Response Time Analysis for Dynamic Priority Scheduling in ROS2

Abdullah Al Arafat Jinghao Sun Zhishan Guo
Sudharsan Vaidhun Dalian University of Technology University of Central Florida
China USA

Kurt M. Wilson
University of Central Florida, USA

ABSTRACT

Robot Operating System (ROS) is the most popular framework
for developing robotics software. Typically, robotics software is
safety-critical and employed in real-time systems requiring timing
guarantees. Since the first generation of ROS provides no timing
guarantee, the recent release of its second generation, ROS2, is nec-
essary and timely, and has since received immense attention from
practitioners and researchers. Unfortunately, the existing analysis
of ROS2 showed the peculiar scheduling strategy of ROS2 executor,
which severely affects the response time of ROS2 applications. This
paper proposes a deadline-based scheduling strategy for the ROS2
executor. It further presents an analysis for an end-to-end response
time of ROS2 workload (processing chain) and an evaluation of the
proposed scheduling strategy for real workloads.

ACM Reference Format:

Abdullah Al Arafat, Sudharsan Vaidhun, Kurt M. Wilson, Jinghao Sun,
and Zhishan Guo. 2022. Response Time Analysis for Dynamic Priority
Scheduling in ROS2. In Proceedings of the 59th ACM/IEEE Design Automation
Conference (DAC) (DAC °22), July 10-14, 2022, San Francisco, CA, USA. ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/3489517.3530447

1 INTRODUCTION

Over a decade, Robot Operating System (ROS) has been the standard
and most popular framework for developing robotics software,
mainly for its modularity and composability. However, the first
version of ROS was fundamentally limited in terms of real-time
capabilities, which eventually necessitated the emergence of ROS2
in 2017. ROS2 got immediate attention from both the autonomous
systems industry and academia, due to its capability of providing
real-time guarantees through enabling the Distributed Data Service
(DDS) communication interface.

As a foundational cornerstone for autonomous and robotic sys-
tems, it is essential that the response time of ROS2 workload can
be bounded. However, there was no such formal analytical model
for ROS2 before the pioneering work of Casini et al. [3]. It pre-
sented a model for the default ROS2 scheduler to enumerate the
response-time of workloads, the architectural hierarchy of the ROS2
framework, and working principle of the default ROS2 scheduler.

We thank Nan Guan from City University of Hong Kong for fruitful discussions on
the paper. This work is supported by NSF grants CNS 1850851, and PPoSS 2028481.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAC 22, July 10-14, 2022, San Francisco, CA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9142-9/22/07...$15.00
https://doi.org/10.1145/3489517.3530447

= Gtk Gt otk

Client Library | Language-Specific Client Library

[rcl J [rclepp J[rclpy J
RoSY | Data Distribution Service (DDS) |

0S Middleware Application

Linux/Windows/macOS
Figure 1: ROS2 Architecture [3]

Overview of ROS2. Fig. 1 presents the architecture of ROS2. ROS2
applications are typically composed of series of individual nodes
distributed in the application layer. Nodes preserve the molecularity
of application programs, and communicate with each other through
a publish/subscribe mechanism: nodes first publish messages on a
topic, and then the topic broadcasts messages to nodes subscribed
to the topic. When receiving a messages, nodes invoke callbacks
(fundamental programming blocks) to process the message. To
implement the publish/subscribe system, ROS2 leverages the un-
derlying data distribution service (DDS), which is an anonymous
and asynchronous message passing framework. To deploy a ROS2
application, individual nodes are mapped onto operating system
processes. ROS2 uses executors (in the client library) to coordinate
the execution of the callbacks of the nodes assigned in a process.

An executor maintains a readySet that stores the ready callbacks
assigned to the executor. At each time, the executor selects one
callback from the readySet to be executed non-preemptively on the
process. The updating strategies of readySet as follows — it is only
updated when it becomes empty, and it cannot contain two same
callbacks from different instances of a chain simultaneously. In con-
trast, a timer callback (first callback of a processing chain) can enter
the readySet instantly, and it starts execution either immediately or
after the completion of a non-preemptively executing callback.
Limitations of default ROS2. Following the properties of readySet,
there are two critical issues raised that affect the response time of
processing chains. (i) There is no notion of priority among different
processing chains in an executor, as any processing chain can enter
the readySet directly through activating the timer callback. There-
fore, in default ROS2 executor, it is not possible to provide higher
priority to any critical chain for better response time. (ii) Any pro-
cessing chain instance can receive interference from both past and
future instances of the same processing chain (self-interference)
due to the updating strategy of readySet and the privilege entrance
of the timer callback to the readySet.

