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Abstract

In today’s economy, it becomes important for Internet platforms to consider the sequential
information design problem to align its long term interest with incentives of the gig service
providers (e.g., drivers, hosts). This paper proposes a novel model of sequential information
design, namely the Markov persuasion processes (MPPs). Specifically, in an MPP, a sender,
with informational advantage, seeks to persuade a stream of myopic receivers to take actions
that maximizes the sender’s cumulative utilities in a finite horizon Markovian environment with
varying prior and utility functions. Planning in MPPs thus faces the unique challenge in finding
a signaling policy that is simultaneously persuasive to the myopic receivers and inducing the
optimal long-term cumulative utilities of the sender. Nevertheless, in the population level where
the model is known, it turns out that we can efficiently determine the optimal (resp. e-optimal)
policy with finite (resp. infinite) states and outcomes, through a modified formulation of the
Bellman equation that additionally takes persuasiveness into consideration.

Our main technical contribution is to study the MPP under the online reinforcement learning
(RL) setting, where the goal is to learn the optimal signaling policy by interacting with with
the underlying MPP, without the knowledge of the sender’s utility functions, prior distributions,
and the Markov transition kernels. For such a problem, we design a provably efficient no-regret
learning algorithm, the Optimism-Pessimism Principle for Persuasion Process (OP 4), which fea-
tures a novel combination of both optimism and pessimism principles. In particular, we obtain
optimistic estimates of the value functions to encourage exploration under the unknown environ-
ment. Meanwhile, we additionally robustify the signaling policy with respect to the uncertainty

of prior estimation to prevent receiver’s detrimental equilibrium behavior. Our algorithm enjoys
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sample efficiency by achieving a sublinear v/T-regret upper bound. Furthermore, both our algo-
rithm and theory can be applied to MPPs with large space of outcomes and states via function

approximation, and we showcase such a success under the linear setting.

1 Introduction

Most sequential decision models assume that there is a sole agent who possesses and processes all relevant
(online or offline) information and takes an action accordingly. However, the economic literature on infor-
mation design [26, 8] highlights the importance of considering information asymmetry in decision making,
where the decision maker and information possessor may be two parties having different interests and goals.
For example, a ride-sharing platform holds historical and real-time data on active riders and driver types in
different locations, based on which they have developed centralized combinatorial optimization algorithms
and reinforcement learning algorithms for vehicle repositioning, routing and order matching to optimize
their operational efficiency and profit [33, 42, 34, 43]. But the de facto decision makers are the drivers.
Moreover, as increasingly many drivers are freelancers instead of employees, the platform cannot expect to
give mandatory orders to them. On the other hand, if the platform shares no information on rider demand,
most drivers will not be able to efficiently find profitable trips. Therefore, it is not only realistic but also
necessary to consider an information design problem that aligns the interests of the two parties in sequential
decision making processes of this kind.

Given the large data sets being collected by corporations and governments, with avowed goals that
relate data analysis to social welfare, it is timely to pursue formal treatments of sequential information
design, to understand how to strategically inform the (sequential) decision makers (e.g., users, clients or
citizens) impacted by centralized data analysis. In particular, we wish to understand the resulting equilibrium
outcomes of both parties. As a concrete example, consider an online shopping platform which may make
use of learning tools such as reinforcement learning or online convex optimization to manage inventory and
ensure profitability [20, 36]. The platform cannot single-handedly manage its inventory, instead it requires
information design (a.k.a., Bayesian persuasion) in its interactions with its suppliers and consumers. On the
supply side, it could strategically reveal aspects of consumer sentiment (e.g., rough number of visits, search)
to the suppliers in order to guide their sales expectation and negotiate for lower unit prices. On the demand
side, it could tactically control displayed product information (e.g., last five remaining, editor’s choice) so as
to influence consumers’ perception of products and consequently their purchase decisions. Similar situations
can be anticipated for a recommendation platform. On the one hand, it should recommend most relevant
items to its users for click-through and engagement. On the other hand, its recommendations are subject to
misalignments with long-term objectives such as profits (e.g., from paid promotion), social impact (e.g., to

prevent misinformation and filter bubbles) or development of a creator ecosystem [49, 53, 37].



1.1 Our Results and Contributions

To provide a formal foundation for the study of sequential information design, we introduce the Markov
persuasion process (MPP), where a sender, with informational advantage, seeks to persuade a stream of
myopic receivers to take actions that maximize the sender’s cumulative utility in a finite-horizon Markovian
environment with varying prior and utility functions. We need to address a key challenge regarding the
planning problem in MPPs; specifically, how to find persuasive signaling policies that are also optimized for
the sender’s long-term objective. Moreover, in face of the uncertainty for both the environment and receivers,
there is a dilemma that the optimal policy based on estimated prior is not necessarily persuasive and thus
cannot induce the desired trajectory, whereas a full information revelation policy is always persuasive but
usually leads to suboptimal cumulative utility. So the reinforcement learning algorithm in MPPs has to
ensure optimality under the premise of robust persuasiveness. This makes our algorithm design non-trivial
and regret analysis highly challenging.

We show how to surmount these analysis and design challenges, and present a no-regret learning al-
gorithm, which we refer to as Optimism-Pessimism Principle for Persuasion Process (OP4), that provably
achieves a 6(1 /didiH 4T) regret with high probability, where d, d,, are dimensions of the feature spaces,

H is the horizon length in each episode, T is the number of episodes, and 6() hides logarithmic factors
as well as problem-dependent parameters. To establish this result, in Section 3.3 we start by constructing
a modified formulation of the Bellman equation that can efficiently determine the optimal (resp. e-optimal)
policy with finite (resp. infinite) states and outcomes. Section 4.2 then considers the learning problem, in
particular the design of the OP 4 that adopts both the optimistic principle in utility estimation to incentivize
exploration and the pessimism principle in prior estimation to prevent a detrimental equilibrium for the re-
ceiver. In Sections 4.3 and 4.4, we showcase OP4 in the tabular MPPs and contextual Bayesian persuasion
problem, respectively, both of which are practical special cases of MPPs. In Section 5, we then generalize
these positive results to MPPs with large outcome and state spaces via linear function approximation and
generalized linear models.

In summary, our contributions are threefold. At the conceptual level, we identify the need for sequential
information design in real-world problems and accordingly formulate a novel model, the MPP, to capture
the misaligned incentives between the (sequential) decision makers and information possessors. At the
methodological level, our key insight is a new algorithmic principle—optimism to encourage exploration
and pessimism to induce robust equilibrium behavior. Finally, at the technical level, we develop a novel
regret decomposition tailored to this combination of optimism and pessimism in the design of online learning
algorithms. The fact that the combined optimism-pessimism concept can still lead to O(+/T) regret for
strategic setups was not clear before our new regret decomposition lemma. We expect this design principle

and our proof techniques can be useful for other strategic learning problems.



1.2 Related Work

Our work is built on the foundation of information design and reinforcement learning. We refer the readers to
Section 2.1 and 2.2 for background and formal introductions. Here we focus on the technical and modeling

comparisons with related work from dynamic Bayesian persuasion and efficient reinforcement learning.

Dynamic Bayesian persuasion. Starting from seminal work by Kamenica and Gentzkow [26], the
study of Bayesian persuasion looks at the design problem to influence an uninformed decision maker through
strategic information revelation. Many variants of this model have been studied, with applications in security,
advertising, finance, etc. [44, 54, 21, 6]. More recently, several dynamic Bayesian persuasion frameworks
have been proposed to model the long-term interest of the sender. Many papers [16, 45, 17, 29] consider the
setting where the sender observes the evolving states of a Markov chain, seeks to influence the receiver’s
belief of the state through signaling and thereby persuade him to take certain actions. In contrast to our
setting, at each round, the receiver’s action has no influence on the evolution of the Markov process and thus
can only maximizes his utility on his belief of current state, given all the historical signals received from
the sender. In Ely [16], Farhadi and Teneketzis [17], the Markov chain has two states (one is absorbing):
the receiver is interested in detecting the jump to the absorbing state, whereas the sender seeks to prolong
the time to detection of such a jump. Renault et al. [45] shows a greedy disclosure policy that ignores
its influence to the future utility can be optimal in Markov chain with special utility functions. Lehrer
and Shaiderman [29] characterize optimal strategies under different discount factors as well as the optimal
values the sender could achieve. Closer to our model is that of Gan et al. [19]—we both assume the Markov
environment with state transition influenced by receiver’s action, as well as a separate persuasion state drawn
from a prior independent of receiver’s action. However, Gan et al. [19] focus on the planning problem for
the infinite-horizon MDP, solving sender’s optimal signaling policy when the environment is known in cases
when the receiver is myoptic or far-sighted. In particular, it is shown as NP-hard to approximate an optimal
policy against a far-sighted receiver, which also justifies our interest on the myoptic receiver. Another
closely related work [61] studies the learning problem in repeated persuasion setting (without Markov state
transition) between a stream of myopic receivers and a sender without initial knowledge of the prior. It
introduces the notion of regret as well as the robustness principle to this learning problem that we adopt and

generalize to our model.

Bayesian Incentive-Compatible Bandit Exploration. Our work is also loosely related to a seminal
result by Mansour et al. [35], who model the misaligned incentives between a system (i.e., sender) and a
stream of myopic agents (i.e., receivers). Mansour et al. [35] shows that using information asymmetry, the
system can create intrinsic incentives for agents to follow its recommendations. In this problem, the sender’s
objective is limited to the social welfare, i.e, the cumulative utility of all agents, whereas we make no
assumption on the sender’s utility function and thus her long-term objective. Besides our model is designed
to capture more general situations where each receiver could have different priors and utility functions, and

the environment might be Markovian with dynamics under the influence of the receivers’ actions.



Efficient Reinforcement Learning. Reinforcement learning has seen its successful applications in vari-
ous domains, such as robotics, finance and dialogue systems [27, 58, 30]. Along with the empirical success,
we have seen a growing quest to establish provably efficient RL methods. Classical sample efficiency re-
sults focus on tabular environments with small, finite state spaces [2, 39, 4, 12, 47, 24, 46]. Notably, through
the design principle, known as optimism in the face of uncertainty [28], an RL algorithm would provably
incur a Q(\/W) regret under the tabular setting, where S and A are the state and action spaces respec-
tively [24, 4]. More recently, there have been advances in RL with function approximation, especially the
linear case. Jin et al. [25] proposed an efficient algorithm for a setting where the transition kernel and the
utility function are both linear functions with respect to a feature mapping: ¢ : S x A — R% A similar
assumption has been studied for different settings and has led to sample efficiency results [55, 14, 38, 57, 22].
Moreover, other general function approximations have been studied in parallel, including generalized linear
function approximation [52], linear mixture MDPs based on a ternary feature mapping [3, 60, 9, 59], kernel
approximation [56] as well as models based on the low Bellman rank assumption [23, 11]. We make use
of these function approximation techniques to model our conditional prior, and we show how to integrate
the persuasion structure into these efficient reinforcement learning frameworks, thereby obtaining sample

efficient result for large-scale MPPs.

2 Preliminaries

This section provides some necessary background in information design and Markov decision processes, as

preparation for our model of Markov persuasion processes presented in the next section.

2.1 Basics of Information Design

Classic information design [26] considers the persuasion problem between a single sender (she) and receiver
(he). The receiver is the only actor, and looks to take an action a € A which results in receiver utility u(w, a)
and sender utility v(w, a). Here w € € is the realized outcome of certain environment uncertainty, which is
drawn from a prior distribution ;. € A(£2), and A is a finite set of available actions for the receiver. While
u,v : Q x A — [0,1] and the prior distribution y are all common knowledge, the sender possesses an
informational advantage and can privately observe the realized outcome w. The persuasion problem studies
how the sender can selectively reveal her private information about w to influence the receiver’s decisions
and ultimately maximize her own expected utility v.

