in red to highlight their difference. This finishes the proof of

Lemma G.3.

Proof of Lemma G.7. Before we proceed, we need introduce some concepts to help characterize the convergence rate of

MLE estimator, which follows from Geer et al. (2000); Uehara & Sun (2021).

We define the modified function class of Ph :

Ph =

{√
P̂ + Ph

2

∣∣∣ P̂ ∈ P
}
.

Given a function class F , let N[](δ,F , ‖ · ‖2,ρh
) be the bracketing number of F w.r.t the norm ‖ · ‖2,ρh

given by

‖f‖2,ρh
= Eρh

[∫
(f (s′ | s, b))2 ds′

]1/2
.

Then, the entropy integral of F is given by

JB(δ,F , ‖ · ‖2,ρh
) = max

{∫ δ

δ2/2

(√
logN[](u,F , ‖ · ‖2,ρh

)
)
du, δ

}
.

We also define the localized class of Ph :

Ph(δ) =
{
P̂ ∈ Ph : Eρh

[
h2
(
P̂ (· | s, b)‖Ph(· | s, b)

)]
≤ δ2

}
,

where h
(
P̂ (· | s, b)‖Ph(· | s, b)

)
denotes Hellinger distance defined by

√

0.5

∫ (√
P̂ (s′ | s, b)−

√
Ph (s′ | s, b)

)2

ds′.

Then we introduce the following lemma (Theorem 4 in Uehara & Sun (2021)) to characterize the property of MLE estimator.
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Lemma H.1 (MLE guarantee with general function approximation). We take a function Gh(ǫ) : [0, 1] → R s.t. Gh(ǫ) ≥
JB [ǫ,Ph(ǫ), ‖ · ‖2,ρh

] and Gh(ǫ)/ǫ
2 is a non-increasing function w.r.t ǫ. Then, letting ζh be a solution to

√
Kǫ2 ≥ c0Gh(ǫ)

w.r.t ǫ, where c0 is an absolute constant. With probability at least 1− δ, we have

Eρh

[∥∥∥P̂MLE
h (· | s, b)− Ph(· | s, b)

∥∥∥
2

1

]
≤ c1

{
ζh +

√
log (c2/δ) /K

}2

.

Proof. Please refer to Theorem 4 in Uehara & Sun (2021).

Our next step is to show that selecting ζh = c2
√
logN[](1/K,P, ‖ · ‖1,∞)/K in Lemma H.1 suffices to prove Lemma G.7.

First we show the following facts to discuss the relationship of bracketing numbers of different function classes.

Lemma H.2. It holds that for all ǫ ≥ 0, N[](ǫ,Ph(ǫ), ‖ · ‖2,ρh
) ≤ N[](2ǫ

2,P, ‖ · ‖1,∞).

Proof. Noticing N[](ǫ,Ph(ǫ), ‖ · ‖2,ρh
) ≤ N[](ǫ,Ph, ‖ · ‖2,ρh

), it suffices to prove that

N[](ǫ,Ph, ‖ · ‖2,ρh
) ≤ N[](2ǫ

2,P, ‖ · ‖1,∞).

Take the 4ǫ2-brackets of P as BP = {(PU
j , P

L
j )}j∈[M ], whereM = N[](4ǫ

2,P, ‖·‖1,∞). Then for any P̃0 ∈ P =
√

P0+Ph

2 ,

there exists j ∈ [M ], s.t. P L
j ≤ P0 ≤ PU

j and ‖P L
j − PU

j ‖1,∞ ≤ 4ǫ2. Hence,

√
P L

j
+Ph

2 ≤ P̃0 ≤
√

PU
j
+Ph

2 . It also holds

that,
∥∥∥∥∥∥

√
P L
j + Ph

2
−

√
PU
j + Ph

2

∥∥∥∥∥∥
2,ρh

= Eρh



∫

S



√
P L
j + Ph

2
−

√
PU
j + Ph

2




2

ds′




1/2

≤ Eρh

[∫

S

∣∣∣∣∣
P L
j + Ph

2
−
PU
j + Ph

2

∣∣∣∣∣ ds
′

]1/2

≤
√

1

2

∥∥PU
j − P L

j

∥∥
1,∞

≤ ǫ,

where the first inequality relies on the basic inequality |√a−
√
b| ≤

√
|a− b|.

Hence,

{(√
P L

j
+Ph

2 ,

√
PU

j
+Ph

2

)}

j∈[M ]

are also the ǫ-brackets of Ph, which concludes the proof of Lemma H.2.

In Lemma H.2, we choose Gh(ǫ) = (ǫ− ǫ2/2)
√
logN[](ǫ4/2,P, ‖ · ‖1,∞), which satisfies that (because of Lemma H.2)

Gh(ǫ) ≥ (ǫ− ǫ2/2)
√
logN[](ǫ2/2,Ph(ǫ), ‖ · ‖2,ρh

)

≥ JB(ǫ,Ph(ǫ), ‖ · ‖2,ρh
),

(76)

when we assume that logN[](ǫ
2/2,Ph(ǫ), d) ≥ 2.