The limitations of the readySet-based scheduling policy of ROS2
executor lead to longer response time of workloads in ROS2. To
eliminate such limitations of readySet-based scheduling, we aim
to design a new priority-based scheduling scheme for ROS2 execu-
tor. Intuitively, priority-driven scheduling policies (e.g., fixed- and

https://doi.org/10.1145/3489517.3530447
https://doi.org/10.1145/3489517.3530447

DAC ’22, July 10-14, 2022, San Francisco, CA, USA

dynamic-priority-based scheduling) dominate over default readySet-
based scheduling, as the former schedulers can mitigate the self-
interference of processing chains by simply providing a unique
priority-order to each instance.

Related Works. Casini et al. [3] presented the first formal analy-
sis and modeling of ROS2 for bounding the end-to-end latency of
ROS2 application. This paper pointed out the peculiar scheduling
strategy of the default ROS2 executor. It developed the response
time-bound of any ROS2 processing chain that may span multi-
ple executors leveraging the compositional performance analysis
tool. Later, Tang et al. [9] published a follow-up paper improving
response time bound for default ROS2. The critical observations of
Tang et al. are the pipeline-style execution pattern of the callbacks
of a chain in the processing windows of executor, and only the
priority of the last callback in a chain has an impact on response
time. These observations enable them to reduce interference from
interfering chain instances, and providing the highest priority to
the last callback of the chain further improves the response time-
bound. A concurrent work from Blaf et al. [2] developed a better
response time response analysis for ROS2 exploiting the starvation
freedom and execution-time variance of callbacks.

A recent work by Choi et al. [4] partially addressed the lim-

itations of the default ROS2 executor scheduler and proposed a
chain level (fixed) priority-based scheduling scheme. The proposed
method performed well for prioritized chains over default sched-
uler, specifically for high-priority chains. However, low-priority
chains may suffer very high latency in an overloaded (in fact, in
general cases also) system due to frequent preemptions (see Fig. 2
and Table 2 in Section III). Therefore, instead of the fixed prior-
ity of each chain, we propose chain instance-level deadline-based
dynamic priority scheduling for ROS2 executor.
Contributions. In this paper, we first propose a deadline-driven
dynamic-priority-based scheduling scheme for ROS2 executor. Our
proposed scheduling scheme addresses the limitations of the default
ROS2 scheduler and dominates both the default ROS2 and exist-
ing fixed-priority-based scheduler in terms of end-to-end latency.
Specifically, we make the following contributions in this paper:

(1) We propose the first dynamic priority (deadline-based) sched-
uling scheme for the ROS2 executor. As a result, the proposed sched-
uler has a fine granularity to assign priorities at the chain instance-
level as opposed to fixed chain-level priorities.

(2) We analyze the proposed deadline-based scheduling scheme
for end-to-end latency of a ROS2 processing chain that could span
over multiple executors.

(3) We perform a detailed evaluation of the proposed scheduling
scheme through case studies using real-world workloads.

2 SYSTEM MODEL

Workload Model. We model the ROS2 workload following the
hierarchy of ROS2 architecture — Callbacks, Executor, and Chain
model of the workload.

Callback. The system consists of a set of N, callbacks 7 = {r;]1 <
i < Nc}. Each callback 7; € 7 is represented by the following 2-
tuple,

i = (Ci, xi) (1)

Abdullah Al Arafat, Sudharsan Vaidhun, Kurt M. Wilson, Jinghao Sun, and Zhishan Guo

where, C; is the worst-case execution time of the callback. The pa-
rameter y; € {1, Yr} represents the callback type — timer callback
xt or regular callback yg. The regular callback is triggered by mes-
sages published on the topic. The timer callback do not subscribe
to topics and therefore cannot be triggered by messages. Instead,
timer callbacks are activated by system timers.