To model the sender’s strategic revelation of information, it is standard to use a signaling scheme, which
essentially specifies the conditional distribution of a random variable (namely the signal), given the outcome
w. Before the realization of the outcome, the sender commits to such a signaling scheme. Given the realized
outcome, the sender samples a signal from the conditional distribution according to the signaling scheme

and reveals it to the receiver. Upon receiving this signal, the receiver infers a posterior belief about the



outcome via Bayes’ theorem (based on the correlation between the signal and outcome w as promised by
the signaling scheme) and then chooses an action a that maximizes the expected utility.

A standard revelation-principle-style argument shows that it is without loss of generality to focus on
direct and persuasive signaling schemes [26]. A scheme is direct if each signal corresponds to an action rec-
ommendation to the receiver, and is persuasive if the recommended action indeed maximizes the receiver’s
a posteriori expected utility. More formally, in a direct signaling scheme , 7 = (7(a|lw) : w € Q,a € A),

m(alw) denotes the probability of recommending action a given realized outcome w. Upon receiving an
action recommendation a, the receiver computes a posterior belief for w: Pr(w|a) = % Thus,
the action recommendation a is persuasive if and only if @ maximizes the expected utility w.r.t. the posterior
belief about w; i.e., ) Pr(wla) - u(w,a) > > Pr(wla) - u(w,a’) for any o’ € A. Equivalently, we define

persuasiveness as

Persuasiveness: Z p(w)r(alw) - [u(w,a) — u(w,a’)] > 0,Va,d’ € A.
weN
Let P = {7 : 7(-|w) € A(A) for each w € Q} denote the set of all signaling schemes. To emphasize that
the definition of persuasiveness depends on the prior p, we denote the set of persuasive schemes on prior
p by
Pers(p) == {WEP Z,u m(alw) [u(w,a) — u (w,d’)] >0, Va,a/GA}.
wel
Given a persuasive signaling scheme 7 € Pers(u), it is in the receiver’s best interest to take the recom-
mended action and thus the sender’s expected utility becomes V' (11, ) = > . > peu M(w)m(alw)v(w, a).
Therefore, given full knowledge of the persuasion instance, the sender can solve for an optimal persua-
sive signaling scheme that maximizes her expected utility through the following linear program (LP) which

searches for a persuasive signaling scheme that maximizes V' (i, 7) (see, e.g., [15] for details):

Persuasion as an LP: OPT (u) = max V(p,m).
mePers(p)

2.2 Basics of Reinforcement Learning and Markov Decision Processes

The Markov decision process (MDP) [41, 48] is a classic mathematical framework for the sequential decision
making problem. In this work, we focus on the model of episodic MDP. Specifically, at the beginning of
the episode, the environment has an initial state s; (possibly picked by an adversary). Then, at each step
h > 1, the agent takes some action a;, € A to interact with environment at state s, € S. The state s,
obeys a Markov property and thus captures all relevant information in the history {s;};<p. Accordingly, the
agent receives the utility vy, (sp, ap) € [0, 1] and the system evolves to the state of the next step spy1 ~
Py(:|sp,an). Such a process terminates after h = H, where H is also known as the horizon length. Here,

A is a finite set of available actions for the agent, S is the (possibly infinite) set of MDP states. The utility



function vy, : § X A — [0, 1] and transition kernel P, : S x A — A(S) may vary at each step. A policy of
the agent 7, : S — A(A) characterizes her decision making process at step h—after observing the state s,
the agent takes action a with probability 7, (a|s).

In an episodic MDP with H steps, under policy w = {ﬂ'h}he[H], we define the value function as the

expected value of cumulative utilities starting from an arbitrary state,

H

Vi (s) = Epnx [ > vn(sw, an)

h'=h

sh/:s}, Vs € S,h € [H].

Here Ep » means that the expectation is taken with respect to the trajectory {ss, ap}pe(m), Which is gener-
ated by policy 7 on the transition model P = {P},} ne[n)]- Similarly, we define the action-value function as

the expected value of cumulative utilities starting from an arbitrary state-action pair,

H

Qr (s, a) = vp(sp,an) + Ep,w[ > vnlsw, an)
h'=h+1

Sy = S, apy :a], Vs e S,ae€ A h e [H|.

The optimal policy is defined as 7w := arg max, V;™ (s1), which maximizes the (expected) cumulative
utility. Since the agent’s action affects both immediate utility and next states that influences its future
utility, it thus demands careful planning to maximize total utility. Notably, w* can solved by dynamic
programming based on the Bellman equation [7]. Specifically, with V7, (s) = 0 and for each h from
H to 1, iteratively update Q5 (s,a) = vn(s,a) +Egp(js.a0)Viy (8 a), Vii(s) = maxeeq Qj (s, a), and
determine the optimal policy 7* as the greedy policy with respect to {Q} }re|m)-

In online reinforcement learning, the agent has no prior knowledge of the environment, namely, {vy,, Py } he[H]s
but aims to learn the optimal policy by interacting with the environment for 7" episodes. For each ¢t € [T,
at the beginning of the ¢-th episode, after observing the initial state s}, the agent chooses a policy 7’ based
on the observations before ¢-th episode. The discrepancy between Vf’t (s%) and Vi*(s!) serves as the subop-
timality of the agent at the ¢-th episode. The performance of the online learning algorithm is measured by
the expected regret, Reg(T) == S, [Vi*(sh) — Vi (st)].

3 Markov Persuasion Processes

This section introduces the Markov Persuasion Process (MPP), a novel model for sequential information
design in Markovian environments. It notably captures the motivating yet intricate real-world problems in
Section 1. Furthermore, our MPP model is readily applicable to generalized settings with large state spaces

by incorporating function approximation techniques.



3.1 A Model of Markov Persuasion Processes (MPPs)

We start by abstracting the sequential information design problem instances in Section 1 into MPPs. Taking
as an example recommendation platform for ad keywords, we view the platform as the sender, the advertisers
as the receivers. The advertisers decide the actions a € A such as whether to accept the recommended
keyword. To better reflect the nature of reality, we model two types of information for MPPs, outcome
and state. We use the notion of outcome w € () to characterize the sender’s private information in face of
each receiver, such as the features of searchers for some keyword. The outcome follows a prior distribution
such as the general demographics of Internet users on the platform. The platform can thus leverage such
fine-grained knowledge on keyword features, matching with the specific ad features of each advertiser, to
persuade the advertisers to take a recommendation of keywords. Meanwhile, we use the notion of state
s € S to characterize the Markovian state of the environment, e.g., the availability of ad keyword slots.
The state is affected by the receiver’s action, as the availability changes after some keywords get brought.'
Naturally, both sender’s and receiver’s utility are determined by the receiver’s action a jointly with the
state of environment s and realized outcome w, i.e., u,v : S x @ x A — [0,1]. Meanwhile, as these
applications could serve thousands or millions of receivers every day, to reduce the complexity of our model
we assume each receiver appears only once and thus will myopically maximizes his utility at that particular
step, whereas the sender is a system planner who aim to maximizes her long-term accumulated expected
utility.

More specifically, an MPP is built on top of a standard episodic MDP with state space S, action space A,
and transition kernel P. In this paper, we restrict our attention to finite-horizon (i.e., episodic) MPPs with H
steps denoted by [H] = {1,--- , H}, and leave the study of infinite-horizon MPPs as an interesting future
direction. At a high level, there are two major differences between MPPs and MDPs. First, in a MPP, the
planner cannot directly take an action but instead can leverage its information advantage and “persuade” a
receiver to take a desired action ay, at each step h € [H]. Second, in an MPP, the state transition is affected
not only by the current action aj and state s, but also by the realized outcome wjy, of Nature’s probability
distribution. Specifically, the state transition kernel at step h is denoted as P}, (sp+1|Sh,wp, ap). To capture
the sender’s persuasion of a receiver to take actions at step h, we assume that a fresh receiver arrives at
time h with a prior uj, over the outcome wy. The planner, who is the sender here, can observe the realized
outcome wy, and would like to strategically reveal information about wy, in order to persuade the receiver to
take a certain action ayp,.

Differing from classical single-shot information design, the immediate utility functions wuy,, vy, for the

!Similarly, we can view the online shopping platform as the sender who persuades a stream of receivers (supplier, consumer)
to take certain action, whether to take an offer or make a purchase. In this case, sender can privately observe the outcomes such
as the consumer sentiments on some random products based on the search and click logs, whereas the states are product reviews,
sales or shipping time commonly known to the public and affected by the actions of both supply and demand sides. In case of rider-
sharing, outcome represents the fine-grained knowledge of currently active rider types that are privately known to the platform and
generally stochastic in accordance to some user demographics, whereas the state captures the general driver supply or rider demand
at locations that is affected by the drivers’ decisions.



receiver and sender vary not only at each step h but also additionally depend on the commonly observed
state s;, of the environment. We assume the receiver to have full knowledge of his utility u and prior pp,
at each step h, and would take the recommended action ay, if and only if a;, maximizes his expected utility
under the posterior for wy,.”

Formally, an MPP with a horizon length H proceeds as follows at each step h € [H]:

1. A fresh receiver with prior distribution p;, € A(€2) and utility uy, : S x  x A — [0, 1] arrives.
2. The sender commits to a persuasive signaling policy 7, : S — P, which is public knowledge.

3. After observing the realized state s;, and outcome wy,, the sender accordingly recommends the re-

ceiver to take an action ay, ~ 7 (+|Sp, wp).

4. Given the recommended action a, the receiver takes an action aj,, receives utility uy, sy, wp, aj,) and

then leaves the system. Meanwhile, the sender receives utility vy, (sp, wp, a;l).

5. The next state sp41 ~ Py (-|sn,wn, aj,) is generated according to P, : S x Q x A — A(S), the state

transition kernel at the h-th step.

Here we coin the notion of a signaling policy m;, as a mapping from state to a signaling scheme at the h-
th step. It captures a possibly multi-step procedure in which the sender commits to a signaling scheme after
observing the realized state and then samples a signal after observing the realized outcome. For notational
convenience, we denote 7(a|s,w) as the probability of recommending action a given state s and realized
outcome w. We can also generalize the notion of persuasiveness from classic information design to MPPs.
Specifically, we define Pers(u, u) as the persuasive set that contains all signaling policies that are persuasive

to the receiver with utility » and prior y for all possible state s € S:

Pers(u, u) ::{71 :S— P

/ p(w)m(als,w)[u(s,w,a) — u(s,w,a’)]dw >0, Va,d’ € A,s ¢ S}.
weN

Recall that P consists of all mappings from €2 to A(.A). As such, the sender’s persuasive signaling scheme
€ Pers(up,up) is essentially a stochastic policy as defined in standard MDPs—r;, maps a state s,
to a stochastic action ap—except that here the probability of suggesting action a;, by policy 7, depends

additionally on the realized outcome wy, that is only known to the sender.

2This assumption is not essential but just for technical rigor. Because even if receivers have limited knowledge or computational
power to accurately determine the utility-maximizing actions, the sender should have sufficient ethical or legal reasons to comply
with the persuasive constraints in practice. And the receivers would only take the recommendation if the platform has good
reputation (i.e., persuasive with high probability).




We say 7 = {7 }pem) is a feasible policy of the MPP if 7, € Pers(us,up),¥h € [H], because the
state transition trajectory would otherwise be infeasible if the receiver is not guaranteed to take the recom-

mended action, i.e., a}, # aj. We denote the set of all feasible policies as P := [ nepe) Pers(un, up).

3.2 MPPs: the Generalized Version with Contexts and Linear Parameterization

To provide a broadly useful modeling concept, we also study a generalized setting of the Markov Persuasion

Process with contextual prior and a possibly large space of states, outcomes and contexts.