It is easy to find that G(ǫ)/ǫ2 is non-increasing function. Assuming that K > logN[](ǫ
2/16,P, ‖ · ‖1,∞) and solving√

Kǫ2 ≥ c0Gh(ǫ), we derive the feasible solution region

{
ǫ ∈ [0, 1] : ǫ ≥ c0√

K − c0/2
√
logN[](ǫ4/2,P, ‖ · ‖1,∞)

}
.

Then there exists an absolute constant c2, s.t. ζh = c2
√

logN[](1/K2,P, ‖ · ‖1,∞)/K falls into such a feasible region.

Hence, by Lemma H.1, there exists a constant c′, s.t.

Eρh

[∥∥∥P̂MLE
h (· | s, b)− Ph(· | s, b)

∥∥∥
2

1

]
≤ c′log(N[](1/K

2,P, ‖ · ‖1,∞)/δ)/K.
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Taking a union bound for h ∈ [H] and rescaling δ, we obtain that

sup
h∈[H]

Eρh

[∥∥∥P̂MLE
h (· | s, b)− Ph(· | s, b)

∥∥∥
2

1

]
≤ c′log(N[](1/K

2,P, ‖ · ‖1,∞)H/δ)/K,

which concludes the proof of Lemma H.3.

Proof of Lemma G.8. Motivated by Uehara & Sun (2021), we need to consider the localized class and apply Bernstein

inequality to sharpen the convergence rate. We define the estimator localized class as

PLoc 1
h :=

{
P̂ ∈ P : Eρh

gh(P̂ ) ≤ c′log(N[](1/K
2,P, ‖ · ‖1,∞)H/δ)/K

}
. (77)

Then we define the corresponding function class

F1
h := {‖P̂ (· | s, b)− Ph(· | s, b)‖21 : P̂ ∈ PLoc1

h }. (78)

We denote by M1(ǫ) := N (ǫ,F1
h, ‖ · ‖1,∞) and notice that P̂MLE

h ∈ PLoc 1
h for all h ∈ [H] on the event E2 defined in

Lemma G.7. Applying Lemma G.1 on the function class F1
h with the union bound over h ∈ [H], it holds for all h ∈ [H]

and P̂ ∈ PLoc 1
h with probability at least 1− δ/16 that

∣∣(EDh
− Eρh

)[gh(P̂ )]
∣∣ ≤ 2ǫ+

√
2Vρh

[gh(P̂ )] log(M1(ǫ)H/δ)

K
+ 8

√
ǫ log(M1(ǫ)/δ)

n
+

8 log(M1(ǫ)/δ)

3K

≤ 2ǫ+

√
8Eρh

[gh(P̂ )] log(M1(ǫ)H/δ)

K
+ 8

√
ǫ log(M1(ǫ)H/δ)

K
+

8 log(M1(ǫ)H/δ)

3K

≤ 2ǫ+

√
8c′ log(N[](1/K,P, ‖ · ‖1,∞)H/δ) · log(M1(ǫ)H/δ)

K

+ 8

√
ǫ log(M1(ǫ)H/δ)

K
+

8 log(M1(ǫ)H/δ)

3K
,

(79)

where the first inequality also relies on the fact that supP̂∈P ‖gh(P )‖∞ ≤ supP̂∈P(‖P̂‖1,∞ + ‖Ph‖1,∞)2 ≤ 4. To select a

proper ǫ, we define a larger function class F0
h as follows,.

F0
h := {‖P̂ (· | s, b)− Ph(· | s, b)‖21 : P̂ ∈ P}. (80)

By the following lemma, we characterize the relationship of F0
h and F1

h .

Lemma H.3. It holds for all h ∈ [H] that N (ǫ,F0
h, ‖ · ‖∞) ≤ N[](ǫ,P, ‖ · ‖1,∞).

Proof. For any P̂ ∈ P , there exists PCover
i ∈ {PCover

j }j∈[M ] ⊂ P , whereM = N (ǫ,P, ‖ ·‖1,∞) , s.t. ‖PCover
i − P̂‖1,∞ ≤ ǫ.

Notice that ∣∣∣
[
‖PCover

i − Ph‖21 − ‖P̂ − Ph‖21
]
(s, b)

∣∣∣ ≤ 2
∣∣∣
[
‖PCover

i − Ph‖1 − |‖P̂ − Ph‖1
]
(s, b)

∣∣∣

≤ 2
∣∣∣
[
‖PCover

i − P̂‖1
]
(s, b)

∣∣∣

≤ 2‖PCover
i − P̂‖1,∞

≤ 2‖PCover
i − P̂‖1,∞ ≤ 2ǫ.

(81)

Taking supreme over S × B, we obtain that

∥∥∥
[
‖PCover

i − Ph‖21 − ‖P̂ − Ph‖21
]∥∥∥

∞
≤ 2ǫ, which implies that

N (2ǫ,F0
h, ‖ · ‖∞) ≤ N (ǫ,P, ‖ · ‖1,∞).

Notice that covering number can be upper bounded by bracketing number, that is,

N (2ǫ,F0
h, ‖ · ‖∞) ≤ N (ǫ,P, ‖ · ‖1,∞) ≤ N[](2ǫ,P, ‖ · ‖1,∞),

which concludes the result of Lemma H.3.