Executor. We consider a set of Ny executors, E = {E; |1 <k <
Ny }. Each callback is assigned to an executor and the mapping is
fixed throughout the runtime of the system. An executor can be
either single-threaded or multi-threaded. The same as in [3, 4, 9],
this paper considers the single-threaded executor.

Chain Model. We represent the workload generated by all the
activations of the callbacks as a set of N processing chains, T' =
{Ti |1 £ i < Nr}. Each chainI; € T consists of a sequence of
callbacks,

Ij=< le’sz""’Tj\rj\ > (2)

where, 7, € 7 and |Tj| is the length of the chain. The starting
callback, 7;,, of the chain is usually a timer callback, and remaining
callbacks, {7j;]i € {2,...,|T}j|}} are the regular callbacks.

Each chain I is represented by the following 3-tuple:

Ij = (Cr;, D}, Tj) ®3)

where Cr; is WCET of the chain, derived from the sum of the WCET
of all callbacks in the chain,

er= Z Ci

Vi:t; €T

Dj and T; are the relative deadline and the minimum inter-arrival
time of the chain, IT;, respectively. Note that, all callbacks 7; € T}
have same absolute deadline instant as the associated chain T};.

Now, we define the workload of an executor Ej as a set of pro-
cessing (sub)chains' in the executor,

_ (rkirk
Ei(T) = {Tj |Fj € E}

Here, FJ(‘ is either the chain I'; or a segment of T'; that belongs to the
executor Ex and T = U l"]k . We further denote the relative deadline
Vk

of ¥ as DK which either equal to D ; or derived from D; using the
fact that all callbacks in a chain have same absolute deadline.
Resource Model. The threads utilized by the executors are scheduled
using the Linux scheduler. Linux scheduler works by scheduling the
thread with the highest priority, and if there are multiple threads
with the same priority, then a specific scheduling policy is followed
to determine the thread to schedule. In our model, all ROS2 threads
will be preemptively scheduled with the same (highest) static pri-
ority and follow the scHED_F1Fo policy. The budget guarantees
are provided to the threads by implementing them as constant
bandwidth server.

Communication Overhead. The communication among the call-
backs adds delay (overhead) in addition to the execution time of
callbacks. However, we neglect the communication overhead if the
callbacks in a communication link are in the same executor. In case

!(sub)chain can be either a chain or a segment of a chain

Response Time Analysis for Dynamic Priority Scheduling in ROS2

two communicating nodes are in two executors, we add a fixed com-
munication delay between k? h(rk € Ex) and ¢! h(rg € Ey) callbacks
as follows:

d(rp70) = {O, if B = Ep
v, Yk, : Ep # Ep

Overload Handling Mechanism. ROS2 contains an overload han-
dling mechanism to drop a timer callback (and so the associated
chain) in case the timer callback missed one or more of its period to
start execution. The overload handling mechanism is activated by
running rcl_timer_call function at the release instant of timer
callback. First, the next_call_time variable is incremented by the
timer’s period. Then next_call_time is compared with current
time instant to see whether next_call_time is in the past. If so,
next_call_time is incremented to the number of periods timer
already behind, ensuring that the timer skips missed periods.

3 PROBLEM AND METHOD
3.1 Problem Statement

As mentioned earlier, the default scheduler of the ROS2 executor
introduces two critical issues that adversely affect the response
time of processing chains. The existing chain-level fixed priority-
based scheduling scheme of ROS executor [4] addressed those crit-
ical problems. However, the chain-level priority proposed by Pi-
CAS [4] disproportionately affects lower priority chains, which
is further worsened in an overloaded scenario where the lowest
priority chains may receive no service. In this paper, we particularly
attempt to resolve two issues:

(1) We address the limitations of default readySet-based schedul-
ing scheme of ROS2 executor replacing the default scheduler with
a dynamic-priority based scheduler.

(2) We address the limitations of chain-level priority-based sched-
uling when the workload has chains with equal (semantic) priority.

3.2 Proposed Scheduler

To replace the default scheduler of ROS2 executor, we proposed a
deadline-based (Earliest Deadline First (EDF)) scheduling policy
redesigning the readySet as a readyQueue.