Contextual Prior. At the beginning of each episode, a sequence of contexts C' = {¢, € C }he[ H) 18
realized by Nature and becomes public knowledge. And we allow the prior up to be influenced by the
context ¢y, at each step h, and thus denote it by py(+|c). Specifically, the contextual information is able
to model the uncertainty such as the varying demographics of active user group affected by events (e.g.,
scheduled concerts or sport games in ride-sharing) at different time of the day.’ Here we allow the sequence

of contexts to be adversarially generated.

Linear Parameterization. We also relax the state, context and outcome space S, C, €2 to be continuous
and additionally assume that the transition kernels and utility functions are linear, and the conditional priors
of outcomes are generalized linear models (GLM) of the context at each steps. More formally, for each step

h € [H], our linearity condition assumes:

* The sender’s utility is vy, = v} (s, wn, an) = Y (Sh, W, ah)T’y;;, where (1) ¢(-, -, -) € R% is a known

feature vector; (2) v; € R% is the unknown linear parameter at step .

* The next state s5,1 is drawn from the distribution Py p, (-|Sp, wn, an) = ¥(Sp, wa, ap) " My(-), where

My, = (M}EI),M}?), . ,M}(ld”’)) is a vector of dy, unknown measures over S at step h.

* The outcome wy, € R subjects to a generalized linear model (GLM), which models a wider range of
hypothesis function classes.* Given the context cy,, there exists a link function f : R — R such that
wp = f(d(ch) T 07) + 25, where ¢(-) € R is a feature vector and 6} € R% is an unknown parameter.
The noises {zp, } e () are independent o-sub-Gaussian variables with zero mean. We denote the prior

of wy, with parameter 6 at context c as pg(+|c).

Without loss of generality, we assume that there exist ®, ¥ such that ||¢(s)|| < @, ||[¢(s,w,a)|| < ¥
forall s € S,w € Qand a € A. We also assume that [|0; | < Lg, ||7;|| < L+, [|M;|| < L, [A| > 2,

|2| > 2. Such a regularity condition is common in the RL literature.

IN

3In the case of the online shopping platform, the prior of consumer interests may be affected by the different holidays or seasons
at different time of year.

“We note that GLM is a strictly generalization of the linear model assumption that we have for the distribution of transition
kernel P. While we could use similar technique to extend the distribution of P to GLM using techniques similar to that in Wang
et al. [52], but we save such an extension for simplicity, since it is not the primary focus of our work.

3For the simplicity of notation, we will omit the subscript of the norm whenever it is an Lo norm in this paper.
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3.3 Optimal Signaling Policy in MPPs

In order to maximize the sender’s utility, we study the optimal policy in MPPs, in analogy to that of standard
MDPs. We start by considering the value of any feasible policy 7. For each step h € [H], we define the
value function for the sender V}7 : & — R as the expected value of cumulative utilities under 7 when

starting from an arbitrary state at the h-th step. That is, for any s € S, h € [H|, we define

sh:s],

where the expectation Ep , . is taken with respect to the randomness of the trajectory (i.e., randomness of

H

Vi (s) = Eppx [ > vn (swrwiry an)
W=h

state transition), realized outcome and the stochasticity of 7. Accordingly, we define the Q-function (action-
value function) Q7 : S x © x A — R which gives the expected value of cumulative utilities when starting

from an arbitrary state-action pair at the h-step following the signaling policy 7r, that is,

H
Qh(s,w,a) = vp(s,w,a) + EP“qu|: Z e (Shr, Whts anr) | s = 8,wh = w, ap = al.
h'=h+1
By definition, Qx(-,-,-), Va(:) € [0, ], since vp(-,-,-) € [0,1]. To simplify notation, for any ()-function

@7, and any distributions p, and 7, over €2 and A, we additionally denote

<Qh7 J 7Th>QXA(S) = Ew’\//.l,h,a'\/ﬁh(-|8,w) [Qh(37w7 CL)] :

Using this notation, the Bellman equation associated with signaling policy 7 becomes

QZ(vava) = (Uh + Pthﬂ+1)(8,w,a), szr(s) = <Q;Lr>,uh ® 7Th>Q><_A(S)> V;{T—i-l(s) = 07 (31)

which holds for all s € S,w € Q,a € A. Similarly, the Bellman optimality equation is

QZ(S,&),G) = (Uh +thf;k+1)(37w7a)7 V;(S) = max <Q>}kw,uh®ﬂ';z>ﬂ><.4(s)7 VI§+1(S) = 0.
y, EPers(pup un)
(3.2)
We remark that the above equations implicitly assume the context C' = {cy } ne(#) (and thus the priors)
are determined in advance. To emphasize the values’ dependence on context which will be useful for the
analysis of later learning algorithms, we extend the notation to V;"(s; C), Q7 (s,w, a; C) to specify that the

value (resp. Q) function is estimated based on which prior ¢ conditioned on which sequence of context C'.

A Note on Computational Efficiency. We note that the above Bellman Optimality Equation in (3.2) also
implies an efficient dynamic program to compute the optimal policy 7v* in the basic tabular model of MPP in

Subsection 3.1, i.e., when s € S,w € Q,a € A are all discrete. This is because the maximization problem in
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equation (3.2) can be solved efficiently be a linear program. The generalized MPP of subsection 3.2 imposes
some computational challenge due to infinitely many outcomes and states. Fortunately, it is already known
that planning in the infinite state MDP with linear function approximation can also be solved efficiently
[25]. Following a similar analysis, we can determine Q) (-, -, -) through a linear function of ¢; € R% with
the observed feature (-, -, ). Hence, the dominating operation is to compute MAX e Pers (1, up) (QF, pn ®
Th)ax.A(s) at each step. Let the sender utility function be @} ; such an optimization is exactly the problem
of optimal information design with infinitely many outcomes but finitely many actions, which has been
studied in previous work [15]. It turns out that there is an efficient algorithm that can signal on the fly for
any given outcome w and obtains an e-optimal persuasive signaling scheme in poly(1/¢) time. Therefore, in
our later studies of learning, we will take these algorithms as given and simply assume that we can compute
the optimal signaling scheme efficiently at any given state s. One caveat is that our regret guarantee will
additionally lose an additive e factor at each step due to the availability of only an e-optimal algorithm, but

this loss can be negligible when we set ¢ = O(1/(T'H)) by using a poly(T'H ) time algorithm.

4 Reinforcement Learning in MPPs and the Optimism-Pessimism Principle

In this section, we study online reinforcement learning (RL) for learning the optimal signaling policy on an
MPP. Here the learner only knows the utility functions of the receivers® and has no prior knowledge about the
prior distribution, the sender’s utility function, and the transition kernel. While the computation of optimal
policy in MPPs in Section 3.3 may appear analogous to that of a standard MDP, as we will see that the
corresponding RL problem turns out to be significantly different, partially due to the presence of the stream
of receivers, whose decisions are self-interested and not under the learner’s control. This makes the learning
challenging because if the receivers’ incentives are not carefully addressed, they may take actions that are
extremely undesirable to the learner. Such concern leads to the integration of the pessimism principle into
our learning algorithm design. Specifically, our learner will be optimistic to the estimation of the Q-function,
similar to many other RL algorithms, in order to encourage exploration. But more interestingly, it will be
pessimistic to the uncertainty in the estimation of the prior distributions in order to prepare for detrimental
equilibrium behavior. Such dual considerations lead to an interesting optimism-pessimism principle (OPP)
for learning MPPs under the online setting. From a technical point of view, our main contribution is to
prove how the mixture of optimism and pessimism principle can still lead to no regret algorithms, and this
proof crucially hinges on a robust property of the MPP model which we develop and carefully apply to the
regret analysis. To the best of our knowledge, this is the first time that OPP is employed to learn the optimal
information design in an online fashion. We prove that it can not only satisfy incentive constraints but also
guarantees efficiency in terms of both sample complexity and computational complexity.

In order to convey our key design ideas before diving into the intricate technicalities, this section singles

® The receiver’s utility is known to the sender because the pricing rules are usually transparent, some are even set by the platform.
For example, a rider-sharing platform usually sets per hour or mile payment rules for the drivers.
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out two representative special cases of the online sequential information design problem. In a nutshell,
we present a learning algorithm OP 4 that combines the principle of optimism and pessimism such that the
sender can learn to persuade without initially knowing her own utility or the prior distribution of outcomes.
In the tabular MPP, we illustrate the unique challenges of learning to persuade arising from the dynamically
evolving environment state according to a Markov process. Through the contextual Bayesian persuasion,
we showcase the techniques necessary for learning to persuade with infinitely many states (i.e., contexts)
and outcomes. We shall omit most proofs in this section to focus on the high-level ideas, because the proof

for the general setting presented in Section 5 suffices to imply all results for the two special cases here.

4.1 Learning Optimal Policies in MPPs: Setups and Benchmarks

We consider the episodic reinforcement learning problem in finite-horizon MPPs. Different from the full
knowledge setting in Section 3.3, the transition kernel, the sender’s utility function and the outcome prior at
each step of the episode, { Py, vp, pn } he[H]> are all unknown. The sender has to learn the optimal signaling
policy by interacting with the environment as well as a stream of receivers in 7' number of episodes. For each
t € [T] = {1,---,T}, at the beginning of ¢-th episode, given the data {(c},, s}, w},, a},, V},) ne[H],reft—1]»
the adversary picks the context sequence {c}, } ne[H)] as well as the initial state s!, and the agent accordingly
chooses a signaling policy 7! = {ﬂfl} ne(#)]- Here vy is the utility collected by the sender at step % of episode

T.

Regret To evaluate the online learning performance, given the ground-truth outcome prior pt* = {u} } he[H]>

we define the sender’s total (expected) regret over the all 7" episodes as

MH

Reg (T, p1*) [vl (st; 0t — v (st o). @.1)

t=1
Note that if 7! is not always feasible under p*, but is only persuasive with high probability, so the corre-
sponding regret under 7! should be also in high probability sense.

It turns out that in certain degenerate cases it is impossible to achieve a sublinear regret. For example,
if the set of possible posterior outcome distributions that induce some a € A as the optimal receiver action
has zero measure, then such posterior within a zero-measure set can never be exactly induced by a signaling
scheme without a precise knowledge of the prior. Thus, the regret could be Q(7') if receiver cannot be
persuaded to play such action a. Therefore, to guarantee no regret, it is necessary to introduce certain
regularity assumption on the MPP instance. Towards that end, we shall assume that the receivers’ utility

w and prior y at any step of the MPP instance always satisfies a minor assumption of (pg, D)-regularity as
defined below.
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Regularity Conditions An instance satisfies (pg, D)-regularity, if for any feasible state s € S and context
¢ € C, we have
PMN“(,‘C) [w S WS,G(D)] >pg, Vace A,

where 11 is the ground-truth prior of outcomes and W ,(D) £ {w : u(s,w,a) — u(s,w,a’) > D,Va' €
A/{a}} is the set of outcomes w for which the action a is optimal for the receiver by at least D at state s. .
In other words, an instance is (pg, D)-regular if every action a has at least probability py, under randomness
of the outcome, to be strictly better than other actions by at least D. This regularity condition is analogous

to a regularity condition of Zu et al. [61] but is generalizable to infinite outcomes as we consider here.