Welfare Maximization in Competitive Equilibrium: Reinforcement Learning for Markov Exchange Economy

Since M1(ǫ) ≤ N (ǫ,F0
h, ‖ · ‖∞) ≤ N[](ǫ,P, ‖ · ‖1,∞), selecting a proper ǫ = 1/K2, we have with probability at least

1− δ/16 that

sup
h∈[H]

sup
P̂∈PLoc 1

h

|[EDh
− Eρh

]gh(P̂ )| ≤ c′′log(N[](1/K
2,P, ‖ · ‖1,∞)H/δ)/K,

where c′′ is an absolute constant. Hence we finish the proof of Lemma G.8.

Proof of Lemma G.9. This proof is more complicated than the proof of Lemma G.8. On the event E1 defined in Lemma

G.6, we define the estimator localized class as

PLoc 2
h := {P̂ ∈ Ph,ξ2 : EDgh(P̂ ) ≤ ξ2}. (82)

We also define the function class

F2
h := {‖P̂ (· | s, b)− Ph(· | s, b)‖21 : P̂ ∈ PLoc2

h , for all h ∈ [H]}. (83)

We denote by M2(ǫ) := N (ǫ,F2
h, ‖ · ‖1,∞) and notice that P̂h ∈ PLoc 2

h on the event E1 defined in Lemma G.6. Applying

Lemma G.1 on F2
h with union bound over h ∈ [H], we have for all h ∈ [H] and P̂ ∈ PLoc 2

h with probability at least

1− δ/16 that

∣∣(EDh
− Eρh

)[gh(P̂ )]
∣∣ ≤ 2ǫ+

√
2Vρh

[gh(P̂ )] log(M2(ǫ)H/δ)

K
+ 8

√
ǫ log(M2(ǫ)/δ)

n
+

8 log(M2(ǫ)/δ)

3K

≤ 2ǫ+

√
8Eρh

[gh(P̂ )] log(M2(ǫ)H/δ)

K
+ 8

√
ǫ log(M2(ǫ)H/δ)

K
+

8 log(M2(ǫ)H/δ)

3K

≤ 2ǫ+

√
8(|[EDh

− Eρh
]gh(P̂ )|+ ξ2)

K
log(M2(ǫ)H/δ)

+ 8

√
ǫ log(M2(ǫ)H/δ)

K
+

8 log(M2(ǫ)H/δ)

3K
.

(84)

By Lemma H.3, it holds that M2(ǫ) ≤ N (ǫ,F1
h, ‖ · ‖∞) ≤ N[](ǫ,P, ‖ · ‖1,∞). Selecting a proper ǫ = 1/K2, we solve the

quadratic inequality (84) with respect to |[EDh
− Eρh

]gh(P̂ )|. We obtain that (Uehara & Sun, 2021; Xie et al., 2021)

sup
h∈[H]

sup
P̂∈PLoc 2

h

|[EDh
− Eρh

]gh(P̂ )| ≤ C ′′log(N[](1/K
2,P, ‖ · ‖1,∞)H/δ)/K

with probability at least 1− δ/16, where C ′′ is an absolute constant. Hence we conclude the proof of Lemma G.9.

I. Useful Lemmas for Reproducing Kernel Hilbert Space

Lemma I.1 (Covering Number of RKHS Ball under ‖ · ‖∞-Norm). Under Assumption D.9, the covering number of RKHS

ball HR = {f ∈ H : ‖f‖H ≤ R} with radious R under ‖ · ‖∞-norm is bounded by

logN (ǫ,HR, ‖ · ‖∞) ≤ C · log2(1/γ)/γ · log1+1/γ(R/ǫ).

where C > 0 is an absolute constant.

Proof of Lemma I.1. See Lemma C.2. in Cai et al. (2020b) for a detailed proof.

Lemma I.2 (Eluder Dimension: RKHS). Under Assumption D.9, the eluder dimension of function class F with functions

upper bounded by M parameterized by RKHS ball HR with radious R can be bounded by

dimE (F , ǫ) ≤ C · log2(1/γ)/γ · log1+1/γ(RM/ǫ).

Proof of Lemma I.2. See Lemma C.1. in Cai et al. (2020b) for a detailed proof.



Welfare Maximization in Competitive Equilibrium: Reinforcement Learning for Markov Exchange Economy

Lemma I.3 (RKHS Trancation Error with Assumption D.9). Let C1 and C2 be the absolute constants in Assumption D.9.

There exists an absolute constant C̃ such that for any γ ∈ (0, 1/2), t ≥ 1, and R ≥ 2, if we set

d0 =
⌈
C̃ · log(1/γ)/γ · log1/γ(tR)

⌉
,

then it holds that dγ0 ≥ 4(1− γ) (γC2)
−1

and

εd0 :=
∑

j>d0

√
λj ·R ≤ C

1/2
1 d1−γ

0 R (γC2)
−1 · exp (−C2d

γ
0/2) ≤ 1/t.

Proof of Lemma I.3. See Lemma F.7. in Cai et al. (2020b) for a detailed proof.