Definition 1. readyQueue Q is maintained in executor similar to
readySet in default ROS2. Unlike readySet, readyQueue is updated
after the completion of each non-preemptively executing callback.
The priority of the readyQueue is set based on the deadline of each
callback, where earliest deadline callback has higher priority than the
later one.

As the readyQueue prioritizes any callback only based on the
deadline parameter, there is no privilege priority of timer callback
in the readyQueue. This property of the readyQueue mitigates both
of the limitations of the default scheduler, as any released chain
has to wait to execute until the completion of high priority chains.
Scheduling Strategy. Our deadline-based scheduling policies for
(sub)chain scheduling in the executor are as follows:

(1) Whenever any chain instance releases, it enters to the waitset.
The readyQueue Q of the executor is updated after the completion
of the execution of the current active callback due to the non-
preemptive execution of the callbacks.

DAC ’22, July 10-14, 2022, San Francisco, CA, USA

Chains Specifications [sec]
(1) < 11,72, 73 > C = 0.109;C{2’3) =0.13;77 =1
(2) < 7(4,... .10y > | C4 =0.109;Cys ... 10y = 0.131, T, = 1

Table 1: Chain set for illustrative experiments.

ChainID | Mean | Max Min STD
1 1.478 1.879 0.632 0.355

Default
2 4.108 4913 2.415 0.445
. 1 0.442 1.373 | 0.373 0.565
PiCAS 2 2.055 2.654 1.655 0.314
1 0.849 | 1.372 | 0.376 | 0.305
OURs 2 1424 | 1.922 | 0.903 | 0.310

Table 2: End-to-end latency results[sec] of two chains (Ta-
ble 1) running in default ROS2 scheduler, PiCAS [4], and our
deadline-based scheduler of ROS2 executor.

(2) The readyQueue Q is prioritized based on the absolute dead-
line of each callback, and the callback with the earliest absolute
deadline is scheduled to execute non-preemptively. The higher pri-
ority chain’s callback can only preempt any active chain (executing)
after the completion of the currently executing callback.

(3) Suppose a chain instant is released, but the previous instant

of the chain has not started executing yet. In that case, the previous
instant of the chain is dropped by enabling the (original) overload
handing mechanism of ROS2.
Remark. Tardiness is allowed as ROS2 is unaware of deadlines.
Guarantees of meeting deadlines can only be achieved by verifying
that the worst-case latency of the chains do not exceed the deadlines.
In this work, we use the deadlines only to dynamically prioritize
chains (and callbacks) during runtime, but not to drop workloads.
This is acceptable since ROS2 inherently provides its own overload
handling mechanism to prevent unbounded latencies.

3.3 Illustrative Experiment

We present an experimental study on a simple workload (Table 1)
consisting of two processing chains. The experimental setup on
the ROS2 environment is presented in the evaluation section. We
perform the experiments for default ROS2 scheduler, PiCAS [4],
and our deadline-based scheduler of ROS2 executor. The execution
patterns for these three algorithms are illustrated in the Gantt
charts in Fig. 2. From the Gantt charts, Fig. 2 (b, c), in priority-
based scheduling, all chain instances complete the execution before
starting later instances, and only the chains with higher priorities
are active, reducing the interference in an active window. The
end-to-end latency of the chains for all three schedulers is shown
in Table 2. Our schedulers outperform the default scheduler for
both of the chains. Compared with PiCAS, our scheduler performs
better than PiCAS on average, and specifically, low-priority chains
consistently outperformed PiCAS.

4 RESPONSE TIME ANALYSIS

4.1 Overview

We first analyze the worst-case response time (WCRT) of a (sub)chain
(analyzed chain) in an executor, then extend the analysis for end-to-
end latency of the chain span over the multiple executors using CPA
tool [6]Fig. 3 illustrates a possible scenarios of ROS2 processing

DAC ’22, July 10-14, 2022, San Francisco, CA, USA

Abdullah Al Arafat, Sudharsan Vaidhun, Kurt M. Wilson, Jinghao Sun, and Zhishan Guo