4.2 Algorithm: Optimism-Pessimism Principle for Persuasion Process (OP4)

The learning task in MPPs involves two intertwined challenges: (1) How to persuade the receiver to take
desired actions under unknown w5,? (2) Which action to persuade the receiver to take in order to explore
the underlying environment? For the first challenge, due to having finite data, it is impossible to perfectly
recover . We can only hope to construct an approximately accurate estimator of uy. To guard against
potentially detrimental equilibrium behavior of the receivers due to the prior estimation error, we propose
to adopt the pessimism principle. Specifically, before each episode, we conduct uncertainty quantification
for the estimator of the prior distributions, which enables us to construct a confidence region containing
the true prior with high probability. Then we propose to find the signaling policy within a pessimistic
candidate set—signaling policies that are simultaneously persuasive with respect to all prior distributions
in the confidence region. When the confidence region is valid, such a pessimism principle ensures that
the executed signaling policy is always persuasive with respect to the true prior. Furthermore, to address
the second challenge, we adopt the celebrated principle of optimism in the face of uncertainty [28], which
has played a key role in the online RL literature. The main idea of this principle is that, the uncertainty
of the ()-function estimates essentially reflects our uncertainty about the underlying model. By adding
the uncertainty as a bonus function, we encourage actions with high uncertainty to be recommended and
thus taken by the receiver when persuasiveness is satisfied. We then fuse the two principles into the OP 4

algorithm in Algorithm 1.
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Algorithm 1 OP4 Overview
1: forepisodet =1...7 do
2:  Receive the initial state {s!} and context C* = {cf }_ .
3. For each step h € [H|, estimate prior NZ along with the confidence region 1t » and construct an

optimistic QQ-function Qﬁl iteratively with the value function V}f.
4. forsteph=1,...,Hdo

5: Choose robust signaling scheme ﬂfl € arg maXWhGPerS(uBE un) <Q§l, /ﬁ;l ® 7Th>QXA(s§l; ch).

6: Observe state sj,, outcome wy, and accordingly recommend action a ~ ﬂﬁ(wh, -) to the receiver.
7. end for

8: end for

Pessimism to Induce Robust Equilibrium Behavior From the data in the past episode, the sender can
estimate the mean of the prior as well as obtain a confidence region through concentration inequalities.
Given this partial knowledge of the prior distribution, the sender needs to design a signaling scheme that
works in the face of any possible priors in the confidence region in order to ensure the receiver will take
its recommended action with high probability. Specifically, we let Bx(0,5) = {6’ : ||¢' — 0||x < S}
denote the closed ball in |||y norm of radius 3 > 0 centered at § € R%. For any set B C R%, we let
Pers(up, u) denote the set of signaling policies that are simultaneously persuasive under all weigh vectors
6 € B: Pers(up,u) = (\gep Pers(ug, u). For any non-empty set 3, the set Pers(y,u) is convex since
it is an intersection of convex sets Pers(jg, u), and is non-empty since it must contain the full-information
signaling scheme. We note that since Pers(uz,u) is a convex set, we can solve the linear optimization

among the policies in Pers(uz, ©) in polynomial time (see e.g., [61]).

Optimism to Encourage Exploration In order to balance exploration and exploitation, we adopt the
principle of optimism in face of uncertainty to the value iteration algorithm based on Bellman equation,
following in a line of work in online RL such as Q)-learning with UCB exploration [24], UCBVI [4], LSVI-
UCB [25] (also see [50, 56, 51] and the references therein). The additional UCB bonus on the ()-value
encourages exploration and has been shown to be a provably efficient online method to improve policies in
MDPs. Moreover, this method not only works for the simple tabular setting, but also generalizes to settings
with infinite state spaces by exploiting linearity of the (Q-function and a regularized least-squares program
to determine the optimal estimation of ()-value. In fact, within our framework, we could obtain efficient
learning result in the infinite state space setting through other optimism-based online RL methods and gen-
eral function approximators, such as linear mixture MDPs [3, 60, 9, 59], or kernel approximation [56] or
bilinear classes [13].

To provide a concrete picture of the learning process, we instantiate the OP4 algorithm in two special
cases and showcase our key ideas and techniques before delving into the more involved analysis of the
generalized MPP setting. Nevertheless, we remark that whether the problem instance is tabular or in the

form of linear or generalized linear approximations is not essential and not the focus of our study. OP 4 itself
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only relies on two things, i.e., the uncertainty quantification for (J-function and prior estimation. So even the
model-free RL framework can be replaced by model-based RL, as we can just construct confidence region

for the transition models.

4.3 Warm-up I: Reinforcement Learning in the Tabular MPP

We first consider MPPs in tabular setting with finite states and outcomes, as described in Section 3.1. In
this case, the prior on outcomes at each step degenerates to an unknown but fixed discrete distribution
independent of context. As linear parameterization is not required for discrete probability distribution, the
algorithm can simply update the empirical estimation of 4 through counting. Similarly, the transition
kernel Py is estimated through the occurrence of observed samples, and we uses this estimated transition to
compute the Q)-function @ﬁl from the observed utility and estimated value function in the next step, according
to the Bellman equation. To be specific, for each s € S,w € Q,a € A, :“1;1 and @z are estimated through

the following equations:

M| 4+ Nyp(w)

t
A 1 T T T T T
QZ(S,&),G) <~ N+ Nt,h(s,w,a) E : {H(Sh = S,wp =Ww,a, = CL) [vh + fo+1(3h+1)] }’

TE[t—1]

where N, j,(w) = ZTe[t_l] I(w} = w) and Nyp(s,w,a) = ZTe[t_l] I(s] = s,w! = w,al = a) respec-
tively count the effective number of samples that the sender has observed arriving at w, or the combination
{s,w,a}), and A > 0 is a constant for regularization.

In our learning algorithm, we determine the radius of confidence region B}; for /ﬁ;l according to con-
fidence bound €, = O(y/log(HT)/t). Moreover, we add a UCB bonus term of form p/\/N; (s, w,a)
to @2 to obtain the optimistic Q-function Qz. Then, it selects a robustly persuasive signaling scheme that
maximizes an optimistic estimation of Q-function with respect to the current prior estimation . Finally,

it makes an action recommendation a}, using this signaling scheme, given the state and outcome realization
toot
{sh Wi}

Theorem 4.1. Let €}, = O(\/1/t), and p = O(|S| - Q| - |A|H). Then under (po, D)-regularity, with
probability at least 1 — 3H-YT~1, 0P4 has regret of order 6(|C’|(|S| -9 - |A])*% - H2VT/(poD)) in
tabular MPPs.

To obtain the regret of OP 4, we have to consider the regret arising from different procedures. Formal
decomposition of the regret is described in Lemma 6.1. Separately, we upper bound errors incurred from
estimating (Q-function (Lemma 6.2), the randomness of of choosing the outcome, action and next state
(Lemma A.5) as well as estimating the prior of outcome and choosing a persuasive signaling scheme that

is robustly persuasive for a subset of priors (Lemmas 6.3 and 6.4). As the two warm-up models are special
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cases of the general MPP, the proof of the above properties follows from that of the general MPP setting in

Section 6, and thus is omitted here.

4.4 Warm-up II: Reinforcement Learning in Contextual Bayesian Persuasion

We now move to another special case with H = 1, such that the MPP problem reduces to a contextual-
bandit-like problem, where transitions no longer exist. Given a context ¢ and a persuasive signaling policy

m, the value function is simply the sender’s expected utility for any s € S,

VT(s;c) = / Zu(w|c)7r(a|s,w)v(s,w,a)dw.

“acA

The sender’s optimal expected utility is defined as V*(s; ¢) = maX epers(u(-|c)u) V" (55 €)-

Meanwhile, we consider the general setting where outcome w is a continuous random variable that
subjects to a generalized linear model. To be specific, the prior p is conditioned on the context ¢ with the
mean value f(¢(c) ' 6). For the prior 1 and link function f, we assume the smoothness of the prior and the

bounded derivatives of the link function:

Assumption 4.2. There exists a constant L, > 0 such that for any parameter 61, 0>, we have H o, (+|c) —
ugz(-\c)Hl < Ly||f (o) T01) = f(d(c) T 62)|| for any given context c.

Assumption 4.3. The link function f is either monotonically increasing or decreasing. Moreover, there
exists absolute constants 0 < k < K < oo and 0 < M < oo such that k < |f'(z)| < K and |f"(z)| < M
Sorall |z| < ®Ly.

It is natural to assume a Lipschitz property of the distribution in Assumption 4.2. For instance, Gaussian
distributions and uniform distributions satisfy this property. Assumption 4.3 is standard in the literature
[18, 52, 32]. Two example link functions are the identity map f(z) = z and the logistic map f(z) =
1/(1 + e~#) with bounded z. It is easy to verify that both maps satisfy this assumption.

Different from the tabular setting, we are now unable to use the counting-based estimator to keep track
of the distribution of the possibly infinite states and outcomes. Instead, we resort to function approximation
techniques and estimate the linear parameters 8* and ~v*. In each episode, OP 4 respectively updates the esti-
mation and confidence region of 6 and ~¢, with which it can determine the outcome prior under pessimism
and sender’s utility under optimism. To be specific, the update of 0 solves a constrained least-squares

problem and the update of ¢’ solves precisely a regularized one:

0" < arg min > [w” - F(é(e) 0m))7,

0||I<L
et

2
t . T T T T\ 2
< — A .
9" ¢ arg min ; o = v wm,an)Ta|| 4 Al
reli—

R
V€ 1]
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We then estimate the prior by setting ! (-|c) to the distribution of f (qﬁ(c)THt) + z and estimate the sender’s
utility by setting v(-,-,-) = 9(,-,-) "4*. On one hand, to encourage exploration, OP 4 adds the UCB bonus
term of form p [[¢)(-, -, -) || p+)-1 to the Q-function, where It =g, + Dore (T W, aT)Y(sT, W, a™)’
is the Gram matrix of the regularized least-squares problem and p is equivalent to a scalar. This is a common
technique for linear bandits. On the other hand, OP 4 determines the confidence region of #' with radius 3,
and ensures that signaling scheme is robustly persuasive for any possible (worst case) prior induced by linear
parameters 6 in this region. Combining optimism and pessimism, OP 4 picks the signaling scheme among

the robust persuasive set that maximizes the sender’s optimistic utility.

Theorem 4.4. Under (pg, D)-regularity and Assumption 4.2 and 4.3, there exists an absolute constant
C1,Cy > 0 such that, if we set A\ = max{1,¥?}, 8 = C1(1 + ™ '\/K + M + dyo?log(T)), and p =
Caody+/1og(4d,, W2T3), then with probability at least 1—3T 1, OP4 has regret of order 5(d¢, /di \/T/(poD))

in contextual Bayesian persuasion problems.

Since we estimate the prior by computing an estimator 6°, we evaluate the persuasiveness of OP 4 through
the probability that * lies in the confidence region centered at #° with the radius 3 = O(\/m ) in
weighted norm. Due to the smoothness of the prior and the assumption of link function, the error of the
estimated prior is bounded by the product of 3 and the weighted norm of feature vector |¢(c')|lse =
O(1/+/t), which yields the same conclusion for €’ in the tabular MPP case. Also compared to Li et al. [31],
we do not require any regularity for ¥, since we add a constant matrix ®21 to the Gram matrix X¢. This
ensures that X! is always lower bounded by the constant ®? > 0. The proof of the persuasiveness and
sublinear regret of contextual bandit can be viewed as a direct reduction of the MPP case when the total step
H = 1. We decompose the regret in the same way as that in Lemma 6.1 for MPPs and then estimate the

upper bound for each item to measure the regret loss.

5 No-Regret Learning in the General Markov Persuasion Process

In this section, we present the full version of the OP 4 algorithm for MPPs and show that it is persuasive with
high probability and meanwhile achieves average regret 5(d¢ . df’/ ’H 2T / (poD)).

