# CONTRASTING CASES IN GEOMETRY: THINK ALOUDS WITH STUDENTS ABOUT TRANSFORMATIONS

Erin E. Krupa
North Carolina State University
eekrupa@ncsu.edu
Brianna Bentley
North Carolina State University
blbentle@ncsu.edu
Joshua P. Mannix
North Carolina State University
pmannix@ncsu.edu
jpmannix@ncsu.edu

Keywords: Curriculum, Geometry and Spatial Reasoning, Middle School Education

### **Theoretical Framework & Design of Materials**

There is strong empirical evidence in support of learning from comparisons in mathematics education research (Rittle-Johnson & Star, 2007; Star, Pollack, et al., 2015; Star et al., 2016). Comparisons have produced gains in students' procedural knowledge, flexibility, and conceptual knowledge of algebra (Lynch & Star, 2014; Star, Newton, et al., 2015; Star, Pollack, et al., 2015). The *Animated Contrasting Cases in Geometry* project seeks to extend this research and transform the learning of geometry for middle school students by designing a supplementary digital animated curriculum.

The curriculum materials for each lesson are organized into Worked Example Pairs (WEPs), which include five unique features: a page for the first student's solution strategy on a given geometry task, a page for the second student's solution to a geometry task (which could be the same or different task as was shown on first student's page), a page with both students' strategies side-by-side, a discussion sheet with four questions for the students to answer, and a thought bubble page summarizing the key mathematical concepts in the problem. The discussion sheet and thought bubble page are designed to make the instructional goal of each WEP more explicit and to scaffold discussions among students as they summarize their work from the WEPs (Star, Pollack, et al., 2015). This paper focuses on the Transformations unit, which is one of four units.

#### **Methods**

After fully developing the  $8^{th}$  grade geometry materials, we conducted 56 hour-long think aloud interviews (Piaget, 1976) with individual students (n=42 students). There were 18 think alouds for the Transformations unit conducted with 13 unique students. We transcribed each interview and began *a priori* (Saldaña, 2013) coding based on our key design features. We then added emergent (Saldaña, 2013) Level 1 codes for the students' geometric thinking and curricular form and Level 2 codes as appropriate. In all, there were 556 turns coded.

### **Findings**

We observed 96 (17.27%) turns where students were making comparisons between the WEP characters. Most often they were discussing differences between the characters (n = 58), but they also noted similarities (n = 35) and used both WEP characters' strategies to verify a mathematical idea (n = 3). We observed 119 (21.40%) turns where students were discussing the geometric thinking of the WEP characters. When discussing the thinking displayed by the WEP characters (n = 44), students most often provided insight into their personal beliefs about the characters' thinking. Students' geometric thinking accounted for 203 (36.51%) turns of the Level 1 coding. A majority of the codes regarding students' geometric thinking indicated that the student was making sense of the mathematics in the WEP (n = 105).

## Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. DRL #1907745. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

#### References

- Lynch, K., & Star, J. R. (2014). Views of struggling students on instruction incorporating multiple strategies in Algebra I: An exploratory study. *Journal for Research in Mathematics Education*, 45(1), 6-18.
- Piaget, J. (1976). The child's conception of the world (J. Tomlinson and A. Tomlinson, Trans.). Littlefield, Adams & Co. (1926).
- Rittle-Johnson, B., & Star, J. R. (2007). Does comparing solution methods facilitate conceptual and procedural knowledge? An experimental study on learning to solve equations. *Journal of Educational Psychology*, 99(3), 561
- Saldaña, J. (2013). The Coding Manual for Qualitative Researchers (2nd ed.). Thousand Oaks: Sage.
- Star, J. R., Newton, K., Pollack, C., Kokka, K., Rittle-Johnson, B., & Durkin, K. (2015). Student, teacher, and instructional characteristics related to students' gains in flexibility. *Contemporary Educational Psychology*, 41, 198-208.
- Star, J. R., Pollack, C., Durkin, K., Rittle-Johnson, B., Lynch, K., Newton, K., & Gogolen, C. (2015). Learning from comparison in algebra. *Contemporary Educational Psychology*, 40, 41-54.
- Star, J. R., Rittle-Johnson, B., & Durkin, K. (2016). Comparison and Explanation of Multiple Strategies: One Example of a Small Step Forward for Improving Mathematics Education. *Policy Insights from the Behavioral and Brain Sciences*, 1-9.