Py - [[T [B d (-l P [N T I N | T (|
ofl [0 {1 l]l[ll d ll][J [i O | []‘[] L ol ||]||]| f ||]||]| l][‘ I
4 L L N R O ARORA 1 TLE LE L LL TLAL T T L L | 0
SOy | I N N B T B AT I 20001 I 1 1 1 SO T NI 1 N . |
W I T O 1 T T T N
= Ll =0 I (I [T R | T
2000 NN 200 I 1 250 N (1]
sl 1 | 1 | 1 s 1 | 11 11 3 P11 [A
ST O T RN I (. ; 1 .
G L A L T W | g B L L L I | O I I |
o 1 2 3 4 5 6 7 8 9 0o 1 2 3 5 6 7 8 9 o 1 2 3 4 5 6 7 8 9

Time (s) Time (s) Time (s)

(a) Default ROS2 Scheduler [3, 9]

(b) PiCAS Scheduler [4]

(c) EDF Scheduler (this paper)

Figure 2: Gantt-charts of ROS2 scheduling example for the workload of Table 1. The first three lines, in orange, represent the
executions of Chain 1. The remaining lines, in blue, represent the executions of Chain 2. In PiCAS scheduler (Fig. 2(b)), no
chain instances from chain 1 (orange) is dropped, but three instances (at 3, 6, and 9) from second chain (blue) is dropped. In
contrast, our scheduler dropped chain instances from both chain 1 (at 4 and 9) and chain 2 (at 3 and 7).

Key: aps(A) = apa (A + Rf +9) Executor B
________________ E A
O Callback @] Executor A o (8) Ly B
DO] e ® ;
Q@ rimer pO~O-C1 rO~C-0r

Figure 3: ROS2 processing chains in executors

chains assigned in the executors. We are particularly interested in
analyzing the response time of the sub-chain I'B in executor B, then
extend the analysis to calculate the end-to-end response time of
Ij= FJA U F]B that span over executors A & B.

Arrival Curve. The release patterns of chains/sub-chains in an
executor Ey. are characterized by arrival curve, a(A). Chains start
with a timer callback have a staircase arrival curve, ar,(A) = [%]
where at each period one instance of the chain is released. However,
the arrival curve for a chain starts with regular callback (sub-chain)
depends on the arrival curve of the starting sub-chain of the parent
chain and the response time of all precedent sub-chains (see Fig. 3).
The request bound function (rbf) of a chain FJ]F in a time range A is
upper bounded by [3],

rbf(IF, A) = i (A) - Cr

therefore, the demand bound function (dbf) of the chain is upper-
bounded by [5],

dbf (T, A) = rbf (T, A — D) (4)
dbf(T, A) implies that the maximum resource demand generated
by the chain instances of I' that have both release and deadline
instances in the range of A times.

Resource Model. We consider a general case where resource
supply to each server is lower bounded by the supply-bound func-
tion sbf(A). sbf(A) implies the minimum guaranteed supply to the
server in each A time interval [7, 8]. In our analysis, we assume
sbf(A) is known (provided by the system designer). We define the
pseudo-inverse of sbf(A) as follows,

sbf(x) = min{A | sbf(A) = x} (5)

ﬁ(x) provides the minimum time in which the server gets x unit
of processing time.

Intuitively, to bound the WCRT, we first calculate the slack time?,
instead of directly calculating the WCRT, for analyzed (sub)chain
instant similar to [5]. So, the WCRT, R; of the analyzed chain, I'; is
as follows:

Rj=Dj—S;f (6)

The minimum slack time, S}f, for all (sub)chain instances of the
analyzed (sub)chain I'j is estimated from the resource demand of
all (sub)chains in the executor and the available resource supply to
the executor.

Finally, we develop the end-to-end WCRT of the analyzed chain,
adding the individual sub-chain WCRT and communication delays
between the sub-chains of different executors.

4.2 Properties

To compute the WCRT of a (sub)chain, I' Jk inside an executor Ey, we
consider a ‘busy period’ of the executor. Any busy interval, (&, t4],
in the executor is an interval where at least one chain instance is
ready to execute at any instant in the interval with a release time no
earlier than the ¢, and deadline no later than ;. Here, t, is the last
idle instant of the busy interval. To develop the resource demand of
all (sub)chain instances in such a busy period, let consider a minimal
set o(T') that includes all (sub)chain instances with a release time
no earlier than the ¢, and deadline no later than the t;. Following
are the two facts of the minimal set o(T),

Fact 1. All (sub)chain instances in o(T') must have an execution
in (to, tg] but the one with a deadline equal to t.