In the general MPP setting with the linear utility and transition, a crucial property is that the ()-functions
under any signaling policy is always linear in the feature map ¢ (akin to linear MDPs [25]). Therefore,
when designing learning algorithms, it suffices to focus on linear Q)-functions. In our OP4 algorithm, we
iteratively fit the optimal Q-function, which is parameterized by g;; as ¥ (-, -, -)Tq;; at each step h € [H].
OP 4 learns the Q-functions of MPPs and the prior of persuasion states simultaneously. It operates similarly
as that in tabular MPPs and contextual Bayesian persuasion. At the ¢-th episode, given the historical data
{(ch, 87,7, afy, v})) YhelH) reft—1)> We can estimate the unknown vectors 0}, g, Vh € [H] by solving the

following constrained or regularized least-squares problems:
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02 + argmin [w; — f(¢(C;)T9h)]2a
10r1I<Lo 1)

3 T T T T T 2
gj, ¢ argmin Z [’Uh + fo+1(3h+1§ C') - ¢(3hawh7ah)TQ] + Allgll?.
q€R™ relp—1]

Additionally, V! 1 18 the estimated value function with the observed context C'" at the episode t, which we
describe formally later. This estimator is used to replace the unknown transition P, and distribution v/, in
equation (3.2). Moreover, we can update the estimate of outcome prior pf, and Q-function Q) respectively.
Here 0P 4 adds UCB bonus to @ to encourage exploration. The formal description is given in Algorithm
2.

Likewise, the MPP setting inherits the regularity conditions and Assumption 4.2 and 4.3 in the last
section. Combining the insights from both the tabular MPPs and contextual Bayesian persuasion, we can

show that the OP 4 is persuasive and guarantees sublinear regret with high probability for general MPPs.

Theorem 5.1. Under (pg, D)-regularity and Assumption 4.2 and 4.3, there exists absolute constants C,Cy >
0 such that, ifwe set A = max{1, 92}, B = C1(14+£~ /K + M + dyo?log(HT)),and p = CadyH \/log(4d,, V2 H?T?),
then with probability at least 1 — 3H~'T~1, 0P 4 has regret of order 6(d¢d?/2H2\/T/(poD)).

Recall that the novelty of OP4 is that we adopt pessimism and optimism to induce robust equilibrium
behavior and encourage exploration simultaneously. Specifically, pessimism tackles the uncertainty in the
prior estimation by selecting a signaling policy that is persuasive w.r.t. all the priors in the confidence region,
while optimism in ()-function estimation encourages exploration. To evaluate the regret of OP4, we provide
a novel regret decomposition, which is tailored to this pessimism and optimism combination. Each term

represents different aspects of regret loss incurred by either estimation or randomness.

6 Proof Sketch and Technical Highlights

In this section, we present the proof sketch for Theorem 5.1. We first decompose the regret into several
terms tailored to MPPs and briefly introduce how to bound each term. Then we highlight our technical
contribution about regularity when measuring the loss in the sender’s utility for choosing a signaling scheme

that is persuasive for a subset of priors close to each other.

6.1 Proof of Theorem 5.1

In order to prove the sublinear regret for OP 4, we construct a novel regret decomposition tailored to MPPs.
Our proof starts from decomposing the regret into several terms, each of which indicates the regret loss

either from estimation or from the randomness of trajectories. Next, we evaluate each term and then add
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them together to conclude the upper bound of the regret of OP4. For simplicity of presentation, denote
Vi 0) = (Qs 15, @ 7], ) 4 (3 O) as the expectation of @, with respect to the ground-truth prior 4 and

signaling scheme 7}, at the h-th step. Then we can define the temporal-difference (TD) error as
0p(s,w, a) = (v, + PaViipr — Qh)(s,w,0;C"). (6.1)

Here d; is a function on S x Q x A forall h € [H] and ¢ € [T). Intuitively, {0}, }c(m) quantifies how far the
Q@-functions {QZ} ne(m) are from satisfying the Bellman optimality equation in equation (3.2). Moreover,
define ¢/}, and (2, for the trajectory {c}, s, w}, af, }pe ) generated by Algorithm 2 at the ¢-th episode as

follows

G = (V= Vi) (sh: €Y — (QF — Q7 ) (s, wh, ab; CY),

(6.2)
<t2,h = Ph(Vif-H - V;le)(SZ,WZ,aZ; Ct) - (V}f+1 - V}j+1)(32+1§ Ct)-

By definition, Ctl , capture the randomness of realizing the outcome w}, ~ % (-|c;) and signaling the action
aj, ~ (s}, w},, ), while (7, captures the randomness of drawing the next state sj, , ; from Pj(-|s},, w},, -).
With the notations above, we can decompose the regret into six parts to facilitate the establishment of the

upper bound of the regret.

Lemma 6.1 (Regret Decomposition). With the notations defines in equation (6.1) and (6.2), we can write

the regret as:
Reg T ©) Z Z {Euhﬂrh 5h 3h7wh7ah)’31 - 31] 52(327(*)27@2)} + Z Z (Ctl,h + Ctz,h)
te|T) he[H) te[T) he[H]
(i) (i)

+ Z Z E“h’wh Qh? K, ®7Th M;’L ®7T;L>Q><A(Sh;ct)‘sl = Sﬂ
te[T] he[H]

(iii)
+ >0 D (@ h — ) © ) g (55 C") -

te[T] he[H]

(iv)
(6.3)

In this novel regret decomposition, term (i) indicates the optimism in OP4. Provably, ! in term (i) is
always non-positive due to the optimistic ()-value estimation, which could simplify this term. Term (iii)
corresponds to the pessimism in OP 4 for inducing a robust equilibria. It evaluates the regret loss incurred by
choosing a robustly persuasive signaling policy. Since the signaling policy has to be persuasive to ensure that

receivers will always take recommended actions, we cannot simply choose a greedy policy for a fixed prior
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estimation. Instead, we first apply optimism to construct the optimistic (J-value estimation and then apply
pessimism to select a signaling policy that is robustly persuasive for all the priors in the confidence region.
Therefore, we design the regret decomposition, especially term (iii) in this form to reflect the optimism
and pessimism principle in OP4. Notice that this decomposition does not depend on specific function
approximation forms in the algorithm, since not only the estimation of prior and ()-function but also the
chosen signaling policy has no influence on this formula. Therefore, it generally suits all the algorithms for
MPPs.

Unlike the regret decomposition in [56], Lemma 6.1 also captures the randomness of realizing the out-
come. Since we have to estimate the prior of the outcome and choose a robustly persuasive policy in MPPs,
we add term (iii) and (iv) to evaluate the further regret loss.

The rigorous arguments turn out to be technical, and thus we shall defer the proof of most lemmas to
the appendix while aiming to present all the key ideas and conclusions in the following. For term (i) in
equation (6.3), although we do not observe the trajectories under prior u* and signaling policy 7*, we can

upper bound both 6! and —d}. The following lemma states this result.

Lemma 6.2 (Optimism). There exists an absolute constant ¢ > 0 such that, for any fixed 6 € (0,1), if we
set A = max{1,V%} and p = cd, H+/v in Algorithm 2 with v = log(2d,V*T/5), then with probability at
least 1 — /2, we have

=2p|¥(s,w,a) [t y-1 < G (s,w,a) < 0.

forallse€ S,weQaec A he[Hlandt € [T).

Term (ii) in equation (6.3) can be bounded by Lemma 5.3 from [56] using martingale techniques and the
Azuma-Hoeffding inequality [5]. We state the upper bound for term (ii) in Lemma A.5. Moreover, term (iii)
in equation (6.3) evaluates the regret loss caused by estimating the prior and choosing a robustly persuasive

signaling policy. Here, we apply the robustness gap Gap defined later to bound this term.

Lemma 6.3 (Bounding Term (iii)). On the event of {0; € B!}, under Assumption 4.2 and 4.3, we have
Z Z Eu;,nz [<Q§w ,U;kl & 7T;; — 'uz ® 7T2>Q><_A(sh; Ct)|81 _ Sﬂ

te[T] he[H)
BHL,K | HL,K
< (UEE L R S 5 lohlsy
Po he[H] te[T]

It remains to bound term (iv) in equation (6.3). This bound can be derived from Holder inequality and

the property of the prior.

Lemma 6.4 (Bounding Term (iv)). On the event of {0} € B\ }, under Assumption 4.2 and 4.3, we have

Z Z (@hs (h = 113) @ Th) o 4 (533 CY) < HL,K B Z Z lo(ch)ll sty

te[T)| he[H| he[H] te[T]
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Now we are ready to prove our main result, Theorem 5.1. By the decomposition in Lemma 6.1 and all

previous lemmas, let 8 = C(1 + x~'\/K + M + dy0?log(HT)), and then we obtain the following upper

bound for regret:

Reg (T, 1*) <4v/2TH31og(2HT)
3HL,K 3HL K
F X S [2olotshhah ey -+ (2 2 ot g |

te[T] helH)

With the probability of the given event by Lemma 6.8 and appropriately chosen ¢ in previous lemmas, the
above inequality holds for the probability at least 1 — 3H ~'7~1,

By Lemma A.6, we have

Reg(T, ") < 2y/2TH1og(2HT) + 2pH /24, Tlog (1 + TT2/(Ady))

3

+ BH?L K(po—D + ) \/2d¢Tlog (1+7T/(dy))-

Since Bis in O, /dy) and pisin 5(de), we can conclude that the regret of Algorithm 2 is O (d¢d§/2H2 VT/(poD)).

6.2 Inducing Robust Equilibria via Pessimism

One necessary prerequisite is that the signaling policy given by OP 4 has to be persuasive to ensure receivers
to take recommended actions. However, the optimal signaling policy that is persuasive for the estimated
prior can hardly be also persuasive for the true prior, even if the estimation is quite close to it. To ensure
persuasiveness under the prior estimation error, we adopt pessimism principle to select a signaling policy
that is robustly persuasive for all the priors in the confidence region. And we shall quantify the extra utility
loss suffered by the pessimism principle. In this subsection, we start by showing that there exists a robust
signaling scheme that suffers only O(e) utility loss compared to the optimal expected utility of persuasion
algorithm designed with precise knowledge of the prior. Formally, in basic MPP, given any fixed -function

Q(-,-,-), we define the robustness gap for some state s € S and any prior u € B C A(Q) as

o (51 BQ) & oty (@0 T)an)= g (QuOTad: 6

We let B(u,e) = {p/ € A(Q) : [|u— 1||; < €} be the ¢1-norm ball centered the prior distribution £ with

radius e.

Lemma 6.5 (Pessimism). Under (pg, D)-regularity, for all e > 0, given a Q-function Q, for any state s € S,

we have
Gap (s, 1, B(p, €); Q) < —=.
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The proof is given in Appendix A.2. This result extends Proposition 1 in [61]. Notice that the upper
bound of Gap(+;-) does not depend on the value of (), which is important for our analysis. Once given a
signaling algorithm, at each episode ¢ € [T'] and each step h € [H]|, we are able to obtain an estimation of
Q-function with an explicit form. It is equivalent to the “known” ()-function mentioned in equation (6.4).
Using Gap(-; -), we can estimate the expected sender’s utility loss for choosing a signaling mechanism that
is persuasive for all priors in a subset. Moreover, if we consider the dependence on context for priors and
add the linear assumption of priors to the proceeding lemma, we can bound Gap(+;-) by the difference of

linearity parameter 6.

Corollary 6.6. Under (po, D)-regularity and Assumption 4.2 and 4.3, given a Q-function Q) and context
¢, for any state s € S, prior py(-|c) and confidence region B = {ug (-|c) : 0 € Bx(6,¢€)}, we have
Gap(s, po(-|c), B; Q) < HL,K||¢(c)||s-1¢/(poD).-

In MPPs, we have to estimate the prior of the outcome since we cannot observe the ground-truth prior.
However, the estimation may not satisfy the regularity conditions, which conflicts with the requirements for
the prior when proving Lemma 6.5. To address this problem, we give another upper bound of the robustness
gap for the prior estimation in Lemma A.1. In addition, to handle the regret loss incurred by estimating the
prior, we compute the difference in (Q-functions when choosing respectively persuasive scheme for different
priors in Lemma A.2.