Proor. If any (sub)chain instance does not execute in the busy
interval, the instance is removed from the minimal set o(T). So,
if any instance in o(T') does not execute in (o, tz], it contradicts
the minimality of set o(T'). However, a chain instance in o(T') with
deadline t; cannot execute at all, implying that it will miss the
deadline. O

Fact 2. In any busy interval, (t,,tg], at most one (sub)chain
instance with deadline > t; can execute non-preemptively for one
callback.

2Slack time is the difference between the deadline and completion time of a chain
instance. Note that slack time can be negative, which usually occurred for ‘tardy’
instance, and we allow tardiness in our model.

Response Time Analysis for Dynamic Priority Scheduling in ROS2

Proor. Following the deadline-based strategy, any chain in-
stance can be preempted by a higher priority chain at the com-
pletion instants of callbacks of the executing chain. Therefore,
the chain instance with deadline > t; can at most execute non-
preemptively for one callback with an execution starting time in-
stant < t, . Further, once the chains in o(T') with deadline < t;
starts executing, any chain instance with deadline > t; cannot
execute in (o, t7] following the minimality constraint of o(I') and
the fact 1.]

Following facts 1 and 2, we can bound the blocking term for a
busy interval by low-priority chain instances.

LEmMMA 1. The maximum blocking time of analyzed chain, I"J’.C in
a ‘busy interval’ of executor E. is upper-bounded by:

Bk = max {Ci - \‘QJ . Tj} 7)
Vi € Eg(D\TK T;

and T is the minimum inter-arrival time of the analyzed chain, FJ’F.

Proor. Following fact 2, the blocking time by a lower priority
chain can be at most the execution time of ‘one callback’. However,
the blocking time for the analyzed chain, FJ’F cannot be from the
lower-priority instances of FJ]F as the release time of lower-priority
instances always later than the current instance. Therefore, lower-
priority blocking (sub)chain instances are from Vz; € Ep(T) \ FJI.‘.

Now, from the overload handling mechanism, if any chain instant
cannot start execution for one or more periods of the chain instance,
then the chain instance is dropped. Therefore, {%’J - Tj of C; is not
included in blocking time. O

So, the maximum possible blocking time in a ‘busy interval’ of
the executor Ey is,

Be= max {Bf} ®)
Vj:rjk € Ex(I)

LEMMA 2. The Resource Demand’ in a busy interval (t,,1t4],
RD(tg — to) of the executor Ey. is upper-bounded by:

RD(0) = Be+

v j:l";‘ €Er(T)

dbf (TF, ¢) ()

here, { =ty —t, and dbf(l"]’.‘, tq — to) is the demand-bound function
of the chain l"jk in the time interval of (to, t4].

Proor. The demand-bound function of any chain in the executor
can be estimated using Eqn. (4). Therefore, 3, JiTkeE () dbf (FJIF, ?)
provides the maximum possible resource demand by the workload
Ei(T) in (to, tg] interval and By is the maximum blocking term
(Eqn. 8) for the workload. Hence, the lemma follows. O

Without loss of generality, we consider the idle instant as ¢, = 0,
so the resource demand for any ‘busy interval’ ¢:

RD(¢) = By + Z

v j:rjk €Ex(T)

dbf (TF, ¢)

DAC ’22, July 10-14, 2022, San Francisco, CA, USA

4.3 Response-Time inside an Executor

So far, we have both the maximum resource demand RD(¢) and
minimum resource supply by the supply-bound function, sbf(¢).
Now, we compute the minimum slack time for the analyzed chain
instances I“]].c in the executor Ej. using following lemma,

LEMMA 3. The slack time of the analyzed (sub)chain 1"}‘ in execu-
tor Ey. is lower-bounded by:

stk = min

7 vepk<s<ik {5 _E(RD(@)} (10)

where L}c 3 is an upper-bound of range [1].
Proor. The lemma directly follows Theorem IIL.2 of [5]. o

Lemma 3 provides the exact slack for the tardy chains but gives
pessimistic slack time for hard sporadic chain scheduling [5]. How-
ever, we allow the tardiness of the processing chains. So, we do not
develop an exact test for hard sporadic chains.

THEOREM 1. The response time of the analyzed chain (I“jk) in the
executor (Ey) is
k _ nk _ oxk
R; =D; - S; (11)

Proor. It directly follows from response time defined in (6). O

The response time of the analyzed chain T’ can further be bound
from above for the overloaded system using the overload handling
mechanism of ROS2 as follows,

k _
Rj—

k :cpk .
{Rj, if R < Tj +Cr, 12

Tj + er, otherwise
this works following the fact that the overloading handling mech-
anism allows at max Tj idle time for any chain instance to start

execution and the EDF makes the chain instance highest priority
among all active instances.

4.4 End-to-end Response Time
Finally, we analyze the end-to-end response time of the analyzed
chain, I'; = J FJ’F , which can span over the multiple executors in
the system.

THEOREM 2. The end-to-end response time of the analyzed chain
Ty is:

Ri=> RE+(K;j-1)-y (13)
Vk

where K is the number of executors that the chainI'; spanned.

Proor. It follows from the principle of the CPA tool: the end-to-
end response of the chain is the sum of individual response time in
each executor and the total communication delays. O

5 EVALUATION

In this section, we first explain our implementation of the proposed
chain instance-level priority scheduler in ROS2. Next, we present
experimental results comparing the different schedulers.

3L§ = 1% - max{T; - D}‘} where, zvrfeEk(r) (crj,_c/Tj) <c[1].

DAC ’22, July 10-14, 2022, San Francisco, CA, USA

Chains Specifications (msec)
C;=23,C,=16.1,T, = 80
C3=22,C,=18.4,C5=9.1,T; = 80
{Cle. 01} = {23.1,7.9,14.2,17.9}, Ty = 100

C1o = 20.6,C11 = 17.9, C13 = 6.6, Tip = 100

T1, T2 >

T1, T3, T4, T5 >

710> 711, T12 >

<
<
< T{6,-,9} >
<
<

(13,16} > {C{13’MY16}} ={1.7,11,6.6,7.9}, T13 = 160
< 717, T18 > Cy7 = 1.7,C1g = 195.5, T17 = 1000
(BEI,..A,G) C1 =33.2,C2=6.6,T =120

Table 3: Specifications for the case study tests, where first six
chains are real-time chains and last row specifies the best-
effort (six) chains with same parameters.

e
)

1 —— ROS2 Default [3, 9]
—— PIiCAS [4]

—— Proposed

g

RTI RT2 RT3 RT4 RT5 RT6 BEl BE2 BE3 BE4 BE5 BEG
Chain Index
Figure 4: End-to-end latency - tested with the default ROS2,
PiCAS [4], our modified executor scheduler for the case study
workloads presented in Table 3.

5.1 Implementation

e
=N

End-to-End Latency (s)
[=] (=3
IS ~

o
o
i

Our implementation features an alternate executor based on the
default SingleThreadedExecutor provided by rclcpp. Our modi-
fied executor maintains a priority queue, named readyQueue, and
populates it from the wait_set after every callback execution. We
created a unified structure to represent any type of callback along
with its chain membership, period, and deadline parameters, and
replaced the default executor’s unordered callback lists.

When a chain completes execution, the executor checks the
time_until_trigger field of the chain’s associated timer and sets
the deadline field of the chain’s callbacks to time_until_trigger
+ period. Before a chain completes execution, the timer callback
may be triggered resulting in multiple chain instances ready for
execution. To prevent multiple chains from running at once, each
callback in a chain has a counter that keeps track of where in the
chain execution is happening. The counter can used to ensure that
the newly released chain instance is not scheduled until the counter
reaches the end of the current chain. The callbacks in the queue is
prioritized by chain instance first and then by callback deadlines.

5.2 Case Study

The ROS2 schedulers are implemented on an Nvidia Jetson Xavier
AGX in the 30W mode, with the clock frequencies fixed at 1.2Ghz.
Workload. To evaluate the deadline executor implementation, we
perform tests with a node layout inspired by case study II from [4].
The workload parameters are presented in Table 3.