We now prove that the above pessimism design guarantees persuasiveness w.r.t. the true prior with high
probability. And it suffices to show that the estimation 67 is close enough to the real parameter 6} such that
the confidence region BZ centered at 9}1 given in Algorithm 2 contains 6} . If so, the signaling scheme chosen
to be persuasive for the whole set 02 is also persuasive for 15, where pi3 = {pg : 0" € B} denotes the set

of priors that are determined by the parameters 6’ € B.

Lemma 6.7. There exists a constant C > 0, such that for § = C(1 + k™1\/K + M + dg0?log(HT)),
oP4 Algorithm is persuasive with probability at least 1 — H™'T~1 i.e.,

Pe*( U {6 ¢ ﬂtemBZ}> <H T

he[H]

Proof. We first analyze the probability for being non-persuasive. For any ||6;|| < Ly, using the union bound,

we have

P9*< U {0h ¢ mte[T]BZ}> < Z Z Py (65 & Niepr) B)
te

[T],h€[H] te[T] he[H]

<D P (10— Gills: > B).

te[T) he[H]|

The following lemma gives the belief of confidence region for the linear parameter ;. The proof can be
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directly derived from Lemma 6 in Wang et al. [52].

Lemma 6.8 (Belief of Confidence Region). For any t € [T] and h € [H], there exists a constant C' > 0,
such that for B = C(1 4 £~ '\/K + M + dyo?log(1/4)), given & € (0, 1), with probability at least 1 — 9,
we have |6} — Ohlls < B

By Lemma 6.8, taking § = H 2T ~2, then we have Py« (|0} — Opllse > B) < H~27~2. Summing up
the failure probabilities over ¢ € [T'], we have Pg- (0* ¢ MyerB') < H~'T~1. O

7 Conclusion

We have presented a novel model, the MPP, which captures the misaligned incentives of uninformed deci-
sion makers and the long-term objective of an information possessor for the first time. We then provide a
reinforcement learning algorithm, OP 4, that is provably efficient in terms of both computational complex-
ity and sample complexity, under mild assumptions. We remark that while we showcase this algorithm in
particular problem instances with linear approximation or GLMs, the framework of OP4 does not rely on
the function approximation form, as long as we can quantify the uncertainty of the prior estimation and
Q-function (or transition model). In addition, we expect this optimism-pessimism design principle and
its corresponding proof techniques to be generally useful for some other strategic learning problems with
misaligned incentives involved.

Besides extending our techniques to other design problems, we point out that several other open prob-
lems arises from our work. First, while it is natural that the sender have knowledge of receiver’s utility
functions in many cases (see Footnote 6), we hope to also study the problem even without initially knowing
receiver’s utility. Similar problem has been studied in Stackelberg games [40, 10] yet without measuring
the performance in terms of the cumulative utility of sender (leader). Second, another interesting direction
is to study the setting of Markov Bayesian persuasion with one sender and one receiver, both aiming at

maximizing their own long-term cumulative utilities when the environment involves Markovian transitions.

References

[1] Agarwal, A., Jiang, N., Kakade, S. M. and Sun, W. (2019). Reinforcement learning: Theory and algo-
rithms. CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep.

[2] Auer, P., Jaksch, T. and Ortner, R. (2008). Near-optimal regret bounds for reinforcement learning.

Advances in neural information processing systems, 21.

[3] Ayoub, A.,Jia, Z., Szepesvari, C., Wang, M. and Yang, L. (2020). Model-based reinforcement learning

with value-targeted regression. In International Conference on Machine Learning. PMLR.

24



(4]

(5]

(6]

[7]
(8]

(9]

[10]

[14]

[15]

[16]

[17]

[18]

Azar, M. G., Osband, I. and Munos, R. (2017). Minimax regret bounds for reinforcement learning. In

International Conference on Machine Learning. PMLR.

Azuma, K. (1967). Weighted sums of certain dependent random variables. Tohoku Mathematical
Journal, Second Series, 19 357-367.

Badanidiyuru, A., Bhawalkar, K. and Xu, H. (2018). Targeting and signaling in ad auctions. In Pro-
ceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM.

Bellman, R. (1957). A markovian decision process. Indiana Univ. Math. J., 6 679-684.

Bergemann, D. and Morris, S. (2019). Information design: A unified perspective. Journal of Economic
Literature, 57 44-95.

Cai, Q., Yang, Z., Jin, C. and Wang, Z. (2020). Provably efficient exploration in policy optimization.

In International Conference on Machine Learning. PMLR.

Conitzer, V. and Sandholm, T. (2006). Computing the optimal strategy to commit to. In Proceedings

of the 7th ACM conference on Electronic commerce.

Dann, C., Jiang, N., Krishnamurthy, A., Agarwal, A., Langford, J. and Schapire, R. E. (2018). On

oracle-efficient pac rl with rich observations. Advances in neural information processing systems, 31.

Dann, C., Lattimore, T. and Brunskill, E. (2017). Unifying pac and regret: Uniform pac bounds for

episodic reinforcement learning. Advances in Neural Information Processing Systems, 30.

Du, S., Kakade, S., Lee, J., Lovett, S., Mahajan, G., Sun, W. and Wang, R. (2021). Bilinear classes:
A structural framework for provable generalization in rl. In International Conference on Machine
Learning. PMLR.

Du, S. S., Kakade, S. M., Wang, R. and Yang, L. F. (2019). Is a good representation sufficient for

sample efficient reinforcement learning? arXiv preprint arXiv:1910.03016.

Dughmi, S. and Xu, H. (2019). Algorithmic bayesian persuasion. SIAM Journal on Computing
STOC16-68.

Ely, J. C. (2017). Beeps. American Economic Review, 107 31-53.

Farhadi, F. and Teneketzis, D. (2021). Dynamic information design: a simple problem on optimal

sequential information disclosure. Dynamic Games and Applications 1-42.

Filippi, S., Cappe, O., Garivier, A. and Szepesvari, C. (2010). Parametric bandits: The generalized

linear case. Advances in Neural Information Processing Systems, 23.

25



[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]
[29]

[30]

[31]

[32]

Gan, J., Majumdar, R., Radanovic, G. and Singla, A. (2021). Bayesian persuasion in sequential
decision-making. arXiv preprint arXiv:2106.05137.

Giannoccaro, I. and Pontrandolfo, P. (2002). Inventory management in supply chains: a reinforcement

learning approach. International Journal of Production Economics, 78 153—161.

Goldstein, I. and Leitner, Y. (2018). Stress tests and information disclosure. Journal of Economic
Theory, 177 34-69.

He, J., Zhou, D. and Gu, Q. (2021). Logarithmic regret for reinforcement learning with linear function

approximation. In International Conference on Machine Learning. PMLR.

Jiang, N., Krishnamurthy, A., Agarwal, A., Langford, J. and Schapire, R. E. (2017). Contextual de-
cision processes with low bellman rank are pac-learnable. In International Conference on Machine
Learning. PMLR.

Jin, C., Allen-Zhu, Z., Bubeck, S. and Jordan, M. I. (2018). Is g-learning provably efficient? Advances

in neural information processing systems, 31.

Jin, C., Yang, Z., Wang, Z. and Jordan, M. 1. (2020). Provably efficient reinforcement learning with

linear function approximation. In Conference on Learning Theory. PMLR.

Kamenica, E. and Gentzkow, M. (2011). Bayesian persuasion. American Economic Review, 101 2590—
2615.

Kober, J., Bagnell, J. A. and Peters, J. (2013). Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32 1238-1274.

Lattimore, T. and Szepesvari, C. (2020). Bandit algorithms. Cambridge University Press.
Lehrer, E. and Shaiderman, D. (2021). Markovian persuasion. arXiv preprint arXiv:2111.14365.

Li, J., Monroe, W, Ritter, A., Galley, M., Gao, J. and Jurafsky, D. (2016). Deep reinforcement learning
for dialogue generation. arXiv preprint arXiv:1606.01541.

Li, L., Lu, Y. and Zhou, D. (2017). Provable optimal algorithms for generalized linear contextual

bandits. CoRR, abs/1703.00048.
http://arxiv.org/abs/1703.00048

Li, L., Lu, Y. and Zhou, D. (2017). Provably optimal algorithms for generalized linear contextual

bandits. In International Conference on Machine Learning. PMLR.

26



[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Li, M., Qin, Z., Jiao, Y., Yang, Y., Wang, J., Wang, C., Wu, G. and Ye, J. (2019). Efficient rideshar-
ing order dispatching with mean field multi-agent reinforcement learning. In The world wide web

conference.

Liang, E., Wen, K., Lam, W. H., Sumalee, A. and Zhong, R. (2021). An integrated reinforcement learn-
ing and centralized programming approach for online taxi dispatching. IEEE Transactions on Neural

Networks and Learning Systems.

Mansour, Y., Slivkins, A., Syrgkanis, V. and Wu, Z. S. (2021). Bayesian exploration: Incentivizing

exploration in bayesian games. Operations Research.

Meisheri, H., Baniwal, V., Sultana, N. N., Khadilkar, H. and Ravindran, B. (2020). Using reinforce-
ment learning for a large variable-dimensional inventory management problem. In Adaptive Learning
Agents Workshop at AAMAS.

Milano, S., Taddeo, M. and Floridi, L. (2020). Recommender systems and their ethical challenges. Ai
& Society, 35 957-967.

Neu, G. and Pike-Burke, C. (2020). A unifying view of optimism in episodic reinforcement learning.

Advances in Neural Information Processing Systems, 33 1392-1403.

Osband, I., Van Roy, B. and Wen, Z. (2016). Generalization and exploration via randomized value

functions. In International Conference on Machine Learning. PMLR.

Peng, B., Shen, W., Tang, P. and Zuo, S. (2019). Learning optimal strategies to commit to. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol. 33.

Puterman, M. L. (2014). Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons.

Qin, Z., Tang, X., Jiao, Y., Zhang, F., Xu, Z., Zhu, H. and Ye, J. (2020). Ride-hailing order dispatching
at didi via reinforcement learning. INFORMS Journal on Applied Analytics, 50 272-286.

Qin, Z. T., Zhu, H. and Ye, J. (2021). Reinforcement learning for ridesharing: A survey. In 2021 IEEE
International Intelligent Transportation Systems Conference (ITSC). IEEE.

Rabinovich, Z., Jiang, A. X., Jain, M. and Xu, H. (2015). Information disclosure as a means to security.
In Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems.

Citeseer.

Renault, J., Solan, E. and Vieille, N. (2017). Optimal dynamic information provision. Games and
Economic Behavior, 104 329-349.

27



[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Russo, D. (2019). Worst-case regret bounds for exploration via randomized value functions. Advances

in Neural Information Processing Systems, 32.

Strehl, A. L., Li, L., Wiewiora, E., Langford, J. and Littman, M. L. (2006). Pac model-free reinforce-

ment learning. In Proceedings of the 23rd international conference on Machine learning.
Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Tang, T. Y. and Winoto, P. (2016). I should not recommend it to you even if you will like it: the ethics

of recommender systems. New Review of Hypermedia and Multimedia, 22 111-138.

Wang, R., Salakhutdinov, R. and Yang, L. F. (2020). Provably efficient reinforcement learning with

general value function approximation.

Wang, T., Zhou, D. and Gu, Q. (2021). Provably efficient reinforcement learning with linear function

approximation under adaptivity constraints. Advances in Neural Information Processing Systems, 34.

Wang, Y., Wang, R., Du, S. S. and Krishnamurthy, A. (2019). Optimism in reinforcement learning

with generalized linear function approximation. arXiv preprint arXiv:1912.04136.

Xiao, W., Zhao, H., Pan, H., Song, Y., Zheng, V. W. and Yang, Q. (2019). Beyond personalization:
Social content recommendation for creator equality and consumer satisfaction. In Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.

Xu, H., Rabinovich, Z., Dughmi, S. and Tambe, M. (2015). Exploring information asymmetry in two-
stage security games. In Twenty-Ninth AAAI Conference on Artificial Intelligence.

Yang, L. and Wang, M. (2019). Sample-optimal parametric g-learning using linearly additive features.

In International Conference on Machine Learning. PMLR.

Yang, Z., Jin, C., Wang, Z., Wang, M. and Jordan, M. 1. (2020). Bridging exploration and general
function approximation in reinforcement learning: Provably efficient kernel and neural value iterations.
CoRR, abs/2011.04622.

https://arxiv.org/abs/2011.04622

Zanette, A., Lazaric, A., Kochenderfer, M. and Brunskill, E. (2020). Learning near optimal policies

with low inherent bellman error. In International Conference on Machine Learning. PMLR.

Zheng, S., Trott, A., Srinivasa, S., Naik, N., Gruesbeck, M., Parkes, D. C. and Socher, R. (2020).
The ai economist: Improving equality and productivity with ai-driven tax policies. arXiv preprint
arXiv:2004.13332.

28



[59] Zhou, D., Gu, Q. and Szepesvari, C. (2021). Nearly minimax optimal reinforcement learning for linear

mixture markov decision processes. In Conference on Learning Theory. PMLR.

[60] Zhou, D., He, J. and Gu, Q. (2021). Provably efficient reinforcement learning for discounted mdps

with feature mapping. In International Conference on Machine Learning. PMLR.

[61] Zu, Y., Iyer, K. and Xu, H. (2021). Learning to persuade on the fly: Robustness against ignorance. EC
’21, Association for Computing Machinery, New York, NY, USA.
https://doi.org/10.1145/3465456.3467593

29



A Omitted Proofs and Descriptions

A.1 Formal Description of the OP4

The formal description of the OP 4 for MPPs is stated as follows:

Algorithm 2 The 0P 4 for MPPs
1: Input: Number of Episodes 7', Number of Step H
2: Parameters: 5 > 0,p >0, A\ € R,
3: Output: af € Aforeach h € [H],t € [T
4: forepisodet =1...7 do
5. Receive the initial state s! and context C* = (¢}, ..., c%)).
6: forsteph=H,...,1do
7 Compute the constrained least square problem

02 + argmin [w; - f(¢(C;)T9h)]2'
10rlI<Lo 1]

N Caleulate X, = 921y, + Y, 1,y &(c})6(c}) . Update B, « By (0}, ).
9: Set 11} (+|c) to the distribution of f(¢(c)T6}) + 2.
10: Calculate

T} =M, + D sk wf ap)(sh,whhaf) |,

TE[t—1]
=D bshwn,ap)lvh + Vi (shaa5 CY))
TE[t—1]

11: Update ¢t < (I'%)~14b .

QZ(? R Ct) A mln{?/’(, K )qu + p||1,Z)(, K ')H(FZ)*MH}»

% et Vi CY) A, €Pers (g un) Qs 1y, @ Th) g 4(5CY).
13:  end for

14: forsteph=1,...,H do

15: Choose 772 € arg maxmepersw% un) <Q§L, uz ® 7Th>QXA(s§L; Ch).
16:  end for

17 Execute 7" to sample a trajectory {(s},w!, al, ”Z)}he[H}-

18: end for

A.2 Proof of Lemma 6.5

Proof. We prove with an explicit construction of a signaling scheme that is robustly persuasive for any prior

in B(u, €) and achieve the expected utility at least maX ecpers(u,u) (Q,p @ ) (s) — He/(poD). To

QxA
simplify the notation, we omit the s in u, ( and W.

Let 7 = arg maX epers(u,u) <Q, JI0%) 7T> x4 De a direct scheme without loss of generality [26]. For
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each a € A, let p,(-) = pu(-) ® 7*(al-) denote the posterior of outcome (i.e., kernel /) that action a is
recommended by 7, so the prior can be composed as ju(-) = >, 4 fa(-). Since 7 is persuasive, we know
Joeq ta(w) [u(w, a) — u(w,a’)] > 0,Vd" € A.

Let ¥ be the fully revealing signaling scheme that always recommends (signals) the action that max-
imizes the receivers’ utility at the realized outcome. For each a € A, let 7,(-) = u(-) ® 7°(al-) de-
note the posterior of outcome that action a is recommended by 7¥, so the prior can be composed as

1(-) = D e Mal-). By regularity condition, we have

/ Na(w) [u(w, a) — u(w,a’)] > / Na(w) [u(w,a) —u(w,a’)] > poD, Vd' € A
weN wEW, (D)

We now show that the signaling scheme ' = (1—§)7* 47" is persuasive for any prior /i € B(u, €) with

0= pOED. One simple way to interpret this “compound” signaling scheme is to follow 7* with probability
(1—6) and follow 7° with probability 6. Hence, given a recommended action a, the receiver would compute
the posterior as pu), = (1—0) ptq (w)+n4 (w). Let ), fiq be the outcome posterior of 7’ recommending action
a under the true prior u (resp. the perturbed prior ). So p,(+) = u(-) @ ©’(al-) and f,(-) = u(-) © 7’(al-).
By definition of persuasiveness, we need to show that for any recommended action (signal from 7') a € A,

the action @ maximizes the receiver’s utility under p,. This follows from the decomposition below,

/ fia - [u(w,a) — u(w,a’)]

we

z/weg o [u(w, a) = u(w, )] — [|fa — 5,

> [ (0= ) + 5nulw)] - [, ) — oo, )] = i —
weN

= [ Ol [ulera) o] + [ (o) s ) — )] = [
wes weN

> 0poD — Hﬁa - ﬂa”l

=€~ ||fta — ﬂa||1 > 0.

The first inequality is by the fact that u(w, a) € [0, 1] for any w, a and thus Yy, (fia—pt},)-[u(w, a) — u(w,a’)] <
lta — 145]];- The second inequality is from p, = (1 — §)pa(w) + dne(w). The third inequality is by
construction of 1, and 7, induced by signaling scheme 7 and 7°. The last inequality is by the fact that
IFia — 1l = G — ) © 7@l )ly < i — 1, = e, sinee [[/(a] ), < 1

It remains to show the expected utility under signaling scheme 7’ is at least <Q, peT* >QX A~ He /(poD).

"In this proof, we will directly work with the posterior without normalization (kernel) to simplify our notations and derivations,
because [ o pa(w) [u(w,a) —u(w,d)] > 0 = [ #(:;)M [u(w,a) —u(w,a’)] > 0. We use ® to denote the
Hadamard product.
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This is due to the following inequalities,

(Qip@m ) 4= (QueT* ) 4, = / p(w) [ (alw) — 7*(alw)] Q(w, a)

weN,acA

= [ e [r0ake) — o) Q)
weN,acA

> =6 p(w)m(alw)Q(w, a)
weN,ac A
He
> -Hf= ——.
- poD

The first and second equalities use the definition and linearity. The third and last inequalities use the fact

that E[Q(w, a)] € [0, H] and remove the positive term. O

A.3 Properties for the Robustness Gap

We present the robustness gap Gap for the ground-truth prior in Lemma 6.5. For the estimation of prior uz
given in Algorithm 2 which may not satisfy the regularity condition, we also have corresponding robustness
gap.

Lemma A.1. Forany h € [H|,t € [T) and s € S, on the event of {0} € B!}, we have

2H e

Gap S, th tﬂg ﬂgt é N
(s, b, B, €1,); Q) oD

Proof. For any fixed action a € A, on the given event, we have

Psgoled € Weal D = [ i)l € Wea(D))s

= / pu (@)I(w € W o(D))dw +/ [ (w) = p (W)]T(w € Wi,a(D))dw
we wes

z/ﬂ%@%mmmmew%—@m
we

where Il is the indicating function. The last inequality uses the regularity condition for the real prior ;. For

el < po/2, we have P w € Ws 4| < po/2. Then by Lemma 6.5, we can arrive at

ot ()

2Hez'
poD

Gap(s, pj,, B(up,, €,,); Qf) <

For €} > po/2, the bound holds trivially since 2H€!, /(pgD) > H. O

The robustness gap Gap defined in equation (6.4) measures the loss in value functions for being robustly
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persuasive for a subset of priors. In the following lemma, we show that we can also use Gap to bound the

difference in expected optimal (Q-functions between different priors.
Lemma A.2. Denote B 5 = B(,ul, Il — ,u2||1) for any fixed state s € S and py, pa € A(SQ). Then given

a known Q-function Q(-,-,-), we have

H
) - ) <G ) 78 ; 5 - .
e 0PIl B, ) (D )l < Coplos s, Bras Qg e —val

Proof. Fix p1, pe € A(Q), we respectively choose the optimal signaling scheme

m; = argmax <Q,ui ®7Ti>QxA(S)7 1=1,2.
mi€Pers(p;,u)

Then among all the signaling schemes persuasive for all By o, let m3 maximize <Q, w1 ® 7T>QX A(s). Since
T3 is persuasive for 112, we know (Q, o ® 7T2>QXA(S) > (Q, 2 ® 7T3>Q><A(S) by definition. Therefore, we

have

(Qim @ — p2 @) 4(5) <(Qy 1 @ 1 — g @ m3) (4 (5)
S <Q,,L61 ® ™ — M1 & 7T3>Q><A(S) + <Q7M1 ® 3 — U2 & 7T3>Q><A(S)

H
= Gap(s, u1,B12; Q) + 5”#1 — p2lf1-

The last equality uses the definition of Gap and Lemma A.3. O

Lemma A.3. Given a Q-function Q(-,-,-) € [0, H], for any fixed state s € S, u1, 2 € A(Q) and any

signaling scheme w, we have

Q1 @), 4(8) = (Quz@T)q 4 (s)] < g\lm — 2|1

Proof. Fix p1(+), u2(-) € A(Q). For any x € R, we have

(@ = meem)g, o) =| [ ) -] [ sl w)Qs.eode - o

/ m(als,w)Q(s,w,a)da — x
acA

cA

Y

< [lp1 = pollr - sup
weN
where the last inequality is derived from Holder’s inequality. With QQ-function taking values in [0, H], we

can set + = H /2 and achieve the optimality.
O
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A4 Proof of Lemma 6.1
Proof. Before presenting the proof, we first define two operators J} and J?:
Ji)(s:C) = (f, 1, @ Thiaxa(s; C), (T f)(s;C) = (f, uf, @ mh)axals; C), (A1)

forany h € [H|,t € [T] and any function f(-,-,-;C) : S x 2 x A — R under the context C'. Moreover, for
any h € [H],t € [T] and any state s € S, we define

€.(5:0) = (3,Q1)(5: C) = (3,@Q1)(5: C) = (Qh i, @ T — 1y, @ T)axa(s:C). (A2)
After introducing these notations, we decompose the instantaneous regret at the ¢-th episode into two terms,

V1*(3t1§ Ct) - Vfrt(stﬁ Ct) = V1*(3t15 Ct) Vl (317 Ct) + V1 (317 Ct) (317 Ct) (A.3)

P1 P2

Then we consider these two terms separately. By the definition of value functions in (3.1) and the operator
J% in (A.1), we have V;* = J5 Q5. By the construction of Algorithm 2, we have V! = J! Q! similarly. Thus,
for the first term p; defined in equation (A.3), using &} defined in (A.2), for any h € [H],t € [T], we have

Vi = Vi =05Q1 — 15,Q) = (J1Q5, — IhQ%) + (35Q1 — 1,Q%)
= I5(QF, — Q1) + &,

Next, by the definition of the temporal-difference error 5}; in (6.1) and the Bellman optimality equation in

equation (3.2), we have
Qf, — Qf, = (v + PuVir) — (vn + PuViy = 63) = Pua(Vily — Vi) + 0,

Hence we get
Vil = Vi = B Pa(Viton = Vi) + +046), + 6.