Each test uses 4 CPU cores, and each thread is set to the SCHED_FIFO
Linux scheduling class. When testing the default ROS executor and
our modified executor, we use 8 executors. We distribute the real-
time chains across the first four executors and the best-effort chains
across the next four executors. Each executor runs in its own thread.
Threads containing real-time (RT) chains have their priorities set

Abdullah Al Arafat, Sudharsan Vaidhun, Kurt M. Wilson, Jinghao Sun, and Zhishan Guo

to 99 (the maximum priority available in Linux), and the best-effort
(BE) chains are assigned priority 98. We then distribute the executors
across 4 CPU cores for load balancing. For testing the PiCAS execu-
tor, we added chain membership and priority fields and followed
the allocation scheme presented in the paper.

Results. We compare our deadline-based executor against the de-
fault ROS SingleThreadedExecutor and the existing chain-aware
priority-based execution strategy developed by Choi et al., Pi-
CAS [4]. We observe that for any chain, our proposed scheduler has
a lower or equal latency compared to PiCAS as well as the default
scheduler. Within each category (RT, BE), we observes that our
proposed scheduler has better average latency compared to others
for higher chain indices (Fig. 4). As a general trend, the default
scheduler has a lower average irrespective of the chain, but higher
worst-case latencies. In contrast, our proposed approach maintains
a lower average while having lower worst-case latencies as well.
All algorithms appear to favor lower index over higher index chains
and we believe this due to the tie-breaking behavior.

Note. Our latency times are not directly comparable to those found
in [4], due to the difference in the definition of latency. In our work,
we define latency as the time difference between release time of
the chain and the completion time of the last callback in the chain.
Whereas, [4] measure the latency starting from the point the timer
callback begins execution. The presented latency is in line with the
definition of latency in the real-time scheduling theory.

6 CONCLUSION AND FUTURE WORKS

In this paper, we proposed a deadline-based scheduling scheme for
ROS2 executor to overcome the limitations of the default readySet-
based scheduling technique. We used deadline as a tool to realize
dynamic priority setting, and presented an end-to-end response
time analysis for each processing chain spanning over multiple
executors. We evaluated the proposed scheduler using a case study
of the ROS2 application. Our future goal is to develop techniques
to optimally assign dynamic priorities (deadlines) for the workload,
such that the user-specified response time and latency requirements
can be met. While no such results exists yet, this work serves as a
first and important step, where the latency for a given workload
can be upper bounded, while deadlines are used to set dynamic
priorities.

REFERENCES

[1] S.K. Baruah et al. Algorithms and complexity concerning the preemptive sched-
uling of periodic, real-time tasks on one processor. Real-time systems.

[2] T.Blafl et al. A ros 2 response-time analysis exploiting starvation freedom and
execution-time variance. In 2021 IEEE Real-Time Systems Symposium (RTSS).

[3] D. Casini et al. Response-time analysis of ROS 2 processing chains under
reservation-based scheduling. In 31st Euromicro Conference on Real-Time Sys-
tems (ECRTS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[4] H. Choi et al. PiCAS: New Design of Priority-Driven Chain-Aware Scheduling
for ROS2. In 2021 IEEE 27th Real-Time and Embedded Technology and Applications
Symposium (RTAS).

[5] N.Guan and W. Yi. General and efficient response time analysis for edf scheduling.
In 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[6] R.Henia et al. System level performance analysis—the symta/s approach. IEE
Proceedings-Computers and Digital Techniques.

[7] L Shin and L Lee. Periodic resource model for compositional real-time guarantees.
In 24th IEEE Real-Time Systems Symposium (RTSS), 2003, pages 2-13. IEEE, 2003.

[8] I Shin et al. Hierarchical scheduling framework for virtual clustering of multipro-
cessors. In 2008 Euromicro Conference on Real-Time Systems.

[9] Y. Tang et al. Response time analysis and priority assignment of processing chains
on ROS2 executors. In 2020 IEEE Real-Time Systems Symposium (RTSS).

	Abstract
	1 Introduction
	2 System Model
	3 Problem and Method
	3.1 Problem Statement
	3.2 Proposed Scheduler
	3.3 Illustrative Experiment

	4 Response Time Analysis
	4.1 Overview
	4.2 Properties
	4.3 Response-Time inside an Executor
	4.4 End-to-end Response Time

	5 Evaluation
	5.1 Implementation
	5.2 Case Study

	6 Conclusion and Future Works
	References