Then, by recursively applying the above formula, we have

Vi -V = < 11 JhPh>(VH+1 Vi) + Y (H 2 )Jh5h+ > (HJ* >

he[H| he[H] “i€[h] he[H] “i€[h]

By the definition of f}; in equation (A.2) and Ct?’ ,, in equation (6.2), we get

3 (HJ:H)aﬂsh;Ct): S By e { (@bt} © 75— © mh)eea (53 C) s = 1]}

he[H] \ielh) he[H]
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Notice that V};_; = V| = 0. Therefore, for any episode ¢ € [T'], we have
Vi (s1;0%) = Vi(s550%) = Y By e { [{Qhs i, @ 7 — iy ® ) D (sns C)s1 = s}
he[H)|

+ Z Eu*vﬂ* [6Z(Sh7wh7ah)’31 = Sﬁ] .
he[H]

Now we come to bound the second term p» in equation (A.3). By the definition of the temporal-difference

error 6! in (6.1), for any h € [H],t € [T, we note that

52(327(")27 CLZ) = (/U;L + thff—i—l - Q;L)(S;ww;w a}tﬁ Ct)
= (v} + Pyt — QF ) (sh,wh, ab; O + (QF — Q) (sh, wh, ah; CY)
t t
= (thff-i-l - thhﬂ—i-l)(SZaw;w aiz) + (Q;Lr - Q;L)(S;Law;w CL;L)

where the last equality follows the Bellman equation (3.1). Furthermore, using Ctl ;, and Cf ;, defined in (6.2),

we have

Vi (s3:Ct) = Vi (sh; C")
=(Vif = Vi )(shs C*) = 01, (s wh ah) + (QF — Qh)(sh, wh, af; C1)
+ (PuViy, — Pth+1)(3 ,w, ap; CY)
=(Vit = Vi) (s C") = 8 (sh, wh af) + (Vi = Vi ) (sh: C1) + (QF — Q) (sh, wh, af; C1)
+ (Ph(vff—i—l - Vhﬂ+1 ) SZMh’ahv Ct) (foﬂ - VJL)(SZH; Ct) + (fo+1 - Vhﬂil)(sz+1§ Ct)
=[Vi1(sh1:C") — Vh+1(3 O]+ [Vi(si; C) = ‘75(32, C"] = 6, (sh, wh, aj,) + Ctl,h + Cf?,h-

Applying the above equation recursively, we get that

Vi(s55Ch) = VT (55, CY) =V (s C1) = Vi (sh € + Y [Vik(shi €1) = Vik(shs €]
he[H]

- Z 87, (sh, wh ap,) Z (C&h*‘@%h)-

he[H] he[H]

Again by Bellman equation (3.1), we have,

Vif(s}tl; Ct) - ‘75(323 Ct) <Qh’ ( — Kp) ® 7Th>ng(3h7 Ct)
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Then we use V}, 1= Vgtﬂ = 0 to simplify the decomposition to the following form:

Vi (s1;C") — 7r VI (s1;CY) = Z (Q» (1, Mh)®7Th>QxA(3hvct)

he[H]

- Z 87, (sh.wh,, afy) Z (Ctl,h +Ct2,h)~

he[H] he[H]

Therefore, combining p; and ps2, we can conclude the proof of this lemma.

Reg(T, ") = ) [Vf(stl; ch) — Vfrt(stl;Ct)]
te|T)

=3 > {Bu i[Ok (snown an)lst = 1] = 0 (shwhyai) } + D D (Gno GEn)

te[T] he[H)| te[T) he[H]|

+ Y B [(Qh i, @ 75 — iy, @ Th )y, 4 (505 CT)s1 = st
te[T] he[H]

+ D D Qs (h = 13) © Th) g4 (575 CF).

te[T) he[H]|

Therefore, we conclude the proof of the lemma. O

A.5 Proof of Lemma 6.2

Proof. In the following lemma, we firstly bound the difference between the (Q-function maintained in Algo-
rithm 2 (without bonus) and the real Q-function of any policy 7 by their expected difference at next step,
plus an error term. This error term can be upper bounded by our bonus with high probability. This lemma

can be derived from Lemma B.4 in [25] with slight revisions.

Lemma A.4. Set A\ = max{1, U?}. There exists an absolute constant ¢, such that for p = c,dyH+/L where
v = log(2dyU?T/6), and for any fixed policy m, with probability at least 1 — §/2, we have for all s € S,
weNaeAhel[H|telT]

Y(s,w,a)"q¢h — QT (s5,w,a) = Po(Vit = VI)(s,w,a) + A (s,w, a),

for some A} (s,w, a) that satisfies | A} (s,w, a)| < pr(s,w,a)H(Fz)fl

Now we are ready to prove Lemma 6.2. By the definition of &, in (6.1), we have 0}, = (vy, + PV}, —
Q) = PV}, 1= PhV,Zil) + (Q;{t — @}). Therefore, by the construction of Q% in Algorithm 2, we obtain
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that
52(37“)7 a) > (thff—l—l - thhﬂ—:l)(&w?a) + Q;Lrt(37w7a) - <¢(37W7G)qu + P”lb(&w’a)”(m)*l)
= _AZ('S’C‘J)&) - pHTzZ)(s)w’a)H(FZ)*l > —2PH¢(S,W,G)H(F§L)71,

which concludes the proof. O

A.6 Proof of Lemma 6.3

Proof. Denote the optimal signaling schemes corresponding to the real prior 4} and the estimated prior x},

respectively as

m, = argmax (Q, ph © ), 4(5CY) and 7y = argmax (Q, ph © h)g, (5 C),
mpEPers () ﬂhEPers(u’;L)
where the Q-function @, is given by Algorithm 2. Notably, 7}, is different from the truly optimal policy
W}, since 7, is computed based on the approximate Q-function Q. By definition, we can decompose the

difference as follows:

(Qhy ih @ Ty — i, @ T ) 4 (583 C1) =(Qhys ith @ Th — ik @ T )y 4 (505 CF) (A4)
+(Qh i, @ T, =, ® )y 4 (503 CY) (A.5)
+(Qhy ih, @ T — 1, @) g 4 (503 CF). (A.6)

By definition, equation (A.4) is always non-positive. Apply Lemma A.2 to equation (A.5) and we can get

(Qhs i @ Ty — iy, @ 7)o 4 (503 CY) < Gap <3ha 17, (-leh)s B (e Cled)s || Cler,) — MZ('lCZ)Hl);QZ)
H *
+ EH/%("CZ) - M%("CZ)Hl-

According to Corollary 6.6, we can bound the above equation with the norm of feature vector and the radius

of confidence region for 6j,.

. HL,K HL,K
(Qhs i @ T, = u, @ 7)o 4 (303 C) < (S 5= + == Bll (e sy

We also note that equation (A.6) is equal to Gap (s, uf, (|c,), 1 (tleg,); @!). By Lemma A.1, on the
event {07 € B!}, we have

2HL, K
Gap (sn, up,(-Ich), it (-1c); Q) < migBW(CZ)H(z;)%
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Therefore, on the given event, we have

L SHL,K HL K
Epx xx [<szﬂh®ﬂh—M2®7TZ>QxA(Sh;Ct)‘31 =] < ( oD + >ﬁ”¢( )l )1

Summing up together, we get
Z Z Eu;,ﬂi [<Q1}tu,u;: ® 7T;; — Mz ® 7T2>Q><A(Sh; C't)\sl _ Sﬁ]

te[T] he[H)]
3HL,K HL K
< (2% )8 S Iotehlisy
Po te[T] he[H]

Therefore, we conclude the proof of Lemma 6.3.

A.7 Proof of Lemma 6.4
Proof. By definition, we can rewrite the difference in Lemma 6.4 as
(Qhs (Hp = 13) ® T ) g 4 (535 C") = /Q B [k (wleh) — pp(wlep)] (s, w, @)@}, (s, w, a)dadw
X

— [ [uh@leh) = mi(leh)] | hs0,0)Qh (5.0, 0)dod
Q A

By Holder’s inequality, we have

< |\ Clen) = pin-len)|), sup
weN

\<@h,< ) @) (kO /A 7l (5,0, 0)Q} (3,0, a)dal.

Since Q! < H forany h € [H] and t € [T, the inequality can be simplified to

\<Qh, ) @ kYo (5h: €| < Hluh (1) — (e,

With the assumption of the prior and link function, on the given event, we obtain that

Z Z (@b (g, — 113) @ h ) 4 (55:CY) < HLL KB Z Z llo(ch, st )1

te[T) he[H]| he[H] te[T)

Therefore, we conclude the proof of Lemma 6.4.
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A.8 Proof of Corollary 6.6
Proof. According to Assumption 4.2 for the prior, we can show that for any ug/ (-|c) € B,
o (le) — o (le)lly < Lul[f(6(c)0) = f(o(e) 8]

Moreover, by Assumption 4.3 for the link function f(-), we have

lio(-le) = o (le)lly < LuK|¢(e)T (0 =) < LK 9(0)]l -1 €.

Therefore, B C B(ug(:|c), L K| ¢(c)||s-1€), and by Lemma 6.5, we can conclude the result. O

A.9 Auxiliary Lemmas

This section presents several auxiliary lemmas and their proofs.

Lemma A.5 (Martingale Bound; [9]). For C& ,, and Cf’ y, defined in (6.2) and for any fixed § € (0,1), with
probability at least 1 — 0/2, we have

> (¢ + ¢Er) < V16T H?log(4/6).

te[T] he[H)|
Proof. See [9] for a detailed proof. O
Lemma A.6. Suppose that ¢y, ¢, ..., o7 € R%* and for any 1 < i < T, there exists a constant & >

such that ||¢;|| < ®. Let 3y = g, + Eie[t_l} bid} for some X\ > ®2. Then,

> Il < /24T log(1+ T92/(Ady)).
te|T)

Proof. Firstly, we apply Cauchy-Schwartz inequality,

D letlsy1 < T el

te[T] te(T)

Since [|¢t]|(s,)1 = \/(th(Zt)—lqﬁt < \/A—lqﬁthﬁt < ®/4/A < 1, we can use Lemma A.7 to bound the

sum of squares:

> el s)-1 < V2T log(det(Sr) det (1))
te|T)

< \/2d,Tlog(1 +T92/(Ady)).
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The last inequality is derived from Lemma A.8. O

Lemma A.7 (Sum of Potential Function; [1]). For any sequence of {¢1 }1c(r, let ¥y = M}, + Zte[t_l] bi;

for some A > 0. Then we have

> min{||éllts,) 1, 1} < 2log(det(Sr) det (1) 7).
te[T]

Proof. See [1] for a detailed proof. O

Lemma A.8 (Determinant-Trace Inequality). Suppose that ¢1, ¢a, ..., ¢7 € R%* and forany1 < i < T,
there exists a constant ® > 0 such that ||¢;|| < . Let 3y = Mg, + 3 ;cp1) @i} for some X > 0. Then,

det(3) < (A + tD2/dy)™.

Proof. Let \1, A\a, ..., A, be the eigenvalues of >;. Since Y, is positive definite, its eigenvalues are positive.
Also, note that det(X;) = Hiil As and tr(X;) = Z?:l As. By inequality of arithmetic and geometric
means

det(Et) < (H‘(Et)/d(z))dd’.

It remains to upper bound the trace:

t—1 t—1
(S = trMy,) + 3 (i) = doA + 3 6]l < dph + 1
i=1 i=1
and the lemma follows. O
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